1
|
Schoberer J, Vavra U, Shin Y, Grünwald‐Gruber C, Strasser R. Elucidation of the late steps in the glycan-dependent ERAD of soluble misfolded glycoproteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17185. [PMID: 39642157 PMCID: PMC11712024 DOI: 10.1111/tpj.17185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 12/08/2024]
Abstract
The endoplasmic reticulum (ER) utilizes ER-associated degradation (ERAD), a highly conserved eukaryotic pathway, to eliminate misfolded or unassembled proteins and maintain protein homeostasis in cells. The clearance of misfolded glycoproteins involves several distinct steps, including the recognition of a specific glycan signal, retrotranslocation to the cytosol, and subsequent degradation of the misfolded protein by the ubiquitin proteasome system. Confocal microscopy was used to track the fate of a well-characterized ERAD substrate via a self-complementing split fluorescent protein assay. The results demonstrate that a misfolded variant of the STRUBBELIG (SUB) extracellular protein domain (SUBEX-C57Y) is retrotranslocated to the cytosol when transiently expressed in Nicotiana benthamiana leaf epidermal cells. Retrotranslocation requires a protein domain with a lesion that is exposed in the lumen of the ER, N-glycan trimming by α-mannosidases, HRD1-mediated ubiquitination, and the ATPase function of CDC48. The retrotranslocated SUBEX-C57Y ERAD substrate undergoes deglycosylation, and proteasomal degradation is blocked by a catalytically inactive cytosolic peptide N-glycanase. These findings define distinct aspects of ERAD that have been elusive until now and may represent the default pathway for degrading misfolded glycoproteins in plants.
Collapse
Affiliation(s)
- Jennifer Schoberer
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Yun‐Ji Shin
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Clemens Grünwald‐Gruber
- Core Facility Mass SpectrometryUniversity of Natural Resources and Life SciencesViennaAustria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| |
Collapse
|
2
|
Inès D, Courty PE, Wendehenne D, Rosnoblet C. CDC48 in plants and its emerging function in plant immunity. TRENDS IN PLANT SCIENCE 2024; 29:786-798. [PMID: 38218650 DOI: 10.1016/j.tplants.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/15/2024]
Abstract
Protein homeostasis, namely the balance between protein synthesis and degradation, must be finely controlled to ensure cell survival, notably through the ubiquitin-proteasome system (UPS). In all species, including plants, homeostasis is disrupted by biotic and abiotic stresses. A key player in the maintenance of protein balance, the protein CDC48, shows emerging functions in plants, particularly in response to biotic stress. In this review on CDC48 in plants, we detail its highly conserved structure, describe a gene expansion that is only present in Viridiplantae, discuss its various functions and regulations, and finally highlight its recruitment, still not clear, during the plant immune response.
Collapse
Affiliation(s)
- Damien Inès
- Agroécologie, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Université de Bourgogne, Université Bourgogne-Franche-Comté, Dijon, France
| | - Pierre-Emmanuel Courty
- Agroécologie, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Université de Bourgogne, Université Bourgogne-Franche-Comté, Dijon, France
| | - David Wendehenne
- Agroécologie, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Université de Bourgogne, Université Bourgogne-Franche-Comté, Dijon, France
| | - Claire Rosnoblet
- Agroécologie, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Université de Bourgogne, Université Bourgogne-Franche-Comté, Dijon, France.
| |
Collapse
|
3
|
Guan Y, Chang G, Zhao J, Wang Q, Qin J, Tang M, Wang S, Ma L, Ma J, Sun G, Zhou Y, Huang J. Parallel evolution of two AIM24 protein subfamilies and their conserved functions in ER stress tolerance in land plants. PLANT COMMUNICATIONS 2023; 4:100513. [PMID: 36578211 DOI: 10.1016/j.xplc.2022.100513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/25/2022] [Accepted: 12/23/2022] [Indexed: 05/11/2023]
Abstract
Despite decades of efforts in genome sequencing and functional characterization, some important protein families remain poorly understood. In this study, we report the classification, evolution, and functions of the largely uncharacterized AIM24 protein family in plants, including the identification of a novel subfamily. We show that two AIM24 subfamilies (AIM24-A and AIM24-B) are commonly distributed in major plant groups. These two subfamilies not only have modest sequence similarities and different gene structures but also are of independent bacterial ancestry. We performed comparative functional investigations on the two AIM24 subfamilies using three model plants: the moss Physcomitrium patens, the liverwort Marchantia polymorpha, and the flowering plant Arabidopsis thaliana. Intriguingly, despite their significant differences in sequence and gene structure, both AIM24 subfamilies are involved in ER stress tolerance and the unfolded protein response (UPR). In addition, transformation of the AIM24-A gene from P. patens into the AIM24-B null mutant of A. thaliana could at least partially rescue ER stress tolerance and the UPR. We also discuss the role of AIM24 genes in plant development and other cellular activities. This study provides a unique example of parallel evolution in molecular functions and can serve as a foundation for further investigation of the AIM24 family in plants.
Collapse
Affiliation(s)
- Yanlong Guan
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Guanxiao Chang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jinjie Zhao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Qia Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jiali Qin
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Mengmeng Tang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Shuanghua Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lan Ma
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jianchao Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Guiling Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jinling Huang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
4
|
Calvanese E, Gu Y. Towards understanding inner nuclear membrane protein degradation in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2266-2274. [PMID: 35139191 DOI: 10.1093/jxb/erac037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
The inner nuclear membrane (INM) hosts a unique set of membrane proteins that play essential roles in various aspects of the nuclear function. However, overaccumulation or malfunction of INM protein has been associated with a range of rare genetic diseases; therefore, maintaining the homeostasis and integrity of INM proteins by active removal of aberrantly accumulated proteins and replacing defective molecules through proteolysis is of critical importance. Within the last decade, it has been shown that INM proteins are degraded in yeasts by a process very similar to endoplasmic reticulum-associated degradation (ERAD), which is accomplished by retrotranslocation of membrane substrates followed by proteasome-dependent proteolysis, and this process was named inner nuclear membrane-associated degradation (INMAD). INMAD is distinguished from ERAD by specific INM-localized E3 ubiquitin ligases and proteolysis regulators. While much is yet to be determined about the INMAD pathway in yeasts, virtually no knowledge of it exists for higher eukaryotes, and only very recently have several critical regulators that participate in INM protein degradation been discovered in plants. Here, we review key molecular components of the INMAD pathway and draw parallels between the yeast and plant system to discuss promising directions in the future study of the plant INMAD process.
Collapse
Affiliation(s)
- Enrico Calvanese
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Yangnan Gu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Rosnoblet C, Chatelain P, Klinguer A, Bègue H, Winckler P, Pichereaux C, Wendehenne D. The chaperone-like protein Cdc48 regulates ubiquitin-proteasome system in plants. PLANT, CELL & ENVIRONMENT 2021; 44:2636-2655. [PMID: 33908641 DOI: 10.1111/pce.14073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/23/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
The degradation of misfolded proteins is mainly mediated by the ubiquitin-proteasome system (UPS). UPS can be assisted by the protein Cdc48 but the relationship between UPS and Cdc48 in plants has been poorly investigated. Here, we analysed the regulation of UPS by Cdc48 in tobacco thanks to two independent cell lines overexpressing Cdc48 constitutively and plant leaves overexpressing Cdc48 transiently. In the cell lines, the accumulation of ubiquitinated proteins was affected both quantitatively and qualitatively and the number of proteasomal subunits was modified, while proteolytic activities were unchanged. Similarly, the over-expression of Cdc48 in planta impacted the accumulation of ubiquitinated proteins. A similar process occurred in leaves overexpressing transiently Rpn3, a proteasome subunit. Cdc48 being involved in plant immunity, its regulation of UPS was also investigated in response to cryptogein, an elicitor of immune responses. In the cell lines stably overexpressing Cdc48 and in leaves transiently overexpressing Cdc48 and/or Rpn3, cryptogein triggered a premature cell death while no increase of the proteasomal activity occurred. Overall, this study highlights a role for Cdc48 in ubiquitin homeostasis and confirms its involvement, as well as that of Rpn3, in the processes underlying the hypersensitive response.
Collapse
Affiliation(s)
- Claire Rosnoblet
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Pauline Chatelain
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Agnès Klinguer
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Hervé Bègue
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
- Laboratory of Parasitology and Mycology, Dijon University Hospital, Dijon, France
| | - Pascale Winckler
- Plateforme DimaCell, PAM UMR A 02.102, Université Bourgogne Franche-Comté, AgroSup Dijon, Dijon, France
| | - Carole Pichereaux
- Fédération de Recherche (FR3450), Agrobiosciences, Interactions et Biodiversité (AIB), CNRS, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse UPS, CNRS, Toulouse, France
| | - David Wendehenne
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
6
|
Ozgur R, Uzilday B, Bor M, Turkan I. The involvement of gamma-aminobutyric acid shunt in the endoplasmic reticulum stress response of Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2020; 253:153250. [PMID: 32836022 DOI: 10.1016/j.jplph.2020.153250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
The endoplasmic reticulum (ER) is the main site of secretory protein production and folding and its homeostasis under environmental stress is vital for the maintenance of the protein secretory pathway. The loss of homeostasis and accumulation of unfolded proteins in the ER is referred to as ER stress. Although, γ-aminobutyric acid (GABA) is an important regulator of stress response in plants, its roles during ER stress remains unclear. This study investigated the involvement of GABA in the ER stress response of plants. For this, changes in GABA metabolism under ER stress was analysed in Arabidopsis thaliana, then to study the response of the ER-folding machinery, plants were treated with exogenous GABA under ER stress. The antibiotic tunicamycin, which inhibits N-glycosylation was used to specifically induce ER stress. This stress up-regulated the expression of five glutamate decarboxylase (GAD) genes except GAD2 and GABA content of A. thaliana plants increased with an increasing concentration of tunicamycin (0.1 μg ml-1 and 0.25 μg ml-1). Moreover, expressions of genes involved in the conversion of GABA to succinate was also induced, while genes involved in transport across plasma and mitochondrial membrane showed no response to ER stress. The exogenous treatment of plants with 1-and 5-mM GABA increased plant performance under ER stress but 0.1 mM proved ineffective. Plants treated with GABA under ER stress had decreased expression of ER stress marker genes such as BIP1, BIP3 or CNX, but the expression of genes related to ER stress perception or ER-associated protein degradation showed no changes with respect to GABA treatments.
