1
|
Bhati R, Zadeng H, Singh E, Kumar A, Jain M, Senthil Kumaran J, Singh AK, Muthukumaran J. Molecular dynamics simulations assisted investigation of phytochemicals as potential lead candidates against anti-apoptotic Bcl-B protein. J Biomol Struct Dyn 2025; 43:3049-3063. [PMID: 38111145 DOI: 10.1080/07391102.2023.2295385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Due to the multifarious nature of cancer, finding a single definitive cure for this dreadful disease remains an elusive challenge. The dysregulation of the apoptotic pathway or programmed cell death, governed by the Bcl-2 family of proteins plays a crucial role in cancer development and progression. Bcl-B stands out as a unique anti-apoptotic protein from the Bcl-2 family that selectively binds to Bax which inhibits its pro-apoptotic function. Although several inhibitors are reported for Bcl-2 family proteins, no specific inhibitors are available against the anti-apoptotic Bcl-B protein. This study aims to address this research gap by using virtual screening of an in-house library of phytochemicals from seven anti-cancer medicinal plants to identify lead molecules against Bcl-B protein. Through pharmacokinetic analysis and molecular docking studies, we identified three lead candidates (Enterolactone, Piperine, and Protopine) based on appreciable drug-likeliness, ADME properties, and binding affinity values. The identified molecules also exhibited specific interactions with critical amino acid residues of the binding cleft, highlighting their potential as lead candidates. Finally, molecular dynamics simulations and MM/PBSA based binding free energy analysis revealed that Enterolactone (CID_114739) and Piperine (CID_638024) molecules were on par with Obatoclax (CID_11404337), which is a known inhibitor of the Bcl-2 family proteins.
Collapse
Affiliation(s)
- Rittik Bhati
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Hazel Zadeng
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Ekampreet Singh
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Ankit Kumar
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Monika Jain
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - J Senthil Kumaran
- Department of Chemistry, DLR Arts and Science College, Arcot, India
- Department of Science and Humanities, Er. Perumal Manimekalai College of Engineering, Hosur, India
| | - Amit Kumar Singh
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| |
Collapse
|
2
|
Ramesh P, Al Kadi AR, Borse GM, Webendörfer M, Zaun G, Metzenmacher M, Doerr F, Bölükbas S, Hegedüs B, Lueong SS, Magne J, Liu B, Nunez G, Schuler M, Green DR, Kalkavan H. BCL-B Promotes Lung Cancer Invasiveness by Direct Inhibition of BOK. Cells 2025; 14:246. [PMID: 39996719 PMCID: PMC11853756 DOI: 10.3390/cells14040246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Expression of BCL-B, an anti-apoptotic BCL-2 family member, is correlated with worse survival in lung adenocarcinomas. Here, we show that BCL-B can mitigate cell death initiation through interaction with the effector protein BOK. We found that this interaction can promote sublethal mitochondrial outer membrane permeabilization (MOMP) and consequently generate apoptosis-flatliners, which represent a source of drug-tolerant persister cells (DTPs). The engagement of endothelial-mesenchymal-transition (EMT) further promotes cancer cell invasiveness in such DTPs. Our results reveal that BCL-B fosters cancer cell aggressiveness by counteracting complete MOMP.
Collapse
Affiliation(s)
- Palaniappan Ramesh
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany; (P.R.); (A.R.A.K.); (G.M.B.); (M.W.); (G.Z.); (M.M.); (M.S.)
- Medical Faculty, University Duisburg-Essen, 45122 Essen, Germany; (F.D.); (S.B.); (B.H.)
| | - Amal R. Al Kadi
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany; (P.R.); (A.R.A.K.); (G.M.B.); (M.W.); (G.Z.); (M.M.); (M.S.)
- Medical Faculty, University Duisburg-Essen, 45122 Essen, Germany; (F.D.); (S.B.); (B.H.)
| | - Gaurav M. Borse
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany; (P.R.); (A.R.A.K.); (G.M.B.); (M.W.); (G.Z.); (M.M.); (M.S.)
- Medical Faculty, University Duisburg-Essen, 45122 Essen, Germany; (F.D.); (S.B.); (B.H.)
| | - Maximilian Webendörfer
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany; (P.R.); (A.R.A.K.); (G.M.B.); (M.W.); (G.Z.); (M.M.); (M.S.)
- Medical Faculty, University Duisburg-Essen, 45122 Essen, Germany; (F.D.); (S.B.); (B.H.)
| | - Gregor Zaun
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany; (P.R.); (A.R.A.K.); (G.M.B.); (M.W.); (G.Z.); (M.M.); (M.S.)
- Medical Faculty, University Duisburg-Essen, 45122 Essen, Germany; (F.D.); (S.B.); (B.H.)
| | - Martin Metzenmacher
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany; (P.R.); (A.R.A.K.); (G.M.B.); (M.W.); (G.Z.); (M.M.); (M.S.)
- Medical Faculty, University Duisburg-Essen, 45122 Essen, Germany; (F.D.); (S.B.); (B.H.)
| | - Fabian Doerr
- Medical Faculty, University Duisburg-Essen, 45122 Essen, Germany; (F.D.); (S.B.); (B.H.)
- Department of Thoracic Surgery, West German Lung Center, University Medicine Essen-Ruhrlandklinik, University Duisburg-Essen, 45239 Essen, Germany
| | - Servet Bölükbas
- Medical Faculty, University Duisburg-Essen, 45122 Essen, Germany; (F.D.); (S.B.); (B.H.)
- Department of Thoracic Surgery, West German Lung Center, University Medicine Essen-Ruhrlandklinik, University Duisburg-Essen, 45239 Essen, Germany
| | - Balazs Hegedüs
- Medical Faculty, University Duisburg-Essen, 45122 Essen, Germany; (F.D.); (S.B.); (B.H.)
- Department of Thoracic Surgery, West German Lung Center, University Medicine Essen-Ruhrlandklinik, University Duisburg-Essen, 45239 Essen, Germany
| | - Smiths S. Lueong
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany;
| | - Joelle Magne
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.M.); (B.L.); (G.N.); (D.R.G.)
- BIGR, Université Paris Cité and Université des Antilles, INSERM, 75015 Paris, France
| | - Beiyun Liu
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.M.); (B.L.); (G.N.); (D.R.G.)
| | - Greisly Nunez
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.M.); (B.L.); (G.N.); (D.R.G.)
| | - Martin Schuler
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany; (P.R.); (A.R.A.K.); (G.M.B.); (M.W.); (G.Z.); (M.M.); (M.S.)
- Medical Faculty, University Duisburg-Essen, 45122 Essen, Germany; (F.D.); (S.B.); (B.H.)
- National Center for Tumor Diseases (NCT) West, Campus Essen, 45122 Essen, Germany
| | - Douglas R. Green
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.M.); (B.L.); (G.N.); (D.R.G.)
| | - Halime Kalkavan
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany; (P.R.); (A.R.A.K.); (G.M.B.); (M.W.); (G.Z.); (M.M.); (M.S.)
- Medical Faculty, University Duisburg-Essen, 45122 Essen, Germany; (F.D.); (S.B.); (B.H.)
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany;
- National Center for Tumor Diseases (NCT) West, Campus Essen, 45122 Essen, Germany
| |
Collapse
|
3
|
Wei H, Wang H, Xiang S, Wang J, Qu L, Chen X, Guo M, Lu X, Chen Y. Deciphering molecular specificity in MCL-1/BAK interaction and its implications for designing potent MCL-1 inhibitors. Cell Death Differ 2025:10.1038/s41418-025-01454-2. [PMID: 39901037 DOI: 10.1038/s41418-025-01454-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/16/2024] [Accepted: 01/24/2025] [Indexed: 02/05/2025] Open
Abstract
The intricate interplay among BCL-2 family proteins governs mitochondrial apoptosis, with the anti-apoptotic protein MCL-1 primarily exerting its function by sequestering the pore-forming effector BAK. Understanding the MCL-1/BAK complex is pivotal for the sensitivity of cancer cells to BH3 mimetics, yet the precise molecular mechanism underlying their interaction remains elusive. Herein, we demonstrate that a canonical BH3 peptide from BAK inadequately binds to MCL-1 proteins, whereas an extended BAK-BH3 peptide with five C-terminal residues exhibits a remarkable 65-fold increase in affinity. By elucidating the complex structures of MCL-1 bound to these two BAK-BH3 peptides at 2.08 Å and 1.98 Å resolutions, we uncover their distinct binding specificities. Notably, MCL-1 engages in critical hydrophobic interactions with the extended BAK-BH3 peptide, particularly at an additional p5 sub-pocket, featuring a π-π stacking interaction between MCL-1 Phe319 and BAK Tyr89. Mutations within this p5 sub-pocket substantially disrupt the MCL-1/BAK protein-protein interaction. Furthermore, the p5 sub-pocket of MCL-1 significantly influences the efficacy of MCL-1 inhibitors. Overall, our findings elucidate the molecular specificity underlying MCL-1 binding to BAK and underscore the significance of the p5 hydrophobic sub-pocket in their high-affinity interaction, thus providing novel insights for the development of BH3 mimetics targeting the MCL-1/BAK interaction as potential therapeutics for cancer treatment.
Collapse
Affiliation(s)
- Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuang Xiang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Jiaqi Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lingzhi Qu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaojuan Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Xiaoyun Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Deng H, Han Y, Liu L, Zhang H, Liu D, Wen J, Huang M, Zhao L. Targeting Myeloid Leukemia-1 in Cancer Therapy: Advances and Directions. J Med Chem 2024; 67:5963-5998. [PMID: 38597264 DOI: 10.1021/acs.jmedchem.3c01998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
As a tripartite cell death switch, B-cell lymphoma protein 2 (Bcl-2) family members precisely regulate the endogenous apoptosis pathway in response to various cell signal stresses through protein-protein interactions. Myeloid leukemia-1 (Mcl-1), a key anti-apoptotic Bcl-2 family member, is positioned downstream in the endogenous apoptotic pathway and plays a central role in regulating mitochondrial function. Mcl-1 is highly expressed in a variety of hematological malignancies and solid tumors, contributing to tumorigenesis, poor prognosis, and chemoresistance, making it an attractive target for cancer treatment. This Perspective aims to discuss the mechanism by which Mcl-1 regulates apoptosis and non-apoptotic functions in cancer cells and to outline the discovery and optimization process of potent Mcl-1 modulators. In addition, we summarize the structural characteristics of potent inhibitors that bind to Mcl-1 through multiple co-crystal structures and analyze the cardiotoxicity caused by current Mcl-1 inhibitors, providing prospects for rational targeting of Mcl-1.
Collapse
Affiliation(s)
- Hongguang Deng
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Han
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Liang Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hong Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiachen Wen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Min Huang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linxiang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
5
|
Wyżewski Z, Stępkowska J, Kobylińska AM, Mielcarska A, Mielcarska MB. Mcl-1 Protein and Viral Infections: A Narrative Review. Int J Mol Sci 2024; 25:1138. [PMID: 38256213 PMCID: PMC10816053 DOI: 10.3390/ijms25021138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
MCL-1 is the prosurvival member of the Bcl-2 family. It prevents the induction of mitochondria-dependent apoptosis. The molecular mechanisms dictating the host cell viability gain importance in the context of viral infections. The premature apoptosis of infected cells could interrupt the pathogen replication cycle. On the other hand, cell death following the effective assembly of progeny particles may facilitate virus dissemination. Thus, various viruses can interfere with the apoptosis regulation network to their advantage. Research has shown that viral infections affect the intracellular amount of MCL-1 to modify the apoptotic potential of infected cells, fitting it to the "schedule" of the replication cycle. A growing body of evidence suggests that the virus-dependent deregulation of the MCL-1 level may contribute to several virus-driven diseases. In this work, we have described the role of MCL-1 in infections caused by various viruses. We have also presented a list of promising antiviral agents targeting the MCL-1 protein. The discussed results indicate targeted interventions addressing anti-apoptotic MCL1 as a new therapeutic strategy for cancers as well as other diseases. The investigation of the cellular and molecular mechanisms involved in viral infections engaging MCL1 may contribute to a better understanding of the regulation of cell death and survival balance.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland
| | - Justyna Stępkowska
- Institute of Family Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland;
| | - Aleksandra Maria Kobylińska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (A.M.K.); (M.B.M.)
| | - Adriana Mielcarska
- Department of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, The Children’s Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland;
| | - Matylda Barbara Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (A.M.K.); (M.B.M.)
| |
Collapse
|
6
|
Pervushin NV, Kopeina GS, Zhivotovsky B. Bcl-B: an "unknown" protein of the Bcl-2 family. Biol Direct 2023; 18:69. [PMID: 37899453 PMCID: PMC10614328 DOI: 10.1186/s13062-023-00431-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023] Open
Abstract
Bcl-B is a poorly understood protein of the Bcl-2 family that is highly expressed in many healthy tissues and tumor types. Bcl-B is considered an antiapoptotic protein, but many reports have revealed its contradictory roles in different cancer types. In this mini-review, we elucidate the functions of Bcl-B in normal conditions and various pathologies, its regulation of programmed cell death, its oncogene/oncosuppressor activity in tumorigenesis, its impact on drug-acquired resistance, and possible approaches to inhibit Bcl-B.
