1
|
Zhao Z, Wang R, Wang R, Song J, Ma F, Pan H, Gao C, Wang D, Chen X, Fan X. Pancancer analysis of the prognostic and immunological role of FANCD2: a potential target for carcinogenesis and survival. BMC Med Genomics 2024; 17:69. [PMID: 38443946 PMCID: PMC10916239 DOI: 10.1186/s12920-024-01836-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/17/2024] [Indexed: 03/07/2024] Open
Abstract
Recent evidence has shed light on the significant role of FANCD2 in cancer initiation, development, and progression. However, a comprehensive pan-cancer analysis of FANCD2 has been lacking. In this study, we have conducted a thorough investigation into the expression profiles and prognostic significance of FANCD2, as well as its correlation with clinicopathological parameters and immune cell infiltration, using advanced bioinformatic techniques. The results demonstrate that FANCD2 is significantly upregulated in various common cancers and is associated with prognosis. Notably, higher expression levels of FANCD2 are linked to poor overall survival, as indicated by Cox regression and Kaplan-Meier analyses. Additionally, we have observed a decrease in the methylation of FANCD2 DNA in some cancers, and this decrease is inversely correlated with FANCD2 expression. Genetic alterations in FANCD2 predominantly manifest as mutations, which are associated with overall survival, disease-specific survival, disease-free survival, and progression-free survival in certain tumor types. Moreover, FANCD2 exhibits a strong correlation with infiltrating cell levels, immune checkpoint genes, tumor mutation burden (TMB), and microsatellite instability (MSI). Enrichment analysis further highlights the potential impact of FANCD2 on Fanconi anemia (FA) pathway and cell cycle regulation. Through this comprehensive pan-cancer analysis, we have gained a deeper understanding of the functions of FANCD2 in oncogenesis and metastasis across different types of cancer.
Collapse
Affiliation(s)
- Zedan Zhao
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Ruyu Wang
- School of clinical medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Ruixue Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jialing Song
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Fengjun Ma
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Cuiyun Gao
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Deqiang Wang
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China.
| | - Xuemei Chen
- Department of Obstetrics, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China.
| | - Xiangzhen Fan
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China.
| |
Collapse
|
2
|
Gueiderikh A, Maczkowiak-Chartois F, Rosselli F. A new frontier in Fanconi anemia: From DNA repair to ribosome biogenesis. Blood Rev 2021; 52:100904. [PMID: 34750031 DOI: 10.1016/j.blre.2021.100904] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 12/27/2022]
Abstract
Described by Guido Fanconi almost 100 years ago, Fanconi anemia (FA) is a rare genetic disease characterized by developmental abnormalities, bone marrow failure (BMF) and cancer predisposition. The proteins encoded by FA-mutated genes (FANC proteins) and assembled in the so-called FANC/BRCA pathway have key functions in DNA repair and replication safeguarding, which loss leads to chromosome structural aberrancies. Therefore, since the 1980s, FA has been considered a genomic instability and chromosome fragility syndrome. However, recent findings have demonstrated new and unexpected roles of FANC proteins in nucleolar homeostasis and ribosome biogenesis, the alteration of which impacts cellular proteostasis. Here, we review the different cellular, biochemical and molecular anomalies associated with the loss of function of FANC proteins and discuss how these anomalies contribute to BMF by comparing FA to other major inherited BMF syndromes. Our aim is to determine the extent to which alterations in the DNA damage response in FA contribute to BMF compared to the consequences of the loss of function of the FANC/BRCA pathway on the other roles of the pathway.
Collapse
Affiliation(s)
- Anna Gueiderikh
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| | - Frédérique Maczkowiak-Chartois
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| | - Filippo Rosselli
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| |
Collapse
|
3
|
The FANC/BRCA Pathway Releases Replication Blockades by Eliminating DNA Interstrand Cross-Links. Genes (Basel) 2020; 11:genes11050585. [PMID: 32466131 PMCID: PMC7288313 DOI: 10.3390/genes11050585] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022] Open
Abstract
DNA interstrand cross-links (ICLs) represent a major barrier blocking DNA replication fork progression. ICL accumulation results in growth arrest and cell death—particularly in cell populations undergoing high replicative activity, such as cancer and leukemic cells. For this reason, agents able to induce DNA ICLs are widely used as chemotherapeutic drugs. However, ICLs are also generated in cells as byproducts of normal metabolic activities. Therefore, every cell must be capable of rescuing lCL-stalled replication forks while maintaining the genetic stability of the daughter cells in order to survive, replicate DNA and segregate chromosomes at mitosis. Inactivation of the Fanconi anemia/breast cancer-associated (FANC/BRCA) pathway by inherited mutations leads to Fanconi anemia (FA), a rare developmental, cancer-predisposing and chromosome-fragility syndrome. FANC/BRCA is the key hub for a complex and wide network of proteins that—upon rescuing ICL-stalled DNA replication forks—allows cell survival. Understanding how cells cope with ICLs is mandatory to ameliorate ICL-based anticancer therapies and provide the molecular basis to prevent or bypass cancer drug resistance. Here, we review our state-of-the-art understanding of the mechanisms involved in ICL resolution during DNA synthesis, with a major focus on how the FANC/BRCA pathway ensures DNA strand opening and prevents genomic instability.