Collapse
Affiliation(s)
- Rengin Ozgur
- Department of Biology, Faculty of Science, Ege University, Bornova, Izmır, Turkey
| | - Baris Uzilday
- Department of Biology, Faculty of Science, Ege University, Bornova, Izmır, Turkey
| | - Melike Bor
- Department of Biology, Faculty of Science, Ege University, Bornova, Izmır, Turkey
| | - Ismail Turkan
- Department of Biology, Faculty of Science, Ege University, Bornova, Izmır, Turkey.
| |
Collapse
|
7
|
Marshall RS, Hua Z, Mali S, McLoughlin F, Vierstra RD. ATG8-Binding UIM Proteins Define a New Class of Autophagy Adaptors and Receptors. Cell 2019; 177:766-781.e24. [PMID: 30955882 DOI: 10.1016/j.cell.2019.02.009] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/14/2019] [Accepted: 02/08/2019] [Indexed: 01/02/2023]
Abstract
During autophagy, vesicle dynamics and cargo recruitment are driven by numerous adaptors and receptors that become tethered to the phagophore through interactions with lipidated ATG8/LC3 decorating the expanding membrane. Most currently described ATG8-binding proteins exploit a well-defined ATG8-interacting motif (AIM, or LC3-interacting region [LIR]) that contacts a hydrophobic patch on ATG8 known as the LIR/AIM docking site (LDS). Here we describe a new class of ATG8 interactors that exploit ubiquitin-interacting motif (UIM)-like sequences for high-affinity binding to an alternative ATG8 interaction site. Assays with candidate UIM-containing proteins together with unbiased screens identified a large collection of UIM-based ATG8 interactors in plants, yeast, and humans. Analysis of a subset also harboring ubiquitin regulatory X (UBX) domains revealed a role for UIM-directed autophagy in clearing non-functional CDC48/p97 complexes, including some impaired in human disease. With this new class of adaptors and receptors, we greatly extend the reach of selective autophagy and identify new factors regulating autophagic vesicle dynamics.
Collapse
Affiliation(s)
- Richard S Marshall
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Zhihua Hua
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| | - Sujina Mali
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Fionn McLoughlin
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
8
|
Nowakowska-Gołacka J, Sominka H, Sowa-Rogozińska N, Słomińska-Wojewódzka M. Toxins Utilize the Endoplasmic Reticulum-Associated Protein Degradation Pathway in Their Intoxication Process. Int J Mol Sci 2019; 20:E1307. [PMID: 30875878 PMCID: PMC6471375 DOI: 10.3390/ijms20061307] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 12/25/2022] Open
Abstract
Several bacterial and plant AB-toxins are delivered by retrograde vesicular transport to the endoplasmic reticulum (ER), where the enzymatically active A subunit is disassembled from the holotoxin and transported to the cytosol. In this process, toxins subvert the ER-associated degradation (ERAD) pathway. ERAD is an important part of cellular regulatory mechanism that targets misfolded proteins to the ER channels, prior to their retrotranslocation to the cytosol, ubiquitination and subsequent degradation by a protein-degrading complex, the proteasome. In this article, we present an overview of current understanding of the ERAD-dependent transport of AB-toxins to the cytosol. We describe important components of ERAD and discuss their significance for toxin transport. Toxin recognition and disassembly in the ER, transport through ER translocons and finally cytosolic events that instead of overall proteasomal degradation provide proper folding and cytotoxic activity of AB-toxins are discussed as well. We also comment on recent reports presenting medical applications for toxin transport through the ER channels.
Collapse
Affiliation(s)
- Jowita Nowakowska-Gołacka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Hanna Sominka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Natalia Sowa-Rogozińska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Monika Słomińska-Wojewódzka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| |
Collapse
|
9
|
Bègue H, Mounier A, Rosnoblet C, Wendehenne D. Toward the understanding of the role of CDC48, a major component of the protein quality control, in plant immunity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:34-44. [PMID: 30709491 DOI: 10.1016/j.plantsci.2018.10.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
The evolutionally conserved chaperone-like protein CDC48 (cell division cycle 48) is a major component of ubiquitin-dependent protein degradation pathways in animal and yeast and, more generally, of the protein quality control machinery. In plants, CDC48 plays essential regulatory functions in development and the possibly that it contributes to protein degradation through the ubiquitin-proteasome system (UPS) and the endoplasmic reticulum-associated protein degradation (ERAD) system has been reported. In this review we described recent findings highlighting a role for CDC48 in plant immunity. First data indicated that CDC48 is S-nitrosylated in plant cells undergoing an immune response, regulates the turnover of immune receptors and mediates the degradation of viral proteins. Furthermore its overexpression was associated to an exacerbated hypersensitive-like cell death. We also designed and reported here the first CDC48 interactome. The corresponding data confirm the closed interaction of CDC48 with components of the UPS and shed light on its putative regulatory function of S-adenosyl-methionine synthesis and metabolism. More generally, these investigations further support the concept that plant cells facing pathogen attack finely regulate the protein quality control machinery.
Collapse
Affiliation(s)
- Hervé Bègue
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.
| | - Arnaud Mounier
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Claire Rosnoblet
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - David Wendehenne
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.
| |
Collapse
|
10
|
De Marchis F, Colanero S, Klein EM, Mainieri D, Prota VM, Bellucci M, Pagliuca G, Zironi E, Gazzotti T, Vitale A, Pompa A. Expression of CLAVATA3 fusions indicates rapid intracellular processing and a role of ERAD. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 271:67-80. [PMID: 29650159 DOI: 10.1016/j.plantsci.2018.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/16/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
The 12 amino acid peptide derived from the Arabidopsis soluble secretory protein CLAVATA3 (CLV3) acts at the cell surface in a signalling system that regulates the size of apical meristems. The subcellular pathway involved in releasing the peptide from its precursor is unknown. We show that a CLV3-GFP fusion expressed in transfected tobacco protoplasts or transgenic tobacco plants has very short intracellular half-life that cannot be extended by the secretory traffic inhibitors brefeldin A and wortmannin. The fusion is biologically active, since the incubation medium of protoplasts from CLV3-GFP-expressing tobacco contains the CLV3 peptide and inhibits root growth. The rapid disappearance of intact CLV3-GFP requires the signal peptide and is inhibited by the proteasome inhibitor MG132 or coexpression with a mutated CDC48 that inhibits endoplasmic reticulum-associated protein degradation (ERAD). The synthesis of CLV3-GFP is specifically supported by the endoplasmic reticulum chaperone endoplasmin in an in vivo assay. Our results indicate that processing of CLV3 starts intracellularly in an early compartment of the secretory pathway and that ERAD could play a regulatory or direct role in the active peptide synthesis.
Collapse
Affiliation(s)
- Francesca De Marchis
- Istituto di Bioscienze e Biorisorse, Consiglio Nazionale delle Ricerche, Perugia, Italy
| | - Sara Colanero
- Istituto di Bioscienze e Biorisorse, Consiglio Nazionale delle Ricerche, Perugia, Italy
| | - Eva M Klein
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Davide Mainieri
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Viviana M Prota
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Michele Bellucci
- Istituto di Bioscienze e Biorisorse, Consiglio Nazionale delle Ricerche, Perugia, Italy
| | - Giampiero Pagliuca
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna 40064 Ozzano Emilia, BO, Italy
| | - Elisa Zironi
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna 40064 Ozzano Emilia, BO, Italy
| | - Teresa Gazzotti
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna 40064 Ozzano Emilia, BO, Italy
| | - Alessandro Vitale
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milano, Italy.
| | - Andrea Pompa
- Istituto di Bioscienze e Biorisorse, Consiglio Nazionale delle Ricerche, Perugia, Italy.
| |
Collapse
|
11
|
Abstract
The endoplasmic reticulum (ER) is the site of maturation for roughly one-third of all cellular proteins. ER-resident molecular chaperones and folding catalysts promote folding and assembly in a diverse set of newly synthesized proteins. Because these processes are error-prone, all eukaryotic cells have a quality-control system in place that constantly monitors the proteins and decides their fate. Proteins with potentially harmful nonnative conformations are subjected to assisted folding or degraded. Persistent folding-defective proteins are distinguished from folding intermediates and targeted for degradation by a specific process involving clearance from the ER. Although the basic principles of these processes appear conserved from yeast to animals and plants, there are distinct differences in the ER-associated degradation of misfolded glycoproteins. The general importance of ER quality-control events is underscored by their involvement in the biogenesis of diverse cell surface receptors and their crucial maintenance of protein homeostasis under diverse stress conditions.