Collapse
Affiliation(s)
- N V Pervushin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - G S Kopeina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - B Zhivotovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institute, Box 210, Stockholm, 17177, Sweden.
| |
Collapse
|
7
|
Czabotar PE, Garcia-Saez AJ. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nat Rev Mol Cell Biol 2023; 24:732-748. [PMID: 37438560 DOI: 10.1038/s41580-023-00629-4] [Citation(s) in RCA: 223] [Impact Index Per Article: 111.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/14/2023]
Abstract
The proteins of the BCL-2 family are key regulators of mitochondrial apoptosis, acting as either promoters or inhibitors of cell death. The functional interplay and balance between the opposing BCL-2 family members control permeabilization of the outer mitochondrial membrane, leading to the release of activators of the caspase cascade into the cytosol and ultimately resulting in cell death. Despite considerable research, our knowledge about the mechanisms of the BCL-2 family of proteins remains insufficient, which complicates cell fate predictions and does not allow us to fully exploit these proteins as targets for drug discovery. Detailed understanding of the formation and molecular architecture of the apoptotic pore in the outer mitochondrial membrane remains a holy grail in the field, but new studies allow us to begin constructing a structural model of its arrangement. Recent literature has also revealed unexpected activities for several BCL-2 family members that challenge established concepts of how they regulate mitochondrial permeabilization. In this Review, we revisit the most important advances in the field and integrate them into a new structure-function-based classification of the BCL-2 family members that intends to provide a comprehensive model for BCL-2 action in apoptosis. We close this Review by discussing the potential of drugging the BCL-2 family in diseases characterized by aberrant apoptosis.
Collapse
Affiliation(s)
- Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Ana J Garcia-Saez
- Membrane Biophysics, Institute of Genetics, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
8
|
Chen Y, Li W. Scutellarin Inhibits Glioblastoma Growth in a Dose-dependent Manner by Suppressing the p63 Signaling Pathway. Dose Response 2023; 21:15593258231197101. [PMID: 37654726 PMCID: PMC10467202 DOI: 10.1177/15593258231197101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023] Open
Abstract
Although scutellarin has been extensively investigated, its effects on glioma are unclear. This study intended to reveal this regulation and the underlying mechanisms. The U251, M059K, and SF-295 cell lines were treated with gradient concentrations of scutellarin and then IC50 was calculated. SF-295 cells selected for subsequent procedures were treated with four concentrations of scutellarin. Then, proliferation, apoptosis, and cell cycle, as well as the protein and mRNA expression of significantly differentially expressed genes identified by next-generation sequencing (NGS), were examined. The curative effect of scutellarin was validated by 5-FU as the positive control. Scutellarin inhibited proliferation and induced apoptosis and G2/M cell cycle arrest in the SF-295 cell line in a dose-dependent manner. The effect of scutellarin was similar to but significantly weaker than the effect of 5-FU. The NGS results showed that genes associated with anti-apoptosis signaling pathways were significantly reduced after treatment. The Western blotting results indicated that the expressions of TP63/BIRC3/TRAF1/Bcl-2 were reduced in a dose-dependent manner, as well as the mRNA levels determined by qRT‒PCR. Our original conclusion revealed that scutellarin may inhibit glioma growth in a dose-dependent manner via the p63 signaling pathway which may provide a potential medicine for glioma chemotherapy.
Collapse
Affiliation(s)
- Yongjie Chen
- School of Pharmacy, Harbin University of Commerce, Harbin, China
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenlan Li
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| |
Collapse
|
9
|
Aguilar F, Yu S, Grant RA, Swanson S, Ghose D, Su BG, Sarosiek KA, Keating AE. Peptides from human BNIP5 and PXT1 and non-native binders of pro-apoptotic BAK can directly activate or inhibit BAK-mediated membrane permeabilization. Structure 2023; 31:265-281.e7. [PMID: 36706751 PMCID: PMC9992319 DOI: 10.1016/j.str.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/24/2022] [Accepted: 01/02/2023] [Indexed: 01/27/2023]
Abstract
Apoptosis is important for development and tissue homeostasis, and its dysregulation can lead to diseases, including cancer. As an apoptotic effector, BAK undergoes conformational changes that promote mitochondrial outer membrane disruption, leading to cell death. This is termed "activation" and can be induced by peptides from the human proteins BID, BIM, and PUMA. To identify additional peptides that can regulate BAK, we used computational protein design, yeast surface display screening, and structure-based energy scoring to identify 10 diverse new binders. We discovered peptides from the human proteins BNIP5 and PXT1 and three non-native peptides that activate BAK in liposome assays and induce cytochrome c release from mitochondria. Crystal structures and binding studies reveal a high degree of similarity among peptide activators and inhibitors, ruling out a simple function-determining property. Our results shed light on the vast peptide sequence space that can regulate BAK function and will guide the design of BAK-modulating tools and therapeutics.
Collapse
Affiliation(s)
- Fiona Aguilar
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stacey Yu
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, USA; Program in Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA; John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Robert A Grant
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sebastian Swanson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dia Ghose
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bonnie G Su
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kristopher A Sarosiek
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, USA; Program in Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA; John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Amy E Keating
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
10
|
Diepstraten ST, Young S, La Marca JE, Wang Z, Kluck RM, Strasser A, Kelly GL. Lymphoma cells lacking pro-apoptotic BAX are highly resistant to BH3-mimetics targeting pro-survival MCL-1 but retain sensitivity to conventional DNA-damaging drugs. Cell Death Differ 2023; 30:1005-1017. [PMID: 36755070 PMCID: PMC10070326 DOI: 10.1038/s41418-023-01117-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 02/10/2023] Open
Abstract
BH3-mimetic drugs are an anti-cancer therapy that can induce apoptosis in malignant cells by directly binding and inhibiting pro-survival proteins of the BCL-2 family. The BH3-mimetic drug venetoclax, which targets BCL-2, has been approved for the treatment of chronic lymphocytic leukaemia and acute myeloid leukaemia by regulatory authorities worldwide. However, while most patients initially respond well, resistance and relapse while on this drug is an emerging and critical issue in the clinic. Though some studies have begun uncovering the factors involved in resistance to BCL-2-targeting BH3-mimetic drugs, little focus has been applied to pre-emptively tackle resistance for the next generation of BH3-mimetic drugs targeting MCL-1, which are now in clinical trials for diverse blood cancers. Therefore, using pre-clinical mouse and human models of aggressive lymphoma, we sought to predict factors likely to contribute to the development of resistance in patients receiving MCL-1-targeting BH3-mimetic drugs. First, we performed multiple whole genome CRISPR/Cas9 KO screens and identified that loss of the pro-apoptotic effector protein BAX, but not its close relative BAK, could confer resistance to MCL-1-targeting BH3-mimetic drugs in both short-term and long-term treatment regimens, even in lymphoma cells lacking the tumour suppressor TRP53. Furthermore, we found that mouse Eµ-Myc lymphoma cells selected for loss of BAX, as well as upregulation of the untargeted pro-survival BCL-2 family proteins BCL-XL and A1, when made naturally resistant to MCL-1 inhibitors by culturing them in increasing doses of drug over time, a situation mimicking the clinical application of these drugs. Finally, we identified therapeutic approaches which could overcome these two methods of resistance: the use of chemotherapeutic drugs or combined BH3-mimetic treatment, respectively. Collectively, these results uncover some key factors likely to cause resistance to MCL-1 inhibition in the clinic and suggest rational therapeutic strategies to overcome resistance that should be investigated further.
Collapse
Affiliation(s)
- Sarah T Diepstraten
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Savannah Young
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - John E La Marca
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Zilu Wang
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Ruth M Kluck
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
11
|
Rouchidane Eyitayo A, Giraud MF, Daury L, Lambert O, Gonzalez C, Manon S. Cell-free synthesis and reconstitution of Bax in nanodiscs: Comparison between wild-type Bax and a constitutively active mutant. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184075. [PMID: 36273540 DOI: 10.1016/j.bbamem.2022.184075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
Bax is a major player in the mitochondrial pathway of apoptosis, by making the Outer Mitochondrial Membrane (OMM) permeable to various apoptogenic factors, including cytochrome c. In order to get further insight into the structure and function of Bax when it is inserted in the OMM, we attempted to reconstitute Bax in nanodiscs. Cell-free protein synthesis in the presence of nanodiscs did not yield Bax-containing nanodiscs, but it provided a simple way to purify full-length Bax without any tag. Purified wild-type Bax (BaxWT) and a constitutively active mutant (BaxP168A) displayed biochemical properties that were in line with previous characterizations following their expression in yeast and human cells followed by their reconstitution into liposomes. Both Bax variants were then reconstituted in nanodiscs. Size exclusion chromatography, dynamic light scattering and transmission electron microscopy showed that nanodiscs formed with BaxP168A were larger than nanodiscs formed with BaxWT. This was consistent with the hypothesis that BaxP168A was reconstituted in nanodiscs as an active oligomer.
Collapse
Affiliation(s)
| | - Marie-France Giraud
- IBGC, UMR5095, CNRS, Université de Bordeaux, France; CBMN, UMR5248, CNRS, Université de Bordeaux, France
| | | | | | | | - Stéphen Manon
- IBGC, UMR5095, CNRS, Université de Bordeaux, France.
| |
Collapse
|
12
|
Liu Y, Xin J, Zhang S, Li Q, Wang W, Chen J, Ming X, Wu X, Cao X, Cui W, Wang H, Li W. Expression patterns and biological function of BCL2L10 during mouse preimplantation development. Gene Expr Patterns 2022; 46:119285. [PMID: 36341977 DOI: 10.1016/j.gep.2022.119285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/02/2022] [Accepted: 10/24/2022] [Indexed: 11/04/2022]
Abstract
BCL2-like 10 (BCL2L10) is abundantly expressed in mammalian oocytes and plays a crucial role in the completion of oocyte meiosis. However, the expression patterns of BCL2L10 and its biological functions during preimplantation development have not been well characterized. Here, we investigated the spatiotemporal expressions of Bcl2l10 during mouse preimplantation development using RT-qPCR and immunofluorescence and its biological function using siRNA and morpholino injection into pronuclear embryos. Results from RT-qPCR showed that Bcl2l10 was highly expressed in the metaphase Ⅱ-stage oocytes and pronuclear-stage embryos, but expression markedly decreased from the two-cell stage onwards and was no longer detected at the four-cell stage and beyond. Immunofluorescence staining showed that BCL2L10 was detectable throughout preimplantation development and localized in the cytoplasm and nuclei. Knocking down Bcl2l10 resulted in a reduced blastocyst formation rate (P < 0.01) and decreased expression of OCT4, NANOG, and SOX17 (P < 0.05). We concluded that the role of BCL2L10 is strongly associated with developmental competence of preimplantation mouse embryos.
