1
|
Cui L, Li H, Xi Y, Hu Q, Liu H, Fan J, Xiang Y, Zhang X, Shui W, Lai Y. Vesicle trafficking and vesicle fusion: mechanisms, biological functions, and their implications for potential disease therapy. MOLECULAR BIOMEDICINE 2022; 3:29. [PMID: 36129576 PMCID: PMC9492833 DOI: 10.1186/s43556-022-00090-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Intracellular vesicle trafficking is the fundamental process to maintain the homeostasis of membrane-enclosed organelles in eukaryotic cells. These organelles transport cargo from the donor membrane to the target membrane through the cargo containing vesicles. Vesicle trafficking pathway includes vesicle formation from the donor membrane, vesicle transport, and vesicle fusion with the target membrane. Coat protein mediated vesicle formation is a delicate membrane budding process for cargo molecules selection and package into vesicle carriers. Vesicle transport is a dynamic and specific process for the cargo containing vesicles translocation from the donor membrane to the target membrane. This process requires a group of conserved proteins such as Rab GTPases, motor adaptors, and motor proteins to ensure vesicle transport along cytoskeletal track. Soluble N-ethyl-maleimide-sensitive factor (NSF) attachment protein receptors (SNARE)-mediated vesicle fusion is the final process for vesicle unloading the cargo molecules at the target membrane. To ensure vesicle fusion occurring at a defined position and time pattern in eukaryotic cell, multiple fusogenic proteins, such as synaptotagmin (Syt), complexin (Cpx), Munc13, Munc18 and other tethering factors, cooperate together to precisely regulate the process of vesicle fusion. Dysfunctions of the fusogenic proteins in SNARE-mediated vesicle fusion are closely related to many diseases. Recent studies have suggested that stimulated membrane fusion can be manipulated pharmacologically via disruption the interface between the SNARE complex and Ca2+ sensor protein. Here, we summarize recent insights into the molecular mechanisms of vesicle trafficking, and implications for the development of new therapeutics based on the manipulation of vesicle fusion.
Collapse
|
2
|
Liu F, He R, Zhu M, Zhou L, Liu Y, Yu H. Assembly-promoting protein Munc18c stimulates SNARE-dependent membrane fusion through its SNARE-like peptide. J Biol Chem 2022; 298:102470. [PMID: 36087838 PMCID: PMC9547204 DOI: 10.1016/j.jbc.2022.102470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/19/2022] Open
Abstract
Intracellular vesicle fusion requires the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and their cognate Sec1/Munc18 (SM) proteins. How SM proteins act in concert with trans-SNARE complexes to promote membrane fusion remains incompletely understood. Munc18c, a broadly distributed SM protein, selectively regulates multiple exocytotic pathways, including GLUT4 exocytosis. Here, using an in vitro reconstituted system, we discovered a SNARE-like peptide (SLP), conserved in Munc18-1 of synaptic exocytosis, is crucial to the stimulatory activity of Munc18c in vesicle fusion. The direct stimulation of the SNARE-mediated fusion reaction by SLP further supported the essential role of this fragment. Interestingly, we found SLP strongly accelerates the membrane fusion rate when anchored to the target membrane but not the vesicle membrane, suggesting it primarily interacts with t-SNAREs in cis to drive fusion. Furthermore, we determined the SLP fragment is competitive with the full-length Munc18c protein and specific to the cognate v-SNARE isoforms, supporting how it could resemble Munc18c’s activity in membrane fusion. Together, our findings demonstrate that Munc18c facilitates SNARE-dependent membrane fusion through SLP, revealing that the t-SNARE-SLP binding mode might be a conserved mechanism for the stimulatory function of SM proteins in vesicle fusion.