Collapse
Affiliation(s)
- Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| |
Collapse
|
12
|
Abstract
The endoplasmic reticulum (ER) is the site of maturation for roughly one-third of all cellular proteins. ER-resident molecular chaperones and folding catalysts promote folding and assembly in a diverse set of newly synthesized proteins. Because these processes are error-prone, all eukaryotic cells have a quality-control system in place that constantly monitors the proteins and decides their fate. Proteins with potentially harmful nonnative conformations are subjected to assisted folding or degraded. Persistent folding-defective proteins are distinguished from folding intermediates and targeted for degradation by a specific process involving clearance from the ER. Although the basic principles of these processes appear conserved from yeast to animals and plants, there are distinct differences in the ER-associated degradation of misfolded glycoproteins. The general importance of ER quality-control events is underscored by their involvement in the biogenesis of diverse cell surface receptors and their crucial maintenance of protein homeostasis under diverse stress conditions.
Collapse
Affiliation(s)
- Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| |
Collapse
|
13
|
Shin Y, Vavra U, Veit C, Strasser R. The glycan-dependent ERAD machinery degrades topologically diverse misfolded proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:246-259. [PMID: 29396984 PMCID: PMC5900737 DOI: 10.1111/tpj.13851] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/21/2017] [Accepted: 01/17/2018] [Indexed: 05/18/2023]
Abstract
Many soluble and integral membrane proteins fold in the endoplasmic reticulum (ER) with the help of chaperones and folding factors. Despite these efforts, protein folding is intrinsically error prone and amino acid changes, alterations in post-translational modifications or cellular stress can cause protein misfolding. Folding-defective non-native proteins are cleared from the ER and typically undergo ER-associated degradation (ERAD). Here, we investigated whether different misfolded glycoproteins require the same set of ERAD factors and are directed to HRD1 complex-mediated degradation in plants. We generated a series of glycoprotein ERAD substrates harboring a misfolded domain from Arabidopsis STRUBBELIG or the BRASSINOSTEROID INSENSITVE 1 receptor fused to different membrane anchoring regions. We show that single pass and multispanning ERAD substrates are subjected to glycan-dependent degradation by the HRD1 complex. However, the presence of a powerful ER exit signal in the multispanning ERAD substrates causes competition with ER quality control and targeting of misfolded glycoproteins to the vacuole. Our results demonstrate that the same machinery is used for degradation of topologically different misfolded glycoproteins in the ER of plants.
Collapse
Affiliation(s)
- Yun‐Ji Shin
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Christiane Veit
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| |
Collapse
|
14
|
Plant Ribosome-Inactivating Proteins: Progesses, Challenges and Biotechnological Applications (and a Few Digressions). Toxins (Basel) 2017; 9:toxins9100314. [PMID: 29023422 PMCID: PMC5666361 DOI: 10.3390/toxins9100314] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022] Open
Abstract
Plant ribosome-inactivating protein (RIP) toxins are EC3.2.2.22 N-glycosidases, found among most plant species encoded as small gene families, distributed in several tissues being endowed with defensive functions against fungal or viral infections. The two main plant RIP classes include type I (monomeric) and type II (dimeric) as the prototype ricin holotoxin from Ricinus communis that is composed of a catalytic active A chain linked via a disulphide bridge to a B-lectin domain that mediates efficient endocytosis in eukaryotic cells. Plant RIPs can recognize a universally conserved stem-loop, known as the α-sarcin/ ricin loop or SRL structure in 23S/25S/28S rRNA. By depurinating a single adenine (A4324 in 28S rat rRNA), they can irreversibly arrest protein translation and trigger cell death in the intoxicated mammalian cell. Besides their useful application as potential weapons against infected/tumor cells, ricin was also used in bio-terroristic attacks and, as such, constitutes a major concern. In this review, we aim to summarize past studies and more recent progresses made studying plant RIPs and discuss successful approaches that might help overcoming some of the bottlenecks encountered during the development of their biomedical applications.
Collapse
|
15
|
Environmental stress is the major cause of transcriptomic and proteomic changes in GM and non-GM plants. Sci Rep 2017; 7:10624. [PMID: 28878216 PMCID: PMC5587699 DOI: 10.1038/s41598-017-09646-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/27/2017] [Indexed: 11/08/2022] Open
Abstract
The approval of genetically modified (GM) crops is preceded by years of intensive research to demonstrate safety to humans and environment. We recently showed that in vitro culture stress is the major factor influencing proteomic differences of GM vs. non-GM plants. This made us question the number of generations needed to erase such "memory". We also wondered about the relevance of alterations promoted by transgenesis as compared to environment-induced ones. Here we followed three rice lines (1-control, 1-transgenic and 1-negative segregant) throughout eight generations after transgenesis combining proteomics and transcriptomics, and further analyzed their response to salinity stress on the F6 generation. Our results show that: (a) differences promoted during genetic modification are mainly short-term physiological changes, attenuating throughout generations, and (b) environmental stress may cause far more proteomic/transcriptomic alterations than transgenesis. Based on our data, we question what is really relevant in risk assessment design for GM food crops.
Collapse
|
16
|
Rosnoblet C, Bègue H, Blanchard C, Pichereaux C, Besson-Bard A, Aimé S, Wendehenne D. Functional characterization of the chaperon-like protein Cdc48 in cryptogein-induced immune response in tobacco. PLANT, CELL & ENVIRONMENT 2017; 40:491-508. [PMID: 26662183 DOI: 10.1111/pce.12686] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/20/2015] [Accepted: 11/27/2015] [Indexed: 05/06/2023]
Abstract
Cdc48, a molecular chaperone conserved in different kingdoms, is a member of the AAA+ family contributing to numerous processes in mammals including proteins quality control and degradation, vesicular trafficking, autophagy and immunity. The functions of Cdc48 plant orthologues are less understood. We previously reported that Cdc48 is regulated by S-nitrosylation in tobacco cells undergoing an immune response triggered by cryptogein, an elicitin produced by the oomycete Phytophthora cryptogea. Here, we inv estigated the function of NtCdc48 in cryptogein signalling and induced hypersensitive-like cell death. NtCdc48 was found to accumulate in elicited cells at both the protein and transcript levels. Interestingly, only a small proportion of the overall NtCdc48 population appeared to be S-nitrosylated. Using gel filtration in native conditions, we confirmed that NtCdc48 was present in its hexameric active form. An immunoprecipitation-based strategy following my mass spectrometry analysis led to the identification of about a hundred NtCdc48 partners and underlined its contribution in cellular processes including targeting of ubiquitylated proteins for proteasome-dependent degradation, subcellular trafficking and redox regulation. Finally, the analysis of cryptogein-induced events in NtCdc48-overexpressing cells highlighted a correlation between NtCdc48 expression and hypersensitive cell death. Altogether, this study identified NtCdc48 as a component of cryptogein signalling and plant immunity.
Collapse
Affiliation(s)
- Claire Rosnoblet
- Pôle Mécanisme et Gestion des Interactions Plantes-Microorganismes - ERL CNRS 6300, Université de Bourgogne Franche-Comté, UMR 1347 Agroécologie, 17 rue Sully, BP 86510, 21065, Dijon cédex, France
| | - Hervé Bègue
- Pôle Mécanisme et Gestion des Interactions Plantes-Microorganismes - ERL CNRS 6300, Université de Bourgogne Franche-Comté, UMR 1347 Agroécologie, 17 rue Sully, BP 86510, 21065, Dijon cédex, France
| | - Cécile Blanchard
- Pôle Mécanisme et Gestion des Interactions Plantes-Microorganismes - ERL CNRS 6300, Université de Bourgogne Franche-Comté, UMR 1347 Agroécologie, 17 rue Sully, BP 86510, 21065, Dijon cédex, France
| | - Carole Pichereaux
- Fédération de Recherche 3450, Agrobiosciences, Interactions et Biodiversité, CNRS, 31326, Castanet-Tolosan, France
- Institut de Pharmacologie et de Biologie Structurale - CNRS, Université de Toulouse, 205 route de Narbonne,, 31077, Toulouse, France
| | - Angélique Besson-Bard
- Pôle Mécanisme et Gestion des Interactions Plantes-Microorganismes - ERL CNRS 6300, Université de Bourgogne Franche-Comté, UMR 1347 Agroécologie, 17 rue Sully, BP 86510, 21065, Dijon cédex, France
| | - Sébastien Aimé
- INRA, UMR 1347 Agroécologie, Pôle Mécanisme et Gestion des Interactions Plantes-Microorganismes - ERL CNRS 6300, 17 rue Sully, BP 86510, 21065, Dijon cédex, France
| | - David Wendehenne
- Pôle Mécanisme et Gestion des Interactions Plantes-Microorganismes - ERL CNRS 6300, Université de Bourgogne Franche-Comté, UMR 1347 Agroécologie, 17 rue Sully, BP 86510, 21065, Dijon cédex, France
| |
Collapse
|
17
|
Bègue H, Jeandroz S, Blanchard C, Wendehenne D, Rosnoblet C. Structure and functions of the chaperone-like p97/CDC48 in plants. Biochim Biophys Acta Gen Subj 2016; 1861:3053-3060. [PMID: 27717811 DOI: 10.1016/j.bbagen.2016.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND The chaperone-like p97 is a member of the AAA+ ATPase enzyme family that contributes to numerous cellular activities. P97 has been broadly studied in mammals (VCP/p97) and yeasts (CDC48: Cell Division Cycle 48/p97) and numerous investigations highlighted that this protein is post-translationally regulated, is structured in homohexamer and interacts with partners and cofactors that direct it to distinct cellular signalization pathway including protein quality control and degradation, cell cycle regulation, genome stability, vesicular trafficking, autophagy and immunity. SCOPE OF REVIEW p97 is also conserved in plants (CDC48) but its functions are less understood. In the present review we intended to present the state of the art of the structure, regulation and functions of CDC48 in plants. MAJOR CONCLUSIONS Evidence accumulated underline that CDC48 plays a crucial role in development, cell cycle regulation and protein turnover in plants. Furthermore, its involvement in plant immunity has recently emerged and first interacting partners have been identified, shedding light on its putative cellular activities. GENERAL SIGNIFICANCE Identification of emerging functions of CDC48 in plants opens new roads of research in immunity and provides new insights into the mechanisms of protein quality control.