Collapse
Affiliation(s)
- Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, College of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236037, China; Department of Veterinary and Animal Sciences, Animal Models Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts Amherst, Amherst, MA, 01002, United States
| | - Jing Xin
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, College of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236037, China
| | - Shengnan Zhang
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, College of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236037, China
| | - Qingmei Li
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, College of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236037, China
| | - Wenying Wang
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, College of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236037, China
| | - Ji Chen
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, College of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236037, China
| | - Xin Ming
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, College of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236037, China
| | - Xiaoqing Wu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, College of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236037, China
| | - Xinyan Cao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No.4899 Juye Street, Jingyue District, Changchun, 130112, China
| | - Wei Cui
- Department of Veterinary and Animal Sciences, Animal Models Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts Amherst, Amherst, MA, 01002, United States
| | - Hongcheng Wang
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, College of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236037, China; Linquan Modern Agricultural Technology Cooperation and Extension Service Center, The Anhui Agricultural University's Comprehensive Experimental Station in the Northwest of Anhui Province, Linquan, Anhui, 236400, China.
| | - Wenyong Li
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, College of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236037, China.
| |
Collapse
|
13
|
Sancho M, Leiva D, Lucendo E, Orzáez M. Understanding MCL1: from cellular function and regulation to pharmacological inhibition. FEBS J 2022; 289:6209-6234. [PMID: 34310025 PMCID: PMC9787394 DOI: 10.1111/febs.16136] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 12/30/2022]
Abstract
Myeloid cell leukemia-1 (MCL1), an antiapoptotic member of the BCL2 family characterized by a short half-life, functions as a rapid sensor that regulates cell death and other relevant processes that include cell cycle progression and mitochondrial homeostasis. In cancer, MCL1 overexpression contributes to cell survival and resistance to diverse chemotherapeutic agents; for this reason, several MCL1 inhibitors are currently under preclinical and clinical development for cancer treatment. However, the nonapoptotic functions of MCL1 may influence their therapeutic potential. Overall, the complexity of MCL1 regulation and function represent challenges to the clinical application of MCL1 inhibitors. We now summarize the current knowledge regarding MCL1 structure, regulation, and function that could impact the clinical success of MCL1 inhibitors.
Collapse
Affiliation(s)
- Mónica Sancho
- Targeted Therapies on Cancer and Inflammation LaboratoryCentro de Investigación Príncipe FelipeValenciaSpain
| | - Diego Leiva
- Targeted Therapies on Cancer and Inflammation LaboratoryCentro de Investigación Príncipe FelipeValenciaSpain
| | - Estefanía Lucendo
- Targeted Therapies on Cancer and Inflammation LaboratoryCentro de Investigación Príncipe FelipeValenciaSpain
| | - Mar Orzáez
- Targeted Therapies on Cancer and Inflammation LaboratoryCentro de Investigación Príncipe FelipeValenciaSpain
| |
Collapse
|
14
|
Selective BH3 mimetics synergize with BET inhibition to induce mitochondrial apoptosis in rhabdomyosarcoma cells. Neoplasia 2021; 24:109-119. [PMID: 34959030 PMCID: PMC8718565 DOI: 10.1016/j.neo.2021.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
Co-inhibition of BET proteins and anti-apoptotic BCL-2 proteins induces apoptosis in RMS. JQ1 and BH3-mimetics synergistically induce cell death in RMS. Cell death is caspase-dependent and displays hallmarks of intrinsic apoptosis. JQ1/A-1331852-mediated apoptosis is dependent on BIM and NOXA. JQ1/S638450-mediated apoptosis is dependent on BIM but not NOXA.
BH3 mimetics are promising novel anticancer therapeutics. By selectively inhibiting BCL-2, BCL-xL, or MCL-1 (i.e. ABT-199, A-1331852, S63845) they shift the balance of pro- and anti-apoptotic proteins in favor of apoptosis. As Bromodomain and Extra Terminal (BET) protein inhibitors promote pro-apoptotic rebalancing, we evaluated the potential of the BET inhibitor JQ1 in combination with ABT-199, A-1331852 or S63845 in rhabdomyosarcoma (RMS) cells. The strongest synergistic interaction was identified for JQ1/A-1331852 and JQ1/S63845 co-treatment, which reduced cell viability and long-term clonogenic survival. Mechanistic studies revealed that JQ1 upregulated BIM and NOXA accompanied by downregulation of BCL-xL, promoting pro-apoptotic rebalancing of BCL-2 proteins. JQ1/A-1331852 and JQ1/S63845 co-treatment enhanced this pro-apoptotic rebalancing and triggered BAK- and BAX-dependent apoptosis since a) genetic silencing of BIM, BAK or BAX, b) inhibition of caspase activity with zVAD.fmk and c) overexpression of BCL-2 all rescued JQ1/A-1331852- and JQ1/S63845-induced cell death. Interestingly, NOXA played a different role in both treatments, as genetic silencing of NOXA significantly rescued from JQ1/A-1331852-mediated apoptosis but not from JQ1/S63845-mediated apoptosis. In summary, JQ1/A-1331852 and JQ1/S63845 co-treatment represent new promising therapeutic strategies to synergistically trigger mitochondrial apoptosis in RMS.
Collapse
|
15
|
Raza A, Iqbal J, Munir MU, Asif A, Ahmed A. Anticancer Potential of Polysaccharides. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
16
|
Sancho M, Orzáez M. BOK-MCL1 transmembrane interactions: a challenging target for cancer therapy. Mol Cell Oncol 2021; 8:1859918. [PMID: 33553610 PMCID: PMC7849717 DOI: 10.1080/23723556.2020.1859918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Myeloid cell leukemia 1 (MCL1) gene amplification occurs in a wide range of human cancers and protein overexpression associates with malignant cell growth and evasion of apoptosis. We recently reported that disrupting the interaction between the transmembrane domains of MCL1 and BCL-2 related ovarian killer (BOK) induces cell death, thereby suggesting a new target site for anti-tumorigenic strategies.
Collapse
Affiliation(s)
- Mónica Sancho
- Laboratorio de Péptidos y Proteínas, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Mar Orzáez
- Laboratorio de Péptidos y Proteínas, Centro de Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
17
|
Widden H, Kaczmarczyk A, Subedi A, Whitaker RH, Placzek WJ. MCL1 binds and negatively regulates the transcriptional function of tumor suppressor p73. Cell Death Dis 2020; 11:946. [PMID: 33144577 PMCID: PMC7641127 DOI: 10.1038/s41419-020-03068-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
MCL1, an anti-apoptotic protein that controls chemosensitivity and cell fate through its regulation of intrinsic apoptosis, has been identified as a high-impact target in anti-cancer therapeutic development. With MCL1-specific inhibitors currently in clinical trials, it is imperative that we understand the roles that MCL1 plays in cells, especially when targeting the Bcl-2 homology 3 (BH3) pocket, the central region of MCL1 that mediates apoptotic regulation. Here, we establish that MCL1 has a direct role in controlling p73 transcriptional activity, which modulates target genes associated with DNA damage response, apoptosis, and cell cycle progression. This interaction is mediated through the reverse BH3 (rBH3) motif in the p73 tetramerization domain, which restricts p73 assembly on DNA. Here, we provide a novel mechanism for protein-level regulation of p73 transcriptional activity by MCL1, while also framing a foundation for studying MCL1 inhibitors in combination with platinum-based chemotherapeutics. More broadly, this work expands the role of Bcl-2 family signaling beyond cell fate regulation.
Collapse
Affiliation(s)
- Hayley Widden
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aneta Kaczmarczyk
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashok Subedi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert H Whitaker
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William J Placzek
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
18
|
Long non-coding RNA plasmacytoma variant translocation 1 linked to hypoxia-induced cardiomyocyte injury of H9c2 cells by targeting miR-135a-5p/forkhead box O1 axis. Chin Med J (Engl) 2020; 133:2953-2962. [PMID: 33093283 PMCID: PMC7752684 DOI: 10.1097/cm9.0000000000001147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Myocardial infarction occurs due to insufficient (ischemia) blood supply to heart for long time; plasmacytoma variant translocation 1 (PVT1) is a long non-coding RNAs (lncRNAs) involved in the pathogenesis of various diseases, including heart disease; However, few studies have explored its role. The present study evaluated the effects of lncRNA PVT1 on hypoxic rat H9c2 cells. Methods Hypoxic injury was examined by measuring cell viability and apoptosis by using cell counting kit-8 activity and flow cytometry assays. Gene expressions after hypoxia were estimated by quantitative real time polymerase chain reaction and the signaling pathway were explored by Western blot analysis. RNA immunoprecipitation and luciferase reporter assays were applied to examine the interactions among genes. Data were analyzed using t-test with one-way or two-way analysis of variance. Results The lncRNA PVT1 is up-regulated in hypoxia-stressed H9c2 cells and knockdown of PVT1 mitigates hypoxia-induced injury in H9c2 cells. PVT1 acts as a sponge for miR-135a-5p and knockdown of PVT1 attenuated the increased hypoxia-induced injury by up-regulating miR-135a-5p. Forkhead box O1 (FOXO1) was identified as a target of miR-135a-5p, and the expression was negatively regulated by miR-135a-5p. The exploration of the underlying mechanism demonstrated that knockdown of FOXO1 reversed PVT1/miR-135a-5p mediated hypoxia-induced injury in H9c2 cells. Conclusions PVT1 plays a crucial role in hypoxia-injured H9c2 cells through sponging miR-135a-5p and then positively regulating FOXO1.
Collapse
|
19
|
Teh CE, Robbins AK, Henstridge DC, Dewson G, Diepstraten ST, Kelly G, Febbraio MA, Gabriel SS, O'Reilly LA, Strasser A, Gray DHD. MCL-1 is essential for survival but dispensable for metabolic fitness of FOXP3 + regulatory T cells. Cell Death Differ 2020; 27:3374-3385. [PMID: 32612106 DOI: 10.1038/s41418-020-0585-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
FOXP3+ regulatory T (Treg) cells are essential for maintaining immunological tolerance. Given their importance in immune-related diseases, cancer and obesity, there is increasing interest in targeting the Treg cell compartment therapeutically. New pharmacological inhibitors that specifically target the prosurvival protein MCL-1 may provide this opportunity, as Treg cells are particularly reliant upon this protein. However, there are two distinct isoforms of MCL-1; one located at the outer mitochondrial membrane (OMM) that is required to antagonize apoptosis, and another at the inner mitochondrial membrane (IMM) that is reported to maintain IMM structure and metabolism via ATP production during oxidative phosphorylation. We set out to elucidate the relative importance of these distinct biological functions of MCL-1 in Treg cells to assess whether MCL-1 inhibition might impact upon the metabolism of cells able to resist apoptosis. Conditional deletion of Mcl1 in FOXP3+ Treg cells resulted in a lethal multiorgan autoimmunity due to the depletion of the Treg cell compartment. This striking phenotype was completely rescued by concomitant deletion of the apoptotic effector proteins BAK and BAX, indicating that apoptosis plays a pivotal role in the homeostasis of Treg cells. Notably, MCL-1-deficient Treg cells rescued from apoptosis displayed normal metabolic capacity. Moreover, pharmacological inhibition of MCL-1 in Treg cells resistant to apoptosis did not perturb their metabolic function. We conclude that Treg cells require MCL-1 only to antagonize apoptosis and not for metabolism. Therefore, MCL-1 inhibition could be used to manipulate Treg cell survival for clinical benefit without affecting the metabolic fitness of cells resisting apoptosis.