Collapse
|
4
|
Acetylation of XPF by TIP60 facilitates XPF-ERCC1 complex assembly and activation. Nat Commun 2020; 11:786. [PMID: 32034146 PMCID: PMC7005904 DOI: 10.1038/s41467-020-14564-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 01/17/2020] [Indexed: 01/27/2023] Open
Abstract
The XPF-ERCC1 heterodimer is a structure-specific endonuclease that is essential for nucleotide excision repair (NER) and interstrand crosslink (ICL) repair in mammalian cells. However, whether and how XPF binding to ERCC1 is regulated has not yet been established. Here, we show that TIP60, also known as KAT5, a haplo-insufficient tumor suppressor, directly acetylates XPF at Lys911 following UV irradiation or treatment with mitomycin C and that this acetylation is required for XPF-ERCC1 complex assembly and subsequent activation. Mechanistically, acetylation of XPF at Lys911 disrupts the Glu907-Lys911 salt bridge, thereby leading to exposure of a previously unidentified second binding site for ERCC1. Accordingly, loss of XPF acetylation impairs the damage-induced XPF-ERCC1 interaction, resulting in defects in both NER and ICL repair. Our results not only reveal a mechanism that regulates XPF-ERCC1 complex assembly and activation, but also provide important insight into the role of TIP60 in the maintenance of genome stability. The XPF-ERCC1 heterodimer is an endonuclease involved in nucleotide excision (NER) and interstrand crosslink (ICL) repair in mammalian cells. Here, the authors provide insights into its regulation by revealing that TIP60 regulates XPF-ERCC1 complex assembly and activation.
Collapse
|
5
|
Andreev V, Hristova R, Asparuhova M, Danovski G, Stoynov S, Gospodinov A. Mammalian INO80 chromatin remodeler cooperates with FANCM to mediate DNA interstrand crosslink-induced checkpoint activation and repair. DNA Repair (Amst) 2019; 74:38-50. [DOI: 10.1016/j.dnarep.2018.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/30/2018] [Accepted: 12/27/2018] [Indexed: 11/30/2022]
|
6
|
Klages-Mundt NL, Kumar A, Zhang Y, Kapoor P, Shen X. The Nature of Actin-Family Proteins in Chromatin-Modifying Complexes. Front Genet 2018; 9:398. [PMID: 30319687 PMCID: PMC6167448 DOI: 10.3389/fgene.2018.00398] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/31/2018] [Indexed: 01/25/2023] Open
Abstract
Actin is not only one of the most abundant proteins in eukaryotic cells, but also one of the most versatile. In addition to its familiar involvement in enabling contraction and establishing cellular motility and scaffolding in the cytosol, actin has well-documented roles in a variety of processes within the confines of the nucleus, such as transcriptional regulation and DNA repair. Interestingly, monomeric actin as well as actin-related proteins (Arps) are found as stoichiometric subunits of a variety of chromatin remodeling complexes and histone acetyltransferases, raising the question of precisely what roles they serve in these contexts. Actin and Arps are present in unique combinations in chromatin modifiers, helping to establish structural integrity of the complex and enabling a wide range of functions, such as recruiting the complex to nucleosomes to facilitate chromatin remodeling and promoting ATPase activity of the catalytic subunit. Actin and Arps are also thought to help modulate chromatin dynamics and maintain higher-order chromatin structure. Moreover, the presence of actin and Arps in several chromatin modifiers is necessary for promoting genomic integrity and an effective DNA damage response. In this review, we discuss the involvement of actin and Arps in these nuclear complexes that control chromatin remodeling and histone modifications, while also considering avenues for future study to further shed light on their functional importance.
Collapse
Affiliation(s)
- Naeh L Klages-Mundt
- Science Park Research Division, Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Ashok Kumar
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Yuexuan Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Prabodh Kapoor
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Xuetong Shen
- Science Park Research Division, Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
7
|
Paquin KL, Howlett NG. Understanding the Histone DNA Repair Code: H4K20me2 Makes Its Mark. Mol Cancer Res 2018; 16:1335-1345. [PMID: 29858375 DOI: 10.1158/1541-7786.mcr-17-0688] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/28/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022]
Abstract
Chromatin is a highly compact structure that must be rapidly rearranged in order for DNA repair proteins to access sites of damage and facilitate timely and efficient repair. Chromatin plasticity is achieved through multiple processes, including the posttranslational modification of histone tails. In recent years, the impact of histone posttranslational modification on the DNA damage response has become increasingly well recognized, and chromatin plasticity has been firmly linked to efficient DNA repair. One particularly important histone posttranslational modification process is methylation. Here, we focus on the regulation and function of H4K20 methylation (H4K20me) in the DNA damage response and describe the writers, erasers, and readers of this important chromatin mark as well as the combinatorial histone posttranslational modifications that modulate H4K20me recognition. Finally, we discuss the central role of H4K20me in determining if DNA double-strand breaks (DSB) are repaired by the error-prone, nonhomologous DNA end joining pathway or the error-free, homologous recombination pathway. This review article discusses the regulation and function of H4K20me2 in DNA DSB repair and outlines the components and modifications that modulate this important chromatin mark and its fundamental impact on DSB repair pathway choice. Mol Cancer Res; 16(9); 1335-45. ©2018 AACR.