Collapse
Affiliation(s)
- Hervé Bègue
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Sylvain Jeandroz
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Cécile Blanchard
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - David Wendehenne
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Claire Rosnoblet
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|
18
|
Ozgur R, Uzilday B, Sekmen AH, Turkan I. The effects of induced production of reactive oxygen species in organelles on endoplasmic reticulum stress and on the unfolded protein response in arabidopsis. ANNALS OF BOTANY 2015; 116:541-53. [PMID: 26070642 PMCID: PMC4577994 DOI: 10.1093/aob/mcv072] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/02/2015] [Accepted: 04/15/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Accumulation of unfolded proteins caused by inefficient chaperone activity in the endoplasmic reticulum (ER) is termed 'ER stress', and it is perceived by a complex gene network. Induction of these genes triggers a response termed the 'unfolded protein response' (UPR). If a cell cannot overcome the accumulation of unfolded proteins, the ER-associated degradation (ERAD) system is induced to degrade those proteins. In addition to other factors, reactive oxygen species (ROS) are also produced during oxidative protein-folding in the ER. It has been shown in animal systems that there is a tight association between mitochondrial ROS and ER stress. However, in plants there are no reports concerning how induced ROS production in mitochondria and chloroplasts affects ER stress and if there is a possible role of organelle-originated ROS as a messenger molecule in the unfolded protein response. To address this issue, electron transport in chloroplasts and mitochondria and carnitine acetyl transferase (CAT) activity in peroxisomes were inhibited in wild-type Arabidopsis thaliana to induce ROS production. Expression of UPR genes was then investigated. METHODS Plants of A. thaliana ecotype Col-0 were treated with various H2O2- and ROS-producing agents specific to different organelles, including the mitochondria, chloroplasts and peroxisomes. The expression of ER stress sensor/transducer genes (bZIP28, bZIP17, IRE1A, IRE1B, BiP1, BiP3), genes related to protein folding (CNX, ERO1) and ERAD genes (HRD1, SEL1, DER1, UBC32) were evaluated by qRT-PCR analysis. KEY RESULTS Relatively low concentrations of ROS were more effective for induction of the ER stress response. Mitochondrial and chloroplastic ROS production had different induction mechanisms for the UPR and ER stress responses. CONCLUSIONS Chloroplast- and mitochondria-originated ROS have distinct roles in triggering the ER stress response. In general, low concentrations of ROS induced the transcription of ER stress-related genes, which can be attributed to the roles of ROS as secondary messengers. This is the first time that ROS production in organelles has been shown to affect the ER stress response in a plant system.
Collapse
Affiliation(s)
- Rengin Ozgur
- Department of Biology, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey
| | - Baris Uzilday
- Department of Biology, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey
| | - A Hediye Sekmen
- Department of Biology, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey
| | - Ismail Turkan
- Department of Biology, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey
| |
Collapse
|
19
|
Ohta M, Takaiwa F. OsHrd3 is necessary for maintaining the quality of endoplasmic reticulum-derived protein bodies in rice endosperm. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4585-93. [PMID: 25977235 PMCID: PMC4507767 DOI: 10.1093/jxb/erv229] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Large amounts of seed storage proteins (SSPs) are produced in the maturing endosperm of rice seeds. Rice SSPs are synthesized as secretory proteins on the rough endoplasmic reticulum (ER), and are transported and deposited into protein complexes called protein bodies (PB-I and PB-II). Due to the high production of SSPs, unfolded SSPs may be generated during this process. However, it was previously unclear how such unfolded proteins are selected among synthesized products and removed from the ER to maintain protein quality in the endosperm. Since Hrd3/SEL1L recognizes unfolded proteins in yeast and mammalian protein quality control systems, the role of OsHrd3 in protein quality control in rice endosperm was investigated. Co-immunoprecipitation experiments demonstrated that OsHrd3 interacts with components of the Hrd1 ubiquitin ligase complex such as OsOS-9 and OsHrd1 in rice protoplasts. Endosperm-specific suppression of OsHrd3 in transgenic rice reduced the levels of polyubiquitinated proteins and resulted in unfolded protein responses (UPRs) in the endosperm, suggesting that OsHrd3-mediated polyubiquitination plays an important role in ER quality control. It was found that a cysteine-rich 13kDa prolamin, RM1, was polyubiquitinated in wild-type (WT) seeds but not in OsHrd3 knockdown (KD) seeds. RM1 formed aberrant aggregates that were deposited abnormally in OsHrd3 KD seeds, resulting in deformed PB-I. Therefore, the quality of protein bodies is maintained by polyubiquitination of unfolded SSPs through the Hrd1 ubiquitin ligase system in rice endosperm.
Collapse
Affiliation(s)
- Masaru Ohta
- Functional Transgenic Crops Research Unit, Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | - Fumio Takaiwa
- Functional Transgenic Crops Research Unit, Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
20
|
Trapet P, Kulik A, Lamotte O, Jeandroz S, Bourque S, Nicolas-Francès V, Rosnoblet C, Besson-Bard A, Wendehenne D. NO signaling in plant immunity: a tale of messengers. PHYTOCHEMISTRY 2015; 112:72-9. [PMID: 24713571 DOI: 10.1016/j.phytochem.2014.03.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/12/2014] [Indexed: 05/05/2023]
Abstract
Nitric oxide (NO) is a free radical gas involved in a myriad of plant physiological processes including immune responses. How NO mediates its biological effects in plant facing microbial pathogen attack is an unresolved question. Insights into the molecular mechanisms by which it propagates signals reveal the contribution of this simple gas in complex signaling pathways shared with reactive oxygen species (ROS) and the second messenger Ca(2+). Understanding of the subtle cross-talks operating between these signals was greatly improved by the recent identification and the functional analysis of proteins regulated through S-nitrosylation, a major NO-dependent post-translational protein modification. Overall, these findings suggest that NO is probably an important component of the mechanism coordinating and regulating Ca(2+) and ROS signaling in plant immunity.
Collapse
Affiliation(s)
- Pauline Trapet
- Université de Bourgogne, UMR 1347 Agroécologie, BP 86510, F-21000 Dijon, France; ERL CNRS 6300, BP 86510, 21000 Dijon, France
| | - Anna Kulik
- INRA, UMR 1347 Agroécologie, BP 86510, F-21000 Dijon, France; ERL CNRS 6300, BP 86510, 21000 Dijon, France
| | - Olivier Lamotte
- CNRS, UMR 1347 Agroécologie, BP 86510, F-21000 Dijon, France; ERL CNRS 6300, BP 86510, 21000 Dijon, France
| | - Sylvain Jeandroz
- AgroSup Dijon, UMR 1347 Agroécologie, BP 86510, F-21000 Dijon, France; ERL CNRS 6300, BP 86510, 21000 Dijon, France
| | - Stéphane Bourque
- Université de Bourgogne, UMR 1347 Agroécologie, BP 86510, F-21000 Dijon, France; ERL CNRS 6300, BP 86510, 21000 Dijon, France
| | - Valérie Nicolas-Francès
- Université de Bourgogne, UMR 1347 Agroécologie, BP 86510, F-21000 Dijon, France; ERL CNRS 6300, BP 86510, 21000 Dijon, France
| | - Claire Rosnoblet
- Université de Bourgogne, UMR 1347 Agroécologie, BP 86510, F-21000 Dijon, France; ERL CNRS 6300, BP 86510, 21000 Dijon, France
| | - Angélique Besson-Bard
- Université de Bourgogne, UMR 1347 Agroécologie, BP 86510, F-21000 Dijon, France; ERL CNRS 6300, BP 86510, 21000 Dijon, France
| | - David Wendehenne
- Université de Bourgogne, UMR 1347 Agroécologie, BP 86510, F-21000 Dijon, France; ERL CNRS 6300, BP 86510, 21000 Dijon, France.
| |
Collapse
|
21
|
Hüttner S, Veit C, Vavra U, Schoberer J, Dicker M, Maresch D, Altmann F, Strasser R. A context-independent N-glycan signal targets the misfolded extracellular domain of Arabidopsis STRUBBELIG to endoplasmic-reticulum-associated degradation. Biochem J 2014; 464:401-11. [PMID: 25251695 PMCID: PMC4255730 DOI: 10.1042/bj20141057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/24/2014] [Accepted: 09/24/2014] [Indexed: 11/17/2022]
Abstract
N-glycosylation of proteins plays an important role in the determination of the fate of newly synthesized glycoproteins in the endoplasmic reticulum (ER). Specific oligosaccharide structures recruit molecular chaperones that promote folding or mannose-binding lectins that assist in the clearance of improperly-folded glycoproteins by delivery to ER-associated degradation (ERAD). In plants, the mechanisms and factors that recognize non-native proteins and sort them to ERAD are poorly understood. In the present study, we provide evidence that a misfolded variant of the STRUBBELIG (SUB) extracellular domain (SUBEX-C57Y) is degraded in a glycan-dependent manner in plants. SUBEX-C57Y is an ER-retained glycoprotein with three N-glycans that is stabilized in the presence of kifunensine, a potent inhibitor of α-mannosidases. Stable expression in Arabidopsis thaliana knockout mutants revealed that SUBEX-C57Y degradation is dependent on the ER lectin OS9 and its associated ERAD factor SEL1L. SUBEX-C57Y was also stabilized in plants lacking the α-mannosidases MNS4 and MNS5 that generate a terminal α1,6-linked mannose on the C-branch of N-glycans. Notably, the glycan signal for degradation is not constrained to a specific position within SUBEX-C57Y. Structural analysis revealed that SUBEX-C57Y harbours considerable amounts of Glc1Man7GlcNAc2 N-glycans suggesting that the ER-quality control processes involving calnexin/calreticulin (CNX/CRT) and ERAD are tightly interconnected to promote protein folding or disposal by termination of futile folding attempts.