Collapse
Affiliation(s)
- Charis E Teh
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Alissa K Robbins
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Darren C Henstridge
- Cellular and Molecular Metabolism Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Grant Dewson
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Sarah T Diepstraten
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Gemma Kelly
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Mark A Febbraio
- Cellular and Molecular Metabolism Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia
| | - Sarah S Gabriel
- The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia
| | - Lorraine A O'Reilly
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Daniel H D Gray
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, Australia. .,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
20
|
Senichkin VV, Streletskaia AY, Zhivotovsky B, Kopeina GS. Molecular Comprehension of Mcl-1: From Gene Structure to Cancer Therapy. Trends Cell Biol 2019; 29:549-562. [DOI: 10.1016/j.tcb.2019.03.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 01/19/2023]
|
21
|
Ahmed S, Khan H, Fratantonio D, Hasan MM, Sharifi S, Fathi N, Ullah H, Rastrelli L. Apoptosis induced by luteolin in breast cancer: Mechanistic and therapeutic perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152883. [PMID: 30986716 DOI: 10.1016/j.phymed.2019.152883] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/06/2019] [Accepted: 03/09/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Breast cancer is worldwide commonly found malignancy in women and effective treatment is regarded as a huge clinical challenge even in the presence of several options. Extensive literature is available that demonstrating polyphenols, the richly introduce phytopharmaceuticals as anticancer agents. Among these polyphenols, resveratrol, silibinin, quercetin, genistein, curcumin reported to have an awesome potential against breast cancer. However, till now no comprehensive survey found about the anticarcinogenic properties of luteolin against breast cancer. SCOPE AND APPROACH This review targeted the available literature on luteolin in the treatment of breast cancer, effects in combination with other anticancer drugs with possible mechanisms. KEY FINDINGS AND CONCLUSION An outstanding therapeutic potential of luteolin in the treatment of breast cancer has been recorded not just as a chemopreventive and chemotherapeutic agent yet complemented by its synergistic effects with other anticancer therapies such as cyclophosphamide, doxorubicin, and NSAID such as celecoxib, and possible underlying mechanisms. Ideally, this review will open new dimensions for luteolin as an effective and safe therapeutic agent in diminishing breast cancer.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali khan University Mardan 23200, Pakistan.
| | - Deborah Fratantonio
- "Bambino Gesù" Children's Hospital-IRCCS, Research Laboratories, V.le di San Paolo 15, 00146, Rome, Italy.
| | - Muhammad Mohtasheemul Hasan
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazanin Fathi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali khan University Mardan 23200, Pakistan
| | - Luca Rastrelli
- Dipartimento di Farmacia, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, Italy
| |
Collapse
|
22
|
Kim JT, Cho HJ, Cho MY, Lim J, Park ES, Lim JS, Lee HG. Prenylated Rab acceptor RABAC1 inhibits anti-apoptotic protein BCL2A1 and induces apoptosis. Biochem Biophys Res Commun 2019; 513:940-946. [PMID: 31003775 DOI: 10.1016/j.bbrc.2019.04.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/11/2019] [Indexed: 01/13/2023]
Abstract
The B cell lymphoma 2 (BCL2) family of proteins constitutes a critical intracellular checkpoint in the intrinsic apoptosis pathway. Among BCL2 members, the anti-apoptotic protein BCL2A1 mediates the resistance to BCL2 inhibitors and may be considered as a target for anti-cancer therapy. Here, we report that prenylated Rab acceptor 1 (RABAC1 or PRA1) inhibits the anti-apoptotic activity of BCL2A1 and induces apoptosis in AGS gastric cancer cells. Protein interaction of BCL2A1 and RABAC1 was verified by an in-vitro glutathione-S-transferase pull-down assay, immunoprecipitation, and confocal microscopy. When apoptosis was induced by cisplatin, the anti-apoptotic activity of BCL2A1 was blocked by RABAC1 expression. RABAC1 caused caspase-3 activation and decreased cell proliferation, clonogenic cell survival, and cell migration and invasion. We suggest RABAC1 as a potential therapeutic target for BCL2A1-related cancer.
Collapse
Affiliation(s)
- Jong-Tae Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hee Jun Cho
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Mi-Young Cho
- SKKU Advanced Institute of Nanotechnology, Suwon, Republic of Korea
| | - Jeewon Lim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea; Department of Biomolecular Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Eun Sun Park
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea; Department of Biomolecular Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Jong-Seok Lim
- Department of Biological Science and Cellular Heterogeneity Research Center, Sookmyung Women's University, Seoul, Republic of Korea.
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea; Department of Biomolecular Science, University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
23
|
Abstract
Myeloid cell leukemia-1 (MCL-1), a member of antiapoptotic BCL-2 family proteins, is a key regulator of mitochondrial homeostasis. Frequent overexpression of MCL-1 in human primary and drug-resistant cancer cells makes it an attractive cancer therapeutic target. Significant progress has been made in the development of small-molecule MCL-1 inhibitors in recent years, and three MCL-1 selective inhibitors have advanced to clinical trials. This review briefly discusses recent advances in the development of small molecules targeting MCL-1 for cancer therapy.
Collapse
Affiliation(s)
- Weiguo Xiang
- Department of Internal Medicine, University of Michigan Medical School,
| | - Chao-Yie Yang
- Department of Internal Medicine, University of Michigan Medical School,
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA,
| | - Longchuan Bai
- Department of Internal Medicine, University of Michigan Medical School,
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA,
| |
Collapse
|
24
|
Abstract
Regulation of both the extrinsic and the mitochondria-dependent intrinsic apoptotic pathways plays a key role in the development of the hematopoietic system, for sustaining cell survival during generation of various cell types, in eliminating cells with dual identities such as CD4/CD8 double-positive cells (Hettmann, Didonato, Karin, & Leiden, 1999; Ogasawara, Suda, & Nagata, 1995), for sustaining cells during the rapid clonal expansion phase (Schirmer, Vallejo, Weyand, & Gronzy, 1998), as well as eliminating cells during the contraction phase (Yajima et al., 2006). The anti-apoptotic protein Mcl-1 is necessary for sustaining hematopoietic stem cells (HPS) (Akashi et al., 2003; Akashi, Traver, Miyamoto, & Weissman, 2000). The anti-apoptotic factors Mcl-1, Bcl-2, and Bcl-xL were also found to be over-expressed in acute myeloid leukemia (AML) (Kaufmann et al., 2016) and acute lymphocytic leukemia (ALL) (Findley, Gu, Yeager, & Zhou, 1997), suggesting that dis-regulated apoptotic processes could be a factor in the instigation of leukemia and/or its relapse. Molecules targeting these proteins were used as single agents to treat leukemia. However, by using a set of recently developed specific molecule inhibitors targeting anti-apoptotic proteins, distinct roles are being discovered for these anti-apoptotic proteins during hematopoietic and tumor development. Furthermore, using these inhibitors in proper combinations can effectively induce apoptosis in various solid tumors, even though each agent on its own cannot induce apoptosis in them. These new findings suggest that inhibiting anti-apoptotic elements can induce apoptosis without external stimuli in most cells, but it comes with a risk that some combinations could also trigger apoptosis in healthy cells. One way to address the safety issue is by limiting exposure to all the agents to only cancer cells, thus making the combination safe and effective. In this article, we review this rapidly developing idea in cancer research.
Collapse
Affiliation(s)
- Ryuji Yamaguchi
- Anesthesiology, Kansai Medical University, Hirakata 573-1010, Japan.
| | - Lydia Lartigue
- CureMatch, Inc., 6440 Lusk Blvd, San Diego CA 92121, USA.
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA 92093, USA,.
| |
Collapse
|
25
|
Nho SH, Yoon G, Seo JH, Oh HN, Cho SS, Kim H, Choi HW, Shim JH, Chae JI. Licochalcone H induces the apoptosis of human oral squamous cell carcinoma cells via regulation of matrin 3. Oncol Rep 2018; 41:333-340. [PMID: 30320347 PMCID: PMC6278573 DOI: 10.3892/or.2018.6784] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 09/04/2018] [Indexed: 12/12/2022] Open
Abstract
Licochalcone H (LCH) is a chemical compound that is a positional isomer of licochalcone C (LCC), a chalconoid isolated from the root of Glycyrrhiza inflata, which has various pharmacological properties including anti-inflammatory, antioxidant, antitumor, and anticancer effects. However, the efficacy of LCH on cancer cells has not been investigated. The present study examined the effects of LCH on cell proliferation, induction of apoptosis, and the regulation of matrin 3 (Matr3) protein in oral squamous cell carcinoma (OSCC) cells by Annexin V/propidium iodide (PI) staining and western blot analysis. LCH reduced cell viability and colony forming ability, and induced cell cycle arrest and apoptosis in HSC2 and HSC3 cells through the suppression of Matr3. It was also found that LCH directly bound to Matr3 in a Sepharose 4B pull-down assay. Consequently, the results of the present study suggest that LCH may be used as an anticancer drug in combination with conventional chemotherapy for the treatment of OSCC, and that Matr3 may be a potential effective therapeutic target.
Collapse
Affiliation(s)
- Su-Hyun Nho
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan, Jeonnam 58554, Republic of Korea
| | - Ji-Hye Seo
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Ha-Na Oh
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan, Jeonnam 58554, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan, Jeonnam 58554, Republic of Korea
| | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Jeonnam 57922, Republic of Korea
| | - Hyun Woo Choi
- Department of Animal Science, Chonbuk National University, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan, Jeonnam 58554, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, Jeollabuk 54896, Republic of Korea
| |
Collapse
|
26
|
Zhang X, Li J, Cheng Y, Yi J, Liu X, Cheng W. Downregulation of CUEDC2 prevents doxorubicin‑induced cardiotoxicity in H9c2 cells. Mol Med Rep 2018; 18:855-863. [PMID: 29845245 PMCID: PMC6059716 DOI: 10.3892/mmr.2018.9072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/16/2018] [Indexed: 01/13/2023] Open
Abstract
Treatment with doxorubicin (DOX), which is an effective anticancer agent, is limited by cardiotoxicity. CUE domain-containing 2 (CUEDC2) serves a role in numerous cellular processes. The present study aimed to elucidate the potential function of CUEDC2 in DOX-induced cardiotoxicity. Cell Counting kit-8 assay demonstrated that DOX induced cytotoxicity of H9c2 cells in a dose-dependent manner. Flow cytometry demonstrated that downregulation of CUEDC2 reduced the levels of DOX-induced reactive oxygen species. Furthermore, compared with in the DOX-treated group, the activity of superoxide dismutase was increased in the DOX + small interfering RNA (si)CUEDC2 group; whereas, the malondialdehyde content was reduced in the DOX + siCUEDC2 group. In addition, flow cytometric analysis indicated that mitochondrial membrane potential was maintained following the depletion of CUEDC2. Furthermore, CUEDC2 downregulation significantly inhibited DOX-induced apoptosis. The expression levels of proapoptotic genes, including B-cell lymphoma 2 (Bcl-2)-associated X protein, cleaved caspase-3 and cytochrome c were inhibited by the depletion of CUEDC2. Conversely, the expression levels of the anti-apoptotic gene Bcl-2 were elevated in the CUEDC2 knockdown group. Downregulation of CUEDC2 also increased phosphorylation of protein kinase B and forkhead box O3a, and decreased the expression of Bcl-2-like protein 11 according to western blot analysis. Taken together, the present study demonstrated that CUEDC2 downregulation prevented DOX-induced cardiotoxicity in H9c2 cells. Therefore, CUEDC2 may be a promising target for the prevention of DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xianpu Zhang
- Department of Cardio‑Thoracic Surgery, Southwest Hospital, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Jiaojiao Li
- Department of Cardio‑Thoracic Surgery, Southwest Hospital, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Yongbo Cheng
- Department of Cardio‑Thoracic Surgery, Southwest Hospital, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Jianguang Yi
- Department of Cardio‑Thoracic Surgery, Southwest Hospital, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Xin Liu
- Department of Cardio‑Thoracic Surgery, Southwest Hospital, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Wei Cheng
- Department of Cardio‑Thoracic Surgery, Southwest Hospital, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| |
Collapse
|
27
|
Huang YL, Wang HJ, Chen FM, Zhao XL, Fu Q, Zhang PF, Pu LP, Huang FL, Lu YQ, Zhang M. Role of BCL2L10 in regulating buffalo (Bubalus bubalis) oocyte maturation. Theriogenology 2018; 110:1-7. [PMID: 29331495 DOI: 10.1016/j.theriogenology.2017.12.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/16/2017] [Accepted: 12/29/2017] [Indexed: 12/20/2022]
Abstract
It has been reported that BCL2L10 is abundantly and specifically expressed in adult human and mouse oocytes and played a very important role in oocytes maturation and early embryonic development. This study is to investigate the expression pattern of BCL2L10 in buffalo ovaries and its effect on the in vitro maturation of buffalo oocytes, so as to dissect mechanism of oocytes maturation and provide theoretical guidance for improvement of the in vitro maturation of buffalo oocytes. The results showed that BCL2L10 gene was enriched in ovary and the expression of BCL2L10 was oocyte specific and up-regulated during oocyte maturation. BCL2L10 protein and mRNA were detectable in buffalo early embryos, upregulated at 2-cell to 8-cell stages and down-regulated in the later stages. Knockdown of BCL2L10 by RNA interference resulted in a significant decrease in the maturation rate (33.5%) and cleavage rate (37.52%) of buffalo oocytes coupled with up-regulation of apoptosis-related gene Caspase-9. We concluded that BCL2L10 is a candidate associated with buffalo oocyte maturation.