Collapse
Affiliation(s)
- Karissa L Paquin
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island
| | - Niall G Howlett
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island.
| |
Collapse
|
8
|
Zhang Y, Chang JF, Sun J, Chen L, Yang XM, Tang HY, Jing YY, Kang X, He ZM, Wu JY, Wei HM, Wang DL, Xu RG, Zhu RB, Shen Y, Zeng SY, Wang C, Liu KN, Zhang Y, Mao ZY, Jiang CZ, Sun FL. Histone H3K27 methylation is required for NHEJ and genome stability by modulating the dynamics of FANCD2 on chromatin. J Cell Sci 2018; 131:jcs.215525. [PMID: 29760279 DOI: 10.1242/jcs.215525] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of homeostatic balance in di- and tri-methyl H3K27 levels or that caused by mis-sense mutations of histone H3 (H3K27M) was reported to be associated with various types of cancers. In this study, we found that reduction in H3K27me2/3 caused by H3.1K27M, a mutation of H3 variants found in DIPG patients, dramatically attenuated the presence of 53BP1 foci and NHEJ repair capability in HDF cells. H3.1K27M cells showed increased rates of genomic insertions/deletions (In/Dels) and copy number variations (CNVs), as well as augmented p53-dependent apoptotic cells. We further showed that both hypo-H3K27me2/3 and H3.1K27M interacted with FANCD2, a central player to orchestrate DNA repair pathway choice. H3.1K27M triggered an accumulation of FANCD2 on chromatin, supporting the interaction between H3.1K27M and FANCD2. Most interestingly, knock-down of FANCD2 in H3.1K27M cells recovered the number of 53BP1 foci, NHEJ efficiency and apoptosis rate. Although these findings in HDF cells may differ from the case of endogenous H3.1K27M mutant regulation in the specific tumor context of DIPG, our results suggest a new model by which H3K27me2/3 facilitates NHEJ and the maintenance of genome stability.
Collapse
Affiliation(s)
- Ye Zhang
- School of Medicine, Tsinghua University, Beijing 100084, PR China
| | - Jian-Feng Chang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Jin Sun
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Lu Chen
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Xiao-Mei Yang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Huan-Yin Tang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Yuan-Ya Jing
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Xuan Kang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Zhi-Min He
- School of Medicine, Tsinghua University, Beijing 100084, PR China
| | - Jun-Yu Wu
- School of Medicine, Tsinghua University, Beijing 100084, PR China
| | - Hui-Min Wei
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Da-Liang Wang
- School of Medicine, Tsinghua University, Beijing 100084, PR China
| | - Rong-Gang Xu
- School of Medicine, Tsinghua University, Beijing 100084, PR China
| | - Rui-Bao Zhu
- School of Medicine, Tsinghua University, Beijing 100084, PR China
| | - Ying Shen
- School of Software Engineering, Tongji University, Shanghai 200092, PR China
| | - Shi-Yang Zeng
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Chen Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Kui-Nan Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Yong Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Zhi-Ying Mao
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Ci-Zhong Jiang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Fang-Lin Sun
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
- School of Medicine, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
9
|
Su WP, Ho YC, Wu CK, Hsu SH, Shiu JL, Huang JC, Chang SB, Chiu WT, Hung JJ, Liu TL, Wu WS, Wu PY, Su WC, Chang JY, Liaw H. Chronic treatment with cisplatin induces chemoresistance through the TIP60-mediated Fanconi anemia and homologous recombination repair pathways. Sci Rep 2017; 7:3879. [PMID: 28634400 PMCID: PMC5478611 DOI: 10.1038/s41598-017-04223-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/10/2017] [Indexed: 11/18/2022] Open
Abstract
The Fanconi anemia pathway in coordination with homologous recombination is essential to repair interstrand crosslinks (ICLs) caused by cisplatin. TIP60 belongs to the MYST family of acetyltransferases and is involved in DNA repair and regulation of gene transcription. Although the physical interaction between the TIP60 and FANCD2 proteins has been identified that is critical for ICL repair, it is still elusive whether TIP60 regulates the expression of FA and HR genes. In this study, we found that the chemoresistant nasopharyngeal carcinoma cells, derived from chronic treatment of cisplatin, show elevated expression of TIP60. Furthermore, TIP60 binds to the promoters of FANCD2 and BRCA1 by using the chromatin immunoprecipitation experiments and promote the expression of FANCD2 and BRCA1. Importantly, the depletion of TIP60 significantly reduces sister chromatid exchange, a measurement of HR efficiency. The similar results were also shown in the FNACD2-, and BRCA1-deficient cells. Additionally, these TIP60-deficient cells encounter more frequent stalled forks, as well as more DNA double-strand breaks resulting from the collapse of stalled forks. Taken together, our results suggest that TIP60 promotes the expression of FA and HR genes that are important for ICL repair and the chemoresistant phenotype under chronic treatment with cisplatin.
Collapse
Affiliation(s)
- Wen-Pin Su
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No.35, Xiaodong Road, Tainan 704, Taiwan.
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Yen-Chih Ho
- Department of Life Sciences, National Cheng Kung University, No.1 University Road, Tainan, 701, Taiwan
| | - Cheng-Kuei Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No.35, Xiaodong Road, Tainan 704, Taiwan
| | - Sen-Huei Hsu
- Department of Life Sciences, National Cheng Kung University, No.1 University Road, Tainan, 701, Taiwan
| | - Jia-Lin Shiu
- Department of Life Sciences, National Cheng Kung University, No.1 University Road, Tainan, 701, Taiwan
| | - Jheng-Cheng Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No.35, Xiaodong Road, Tainan 704, Taiwan
| | - Song-Bin Chang
- Department of Life Sciences, National Cheng Kung University, No.1 University Road, Tainan, 701, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Jan-Jong Hung
- Department of Biotechnology and Bioindustry Science, National Cheng-Kung University, Tainan, 701, Taiwan
| | - Tsung-Lin Liu
- Department of Biotechnology and Bioindustry Science, National Cheng-Kung University, Tainan, 701, Taiwan
| | - Wei-Sheng Wu
- Department of Electrical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Pei-Yu Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Wu-Chou Su
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Jang-Yang Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
| | - Hungjiun Liaw
- Department of Life Sciences, National Cheng Kung University, No.1 University Road, Tainan, 701, Taiwan.