Collapse
Key Words
- cell biology
- endoplasmic reticulum
- endoplasmic-reticulum-associated degradation (erad)
- glycobiology
- glycoprotein
- glycosylation
- protein degradation
- protein misfolding
- bri1, brassinosteroid insensitive 1
- cnx/crt, calnexin/calreticulin
- cpy*, mutant variant of yeast carboxypeptidase y
- endo h, endoglycosidase h
- er, endoplasmic reticulum
- erad, er-associated degradation
- erqc, er quality control
- mrfp, monomeric rfp
- mrh, mannose 6-phosphate receptor homology
- ms, murashige and skoog
- pdi, protein disulfide isomerase
- pgc, porous graphitic carbon
- pngase, peptide-n-glycosidase
- ripa, radio immunoprecipitation assay
- sub, strubbelig
- subex, strubbelig extracellular domain
- δxtft, nicotiana benthamiana glycosylation mutant deficient in β1,2-xylosyltransferase and core α1,3-fucosyltransferase
Collapse
Affiliation(s)
- Silvia Hüttner
- *Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Christiane Veit
- *Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Ulrike Vavra
- *Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Jennifer Schoberer
- *Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Martina Dicker
- *Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Daniel Maresch
- †Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Friedrich Altmann
- †Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Richard Strasser
- *Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
22
|
Burress H, Taylor M, Banerjee T, Tatulian SA, Teter K. Co- and post-translocation roles for HSP90 in cholera Intoxication. J Biol Chem 2014; 289:33644-54. [PMID: 25320090 DOI: 10.1074/jbc.m114.609800] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cholera toxin (CT) moves from the cell surface to the endoplasmic reticulum (ER) where the catalytic CTA1 subunit separates from the rest of the toxin. CTA1 then unfolds and passes through an ER translocon pore to reach its cytosolic target. Due to its intrinsic instability, cytosolic CTA1 must be refolded to achieve an active conformation. The cytosolic chaperone Hsp90 is involved with the ER to cytosol export of CTA1, but the mechanistic role of Hsp90 in CTA1 translocation remains unknown. Moreover, potential post-translocation roles for Hsp90 in modulating the activity of cytosolic CTA1 have not been explored. Here, we show by isotope-edited Fourier transform infrared spectroscopy that Hsp90 induces a gain-of-structure in disordered CTA1 at physiological temperature. Only the ATP-bound form of Hsp90 interacts with disordered CTA1, and refolding of CTA1 by Hsp90 is dependent upon ATP hydrolysis. In vitro reconstitution of the CTA1 translocation event likewise required ATP hydrolysis by Hsp90. Surface plasmon resonance experiments found that Hsp90 does not release CTA1, even after ATP hydrolysis and the return of CTA1 to a folded conformation. The interaction with Hsp90 allows disordered CTA1 to attain an active state, which is further enhanced by ADP-ribosylation factor 6, a host cofactor for CTA1. Our data indicate CTA1 translocation involves a process that couples the Hsp90-mediated refolding of CTA1 with CTA1 extraction from the ER. The molecular basis for toxin translocation elucidated in this study may also apply to several ADP-ribosylating toxins that move from the endosomes to the cytosol in an Hsp90-dependent process.
Collapse
Affiliation(s)
- Helen Burress
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32826 and
| | - Michael Taylor
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32826 and
| | - Tuhina Banerjee
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32826 and
| | - Suren A Tatulian
- the Department of Physics, University of Central Florida, Orlando, Florida 32816
| | - Ken Teter
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32826 and
| |
Collapse
|
23
|
Cai Y, Zhuang X, Gao C, Wang X, Jiang L. The Arabidopsis Endosomal Sorting Complex Required for Transport III Regulates Internal Vesicle Formation of the Prevacuolar Compartment and Is Required for Plant Development. PLANT PHYSIOLOGY 2014; 165:1328-1343. [PMID: 24812106 PMCID: PMC4081340 DOI: 10.1104/pp.114.238378] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We have established an efficient transient expression system with several vacuolar reporters to study the roles of endosomal sorting complex required for transport (ESCRT)-III subunits in regulating the formation of intraluminal vesicles of prevacuolar compartments (PVCs)/multivesicular bodies (MVBs) in plant cells. By measuring the distributions of reporters on/within the membrane of PVC/MVB or tonoplast, we have identified dominant negative mutants of ESCRT-III subunits that affect membrane protein degradation from both secretory and endocytic pathways. In addition, induced expression of these mutants resulted in reduction in luminal vesicles of PVC/MVB, along with increased detection of membrane-attaching vesicles inside the PVC/MVB. Transgenic Arabidopsis (Arabidopsis thaliana) plants with induced expression of ESCRT-III dominant negative mutants also displayed severe cotyledon developmental defects with reduced cell size, loss of the central vacuole, and abnormal chloroplast development in mesophyll cells, pointing out an essential role of the ESCRT-III complex in postembryonic development in plants. Finally, membrane dissociation of ESCRT-III components is important for their biological functions and is regulated by direct interaction among Vacuolar Protein Sorting-Associated Protein20-1 (VPS20.1), Sucrose Nonfermenting7-1, VPS2.1, and the adenosine triphosphatase VPS4/SUPPRESSOR OF K+ TRANSPORT GROWTH DEFECT1.
Collapse
Affiliation(s)
- Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., X.Z., C.G., X.W., L.J.); andChinese University of Hong Kong Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., X.Z., C.G., X.W., L.J.); andChinese University of Hong Kong Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Caiji Gao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., X.Z., C.G., X.W., L.J.); andChinese University of Hong Kong Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Xiangfeng Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., X.Z., C.G., X.W., L.J.); andChinese University of Hong Kong Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., X.Z., C.G., X.W., L.J.); andChinese University of Hong Kong Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| |
Collapse
|
24
|
Svozil J, Hirsch-Hoffmann M, Dudler R, Gruissem W, Baerenfaller K. Protein abundance changes and ubiquitylation targets identified after inhibition of the proteasome with syringolin A. Mol Cell Proteomics 2014; 13:1523-36. [PMID: 24732913 DOI: 10.1074/mcp.m113.036269] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
As proteins are the main effectors inside cells, their levels need to be tightly regulated. This is partly achieved by specific protein degradation via the Ubiquitin-26S proteasome system (UPS). In plants, an exceptionally high number of proteins are involved in Ubiquitin-26S proteasome system-mediated protein degradation and it is known to regulate most, if not all, important cellular processes. Here, we investigated the response to the inhibition of the proteasome at the protein level treating leaves with the specific inhibitor Syringolin A (SylA) in a daytime specific manner and found 109 accumulated and 140 decreased proteins. The patterns of protein level changes indicate that the accumulating proteins cause proteotoxic stress that triggers various responses. Comparing protein level changes in SylA treated with those in a transgenic line over-expressing a mutated ubiquitin unable to form polyubiquitylated proteins produced little overlap pointing to different response pathways. To distinguish between direct and indirect targets of the UPS we also enriched and identified ubiquitylated proteins after inhibition of the proteasome, revealing a total of 1791 ubiquitylated proteins in leaves and roots and 1209 that were uniquely identified in our study. The comparison of the ubiquitylated proteins with those changing in abundance after SylA-mediated inhibition of the proteasome confirmed the complexity of the response and revealed that some proteins are regulated both at transcriptional and post-transcriptional level. For the ubiquitylated proteins that accumulate in the cytoplasm but are targeted to the plastid or the mitochondrion, we often found peptides in their target sequences, demonstrating that the UPS is involved in controlling organellar protein levels. Attempts to identify the sites of ubiquitylation revealed that the specific properties of this post-translational modification can lead to incorrect peptide spectrum assignments in complex peptide mixtures in which only a small fraction of peptides is expected to carry the ubiquitin footprint. This was confirmed with measurements of synthetically produced peptides and calculating the similarities between the different spectra.