Collapse
Affiliation(s)
- Yu-Lin Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, PR China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Huan-Jing Wang
- Reproductive Center, General Hospital of People's Liberation Army Air Force, Beijing 100142, PR China
| | - Fu-Mei Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Xiu-Ling Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Qiang Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, PR China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Peng-Fei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Li-Ping Pu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Feng-Ling Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Yang-Qing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, PR China.
| | - Ming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, PR China.
| |
Collapse
|
28
|
Zhang X, Han L, Zong H, Ding K, Yuan Y, Bai J, Zhou Y, Zhang B, Zhu J. Enhanced production of anti-PD1 antibody in CHO cells through transient co-transfection with anti-apoptotic genes Bcl-x L and Mcl-1. Bioprocess Biosyst Eng 2018; 41:633-640. [PMID: 29368032 DOI: 10.1007/s00449-018-1898-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/15/2018] [Indexed: 12/17/2022]
Abstract
Apoptosis has a negative impact on the cell survival state during cell cultivation. To optimize mammalian cell culture for production of biopharmaceuticals, one of the important approaches is to extend cell life through over-expression of anti-apoptotic genes. Here, we reported a cost-effective process to enhance cell survival and production of an antibody through transient co-transfection with anti-apoptotic genes Bcl-x L or Mcl-1 in Chinese hamster ovary (CHO) cells with polyethylenimine (PEI). Under the optimal conditions, it showed reduced levels of apoptosis and improved cell viability after co-transfected with Bcl-x L or Mcl-1. The overall production yield of the antibody anti-PD1 increased approximately 82% in CHO cells co-transfected with Bcl-x L , and 34% in CHO cells co-transfected with Mcl-1. This work provides an effective way to increase viability of host cells through delaying apoptosis onset, thus, raise production yield of biopharmaceuticals without the process of generating stable cell lines and subsequent screening.
Collapse
Affiliation(s)
- Xinyu Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Lei Han
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Huifang Zong
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Kai Ding
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Yuan Yuan
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Jingyi Bai
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Yuexian Zhou
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Baohong Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
- Jecho Laboratories, Inc. 7320 Executive Way, Frederick, MD, 21704, USA.
| |
Collapse
|
29
|
EZH2-mediated Puma gene repression regulates non-small cell lung cancer cell proliferation and cisplatin-induced apoptosis. Oncotarget 2018; 7:56338-56354. [PMID: 27472460 PMCID: PMC5302918 DOI: 10.18632/oncotarget.10841] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/09/2016] [Indexed: 01/14/2023] Open
Abstract
Polycomb group (PcG) proteins are highly conserved epigenetic effectors that maintain the silenced state of genes. EZH2 is the catalytic core and one of the most important components of the polycomb repressive complex 2 (PRC2). In non-small cell lung cancer (NSCLC) cells and primary lung tumors, we found that PRC2 components, including EZH2, are overexpressed. High levels of EZH2 protein were associated with worse overall survival rate in NSCLC patients. RNA interference mediated attenuation of EZH2 expression blunted the malignant phenotype in this setting, exerting inhibitory effects on cell proliferation, anchorage-independent growth, and tumor development in a xenograft mouse model. Unexpectedly, we discovered that, in the suppression of EZH2, p53 upregulated modulator of apoptosis (PUMA) expression was concomitantly induced. This is achieved through EZH2 directly binds to the Puma promoter thus epigenetic repression of PUMA expression. Furthermore, cisplatin-induced apoptosis of EZH2-knocking down NSCLC cells was elevated as a consequence of increased PUMA expression. Our work reveals a novel epigenetic regulatory mechanism controlling PUMA expression and suggests that EZH2 offers a candidate molecular target for NSCLC therapy and EZH2-regulated PUMA induction would synergistically increase the sensitivity to platinum agents in non-small cell lung cancers.
Collapse
|
30
|
Wu Z, Wu J, Fang P, Kan S. Puerarin increases the chemosensitivity of hepatocellular carcinoma cells. Oncol Lett 2017; 14:3006-3010. [PMID: 28928838 PMCID: PMC5588135 DOI: 10.3892/ol.2017.6524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/29/2017] [Indexed: 12/30/2022] Open
Abstract
The present study investigated the effect of puerarin (Pu) on the sensitivity of HepG2 human hepatocellular carcinoma (HCC) cells to chemotherapeutic drugs to determine the possible mechanism. HepG2 cells were treated with different concentrations of Pu and cisplatin (CDDP), alone or in combination. MTT assay was used to determine the inhibitory effects of the different drugs on HepG2 cells. Cell morphology was observed by inverted microscopy. The expression of B-cell lymphoma 2 (Bcl-2) and Bax protein was measured by western blot analysis. Pu and CDDP, alone or in combination, inhibited the proliferation of HepG2 cells. The inhibitory effect of CDDP combined with Pu on HepG2 cells was significantly higher than that of the single drug treatments (p<0.01). In addition, compared with the single drug groups, cellular morphology was significantly altered and the apoptotic rate of cells and the expression of Bax protein were significantly increased (p<0.01). However, the expression of Bcl-2 protein was significantly decreased (p<0.01) in the combined drug group. In conclusion, Pu can increase the sensitivity of HCC to chemotherapeutic drugs, enhance the inhibitory effect of chemotherapeutic drugs on cell proliferation and synergistically induce apoptosis of HepG2 cells. The mechanism is likely related to the upregulation of Bax protein and the downregulation of Bcl-2 protein.
Collapse
Affiliation(s)
- Zhen Wu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shangdong 250033, P.R. China
| | - Jing Wu
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, Shangdong 250033, P.R. China
| | - Ping Fang
- Department of Blood Transfusion, Qianfoshan Hospital of Shandong, Jinan, Shangdong 250014, P.R. China
| | - Shifeng Kan
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shangdong 250012, P.R. China
| |
Collapse
|
31
|
Liu X, Hu X, Kuang Y, Yan P, Li L, Li C, Tao Q, Cai X. BCLB, methylated in hepatocellular carcinoma, is a starvation stress sensor that induces apoptosis and autophagy through the AMPK-mTOR signaling cascade. Cancer Lett 2017; 395:63-71. [PMID: 28259820 DOI: 10.1016/j.canlet.2017.02.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/23/2017] [Accepted: 02/23/2017] [Indexed: 02/07/2023]
Abstract
Epigenetic disruption of tumor suppressor genes (TSGs), particularly DNA methylation, plays a key role in hepatocellular carcinoma (HCC) pathogenesis. Through methylome study, we identified BCLB as a methylated gene in HCC. BCLB was methylated in all tumor cell lines with silenced or reduced expression. BCLB was further found to be silenced in 55.2% (58/105) of HCC samples, while 91.4% (96/105) of paired non-tumor tissues showed high BCLB expression. BCLB protein expression was significantly correlated with HBV status (p = 0.036), AFP (p = 0.048), tumor size (p = 0.006), and TNM stage (p = 0.022). The overall survival and disease-free survival rate of HCC patients with positive BCLB expression were both significantly higher than those with negative BCLB expression (p = 0.032 and 0.027, respectively). Ectopic expression of BCLB in HCC cells inhibited cell growth in vitro and in vivo. Mechanistic study showed that BCLB expression was a starvation stress sensor inducing apoptosis and autophagy simultaneously in HCC cells through the adenosine monophosphate-activated protein kinase AMPK-mTOR signaling cascade. Thus, epigenetic suppression of BCLB expression is involved in HCC development, which might have therapeutic implications for HCC patients.
Collapse
Affiliation(s)
- Xiaolong Liu
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaotong Hu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yeye Kuang
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Peijian Yan
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Chen Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong.
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
32
|
Mahmoud F, Shields B, Makhoul I, Avaritt N, Wong HK, Hutchins LF, Shalin S, Tackett AJ. Immune surveillance in melanoma: From immune attack to melanoma escape and even counterattack. Cancer Biol Ther 2017; 18:451-469. [PMID: 28513269 DOI: 10.1080/15384047.2017.1323596] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pharmacologic inhibition of the cytotoxic T lymphocyte antigen 4 (CTLA4) and the programmed death receptor-1 (PD1) has resulted in unprecedented durable responses in metastatic melanoma. However, resistance to immunotherapy remains a major challenge. Effective immune surveillance against melanoma requires 4 essential steps: activation of the T lymphocytes, homing of the activated T lymphocytes to the melanoma microenvironment, identification and episode of melanoma cells by activated T lymphocytes, and the sensitivity of melanoma cells to apoptosis. At each of these steps, there are multiple factors that may interfere with the immune surveillance machinery, thus allowing melanoma cells to escape immune attack and develop resistance to immunotherapy. We provide a comprehensive review of the complex immune surveillance mechanisms at play in melanoma, and a detailed discussion of how these mechanisms may allow for the development of intrinsic or acquired resistance to immunotherapeutic modalities, and potential avenues for overcoming this resistance.
Collapse
Affiliation(s)
- Fade Mahmoud
- a Department of Internal Medicine, Division of Hematology/Oncology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Bradley Shields
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Issam Makhoul
- a Department of Internal Medicine, Division of Hematology/Oncology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Nathan Avaritt
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Henry K Wong
- c Department of Dermatology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Laura F Hutchins
- a Department of Internal Medicine, Division of Hematology/Oncology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Sara Shalin
- d Departments of Pathology and Dermatology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Alan J Tackett
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| |
Collapse
|
33
|
Vartak SV, Iyer D, Santhoshkumar T, Sharma S, Mishra A, Goldsmith G, Srivastava M, Srivastava S, Karki SS, Surolia A, Choudhary B, Raghavan SC. Novel BCL2 inhibitor, Disarib induces apoptosis by disruption of BCL2-BAK interaction. Biochem Pharmacol 2017; 131:16-28. [DOI: 10.1016/j.bcp.2017.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 02/16/2017] [Indexed: 11/28/2022]
|
34
|
Cytosolic BNIP3 Dimer Interacts with Mitochondrial BAX Forming Heterodimers in the Mitochondrial Outer Membrane under Basal Conditions. Int J Mol Sci 2017; 18:ijms18040687. [PMID: 28333095 PMCID: PMC5412273 DOI: 10.3390/ijms18040687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/14/2017] [Accepted: 03/20/2017] [Indexed: 02/03/2023] Open
Abstract
The primary function of mitochondria is energy production, a task of particular importance especially for cells with a high energy demand like cardiomyocytes. The B-cell lymphoma (BCL-2) family member BCL-2 adenovirus E1B 19 kDa-interacting protein 3 (BNIP3) is linked to mitochondrial targeting after homodimerization, where it functions in inner membrane depolarization and permeabilization of the mitochondrial outer membrane (MOM) mediating cell death. We investigated the basal distribution of cardiac BNIP3 in vivo and its physical interaction with the pro-death protein BCL2 associated X, apoptosis regulator (BAX) and with mitochondria using immunoblot analysis, co-immunoprecipitation, and continuous wave and pulsed electron paramagnetic resonance spectroscopy techniques. We found that BNIP3 is present as a dimer in the cytosol and in the outer membrane of cardiac mitochondria under basal conditions. It forms disulfide-bridged, but mainly non-covalent dimers in the cytosol. Heterodimers with BAX are formed exclusively in the MOM. Furthermore, our results suggest that BNIP3 interacts with the MOM directly via mitochondrial BAX. However, the physical interactions with BAX and the MOM did not affect the membrane potential and cell viability. These findings suggest that another stimulus other than the mere existence of the BNIP3/BAX dimer in the MOM is required to promote BNIP3 cell-death activity; this could be a potential disturbance of the BNIP3 distribution homeostasis, namely in the direction of the mitochondria.