| |
Collapse
|
10
|
Pradhan A, Ustiyan V, Zhang Y, Kalin TV, Kalinichenko VV. Forkhead transcription factor FoxF1 interacts with Fanconi anemia protein complexes to promote DNA damage response. Oncotarget 2016; 7:1912-26. [PMID: 26625197 PMCID: PMC4811506 DOI: 10.18632/oncotarget.6422] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/15/2015] [Indexed: 12/19/2022] Open
Abstract
Forkhead box F1 (Foxf1) transcription factor is an important regulator of embryonic development but its role in tumor cells remains incompletely understood. While 16 proteins were characterized in Fanconi anemia (FA) core complex, its interactions with cellular transcriptional machinery remain poorly characterized. Here, we identified FoxF1 protein as a novel interacting partner of the FA complex proteins. Using multiple human and mouse tumor cell lines and Foxf1+/− mice we demonstrated that FoxF1 physically binds to and increases stability of FA proteins. FoxF1 co-localizes with FANCD2 in DNA repair foci in cultured cells and tumor tissues obtained from cisplatin-treated mice. In response to DNA damage, FoxF1-deficient tumor cells showed significantly reduced FANCD2 monoubiquitination and FANCM phosphorylation, resulting in impaired formation of DNA repair foci. FoxF1 knockdown caused chromosomal instability, nuclear abnormalities, and increased tumor cell death in response to DNA-damaging agents. Overexpression of FoxF1 in DNA-damaged cells improved stability of FA proteins, decreased chromosomal and nuclear aberrations, restored formation of DNA repair foci and prevented cell death after DNA damage. These findings demonstrate that FoxF1 is a key component of FA complexes and a critical mediator of DNA damage response in tumor cells.
Collapse
Affiliation(s)
- Arun Pradhan
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Vladimir Ustiyan
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Yufang Zhang
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Tanya V Kalin
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Vladimir V Kalinichenko
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| |
Collapse
|
11
|
Renaud E, Barascu A, Rosselli F. Impaired TIP60-mediated H4K16 acetylation accounts for the aberrant chromatin accumulation of 53BP1 and RAP80 in Fanconi anemia pathway-deficient cells. Nucleic Acids Res 2015; 44:648-56. [PMID: 26446986 PMCID: PMC4737135 DOI: 10.1093/nar/gkv1019] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/26/2015] [Indexed: 01/01/2023] Open
Abstract
To rescue collapsed replication forks cells utilize homologous recombination (HR)-mediated mechanisms to avoid the induction of gross chromosomal abnormalities that would be generated by non-homologous end joining (NHEJ). Using DNA interstrand crosslinks as a replication barrier, we investigated how the Fanconi anemia (FA) pathway promotes HR at stalled replication forks. FA pathway inactivation results in Fanconi anemia, which is associated with a predisposition to cancer. FANCD2 monoubiquitination and assembly in subnuclear foci appear to be involved in TIP60 relocalization to the chromatin to acetylates histone H4K16 and prevents the binding of 53BP1 to its docking site, H4K20Me2. Thus, FA pathway loss-of-function results in accumulation of 53BP1, RIF1 and RAP80 at damaged chromatin, which impair DNA resection at stalled replication fork-associated DNA breaks and impede HR. Consequently, DNA repair in FA cells proceeds through the NHEJ pathway, which is likely responsible for the accumulation of chromosome abnormalities. We demonstrate that the inhibition of NHEJ or deacetylase activity rescue HR in FA cells.
Collapse
Affiliation(s)
- Emilie Renaud
- Univ Paris-Sud, Laboratoire «Stabilité Génétique et Oncogenèse», Equipe Labellisée La Ligue Contre Le Cancer, 94805 Villejuif, France CNRS - UMR 8200, 94805 Villejuif, France Gustave Roussy, 94805 Villejuif, France
| | - Aurelia Barascu
- Univ Paris-Sud, Laboratoire «Stabilité Génétique et Oncogenèse», Equipe Labellisée La Ligue Contre Le Cancer, 94805 Villejuif, France CNRS - UMR 8200, 94805 Villejuif, France Gustave Roussy, 94805 Villejuif, France
| | - Filippo Rosselli
- Univ Paris-Sud, Laboratoire «Stabilité Génétique et Oncogenèse», Equipe Labellisée La Ligue Contre Le Cancer, 94805 Villejuif, France CNRS - UMR 8200, 94805 Villejuif, France Gustave Roussy, 94805 Villejuif, France
| |
Collapse
|
12
|
Abstract
Fanconi anemia (FA) is a rare recessive genetic disease characterized by congenital abnormalities, bone marrow failure and heightened cancer susceptibility in early adulthood. FA is caused by biallelic germ-line mutation of any one of 16 genes. While several functions for the FA proteins have been ascribed, the prevailing hypothesis is that the FA proteins function cooperatively in the FA-BRCA pathway to repair damaged DNA. A pivotal step in the activation of the FA-BRCA pathway is the monoubiquitination of the FANCD2 and FANCI proteins. Despite their importance for DNA repair, the domain structure, regulation, and function of FANCD2 and FANCI remain poorly understood. In this review, we provide an overview of our current understanding of FANCD2 and FANCI, with an emphasis on their posttranslational modification and common and unique functions.