Collapse
Affiliation(s)
- Julia Svozil
- From the ‡Department of Biology, Universitaetstrasse 2, ETH Zurich, CH-8092 Zurich, Switzerland
| | | | - Robert Dudler
- §Institute of Plant Biology, Zollikerstrasse 107, University of Zurich, CH-8008 Zurich, Switzerland
| | - Wilhelm Gruissem
- From the ‡Department of Biology, Universitaetstrasse 2, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Katja Baerenfaller
- From the ‡Department of Biology, Universitaetstrasse 2, ETH Zurich, CH-8092 Zurich, Switzerland;
| |
Collapse
|
25
|
Liu Y, Li J. Endoplasmic reticulum-mediated protein quality control in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2014; 5:162. [PMID: 24817869 PMCID: PMC4012192 DOI: 10.3389/fpls.2014.00162] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 04/07/2014] [Indexed: 05/19/2023]
Abstract
A correct three-dimensional structure is crucial for the physiological functions of a protein, yet the folding of proteins to acquire native conformation is a fundamentally error-prone process. Eukaryotic organisms have evolved a highly conserved endoplasmic reticulum-mediated protein quality control (ERQC) mechanism to monitor folding processes of secretory and membrane proteins, allowing export of only correctly folded proteins to their physiological destinations, retaining incompletely/mis-folded ones in the ER for additional folding attempts, marking and removing terminally misfolded ones via a unique multiple-step degradation process known as ER-associated degradation (ERAD). Most of our current knowledge on ERQC and ERAD came from genetic and biochemical investigations in yeast and mammalian cells. Recent studies in the reference plant Arabidopsis thaliana uncovered homologous components and similar mechanisms in plants for monitoring protein folding and for retaining, repairing, and removing misfolded proteins. These studies also revealed critical roles of the plant ERQC/ERAD systems in regulating important biochemical/physiological processes, such as abiotic stress tolerance and plant defense. In this review, we discuss our current understanding about the molecular components and biochemical mechanisms of the plant ERQC/ERAD system in comparison to yeast and mammalian systems.
Collapse
Affiliation(s)
| | - Jianming Li
- *Correspondence: Jianming Li, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4085 Natural Science Building, 830 North University, Ann Arbor, MI 48109-1048, USA e-mail:
| |
Collapse
|
26
|
Teter K. Toxin instability and its role in toxin translocation from the endoplasmic reticulum to the cytosol. Biomolecules 2013; 3:997-1029. [PMID: 24970201 PMCID: PMC4030972 DOI: 10.3390/biom3040997] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 12/21/2022] Open
Abstract
AB toxins enter a host cell by receptor-mediated endocytosis. The catalytic A chain then crosses the endosome or endoplasmic reticulum (ER) membrane to reach its cytosolic target. Dissociation of the A chain from the cell-binding B chain occurs before or during translocation to the cytosol, and only the A chain enters the cytosol. In some cases, AB subunit dissociation is facilitated by the unique physiology and function of the ER. The A chains of these ER-translocating toxins are stable within the architecture of the AB holotoxin, but toxin disassembly results in spontaneous or assisted unfolding of the isolated A chain. This unfolding event places the A chain in a translocation-competent conformation that promotes its export to the cytosol through the quality control mechanism of ER-associated degradation. A lack of lysine residues for ubiquitin conjugation protects the exported A chain from degradation by the ubiquitin-proteasome system, and an interaction with host factors allows the cytosolic toxin to regain a folded, active state. The intrinsic instability of the toxin A chain thus influences multiple steps of the intoxication process. This review will focus on the host-toxin interactions involved with A chain unfolding in the ER and A chain refolding in the cytosol.
Collapse
Affiliation(s)
- Ken Teter
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA.
| |
Collapse
|
27
|
Deng Y, Srivastava R, Howell SH. Endoplasmic reticulum (ER) stress response and its physiological roles in plants. Int J Mol Sci 2013; 14:8188-212. [PMID: 23591838 PMCID: PMC3645738 DOI: 10.3390/ijms14048188] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 03/19/2013] [Accepted: 04/01/2013] [Indexed: 01/29/2023] Open
Abstract
The endoplasmic reticulum (ER) stress response is a highly conserved mechanism that results from the accumulation of unfolded or misfolded proteins in the ER. The response plays an important role in allowing plants to sense and respond to adverse environmental conditions, such as heat stress, salt stress and pathogen infection. Since the ER is a well-controlled microenvironment for proper protein synthesis and folding, it is highly susceptible to stress conditions. Accumulation of unfolded or misfolded proteins activates a signaling pathway, called the unfolded protein response (UPR), which acts to relieve ER stress and, if unsuccessful, leads to cell death. Plants have two arms of the UPR signaling pathway, an arm involving the proteolytic processing of membrane-associated basic leucine zipper domain (bZIP) transcription factors and an arm involving RNA splicing factor, IRE1, and its mRNA target. These signaling pathways play an important role in determining the cell's fate in response to stress conditions.
Collapse
Affiliation(s)
- Yan Deng
- Plant Sciences Institute and Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; E-Mails: (Y.D.); (R.S.)
| | - Renu Srivastava
- Plant Sciences Institute and Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; E-Mails: (Y.D.); (R.S.)
| | - Stephen H. Howell
- Plant Sciences Institute and Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; E-Mails: (Y.D.); (R.S.)
| |
Collapse
|
28
|
Niehl A, Amari K, Gereige D, Brandner K, Mély Y, Heinlein M. Control of Tobacco mosaic virus movement protein fate by CELL-DIVISION-CYCLE protein48. PLANT PHYSIOLOGY 2012; 160:2093-108. [PMID: 23027663 PMCID: PMC3510134 DOI: 10.1104/pp.112.207399] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 09/27/2012] [Indexed: 05/08/2023]
Abstract
Like many other viruses, Tobacco mosaic virus replicates in association with the endoplasmic reticulum (ER) and exploits this membrane network for intercellular spread through plasmodesmata (PD), a process depending on virus-encoded movement protein (MP). The movement process involves interactions of MP with the ER and the cytoskeleton as well as its targeting to PD. Later in the infection cycle, the MP further accumulates and localizes to ER-associated inclusions, the viral factories, and along microtubules before it is finally degraded. Although these patterns of MP accumulation have been described in great detail, the underlying mechanisms that control MP fate and function during infection are not known. Here, we identify CELL-DIVISION-CYCLE protein48 (CDC48), a conserved chaperone controlling protein fate in yeast (Saccharomyces cerevisiae) and animal cells by extracting protein substrates from membranes or complexes, as a cellular factor regulating MP accumulation patterns in plant cells. We demonstrate that Arabidopsis (Arabidopsis thaliana) CDC48 is induced upon infection, interacts with MP in ER inclusions dependent on the MP N terminus, and promotes degradation of the protein. We further provide evidence that CDC48 extracts MP from ER inclusions to the cytosol, where it subsequently accumulates on and stabilizes microtubules. We show that virus movement is impaired upon overexpression of CDC48, suggesting that CDC48 further functions in controlling virus movement by removal of MP from the ER transport pathway and by promoting interference of MP with microtubule dynamics. CDC48 acts also in response to other proteins expressed in the ER, thus suggesting a general role of CDC48 in ER membrane maintenance upon ER stress.
Collapse
Affiliation(s)
- Annette Niehl
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 Centre National de la Recherche Scientifique, Université de Strasbourg, 67000 Strasbourg, France (A.N., K.A., D.G., K.B., M.H.); Botanisches Institut der Universität Basel, 4056 Basel, Switzerland (A.N., K.A., M.H.); and Laboratoire de Biophotonique et Pharmacologie, Unité Mixte de Recherche 7213 Centre National de la Recherche Scientifique, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France (Y.M.)
| | - Khalid Amari
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 Centre National de la Recherche Scientifique, Université de Strasbourg, 67000 Strasbourg, France (A.N., K.A., D.G., K.B., M.H.); Botanisches Institut der Universität Basel, 4056 Basel, Switzerland (A.N., K.A., M.H.); and Laboratoire de Biophotonique et Pharmacologie, Unité Mixte de Recherche 7213 Centre National de la Recherche Scientifique, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France (Y.M.)
| | | | - Katrin Brandner
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 Centre National de la Recherche Scientifique, Université de Strasbourg, 67000 Strasbourg, France (A.N., K.A., D.G., K.B., M.H.); Botanisches Institut der Universität Basel, 4056 Basel, Switzerland (A.N., K.A., M.H.); and Laboratoire de Biophotonique et Pharmacologie, Unité Mixte de Recherche 7213 Centre National de la Recherche Scientifique, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France (Y.M.)
| | - Yves Mély
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 Centre National de la Recherche Scientifique, Université de Strasbourg, 67000 Strasbourg, France (A.N., K.A., D.G., K.B., M.H.); Botanisches Institut der Universität Basel, 4056 Basel, Switzerland (A.N., K.A., M.H.); and Laboratoire de Biophotonique et Pharmacologie, Unité Mixte de Recherche 7213 Centre National de la Recherche Scientifique, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France (Y.M.)
| | - Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 Centre National de la Recherche Scientifique, Université de Strasbourg, 67000 Strasbourg, France (A.N., K.A., D.G., K.B., M.H.); Botanisches Institut der Universität Basel, 4056 Basel, Switzerland (A.N., K.A., M.H.); and Laboratoire de Biophotonique et Pharmacologie, Unité Mixte de Recherche 7213 Centre National de la Recherche Scientifique, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France (Y.M.)
| |
Collapse
|
29
|
Hüttner S, Veit C, Schoberer J, Grass J, Strasser R. Unraveling the function of Arabidopsis thaliana OS9 in the endoplasmic reticulum-associated degradation of glycoproteins. PLANT MOLECULAR BIOLOGY 2012; 79:21-33. [PMID: 22328055 PMCID: PMC3332353 DOI: 10.1007/s11103-012-9891-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/29/2012] [Indexed: 05/18/2023]
Abstract
In the endoplasmic reticulum, immature polypeptides coincide with terminally misfolded proteins. Consequently, cells need a well-balanced quality control system, which decides about the fate of individual proteins and maintains protein homeostasis. Misfolded and unassembled proteins are sent for destruction via the endoplasmic reticulum-associated degradation (ERAD) machinery to prevent the accumulation of potentially toxic protein aggregates. Here, we report the identification of Arabidopsis thaliana OS9 as a component of the plant ERAD pathway. OS9 is an ER-resident glycoprotein containing a mannose-6-phosphate receptor homology domain, which is also found in yeast and mammalian lectins involved in ERAD. OS9 fused to the C-terminal domain of YOS9 can complement the ERAD defect of the corresponding yeast Δyos9 mutant. An A. thaliana OS9 loss-of-function line suppresses the severe growth phenotype of the bri1-5 and bri1-9 mutant plants, which harbour mutated forms of the brassinosteroid receptor BRI1. Co-immunoprecipitation studies demonstrated that OS9 associates with Arabidopsis SEL1L/HRD3, which is part of the plant ERAD complex and with the ERAD substrates BRI1-5 and BRI1-9, but only the binding to BRI1-5 occurs in a glycan-dependent way. OS9-deficiency results in activation of the unfolded protein response and reduces salt tolerance, highlighting the role of OS9 during ER stress. We propose that OS9 is a component of the plant ERAD machinery and may act specifically in the glycoprotein degradation pathway.