Collapse
|
35
|
Cao Y, Cheng F, Yao W, Bao B, Zhang K, Zhang L, Ding A. Toxicity of Pekinenin C from Euphorbia Pekinensis Radix on Rat Small Intestinal Crypt Epithelial Cell and Its Apoptotic Mechanism. Int J Mol Sci 2016; 17:E850. [PMID: 27271594 PMCID: PMC4926384 DOI: 10.3390/ijms17060850] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 01/10/2023] Open
Abstract
Pekinenin C is a casbane diterpenoid separated from the root of the traditional Chinese medicine, Euphorbia pekinensis Rupr., which is used as drug for the treatment of edema, ascites, and hydrothorax. Whereas pekinenin C exhibits severe cytotoxicity, the exact toxicity mechanism is unclear. In this study, the effects of pekinenin C on cell inhibition, cell cycle, and cell apoptosis were examined to explain its toxic mechanism. The proliferation of IEC-6 cells was accessed via MTT colorimetric assay after incubated with different concentrations of pekinenin C. Pekinenin C-treated IEC-6 cells labeled with RNase/PI and Annexin V/PI were analyzed by flow cytometric analyses for evaluation of cell cycle distribution and cell apoptosis, respectively. The apoptosis mechanism of pekinenin C on IEC-6 was investigated through assaying the activities of caspase-3, 8, 9 by enzyme-linked immunosorbent assay (ELISA), protein expression of Bax, Bcl-2, apoptosis-inducing factor (AIF), Apaf-1, Fas-associated death domain (FADD) and type 1-associated death domain (TRADD) by Western-blot, mRNA expression of Fas receptor (FasR), Fas ligand (FasL), tumor necrosis factor receptor (TNFR1) and NF-κB by RT-PCR. The results showed that pekinenin C has exhibited obvious IEC-6 cells toxicity and the IC50 value was 2.1 μg·mL(-1). Typical apoptosis characteristics were observed under a transmission electron microscopy, and it was found that pekinenin C could cause G0/G1 phase arrest in IEC-6 cells in a dose-dependent manner and induce apoptosis of IEC-6 cells. Additionally, pekinenin C could increase the expressions of Bax, AIF, Apaf-1, FasR, FasL, TNFR1 and NF-κB, suppress the expression of Bcl-2, FADD and TRADD, then activate caspase-3, 8, 9 cascades, and at last result in apoptosis. These results demonstrated that pekinenin C effectively promoted cell apoptosis, and induced IEC-6 cells apoptosis through both the mitochondrial and death receptor pathways.
Collapse
Affiliation(s)
- Yudan Cao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Fangfang Cheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Weifeng Yao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Beihua Bao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Kaicheng Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Li Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Anwei Ding
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
36
|
Llambi F, Wang YM, Victor B, Yang M, Schneider DM, Gingras S, Parsons MJ, Zheng JH, Brown SA, Pelletier S, Moldoveanu T, Chen T, Green DR. BOK Is a Non-canonical BCL-2 Family Effector of Apoptosis Regulated by ER-Associated Degradation. Cell 2016; 165:421-33. [PMID: 26949185 DOI: 10.1016/j.cell.2016.02.026] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/11/2015] [Accepted: 02/10/2016] [Indexed: 12/12/2022]
Abstract
The mitochondrial pathway of apoptosis is initiated by mitochondrial outer membrane permeabilization (MOMP). The BCL-2 family effectors BAX and BAK are thought to be absolutely required for this process. Here, we report that BCL-2 ovarian killer (BOK) is a bona fide yet unconventional effector of MOMP that can trigger apoptosis in the absence of both BAX and BAK. However, unlike the canonical effectors, BOK appears to be constitutively active and unresponsive to antagonistic effects of the antiapoptotic BCL-2 proteins. Rather, BOK is controlled at the level of protein stability by components of the endoplasmic reticulum (ER)-associated degradation pathway. BOK is ubiquitylated by the AMFR/gp78 E3 ubiquitin ligase complex and targeted for proteasomal degradation in a VCP/p97-dependent manner, which allows survival of the cell. When proteasome function, VCP, or gp78 activity is compromised, BOK is stabilized to induce MOMP and apoptosis independently of other BCL-2 proteins.
Collapse
Affiliation(s)
- Fabien Llambi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Yue-Ming Wang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Bernadette Victor
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mao Yang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Desiree M Schneider
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sébastien Gingras
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Melissa J Parsons
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Janet H Zheng
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Scott A Brown
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stéphane Pelletier
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Tudor Moldoveanu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
37
|
Klapsinou E, Argyri E, Panotopoulou E, Daskalopoulou D, Patsouris E, Nonni A, Lazaris AC, Thomopoulou GH. Bax and Bak expression in cervical smears of women with low-and high-risk HPV types: A study of 120 cases. J Cytol 2016; 32:223-9. [PMID: 26811568 PMCID: PMC4707782 DOI: 10.4103/0970-9371.171222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Human papillomavirus (HPV) is known to be involved in the carcinogenesis of squamous cells in uterine cervix cancer, mostly by binding and inactivating the p53 and pRb tumor suppressor genes. Lately, evidence has emerged suggesting that HPV oncoproteins may interact with proteins involved in cellular apoptosis as well. AIM This study aimed to investigate the expression of proapoptotic proteins Bax and Bak in women with low-risk and high-risk HPV types as opposed to HPV-negative women, and in women with normal pap smear compared to women with abnormal Papanicolau test (Pap) smear. MATERIALS AND METHODS A total of 120 liquid-based cervical samples were subtyped for HPV types with microarray hybridization and then stained and evaluated immunocytochemically for Bax and Bak expression. Statistical analysis was performed on the Bax and Bak scores (percentage of positive cells × staining intensity), the overall percentage of positive cells, and the most prevalent staining intensity group found in each sample. RESULTS A weak association between negative Bax staining and cytologically normal Pap smears was discovered, whereas cytologically abnormal samples tended to stain weakly or moderately positive. No other statistically significant difference was found in the other analyzed parameters. CONCLUSION Cytologically normal pap smears seem to have a slight tendency to stain negative for Bax as opposed to cytologically abnormal pap smears. Although the association is weak, it is an indication that there might be a connection between the expression of Bax and the development of cervical intraepithelial dysplasia, which warrants further investigation in larger-scale studies.
Collapse
Affiliation(s)
- Eirini Klapsinou
- Department of Cytology, Diagnostic and Therapeutic Center of Athens "Hygeia", National and Kapodistrian University of Athens, Athens, Greece
| | - Elena Argyri
- Department of Virology, G Papanicolaou Research Center of Oncology and Experimental Surgery, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathia Panotopoulou
- Department of Virology, G Papanicolaou Research Center of Oncology and Experimental Surgery, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitra Daskalopoulou
- Department of Cytology, Regional Anticancer Oncology Hospital of Athens "St. Savvas", National and Kapodistrian University of Athens, Athens, Greece
| | - Efstratios Patsouris
- Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Afroditi Nonni
- Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas C Lazaris
- Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
38
|
Gutiérrez-Venegas G, Guadarrama-Solís A, Muñoz-Seca C, Arreguín-Cano JA. Hydrogen peroxide-induced apoptosis in human gingival fibroblasts. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:15563-15572. [PMID: 26884825 PMCID: PMC4730038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/23/2015] [Indexed: 06/05/2023]
Abstract
In the process of bleaching vital, discolored teeth, low concentrations of hydrogen peroxide (H2O2) are effective alternatives to heat-activated 30% H2O2. However, interest has been expressed in the assessment of pathological effects of long-term exposure to bleaching agents such as irritation and ulceration of the gingival or other soft tissues. The aim of the present study was to determine the effect of hydrogen peroxide on apoptosis in human gingival fibroblasts (HGF). Cytochrome c, Bcl-2, Bax, Bid and caspase-3 protein expression were detected by Western blotting. HGF cell apoptosis induced by H2O2 was both dose and time dependent. The addition of H2O2 resulted in the release of cytochrome c to the cytosol, and an increase of Caspase-3 cleavage. Data suggest that oxidative stress-induced apoptosis in HGF is intrinsic pathway involved the release of apoptotic signal from mitochondria.
Collapse
Affiliation(s)
- Gloria Gutiérrez-Venegas
- Laboratorio de Bioquímica de la División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad Universitaria D.F., México
| | - Adriana Guadarrama-Solís
- Laboratorio de Bioquímica de la División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad Universitaria D.F., México
| | - Carmen Muñoz-Seca
- Laboratorio de Bioquímica de la División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad Universitaria D.F., México
| | - Juan Antonio Arreguín-Cano
- Laboratorio de Bioquímica de la División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad Universitaria D.F., México
| |
Collapse
|
39
|
Nalluri S, Peirce SK, Tanos R, Abdella HA, Karmali D, Hogarty MD, Goldsmith KC. EGFR signaling defines Mcl⁻1 survival dependency in neuroblastoma. Cancer Biol Ther 2015; 16:276-86. [PMID: 25756510 DOI: 10.1080/15384047.2014.1002333] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The pediatric solid tumor neuroblastoma (NB) often depends on the anti-apoptotic protein, Mcl(-)1, for survival through Mcl(-)1 sequestration of pro-apoptotic Bim. High affinity Mcl(-)1 inhibitors currently do not exist such that novel methods to inhibit Mcl(-)1 clinically are in high demand. Receptor tyrosine kinases (RTK) regulate Mcl(-)1 in many cancers and play a role in NB survival, yet how they regulate Bcl(-)2 family interactions in NB is unknown. We found that NB cell lines derived to resist the Bcl(-)2/-xl/-w antagonist, ABT-737, acquire a dependence on Mcl(-)1 and show increased expression and activation of the RTK, EGFR. Mcl(-)1 dependent NB cell lines derived at diagnosis and from the same tumor following relapse also have increased EGFR expression compared to those dependent on Bcl(-)2. Inhibition of EGFR by shRNA or erlotinib in Mcl(-)1 dependent NBs disrupts Bim binding to Mcl(-)1 and enhances its affinity for Bcl(-)2, restoring sensitivity to ABT-737 as well as cytotoxics in vitro. Mechanistically treatment of NBs with small molecule inhibitors of EGFR (erlotinib, cetuximab) and ERK (U0126) increases Noxa expression and dephosphorylates Bim to promote Bim binding to Bcl(-)2. Thus, EGFR regulates Mcl(-)1 dependence in high-risk NB via ERK-mediated phosphorylation of Bim such that EGFR/ERK inhibition renders Mcl(-)1 dependent tumors now reliant on Bcl(-)2. Clinically, EGFR inhibitors are ineffective as single agent compounds in patients with recurrent NB, likely due to this transferred survival dependence to Bcl(-)2. Likewise, EGFR or ERK inhibitors warrant further testing in combination with Bcl(-)2 antagonists in vivo as a novel future combination to overcome therapy resistance in the clinic.