Collapse
Key Words
- AML , acute myeloid leukemia
- APC/C, anaphase-promoting complex/cyclosome
- APH, aphidicolin
- ARM, armadillo repeat domain
- AT, ataxia-telangiectasia
- ATM, ataxia-telangiectasia mutated
- ATR, ATM and Rad3-related
- BAC, bacterial-artificial-chromosome
- BS, Bloom syndrome
- CUE, coupling of ubiquitin conjugation to endoplasmic reticulum degradation
- ChIP-seq, CHIP sequencing
- CtBP, C-terminal binding protein
- CtIP, CtBP-interacting protein
- DNA interstrand crosslink repair
- DNA repair
- EPS15, epidermal growth factor receptor pathway substrate 15
- FA, Fanconi anemia
- FAN1, FANCD2-associated nuclease1
- FANCD2
- FANCI
- FISH, fluorescence in situ hybridization
- Fanconi anemia
- HECT, homologous to E6-AP Carboxy Terminus
- HJ, Holliday junction
- HR, homologous recombination
- MCM2-MCM7, minichromosome maintenance 2–7
- MEFs, mouse embryonic fibroblasts
- MMC, mitomycin C
- MRN, MRE11/RAD50/NBS1
- NLS, nuclear localization signal
- PCNA, proliferating cell nuclear antigen
- PIKK, phosphatidylinositol-3-OH-kinase-like family of protein kinases
- PIP-box, PCNA-interacting protein motif
- POL κ, DNA polymerase κ
- RACE, rapid amplification of cDNA ends
- RING, really interesting new gene
- RTK, receptor tyrosine kinase
- SCF, Skp1/Cullin/F-box protein complex
- SCKL1, seckel syndrome
- SILAC, stable isotope labeling with amino acids in cell culture
- SLD1/SLD2, SUMO-like domains
- SLIM, SUMO-like domain interacting motif
- TIP60, 60 kDa Tat-interactive protein
- TLS, Translesion DNA synthesis
- UAF1, USP1-associated factor 1
- UBD, ubiquitin-binding domain
- UBZ, ubiquitin-binding zinc finger
- UFB, ultra-fine DNA bridges
- UIM, ubiquitin-interacting motif
- ULD, ubiquitin-like domain
- USP1, ubiquitin-specific protease 1
- VRR-nuc, virus-type replication repair nuclease
- iPOND, isolation of proteins on nascent DNA
- ubiquitin
Collapse
Affiliation(s)
- Rebecca A Boisvert
- a Department of Cell and Molecular Biology ; University of Rhode Island ; Kingston , RI USA
| | | |
Collapse
|
13
|
Mouw KW, D'Andrea AD. Crosstalk between the nucleotide excision repair and Fanconi anemia/BRCA pathways. DNA Repair (Amst) 2014; 19:130-4. [PMID: 24768451 DOI: 10.1016/j.dnarep.2014.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cells have evolved multiple distinct DNA repair pathways to efficiently correct a variety of genotoxic lesions, and decades of study have led to an improved understanding of the mechanisms and regulation of these individual pathways. However, there is now an increasing appreciation that extensive crosstalk exists among DNA repair pathways and that this crosstalk serves to increase the efficiency and diversity of response to damage. The Fanconi anemia (FA)/BRCA and nucleotide excision repair (NER) pathways have been shown to share common factors, and often work in concert to repair damage. Genomic studies are now revealing that many tumors harbor somatic mutations in FA/BRCA or NER genes, which may provide a growth advantage, but which could also be exploited therapeutically.
Collapse
Affiliation(s)
- Kent W Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States; Harvard Radiation Oncology Program, Boston, MA, United States
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
14
|
Histone chaperone activity of Fanconi anemia proteins, FANCD2 and FANCI, is required for DNA crosslink repair. EMBO J 2012; 31:3524-36. [PMID: 22828868 DOI: 10.1038/emboj.2012.197] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 07/03/2012] [Indexed: 01/10/2023] Open
Abstract
Fanconi anaemia (FA) is a rare hereditary disorder characterized by genomic instability and cancer susceptibility. A key FA protein, FANCD2, is targeted to chromatin with its partner, FANCI, and plays a critical role in DNA crosslink repair. However, the molecular function of chromatin-bound FANCD2-FANCI is still poorly understood. In the present study, we found that FANCD2 possesses nucleosome-assembly activity in vitro. The mobility of histone H3 was reduced in FANCD2-knockdown cells following treatment with an interstrand DNA crosslinker, mitomycin C. Furthermore, cells harbouring FANCD2 mutations that were defective in nucleosome assembly displayed impaired survival upon cisplatin treatment. Although FANCI by itself lacked nucleosome-assembly activity, it significantly stimulated FANCD2-mediated nucleosome assembly. These observations suggest that FANCD2-FANCI may regulate chromatin dynamics during DNA repair.
Collapse
|
15
|
Abstract
DNA repair and transcription process complex nucleic acid structures. The mammalian cell can cross-utilize select components of either pathway to respond to general or special situations arising in either path. These functions comprise activity networks capable of addressing unique requirements for each process. Here, we discuss examples of such networks that are tailored to respond to the demands of both DNA repair and transcription.