Collapse
Affiliation(s)
- Silvia Hüttner
- Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Christiane Veit
- Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Jennifer Schoberer
- Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
- Present Address: Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP UK
| | - Josephine Grass
- Department of Chemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
30
|
Hüttner S, Strasser R. Endoplasmic reticulum-associated degradation of glycoproteins in plants. FRONTIERS IN PLANT SCIENCE 2012; 3:67. [PMID: 22645596 PMCID: PMC3355801 DOI: 10.3389/fpls.2012.00067] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 03/21/2012] [Indexed: 05/20/2023]
Abstract
In all eukaryotes the endoplasmic reticulum (ER) has a central role in protein folding and maturation of secretory and membrane proteins. Upon translocation into the ER polypeptides are immediately subjected to folding and modifications involving the formation of disulfide bridges, assembly of subunits to multi-protein complexes, and glycosylation. During these processes incompletely folded, terminally misfolded, and unassembled proteins can accumulate which endanger the cellular homeostasis and subsequently the survival of cells and tissues. Consequently, organisms have developed a quality control system to cope with this problem and remove the unwanted protein load from the ER by a process collectively referred to as ER-associated degradation (ERAD) pathway. Recent studies in Arabidopsis have identified plant ERAD components involved in the degradation of aberrant proteins and evidence was provided for a specific role in abiotic stress tolerance. In this short review we discuss our current knowledge about this important cellular pathway.
Collapse
Affiliation(s)
- Silvia Hüttner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
- *Correspondence: Richard Strasser, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria. e-mail:
| |
Collapse
|
31
|
Ricin trafficking in plant and mammalian cells. Toxins (Basel) 2011; 3:787-801. [PMID: 22069740 PMCID: PMC3202855 DOI: 10.3390/toxins3070787] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/21/2011] [Accepted: 06/23/2011] [Indexed: 11/17/2022] Open
Abstract
Ricin is a heterodimeric plant protein that is potently toxic to mammalian and many other eukaryotic cells. It is synthesized and stored in the endosperm cells of maturing Ricinus communis seeds (castor beans). The ricin family has two major members, both, lectins, collectively known as Ricinus communis agglutinin ll (ricin) and Ricinus communis agglutinin l (RCA). These proteins are stored in vacuoles within the endosperm cells of mature Ricinus seeds and they are rapidly broken down by hydrolysis during the early stages of post-germinative growth. Both ricin and RCA traffic within the plant cell from their site of synthesis to the storage vacuoles, and when they intoxicate mammalian cells they traffic from outside the cell to their site of action. In this review we will consider both of these trafficking routes.
Collapse
|
32
|
Cai Y, Jia T, Lam SK, Ding Y, Gao C, San MWY, Pimpl P, Jiang L. Multiple cytosolic and transmembrane determinants are required for the trafficking of SCAMP1 via an ER-Golgi-TGN-PM pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:882-96. [PMID: 21251105 DOI: 10.1111/j.1365-313x.2010.04469.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
How polytopic plasma membrane (PM) proteins reach their destination in plant cells remains elusive. Using transgenic tobacco BY-2 cells, we previously showed that the rice secretory carrier membrane protein 1 (SCAMP1), an integral membrane protein with four transmembrane domains (TMDs), is localized to the PM and trans-Golgi network (TGN). Here, we study the transport pathway and sorting signals of SCAMP1 by following its transient expression in tobacco BY-2 protoplasts and show that SCAMP1 reaches the PM via an endoplasmic reticulum (ER)-Golgi-TGN-PM pathway. Loss-of-function and gain-of-function analysis of various green fluorescent protein (GFP) fusions with SCAMP1 mutations further demonstrates that: (i) the cytosolic N-terminus of SCAMP1 contains an ER export signal; (ii) the transmembrane domain 2 (TMD2) and TMD3 of SCAMP1 are essential for Golgi export; (iii) SCAMP1 TMD1 is essential for TGN-to-PM targeting; (iv) the predicted topology of SCAMP1 and its various mutants remain identical as demonstrated by protease protection assay. Therefore, both the cytosolic N-terminus and TMD sequences of SCAMP1 play integral roles in mediating its transport to the PM via an ER-Golgi-TGN pathway.
Collapse
Affiliation(s)
- Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Spooner RA, Lord JM. How ricin and Shiga toxin reach the cytosol of target cells: retrotranslocation from the endoplasmic reticulum. Curr Top Microbiol Immunol 2011; 357:19-40. [PMID: 21761287 DOI: 10.1007/82_2011_154] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A number of protein toxins bind at the surface of mammalian cells and after endocytosis traffic to the endoplasmic reticulum, where the toxic A chains are liberated from the holotoxin. The free A chains are then dislocated, or retrotranslocated, across the ER membrane into the cytosol. Here, in contrast to ER substrates destined for proteasomal destruction, they undergo folding to a catalytic conformation and subsequently inactivate their cytosolic targets. These toxins therefore provide toxic probes for testing the molecular requirements for retrograde trafficking, the ER processes that prepare the toxic A chains for transmembrane transport, the dislocation step itself and for the post-dislocation folding that results in catalytic activity. We describe here the dislocation of ricin A chain and Shiga toxin A chain, but also consider cholera toxin which bears a superficial structural resemblance to Shiga toxin. Recent studies not only describe how these proteins breach the ER membrane, but also reveal aspects of a fundamental cell biological process, that of ER-cytosol dislocation.
Collapse
Affiliation(s)
- Robert A Spooner
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
34
|
Marshall RS, D'Avila F, Di Cola A, Traini R, Spanò L, Fabbrini MS, Ceriotti A. Signal peptide-regulated toxicity of a plant ribosome-inactivating protein during cell stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:218-29. [PMID: 21223387 DOI: 10.1111/j.1365-313x.2010.04413.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The fate of the type I ribosome-inactivating protein (RIP) saporin when initially targeted to the endoplasmic reticulum (ER) in tobacco protoplasts has been examined. We find that saporin expression causes a marked decrease in protein synthesis, indicating that a fraction of the toxin reaches the cytosol and inactivates tobacco ribosomes. We determined that saporin is largely secreted but some is retained intracellularly, most likely in a vacuolar compartment, thus behaving very differently from the prototype RIP ricin A chain. We also find that the signal peptide can interfere with the catalytic activity of saporin when the protein fails to be targeted to the ER membrane, and that saporin toxicity undergoes signal sequence-specific regulation when the host cell is subjected to ER stress. Replacement of the saporin signal peptide with that of the ER chaperone BiP reduces saporin toxicity and makes it independent of cell stress. We propose that this stress-induced toxicity may have a role in pathogen defence.
Collapse
Affiliation(s)
- Richard S Marshall
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15, 20133 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
de Virgilio M, Lombardi A, Caliandro R, Fabbrini MS. Ribosome-inactivating proteins: from plant defense to tumor attack. Toxins (Basel) 2010; 2:2699-737. [PMID: 22069572 PMCID: PMC3153179 DOI: 10.3390/toxins2112699] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 10/29/2010] [Accepted: 11/04/2010] [Indexed: 12/02/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are EC3.2.32.22 N-glycosidases that recognize a universally conserved stem-loop structure in 23S/25S/28S rRNA, depurinating a single adenine (A4324 in rat) and irreversibly blocking protein translation, leading finally to cell death of intoxicated mammalian cells. Ricin, the plant RIP prototype that comprises a catalytic A subunit linked to a galactose-binding lectin B subunit to allow cell surface binding and toxin entry in most mammalian cells, shows a potency in the picomolar range. The most promising way to exploit plant RIPs as weapons against cancer cells is either by designing molecules in which the toxic domains are linked to selective tumor targeting domains or directly delivered as suicide genes for cancer gene therapy. Here, we will provide a comprehensive picture of plant RIPs and discuss successful designs and features of chimeric molecules having therapeutic potential.
Collapse
Affiliation(s)
| | - Alessio Lombardi
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milan, Italy;
| | - Rocco Caliandro
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Bari, Italy;
| | - Maria Serena Fabbrini
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milan, Italy;
| |
Collapse
|
36
|
Liu JX, Howell SH. Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants. THE PLANT CELL 2010; 22:2930-42. [PMID: 20876830 PMCID: PMC2965551 DOI: 10.1105/tpc.110.078154] [Citation(s) in RCA: 329] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/12/2010] [Accepted: 09/13/2010] [Indexed: 05/17/2023]
Abstract
The endoplasmic reticulum (ER) has a sophisticated quality control (QC) system to eliminate improperly folded proteins from the secretory pathway. Given that protein folding is such a fastidious process and subject to adverse environmental conditions, the ER QC system appears to have been usurped to serve as an environmental sensor and responder in plants. Under stressful conditions, the ER protein folding machinery reaches a limit as the demands for protein folding exceed the capacity of the system. Under these conditions, misfolded or unfolded proteins accumulate in the ER, triggering an unfolded protein response (UPR). UPR mitigates ER stress by upregulating the expression of genes encoding components of the protein folding machinery or the ER-associated degradation system. In Arabidopsis thaliana, ER stress is sensed and stress signals are transduced by membrane-bound transcription factors, which are activated and mobilized under environmental stress conditions. Under acute or chronic stress conditions, UPR can also lead to apoptosis or programmed cell death. Despite recent progress in our understanding of plant protein QC, discovering how different environmental conditions are perceived is one of the major challenges in understanding this system. Since the ER QC system is one among many stress response systems in plants, another major challenge is determining the extent to which the ER QC system contributes to various stress responses in plants.