Collapse
Key Words
- ABT-737
- AKT, protein kinase B
- BH3, Bcl-2 homology domain 3
- Bcl-2 antagonist
- Bcl-2 homology proteins
- Bcl-2, B-cell lymphoma-2
- EGFR
- EGFR, epidermal growth factor receptor
- ERK, extracellular signal related kinase
- HR NB, high-risk neuroblastoma
- LPP, lambda protein phosphatase
- Mcl-1
- Mcl-1, Myeloid cell leukemia-1
- NB, neuroblastoma
- RTK, receptor tyrosine kinase
- TK, tyrosine kinase
- WCL, whole cell lysate
- apoptosis
- bim regulation
- co-IP, co-immunoprecipitation
Collapse
Affiliation(s)
- Srilatha Nalluri
- a Division of Hematology/Oncology; Aflac Children's Cancer and Blood Disorders Center ; Children's Healthcare of Atlanta ; Atlanta , GA USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Redefining the BH3 Death Domain as a 'Short Linear Motif'. Trends Biochem Sci 2015; 40:736-748. [PMID: 26541461 PMCID: PMC5056427 DOI: 10.1016/j.tibs.2015.09.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/18/2015] [Accepted: 09/24/2015] [Indexed: 01/06/2023]
Abstract
B cell lymphoma-2 (BCL-2)-related proteins control programmed cell death through a complex network of protein–protein interactions mediated by BCL-2 homology 3 (BH3) domains. Given their roles as dynamic linchpins, the discovery of novel BH3-containing proteins has attracted considerable attention. However, without a clearly defined BH3 signature sequence the BCL-2 family has expanded to include a nebulous group of nonhomologous BH3-only proteins, now justified by an intriguing twist. We present evidence that BH3s from both ordered and disordered proteins represent a new class of short linear motifs (SLiMs) or molecular recognition features (MoRFs) and are diverse in their evolutionary histories. The implied corollaries are that BH3s have a broad phylogenetic distribution and could potentially bind to non-BCL-2-like structural domains with distinct functions. BCL-2 family interactions are mediated by evolutionarily diverse BH3 motifs to regulate apoptosis. Given their key roles, BH3 mimetics are in clinical trials as cancer therapies. The discovery of novel BH3-only proteins represents a major endeavor in the cell death field. As a result, BH3 motifs are reportedly present in a nebulous conglomerate of different proteins, both structured and intrinsically disordered. There is no rigorous definition of a BH3 motif. Currently available BH3 signatures are diverse and elusive for predicting new functional BH3-containing proteins. Redefining the BH3 motif as a new type of short linear motif (SLiM) or molecular recognition feature (MoRF) reconciles many puzzling features of this motif and opens up new avenues for research.
Collapse
|
41
|
A Natural Triterpene Derivative from Euphorbia kansui Inhibits Cell Proliferation and Induces Apoptosis against Rat Intestinal Epithelioid Cell Line in Vitro. Int J Mol Sci 2015; 16:18956-75. [PMID: 26274958 PMCID: PMC4581281 DOI: 10.3390/ijms160818956] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/01/2015] [Accepted: 08/04/2015] [Indexed: 12/31/2022] Open
Abstract
Kansenone is a triterpene from the root of the traditional Chinese medicine, Euphorbia kansui. However, kansenone exerts serious toxicity, but the exact mechanism was not clear. In this work, the effects of kansenone on cell proliferation, cell cycle, cell damage, and cell apoptosis were investigated. The suppression of cell proliferation was assessed via the colorimetric MTT assay, and cell morphology was visualized via inverted microscopy after IEC-6 cells were incubated with different concentrations of kansenone. Reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA) content were detected for evaluating cell damage. RNase/propidium iodide (PI) labeling for evaluation of cell cycle distribution was performed by flow cytometry analysis. Annexin V-fluorescein isothiocyanate (FITC)/PI and Hoechst 33342/Annexin V-FITC/PI staining assay for cell apoptosis detection were performed using confocal laser scanning microscopy and high content screening. Moreover, apoptosis induction was further confirmed by transmission electron microscope (TEM) and JC-1 mitochondrial membrane potential, western blot and RT-PCR analysis. The results demonstrated that kansenone exerted high cytotoxicity, induced cell arrest at G0/G1 phase, and caused mitochondria damage. In addition, kansenone could up-regulate the apoptotic proteins Bax, AIF, Apaf-1, cytochrome c, caspase-3, caspase-9, caspase-8, FasR, FasL, NF-κB, and TNFR1 mRNA expression levels, and down-regulate the anti-apoptotic Bcl-2 family proteins, revealing that kansenone induces apoptosis through both the death receptor and mitochondrial pathways.
Collapse
|
42
|
Xiao Y, Nimmer P, Sheppard GS, Bruncko M, Hessler P, Lu X, Roberts-Rapp L, Pappano WN, Elmore SW, Souers AJ, Leverson JD, Phillips DC. MCL-1 Is a Key Determinant of Breast Cancer Cell Survival: Validation of MCL-1 Dependency Utilizing a Highly Selective Small Molecule Inhibitor. Mol Cancer Ther 2015; 14:1837-47. [PMID: 26013319 DOI: 10.1158/1535-7163.mct-14-0928] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 05/13/2015] [Indexed: 11/16/2022]
Abstract
Hyperexpression of antiapoptotic BCL-2 family proteins allows cells to survive despite the receipt of signals that would ordinarily induce their deletion, a facet frequently exploited by tumors. Tumors addicted to the BCL-2 family proteins for survival are now being targeted therapeutically. For example, navitoclax, a BCL-2/BCL-XL/BCL-W inhibitor, is currently in phase I/II clinical trials in numerous malignancies. However, the related family member, MCL-1, limits the efficacy of navitoclax and other chemotherapeutic agents. In the present study, we identify breast cancer cell lines that depend upon MCL-1 for survival and subsequently determine the mechanism of apoptosis mediated by the MCL-1 selective inhibitor A-1210477. We demonstrate that apoptosis resulting from a loss in MCL-1 function requires expression of the proapoptotic protein BAK. However, expression of BCL-XL can limit apoptosis resulting from loss in MCL-1 function through sequestration of free BIM. Finally, we demonstrate substantial synergy between navitoclax and MCL-1 siRNA, the direct MCL-1 inhibitor A-1210477, or the indirect MCL-1 inhibitor flavopiridol, highlighting the therapeutic potential for inhibiting BCL-XL and MCL-1 in breast cancer.
Collapse
Affiliation(s)
- Yu Xiao
- Oncology Discovery, AbbVie Inc., North Chicago, Illinois
| | - Paul Nimmer
- Oncology Discovery, AbbVie Inc., North Chicago, Illinois
| | | | - Milan Bruncko
- Oncology Discovery, AbbVie Inc., North Chicago, Illinois
| | - Paul Hessler
- Oncology Discovery, AbbVie Inc., North Chicago, Illinois
| | - Xin Lu
- Oncology Discovery, AbbVie Inc., North Chicago, Illinois
| | | | | | | | | | | | | |
Collapse
|
43
|
Wang Y, Lv J, Cheng Y, Du J, Chen D, Li C, Zhang J. Apoptosis induced by Ginkgo biloba (EGb761) in melanoma cells is Mcl-1-dependent. PLoS One 2015; 10:e0124812. [PMID: 25860257 PMCID: PMC4393283 DOI: 10.1371/journal.pone.0124812] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 03/18/2015] [Indexed: 11/18/2022] Open
Abstract
Melanoma is an aggressive skin cancer. Unfortunately, there is currently no chemotherapeutic agent available to significantly prolong the survival of the most patients with metastatic melanomas. Here we report that the Ginkgo biloba extract (EGb761), one of the most widely sold herbal supplements in the world, potently induces apoptosis in human melanoma cells by disturbing the balance between pro- and anti-apoptosis Bcl-2 family proteins. Treatment with EGb761 induced varying degrees of apoptosis in melanoma cell lines but not in melanocytes. Induction of apoptosis was caspase-dependent and appeared to be mediated by the mitochondrial pathway, in that it was associated with reduction in mitochondrial membrane potential and activation of Bax and Bak. Although EGb761 did not cause significant change in the expression levels of the BH3-only Bcl-2 family proteins Bim, Puma, Noxa, and Bad, it significantly downregulated Mcl-1 in sensitive but not resistant melanoma cells, suggesting a major role of Mcl-1 in regulating apoptosis of melanoma cells induced by EGb761. Indeed, siRNA knockdown of Mcl-1 enhanced EGb761-induced apoptosis, which was associated with increased activation of Bax and Bak. Taken together, these results demonstrate that EGb761 kills melanoma cells through the mitochondrial apoptotic pathway, and that Mcl-1 is a major regulator of sensitivity of melanoma cells to apoptosis induced by EGb761. Therefore, EGb761 with or without in combination with targeting Mcl-1 may be a useful strategy in the treatment of melanoma.
Collapse
Affiliation(s)
- Yufang Wang
- Department of Pathophysiology, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Junping Lv
- Department of Pharmacology, Beijing Institute of Biomedicine, Beijing, P.R. China
| | - Yao Cheng
- Department of Pathophysiology, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Jipei Du
- Department of Pathophysiology, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Degao Chen
- Department of Pathophysiology, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Chengtao Li
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, P.R. China
| | - Ji Zhang
- Department of Forensic Genetics, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, P.R. China
- * E-mail:
| |
Collapse
|
44
|
Chen YF, Lin YC, Morris-Natschke SL, Wei CF, Shen TC, Lin HY, Hsu MH, Chou LC, Zhao Y, Kuo SC, Lee KH, Huang LJ. Synthesis and SAR studies of novel 6,7,8-substituted 4-substituted benzyloxyquinolin-2(1H)-one derivatives for anticancer activity. Br J Pharmacol 2015; 172:1195-221. [PMID: 25363404 DOI: 10.1111/bph.12992] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/29/2014] [Accepted: 10/20/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE 4-Phenylquinolin-2(1H)-one (4-PQ) derivatives can induce cancer cell apoptosis. Additional new 4-PQ analogs were investigated as more effective, less toxic antitumour agents. EXPERIMENTAL APPROACH Forty-five 6,7,8-substituted 4-substituted benzyloxyquinolin-2(1H)-one derivatives were synthesized. Antiproliferative activities were evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliun bromide assay and structure-activity relationship correlations were established. Compounds 9b, 9c, 9e and 11e were also evaluated against the National Cancer Institute-60 human cancer cell line panel. Hoechst 33258 and Annexin V-FITC/PI staining assays were used to detect apoptosis, while inhibition of microtubule polymerization was assayed by fluorescence microscopy. Effects on the cell cycle were assessed by flow cytometry and on apoptosis-related proteins (active caspase-3, -8 and -9, procaspase-3, -8, -9, PARP, Bid, Bcl-xL and Bcl-2) by Western blotting. KEY RESULTS Nine 6,7,8-substituted 4-substituted benzyloxyquinolin-2(1H)-one derivatives (7e, 8e, 9b, 9c, 9e, 10c, 10e, 11c and 11e) displayed high potency against HL-60, Hep3B, H460, and COLO 205 cancer cells (IC₅₀ < 1 μM) without affecting Detroit 551 normal human cells (IC₅₀ > 50 μM). Particularly, compound 11e exhibited nanomolar potency against COLO 205 cancer cells. Mechanistic studies indicated that compound 11e disrupted microtubule assembly and induced G2/M arrest, polyploidy and apoptosis via the intrinsic and extrinsic signalling pathways. Activation of JNK could play a role in TRAIL-induced COLO 205 apoptosis. CONCLUSION AND IMPLICATIONS New quinolone derivatives were identified as potential pro-apoptotic agents. Compound 11e could be a promising lead compound for future antitumour agent development.