Collapse
Affiliation(s)
- Furong Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ruyue He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Min Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lin Zhou
- School of Chemistry and Bioengineering, Nanjing Normal University Taizhou College, Taizhou, China
| | - Yinghui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| | - Haijia Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
3
|
Hwang J, Thurmond DC. Exocytosis Proteins: Typical and Atypical Mechanisms of Action in Skeletal Muscle. Front Endocrinol (Lausanne) 2022; 13:915509. [PMID: 35774142 PMCID: PMC9238359 DOI: 10.3389/fendo.2022.915509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
Insulin-stimulated glucose uptake in skeletal muscle is of fundamental importance to prevent postprandial hyperglycemia, and long-term deficits in insulin-stimulated glucose uptake underlie insulin resistance and type 2 diabetes. Skeletal muscle is responsible for ~80% of the peripheral glucose uptake from circulation via the insulin-responsive glucose transporter GLUT4. GLUT4 is mainly sequestered in intracellular GLUT4 storage vesicles in the basal state. In response to insulin, the GLUT4 storage vesicles rapidly translocate to the plasma membrane, where they undergo vesicle docking, priming, and fusion via the high-affinity interactions among the soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) exocytosis proteins and their regulators. Numerous studies have elucidated that GLUT4 translocation is defective in insulin resistance and type 2 diabetes. Emerging evidence also links defects in several SNAREs and SNARE regulatory proteins to insulin resistance and type 2 diabetes in rodents and humans. Therefore, we highlight the latest research on the role of SNAREs and their regulatory proteins in insulin-stimulated GLUT4 translocation in skeletal muscle. Subsequently, we discuss the novel emerging role of SNARE proteins as interaction partners in pathways not typically thought to involve SNAREs and how these atypical functions reveal novel therapeutic targets for combating peripheral insulin resistance and diabetes.
Collapse
Affiliation(s)
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute at City of Hope, Duarte, CA, United States
| |
Collapse
|
4
|
Chatterjee Bhowmick D, Aslamy A, Bhattacharya S, Oh E, Ahn M, Thurmond DC. DOC2b Enhances β-Cell Function via a Novel Tyrosine Phosphorylation-Dependent Mechanism. Diabetes 2022; 71:1246-1260. [PMID: 35377441 PMCID: PMC9163558 DOI: 10.2337/db21-0681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/13/2022] [Indexed: 11/13/2022]
Abstract
Double C2 domain Β (DOC2b) protein is required for glucose-stimulated insulin secretion (GSIS) in β-cells, the underlying mechanism of which remains unresolved. Our biochemical analysis using primary human islets and human and rodent clonal β-cells revealed that DOC2b is tyrosine phosphorylated within 2 min of glucose stimulation, and Src family kinase member YES is required for this process. Biochemical and functional analysis using DOC2bY301 mutants revealed the requirement of Y301 phosphorylation for the interaction of DOC2b with YES kinase and increased content of VAMP2, a protein on insulin secretory granules, at the plasma membrane (PM), concomitant with DOC2b-mediated enhancement of GSIS in β-cells. Coimmunoprecipitation studies demonstrated an increased association of DOC2b with ERM family proteins in β-cells following glucose stimulation or pervanadate treatment. Y301 phosphorylation-competent DOC2b was required to increase ERM protein activation, and ERM protein knockdown impaired DOC2b-mediated boosting of GSIS, suggesting that tyrosine-phosphorylated DOC2b regulates GSIS via ERM-mediated granule localization to the PM. Taken together, these results demonstrate the glucose-induced posttranslational modification of DOC2b in β-cells, pinpointing the kinase, site of action, and downstream signaling events and revealing a regulatory role of YES kinase at various steps in GSIS. This work will enhance the development of novel therapeutic strategies to restore glucose homeostasis in diabetes.