Collapse
Affiliation(s)
- Robb E Moses
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
16
|
Zhang SM, Song M, Yang TY, Fan R, Liu XD, Zhou PK. HIV-1 Tat impairs cell cycle control by targeting the Tip60, Plk1 and cyclin B1 ternary complex. Cell Cycle 2012; 11:1217-34. [PMID: 22391203 DOI: 10.4161/cc.11.6.19664] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
HIV-1 Tat triggers intrinsic and extrinsic apoptosis pathways in both infected and uninfected cells and plays an important role in the pathogenesis of AIDS. Knocking down Tip60, an interactive protein of Tat, leads to the impairment of cell cycle progression, indicating a key role of Tip60 in cell cycle control. We found that Tip60 interacts with Plk1 through its ZnFMYST domain, and that this interaction is enhanced in the G 2/M phase. In addition, cyclin B1 was confirmed to interact with the ZnF domain of Tip60. Immunofluorescence imaging showed that Tip60 co-localizes with both Plk1 and cyclin B1 at the centrosome during the mitotic phase and to the mid-body during cytokinesis. Further experiments revealed that Tip60 forms a ternary complex with Plk1 and cyclin B1 and acetylates Plk1 but not cyclin B1. HIV-1 Tat likely forms a quaternary complex with Tip60, cyclin B1 and Plk1. Fluorescent microscopy showed that Tat causes an unscheduled nuclear translocation of both cyclin B1 and Plk1, causing their co-localization with Tip60 in the nucleus. Tat, Tip60, cyclin B1 and Plk1 interactions provide new a mechanistic explanation for Tat-mediated cell cycle dysregulation and apoptosis.
Collapse
Affiliation(s)
- Shi-Meng Zhang
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | | | |
Collapse
|
17
|
Paul P, van den Hoorn T, Jongsma MLM, Bakker MJ, Hengeveld R, Janssen L, Cresswell P, Egan DA, van Ham M, Ten Brinke A, Ovaa H, Beijersbergen RL, Kuijl C, Neefjes J. A Genome-wide multidimensional RNAi screen reveals pathways controlling MHC class II antigen presentation. Cell 2011; 145:268-83. [PMID: 21458045 DOI: 10.1016/j.cell.2011.03.023] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 10/27/2010] [Accepted: 03/06/2011] [Indexed: 12/31/2022]
Abstract
MHC class II molecules (MHC-II) present peptides to T helper cells to facilitate immune responses and are strongly linked to autoimmune diseases. To unravel processes controlling MHC-II antigen presentation, we performed a genome-wide flow cytometry-based RNAi screen detecting MHC-II expression and peptide loading followed by additional high-throughput assays. All data sets were integrated to answer two fundamental questions: what regulates tissue-specific MHC-II transcription, and what controls MHC-II transport in dendritic cells? MHC-II transcription was controlled by nine regulators acting in feedback networks with higher-order control by signaling pathways, including TGFβ. MHC-II transport was controlled by the GTPase ARL14/ARF7, which recruits the motor myosin 1E via an effector protein ARF7EP. This complex controls movement of MHC-II vesicles along the actin cytoskeleton in human dendritic cells (DCs). These genome-wide systems analyses have thus identified factors and pathways controlling MHC-II transcription and transport, defining targets for manipulation of MHC-II antigen presentation in infection and autoimmunity.
Collapse
Affiliation(s)
- Petra Paul
- Division of Cell Biology and Centre for Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The FA (Fanconi anaemia) FANCD2 protein is pivotal in the cellular response to DNA interstrand cross-links. Establishing cells expressing exogenous FANCD2 has proven to be difficult compared with other DNA repair genes. We find that in transformed normal human fibroblasts, exogenous nuclear expression of FANCD2 induces apoptosis, dependent specifically on exons 10-13. This is the same region required for interaction with the histone acetyltransferase, Tip60. Deletion of exons 10-13 from FANCD2 N-terminal constructs (nucleotides 1-1100) eliminates the binary interaction with Tip60 and the cellular apoptotic response; moreover, cells can stably express FANCD2 at high levels if Tip60 is depleted. The results indicate that FANCD2-sponsored apoptosis requires an interaction with Tip60 and depends on Tip60.
Collapse
|
19
|
Li W, Li TT, Liu H, Zhao YY. [Screening and identification of interactive proteins of SH2D4A]. YI CHUAN = HEREDITAS 2010; 32:712-8. [PMID: 20650852 DOI: 10.3724/sp.j.1005.2010.00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
SH2D4A is a member of SH2 signaling protein family, which is involved in the signal transduction mediated by protein tyrosine kinase-related receptor, cell growth, proliferation, differentiation, and thereby affects the development of human disorders. To determine the role of SH2D4A in the cell signal transduction pathway, SH2D4A interactive proteins were screened using yeast two-hybrid system, and yeast mating and GST pull-down assays were carried out to further confirm the interaction. We successfully generated a bait protein expression construct-pGBKT7-SH2D4A, screened the human kidney cDNA library, and obtained 46 positive yeast clones. After isolation of positive colonies, DNA sequencing, and sequence alignment analysis with BLAST software, we obtained 5 potential SH2D4A interactive proteins, AZGP1, DAD1, HSD17B10, KAT5, and PKM2, which were predicted by NetPhos 2.0 Server software and were all shown to be phosphorylated tyrosine (pY)-containing proteins except for HSD17B10. KAT5 and HSD17B10 were selected to perform yeast mating and GST pull-down experiments, indicating their direct binding to SH2D4A.