Collapse
Affiliation(s)
- Yi-Fong Chen
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan; School of Pharmacy, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Xia J, Chen SF, Lv YP, Lu LN, Hu WX, Zhou YL. ZGDHu-1 induces G₂/M phase arrest and apoptosis in Kasumi-1 cells. Mol Med Rep 2015; 11:3398-404. [PMID: 25573277 PMCID: PMC4368067 DOI: 10.3892/mmr.2015.3160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 12/02/2014] [Indexed: 11/11/2022] Open
Abstract
The present study examined the effects of N,N′-di-(m-methylphenyi)-3, 6-dimethyl-1, 4-dihydro-1,2,4,5-tetrazine-1,4-dicarboamide (ZGDHu-1), a novel oxazine derivative, in Kasumi-1 cells. Following incubation with various concentrations of ZGDHu-1, fluorescence-activated cell sorting (FACS) was used in order to detect changes in mitochondrial membrane permeability in Kasumi-1 cells. Western blot analysis was performed in order to analyze the expression of nuclear factor-κB, inhibitor of κB and AML1/ETO. In addition FACS was used to analyze leukemia cell cycles and the expression levels of cyclin, cyclin-dependent kinases and cyclin-dependent kinase inhibitors in G2/M phase were determined using FACS and western blot analysis. The upregulation of reactive oxygen species production and mitochondrial membrane permeability was ascribed to apoptosis. The growth of Kasumi-1 cells was inhibited through the downregulation of nuclear factor-κB, degradation of AML1/ETO fusion protein and cell cycle arrest at the G2/M phase. This study documented that G2/M regulatory molecules, including cyclin B1, cell division control (cdc)2 and cdc25c were downregulated and checkpoint kinase 1 (CHK1), p53, p27, phospho-cdc25c, phospho-CHK1 and phospho-p53 were upregulated following treatment with ZGDHu-1. In the present study, pretreatment with CHIR-124, a selective CHK1 inhibitor, abrogated G2/M arrest via ZGDHu-1. These results demonstrated the anti-tumor activity of ZGDHu-1, which may therefore a potential target for further investigation and may be useful for the treatment of patients with t(8;21) acute myeloid leukemia.
Collapse
Affiliation(s)
- Jun Xia
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Su-Feng Chen
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Ya-Ping Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China
| | - Ling-Na Lu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Wei-Xiao Hu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China
| | - Yong-Lie Zhou
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
46
|
Hassig CA, Zeng FY, Kung P, Kiankarimi M, Kim S, Diaz PW, Zhai D, Welsh K, Morshedian S, Su Y, O'Keefe B, Newman DJ, Rusman Y, Kaur H, Salomon CE, Brown SG, Baire B, Michel AR, Hoye TR, Francis S, Georg GI, Walters MA, Divlianska DB, Roth GP, Wright AE, Reed JC. Ultra-High-Throughput Screening of Natural Product Extracts to Identify Proapoptotic Inhibitors of Bcl-2 Family Proteins. JOURNAL OF BIOMOLECULAR SCREENING 2014; 19:1201-11. [PMID: 24870016 PMCID: PMC4521994 DOI: 10.1177/1087057114536227] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/26/2014] [Indexed: 12/30/2022]
Abstract
Antiapoptotic Bcl-2 family proteins are validated cancer targets composed of six related proteins. From a drug discovery perspective, these are challenging targets that exert their cellular functions through protein-protein interactions (PPIs). Although several isoform-selective inhibitors have been developed using structure-based design or high-throughput screening (HTS) of synthetic chemical libraries, no large-scale screen of natural product collections has been reported. A competitive displacement fluorescence polarization (FP) screen of nearly 150,000 natural product extracts was conducted against all six antiapoptotic Bcl-2 family proteins using fluorochrome-conjugated peptide ligands that mimic functionally relevant PPIs. The screens were conducted in 1536-well format and displayed satisfactory overall HTS statistics, with Z'-factor values ranging from 0.72 to 0.83 and a hit confirmation rate between 16% and 64%. Confirmed active extracts were orthogonally tested in a luminescent assay for caspase-3/7 activation in tumor cells. Active extracts were resupplied, and effort toward the isolation of pure active components was initiated through iterative bioassay-guided fractionation. Several previously described altertoxins were isolated from a microbial source, and the pure compounds demonstrate activity in both Bcl-2 FP and caspase cellular assays. The studies demonstrate the feasibility of ultra-high-throughput screening using natural product sources and highlight some of the challenges associated with this approach.
Collapse
Affiliation(s)
| | - Fu-Yue Zeng
- Sanford Burnham Medical Research Institute, La Jolla, CA, USA
| | - Paul Kung
- Sanford Burnham Medical Research Institute, La Jolla, CA, USA
| | | | - Sylvia Kim
- Sanford Burnham Medical Research Institute, La Jolla, CA, USA
| | - Paul W Diaz
- Sanford Burnham Medical Research Institute, La Jolla, CA, USA
| | - Dayong Zhai
- Sanford Burnham Medical Research Institute, La Jolla, CA, USA
| | - Kate Welsh
- Sanford Burnham Medical Research Institute, La Jolla, CA, USA
| | | | - Ying Su
- Sanford Burnham Medical Research Institute, La Jolla, CA, USA
| | | | | | - Yudi Rusman
- Center for Drug Design, University of Minnesota, Minneapolis, MN, USA
| | - Harneet Kaur
- Center for Drug Design, University of Minnesota, Minneapolis, MN, USA
| | | | - Susan G Brown
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Beeraiah Baire
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Andrew R Michel
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Thomas R Hoye
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Subhashree Francis
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Gunda I Georg
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Michael A Walters
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | | | - Gregory P Roth
- Sanford-Burnham Medical Research Institute at Lake Nona, Orlando, FL, USA
| | - Amy E Wright
- Harbor Branch Oceanographic Institute at Florida Atlantic University, Fort Pierce, FL, USA
| | - John C Reed
- Sanford Burnham Medical Research Institute, La Jolla, CA, USA Roche Pharmaceuticals, Basel, Switzerland
| |
Collapse
|
47
|
Antiapoptotic potency of Bcl-2 proteins primarily relies on their stability, not binding selectivity. Blood 2014; 123:2806-15. [PMID: 24622325 DOI: 10.1182/blood-2013-08-519470] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
All 6 human prosurvival Bcl-2 proteins can drive cancer development and contribute to therapy resistance. However, their relative abilities to protect cells against cancer therapy were not examined previously. We report that Bcl-2, Bcl-xL, or Bcl-w consistently protected leukemic cells better than Bcl-B, Bfl-1, or Mcl-1 against a wide variety of anticancer regimens. Current thinking would attribute this to differences in their ability to bind to BH3-only proteins, Bax, and Bak. To address this, we established the first complete, quantitative cellular interaction profile of all human prosurvival Bcl-2 proteins with all their proapoptotic relatives. Binding was unexpectedly promiscuous, except for Bad and Noxa, and did not explain the differential antiapoptotic capacity of the Bcl-2 proteins. Rather, Bcl-B, Bfl-1, or Mcl-1 proved less potent due to steady-state or drug-induced proteasomal degradation. All 6 Bcl-2 proteins similarly protected against the diverse anticancer regimens when expressed at equal protein levels, in agreement with their broad interaction profile. Therefore, clinical diagnostics should include all family members and should be performed at the protein rather than at the messenger RNA level. In drug development, targeting the ubiquitination machinery of prosurvival Bcl-2 proteins will complement and potentially improve on targeting Bcl-2 protein interactions with BH3 mimetics.
Collapse
|
48
|
Tafesse FG, Vacaru AM, Bosma EF, Hermansson M, Jain A, Hilderink A, Somerharju P, Holthuis JCM. Sphingomyelin synthase-related protein SMSr is a suppressor of ceramide-induced mitochondrial apoptosis. J Cell Sci 2013; 127:445-54. [PMID: 24259670 DOI: 10.1242/jcs.138933] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cells synthesize ceramides in the endoplasmic reticulum (ER) as precursors for sphingolipids to form an impermeable plasma membrane. As ceramides are engaged in apoptotic pathways, cells would need to monitor their levels closely to avoid killing themselves during sphingolipid biosynthesis. How this is accomplished remains to be established. Here we identify SMSr (SAMD8), an ER-resident ceramide phosphoethanolamine (CPE) synthase, as a suppressor of ceramide-mediated cell death. Disruption of SMSr catalytic activity causes a rise in ER ceramides and their mislocalization to mitochondria, triggering a mitochondrial pathway of apoptosis. Blocking de novo ceramide synthesis, stimulating ceramide export from the ER or targeting a bacterial ceramidase to mitochondria rescues SMSr-deficient cells from apoptosis. We also show that SMSr-catalyzed CPE production, although essential, is not sufficient to suppress ceramide-induced cell death and that SMSr-mediated ceramide homeostasis requires the N-terminal sterile α-motif, or SAM domain, of the enzyme. These results define ER ceramides as bona fide transducers of mitochondrial apoptosis and indicate a primary role of SMSr in monitoring ER ceramide levels to prevent inappropriate cell death during sphingolipid biosynthesis.
Collapse
Affiliation(s)
- Fikadu G Tafesse
- Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
49
|
McKee CS, Hill DS, Redfern CPF, Armstrong JL, Lovat PE. Oncogenic BRAF signalling increases Mcl-1 expression in cutaneous metastatic melanoma. Exp Dermatol 2013; 22:767-9. [PMID: 24118207 DOI: 10.1111/exd.12254] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2013] [Indexed: 11/29/2022]
Abstract
The Bcl-2 family member Mcl-1 is essential for melanoma survival; however, the influence of oncogenic BRAF signalling remains elusive. In this study, Mcl-1 splice variant expression was determined in a panel of melanoma cell lines in relation to BRAF mutational status. Mcl-1L mRNA expression was increased in melanoma cells compared with primary melanocytes with significantly increased mRNA and protein expression observed in BRAF(V600E) mutant melanoma cells. Although no change in Mcl-1S mRNA was observed, Mcl-1S protein expression also increased in BRAF mutant melanoma cells. Additionally, while over-expression of mutant BRAF(V600E) increased both Mcl-1L and Mcl-1S expression, inhibition of hyperactive BRAF signalling resulted in decreased Mcl-1L expression. These studies suggest that the regulation of Mcl-1 expression by BRAF signalling is increased by oncogenic activation of BRAF, revealing a mechanism of apoptotic resistance which may be overcome by the use of more specifically targeted Mcl-1 inhibitors.
Collapse
Affiliation(s)
- Christopher S McKee
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | | | | | | | | |
Collapse
|
50
|
Wang Y, Tang H, Zhang Y, Li J, Li B, Gao Z, Wang X, Cheng G, Fei Z. Saponin B, a novel cytostatic compound purified from Anemone taipaiensis, induces apoptosis in a human glioblastoma cell line. Int J Mol Med 2013; 32:1077-84. [PMID: 24048272 DOI: 10.3892/ijmm.2013.1500] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/04/2013] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common malignant brain tumors. Saponin B, a novel compound isolated from the medicinal plant, Anemone taipaiensis, has been found to have a strong time- and dose-dependent cytostatic effect on human glioma cells and to suppress the growth of U87MG GBM cells. In this study, we investigated whether saponin B induces the apoptosis of glioblastoma cells and examined the underlying mechanism(s) of action of saponin B. Saponin B significantly suppressed U87MG cell proliferation. Flow cytometric analysis of DNA in the U87MG cells confirmed that saponin B blocked the cell cycle at the S phase. Furthermore, treatment of the U87MG cells with saponin B induced chromatin condensation and led to the formation of apoptotic bodies, as observed under a fluorescence microscope, and Annexin V/PI assay further suggested that phosphatidylserine (PS) externalization was apparent at higher drug concentrations. Treatment with saponin B activated the receptor-mediated pathway of apoptosis, as western blot analysis revealed the activation of Fas-l. Saponin B increased the Bax and caspase-3 ratio and decreased the protein expression of Bcl-2. The results from the present study demonstrate that the novel compound, saponin B, effectively induces the apoptosis of GBM cells and inhibits glioma cell growth and survival. Therefore, saponin B may be a potential candidate for the development of novel cancer therapeutics with antitumor activity against gliomas.
Collapse
Affiliation(s)
- Yuangang Wang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|