Collapse
Affiliation(s)
- Jian-Xiang Liu
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China 200433
- Address correspondence to or
| | - Stephen H. Howell
- Plant Sciences Institute and Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
- Address correspondence to or
| |
Collapse
|
37
|
Taylor M, Navarro-Garcia F, Huerta J, Burress H, Massey S, Ireton K, Teter K. Hsp90 is required for transfer of the cholera toxin A1 subunit from the endoplasmic reticulum to the cytosol. J Biol Chem 2010; 285:31261-7. [PMID: 20667832 DOI: 10.1074/jbc.m110.148981] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cholera toxin (CT) is an AB(5) toxin that moves from the cell surface to the endoplasmic reticulum (ER) by retrograde vesicular transport. In the ER, the catalytic A1 subunit dissociates from the rest of the toxin and enters the cytosol by exploiting the quality control system of ER-associated degradation (ERAD). The driving force for CTA1 dislocation into the cytosol is unknown. Here, we demonstrate that the cytosolic chaperone Hsp90 is required for CTA1 passage into the cytosol. Hsp90 bound to CTA1 in an ATP-dependent manner that was blocked by geldanamycin (GA), an established Hsp90 inhibitor. CT activity against cultured cells and ileal loops was also blocked by GA, as was the ER-to-cytosol export of CTA1. Experiments using RNA interference or N-ethylcarboxamidoadenosine, a drug that inhibits ER-localized GRP94 but not cytosolic Hsp90, confirmed that the inhibitory effects of GA resulted specifically from the loss of Hsp90 activity. This work establishes a functional role for Hsp90 in the ERAD-mediated dislocation of CTA1.
Collapse
Affiliation(s)
- Michael Taylor
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32826, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Li S, Spooner RA, Allen SCH, Guise CP, Ladds G, Schnöder T, Schmitt MJ, Lord JM, Roberts LM. Folding-competent and folding-defective forms of ricin A chain have different fates after retrotranslocation from the endoplasmic reticulum. Mol Biol Cell 2010; 21:2543-54. [PMID: 20519439 PMCID: PMC2912342 DOI: 10.1091/mbc.e09-08-0743] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study reveals that components of the yeast ERAD-L pathway can discriminate between two subtly different forms of the same toxin substrate. Although precytosolic requirements are similar for both toxin structures, there is a divergence in fate on the cytosolic face of the ER membrane. We report that a toxic polypeptide retaining the potential to refold upon dislocation from the endoplasmic reticulum (ER) to the cytosol (ricin A chain; RTA) and a misfolded version that cannot (termed RTAΔ), follow ER-associated degradation (ERAD) pathways in Saccharomyces cerevisiae that substantially diverge in the cytosol. Both polypeptides are dislocated in a step mediated by the transmembrane Hrd1p ubiquitin ligase complex and subsequently degraded. Canonical polyubiquitylation is not a prerequisite for this interaction because a catalytically inactive Hrd1p E3 ubiquitin ligase retains the ability to retrotranslocate RTA, and variants lacking one or both endogenous lysyl residues also require the Hrd1p complex. In the case of native RTA, we established that dislocation also depends on other components of the classical ERAD-L pathway as well as an ongoing ER–Golgi transport. However, the dislocation pathways deviate strikingly upon entry into the cytosol. Here, the CDC48 complex is required only for RTAΔ, although the involvement of individual ATPases (Rpt proteins) in the 19S regulatory particle (RP) of the proteasome, and the 20S catalytic chamber itself, is very different for the two RTA variants. We conclude that cytosolic ERAD components, particularly the proteasome RP, can discriminate between structural features of the same substrate.
Collapse
Affiliation(s)
- Shuyu Li
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Marsolais F, Pajak A, Yin F, Taylor M, Gabriel M, Merino DM, Ma V, Kameka A, Vijayan P, Pham H, Huang S, Rivoal J, Bett K, Hernández-Sebastià C, Liu Q, Bertrand A, Chapman R. Proteomic analysis of common bean seed with storage protein deficiency reveals up-regulation of sulfur-rich proteins and starch and raffinose metabolic enzymes, and down-regulation of the secretory pathway. J Proteomics 2010; 73:1587-600. [DOI: 10.1016/j.jprot.2010.03.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 03/18/2010] [Accepted: 03/22/2010] [Indexed: 02/04/2023]
|
40
|
A vacuolar carboxypeptidase mutant of Arabidopsis thaliana is degraded by the ERAD pathway independently of its N-glycan. Biochem Biophys Res Commun 2010; 393:384-9. [PMID: 20138839 DOI: 10.1016/j.bbrc.2010.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 02/01/2010] [Indexed: 11/22/2022]
Abstract
Misfolded proteins produced in the endoplasmic reticulum (ER) are degraded by a mechanism, the ER-associated degradation (ERAD). Here we report establishment of the experimental system to analyze the ERAD in plant cells. Carboxypeptidase Y (CPY) is a vacuolar enzyme and its mutant CPY* is degraded by the ERAD in yeast. Since Arabidopsis thaliana has AtCPY, an ortholog of yeast CPY, we constructed and expressed fusion proteins consisting of AtCPY and GFP and of AtCPY*, which carries a mutation homologous to yeast CPY*, and GFP in A. thaliana cells. While AtCPY-GFP was efficiently transported to the vacuole, AtCPY*-GFP was retained in the ER to be degraded in proteasome- and Cdc48-dependent manners. We also found that AtCPY*-GFP was degraded by the ERAD in yeast cells, but that its single N-glycan did not function as a degradation signal in yeast or plant cells. Therefore, AtCPY*-GFP can be used as a marker protein to analyze the ERAD pathway, likely for nonglycosylated substrates, in plant cells.
Collapse
|
41
|
Benham AM. Protein folding and disulfide bond formation in the eukaryotic cell: meeting report based on the presentations at the European Network Meeting on Protein Folding and Disulfide Bond Formation 2009 (Elsinore, Denmark). FEBS J 2009; 276:6905-11. [PMID: 19860835 DOI: 10.1111/j.1742-4658.2009.07409.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The endoplasmic reticulum (ER) plays a critical role as a compartment for protein folding in eukaryotic cells. Defects in protein folding contribute to a growing list of diseases, and advances in our understanding of the molecular details of protein folding are helping to provide more efficient ways of producing recombinant proteins for industrial and medicinal use. Moreover, research performed in recent years has shown the importance of the ER as a signalling compartment that contributes to overall cellular homeostasis. Hamlet's castle provided a stunning backdrop for the latest European network meeting to discuss this subject matter in Elsinore, Denmark, from 3 to 5 June 2009. Organized by researchers at the Department of Biology, University of Copenhagen, the meeting featured 20 talks by both established names and younger scientists, focusing on topics such as oxidative protein folding and maturation (in particular in the ER, but also in other compartments), cellular redox regulation, ER-associated degradation, and the unfolded protein response. Exciting new advances were presented, and the intimate setting with about 50 participants provided an excellent opportunity to discuss current key questions in the field.
Collapse
Affiliation(s)
- Adam M Benham
- Biological and Biomedical Sciences, Durham University, UK.
| |
Collapse
|
42
|
Chamberlain KL, Marshall RS, Jolliffe NA, Frigerio L, Ceriotti A, Lord JM, Roberts LM. Ricin B chain targeted to the endoplasmic reticulum of tobacco protoplasts is degraded by a CDC48- and vacuole-independent mechanism. J Biol Chem 2008; 283:33276-86. [PMID: 18832379 PMCID: PMC2586253 DOI: 10.1074/jbc.m805222200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 09/19/2008] [Indexed: 12/04/2022] Open
Abstract
The B chain of ricin was expressed and delivered to the endoplasmic reticulum of tobacco protoplasts where it disappeared with time in a manner consistent with degradation. This turnover did not occur in the vacuoles or upon secretion. Indeed, several lines of evidence indicate that, in contrast to the turnover of endoplasmic reticulum-targeted ricin A chain in the cytosol, the bulk of expressed ricin B chain was degraded in the secretory pathway.
Collapse
Affiliation(s)
- Kerry L Chamberlain
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
43
|
Vitale A, Boston RS. Endoplasmic reticulum quality control and the unfolded protein response: insights from plants. Traffic 2008; 9:1581-8. [PMID: 18557840 DOI: 10.1111/j.1600-0854.2008.00780.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein quality control (QC) within the endoplasmic reticulum and the related unfolded protein response (UPR) pathway of signal transduction are major regulators of the secretory pathway, which is involved in virtually any aspect of development and reproduction. The study of plant-specific processes such as pathogen response, seed development and the synthesis of seed storage proteins and of particular toxins is providing novel insights, with potential implications for the general recognition events and mechanisms of action of QC and UPR.
Collapse
Affiliation(s)
- Alessandro Vitale
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milano, Italy.
| | | |
Collapse
|