Collapse
Affiliation(s)
- Wei Li
- Department of Medical genetics, China Medical University, Shenyang 110001, China.
| | | | | | | |
Collapse
|
20
|
Hinz JM. Role of homologous recombination in DNA interstrand crosslink repair. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:582-603. [PMID: 20658649 DOI: 10.1002/em.20577] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Homologous recombination repair (HRR) encompasses mechanisms that employ homologous DNA sequences as templates for repair or tolerance of a wide range of DNA lesions that inhibit DNA replication in S phase. Arguably the most imposing of these DNA lesions is that of the interstrand crosslink (ICL), consisting of a covalently attached chemical bridge between opposing DNA strands. ICL repair requires the coordinated activities of HRR and a number of proteins from other DNA repair and damage response systems, including nucleotide excision repair, base excision repair, mismatch repair, and translesion DNA synthesis (TLS). Interestingly, different organisms favor alternative methods of HRR in the ICL repair process. E. coli perform ICL repair using a homology-driven damage bypass mechanism analogous to daughter strand gap repair. Eukaryotes from yeast to humans initiate ICL repair primarily during DNA replication, relying on HRR activity to restart broken replication forks associated with double-strand break intermediates induced by nucleolytic activities of other excision repair factors. Higher eukaryotes also employ several additional factors, including members of the Fanconi anemia damage-response network, which further promote replication-associated ICL repair through the activation and coordination of various DNA excision repair, TLS, and HRR proteins. This review focuses on the proteins and general mechanisms of HRR associated with ICL repair in different model organisms.
Collapse
Affiliation(s)
- John M Hinz
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA.
| |
Collapse
|
21
|
Muniandy PA, Liu J, Majumdar A, Liu ST, Seidman MM. DNA interstrand crosslink repair in mammalian cells: step by step. Crit Rev Biochem Mol Biol 2010; 45:23-49. [PMID: 20039786 PMCID: PMC2824768 DOI: 10.3109/10409230903501819] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Interstrand DNA crosslinks (ICLs) are formed by natural products of metabolism and by chemotherapeutic reagents. Work in E. coli identified a two cycle repair scheme involving incisions on one strand on either side of the ICL (unhooking) producing a gapped intermediate with the incised oligonucleotide attached to the intact strand. The gap is filled by recombinational repair or lesion bypass synthesis. The remaining monoadduct is then removed by nucleotide excision repair (NER). Despite considerable effort, our understanding of each step in mammalian cells is still quite limited. In part this reflects the variety of crosslinking compounds, each with distinct structural features, used by different investigators. Also, multiple repair pathways are involved, variably operative during the cell cycle. G(1) phase repair requires functions from NER, although the mechanism of recognition has not been determined. Repair can be initiated by encounters with the transcriptional apparatus, or a replication fork. In the case of the latter, the reconstruction of a replication fork, stalled or broken by collision with an ICL, adds to the complexity of the repair process. The enzymology of unhooking, the identity of the lesion bypass polymerases required to fill the first repair gap, and the functions involved in the second repair cycle are all subjects of active inquiry. Here we will review current understanding of each step in ICL repair in mammalian cells.
Collapse
Affiliation(s)
- Parameswary A Muniandy
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
DNA damage by agents crosslinking the strands presents a formidable challenge to the cell to repair for survival and to repair accurately for maintenance of genetic information. It appears that repair of DNA crosslinks occurs in a path involving double strand breaks (DSBs) in the DNA. Mammalian cells have multiple systems involved in the repair response to such damage, including the Fanconi anemia pathway that appears to be directly involved, although the mechanisms and site of action remain elusive. A particular finding relating to deficiency of the Fanconi anemia pathway is the observation of chromosomal radial formations after ICL damage. The basis of formation of such chromosomal aberrations is unknown although they appear secondarily to DSBs. Here we review the processes involved in response to DNA interstrand crosslinks which might lead to radial formation and the role of the nucleotide excision repair gene, ERCC1, which is required for a normal response, not just to DNA crosslinks, but also for DSBs at collapsed replication forks caused by substrate depletion.
Collapse
Affiliation(s)
- Kevin M. McCabe
- Department of Civil, Architectural, and Environmental Engineering, University of Colorado Boulder, Boulder, CO 80309
| | - Susan B. Olson
- Department of Molecular and Medical Genetics, OHSU, Sam Jackson Park Road, Portland, OR 97239
| | - Robb E. Moses
- Department of Molecular and Medical Genetics, OHSU, Sam Jackson Park Road, Portland, OR 97239
| |
Collapse
|
23
|
Thompson LH, Hinz JM. Cellular and molecular consequences of defective Fanconi anemia proteins in replication-coupled DNA repair: mechanistic insights. Mutat Res 2009; 668:54-72. [PMID: 19622404 PMCID: PMC2714807 DOI: 10.1016/j.mrfmmm.2009.02.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 01/20/2009] [Accepted: 02/10/2009] [Indexed: 12/13/2022]
Abstract
The Fanconi anemia (FA) molecular network consists of 15 "FANC" proteins, of which 13 are associated with mutations in patients with this cancer-prone chromosome instability disorder. Whereas historically the common phenotype associated with FA mutations is marked sensitivity to DNA interstrand crosslinking agents, the literature supports a more global role for FANC proteins in coping with diverse stresses encountered by replicative polymerases. We have attempted to reconcile and integrate numerous observations into a model in which FANC proteins coordinate the following physiological events during DNA crosslink repair: (a) activating a FANCM-ATR-dependent S-phase checkpoint, (b) mediating enzymatic replication-fork breakage and crosslink unhooking, (c) filling the resulting gap by translesion synthesis (TLS) by error-prone polymerase(s), and (d) restoring the resulting one-ended double-strand break by homologous recombination repair (HRR). The FANC core subcomplex (FANCA, B, C, E, F, G, L, FAAP100) promotes TLS for both crosslink and non-crosslink damage such as spontaneous oxidative base damage, UV-C photoproducts, and alkylated bases. TLS likely helps prevent stalled replication forks from breaking, thereby maintaining chromosome continuity. Diverse DNA damages and replication inhibitors result in monoubiquitination of the FANCD2-FANCI complex by the FANCL ubiquitin ligase activity of the core subcomplex upon its recruitment to chromatin by the FANCM-FAAP24 heterodimeric translocase. We speculate that this translocase activity acts as the primary damage sensor and helps remodel blocked replication forks to facilitate checkpoint activation and repair. Monoubiquitination of FANCD2-FANCI is needed for promoting HRR, in which the FANCD1/BRCA2 and FANCN/PALB2 proteins act at an early step. We conclude that the core subcomplex is required for both TLS and HRR occurring separately for non-crosslink damages and for both events during crosslink repair. The FANCJ/BRIP1/BACH1 helicase functions in association with BRCA1 and may remove structural barriers to replication, such as guanine quadruplex structures, and/or assist in crosslink unhooking.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology and Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, United States.
| | | |
Collapse
|
24
|
Neveling K, Endt D, Hoehn H, Schindler D. Genotype-phenotype correlations in Fanconi anemia. Mutat Res 2009; 668:73-91. [PMID: 19464302 DOI: 10.1016/j.mrfmmm.2009.05.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 03/30/2009] [Accepted: 05/12/2009] [Indexed: 11/30/2022]
Abstract
Although still incomplete, we now have a remarkably detailed and nuanced picture of both phenotypic and genotypic components of the FA spectrum. Initially described as a combination of pancytopenia with a limited number of physical anomalies, it was later recognized that additional features were compatible with the FA phenotype, including a form without detectable malformations (Estren-Dameshek variant). The discovery of somatic mosaicism extended the boundaries of the FA phenotype to cases even without any overt hematological manifestations. This clinical heterogeneity was augmented by new conceptualizations. There was the realization of a constant risk for the development of myelodysplasia and certain malignancies, including acute myelogenous leukemia and squamous cell carcinoma, and there was the emergence of a distinctive cellular phenotype. A striking degree of genetic heterogeneity became apparent with the delineation of at least 12 complementation groups and the identification of their underlying genes. Although functional genetic insights have fostered the interpretation of many phenotypic features, surprisingly few stringent genotype-phenotype connections have emerged. In addition to myriad genetic alterations, less predictable influences are likely to modulate the FA phenotype, including modifier genes, environmental factors and chance effects. In reviewing the current status of genotype-phenotype correlations, we arrive at a unifying hypothesis to explain the remarkably wide range of FA phenotypes. Given the large body of evidence that genomic instability is a major underlying mechanism of accelerated ageing phenotypes, we propose that the numerous FA variants can be viewed as differential modulations and compression in time of intrinsic biological ageing.
Collapse
Affiliation(s)
- Kornelia Neveling
- Department of Human and Medical Genetics, University of Wurzburg, Biozentrum, Am Hubland, Wurzburg D-97074, Germany
| | | | | | | |
Collapse
|
25
|
Rego MA, Kolling FW, Howlett NG. The Fanconi anemia protein interaction network: casting a wide net. Mutat Res 2008; 668:27-41. [PMID: 19101576 DOI: 10.1016/j.mrfmmm.2008.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 11/16/2008] [Accepted: 11/25/2008] [Indexed: 11/26/2022]
Abstract
It has long been hypothesized that a defect in the repair of damaged DNA is central to the etiology of Fanconi anemia (FA). Indeed, an increased sensitivity of FA patient-derived cells to the lethal effects of various forms of DNA damaging agents was described over three decades ago [A.J. Fornace, Jr., J.B. Little, R.R. Weichselbaum, DNA repair in a Fanconi's anemia fibroblast cell strain, Biochim. Biophys. Acta 561 (1979) 99-109; Y. Fujiwara, M. Tatsumi, Repair of mitomycin C damage to DNA in mammalian cells and its impairment in Fanconi's anemia cells, Biochem. Biophys. Res. Commun. 66 (1975) 592-598; A.J. Rainbow, M. Howes, Defective repair of ultraviolet- and gamma-ray-damaged DNA in Fanconi's anaemia, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 31 (1977) 191-195]. Furthermore, the cytological hallmark of FA, the DNA crosslink-induced radial chromosome formation, exemplifies an innate impairment in the repair of these particularly cytotoxic DNA lesions [A.D. Auerbach, Fanconi anemia diagnosis and the diepoxybutane (DEB) test, Exp. Hematol. 21 (1993) 731-733]. Precisely defining the collective role of the FA proteins in DNA repair, however, continues to be one of the most enigmatic and challenging questions in the FA field. The first six identified FA proteins (A, C, E, F, G, and D2) harbored no recognizable enzymatic features, precluding association with a specific metabolic process. Consequently, our knowledge of the role of the FA proteins in the DNA damage response has been gleaned primarily through biochemical association studies with non-FA proteins. Here, we provide a chronological discourse of the major FA protein interaction network discoveries, with particular emphasis on the DNA damage response, that have defined our current understanding of the molecular basis of FA.
Collapse
Affiliation(s)
- Meghan A Rego
- Department of Cell and Molecular Biology, University of Rhode Island, 115 Morrill Hall, 45 Lower College Road, Kingston, RI 02881, USA
| | | | | |
Collapse
|