Collapse
Affiliation(s)
- Diti Chatterjee Bhowmick
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolic Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Arianne Aslamy
- Department of Medicine, Cedars-Sinai Medical Center, West Hollywood, CA
| | | | - Eunjin Oh
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolic Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Miwon Ahn
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolic Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolic Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| |
Collapse
|
5
|
Fazakerley DJ, Koumanov F, Holman GD. GLUT4 On the move. Biochem J 2022; 479:445-462. [PMID: 35147164 PMCID: PMC8883492 DOI: 10.1042/bcj20210073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/16/2022]
Abstract
Insulin rapidly stimulates GLUT4 translocation and glucose transport in fat and muscle cells. Signals from the occupied insulin receptor are translated into downstream signalling changes in serine/threonine kinases within timescales of seconds, and this is followed by delivery and accumulation of the glucose transporter GLUT4 at the plasma membrane. Kinetic studies have led to realisation that there are distinct phases of this stimulation by insulin. There is a rapid initial burst of GLUT4 delivered to the cell surface from a subcellular reservoir compartment and this is followed by a steady-state level of continuing stimulation in which GLUT4 recycles through a large itinerary of subcellular locations. Here, we provide an overview of the phases of insulin stimulation of GLUT4 translocation and the molecules that are currently considered to activate these trafficking steps. Furthermore, we suggest how use of new experimental approaches together with phospho-proteomic data may help to further identify mechanisms for activation of these trafficking processes.
Collapse
Affiliation(s)
- Daniel J Fazakerley
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, U.K
| | - Francoise Koumanov
- Department for Health, Centre for Nutrition, Exercise, and Metabolism, University of Bath, Bath, Somerset BA2 7AY, U.K
| | - Geoffrey D Holman
- Department of Biology and Biochemistry, University of Bath, Bath, Somerset BA2 7AY, U.K
| |
Collapse
|
6
|
Veluthakal R, Oh E, Ahn M, Chatterjee Bhowmick D, Thurmond DC. Syntaxin 4 Mediates NF-κB Signaling and Chemokine Ligand Expression via Specific Interaction With IκBβ. Diabetes 2021; 70:889-902. [PMID: 33526588 PMCID: PMC7980198 DOI: 10.2337/db20-0868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/17/2021] [Indexed: 12/13/2022]
Abstract
Enrichment of human islets with syntaxin 4 (STX4) improves functional β-cell mass through a nuclear factor-κB (NF-κB)-dependent mechanism. However, the detailed mechanisms underlying the protective effect of STX4 are unknown. For determination of the signaling events linking STX4 enrichment and downregulation of NF-κB activity, STX4 was overexpressed in human islets, EndoC-βH1 and INS-1 832/13 cells in culture, and the cells were challenged with the proinflammatory cytokines interleukin-1β, tumor necrosis factor-α, and interferon-γ individually and in combination. STX4 expression suppressed cytokine-induced proteasomal degradation of IκBβ but not IκBα. Inhibition of IKKβ prevented IκBβ degradation, suggesting that IKKβ phosphorylates IκBβ. Moreover, the IKKβ inhibitor, as well as a proteosomal degradation inhibitor, prevented the loss of STX4 caused by cytokines. This suggests that STX4 may be phosphorylated by IKKβ in response to cytokines, targeting STX4 for proteosomal degradation. Expression of a stabilized form of STX4 further protected IκBβ from proteasomal degradation, and like wild-type STX4, stabilized STX4 coimmunoprecipitated with IκBβ and the p50-NF-κB. This work proposes a novel pathway wherein STX4 regulates cytokine-induced NF-κB signaling in β-cells via associating with and preventing IκBβ degradation, suppressing chemokine expression, and protecting islet β-cells from cytokine-mediated dysfunction and demise.
Collapse
Affiliation(s)
- Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| | - Eunjin Oh
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| | - Miwon Ahn
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| | - Diti Chatterjee Bhowmick
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| | - Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| |
Collapse
|
7
|
Chatterjee Bhowmick D, Ahn M, Oh E, Veluthakal R, Thurmond DC. Conventional and Unconventional Mechanisms by which Exocytosis Proteins Oversee β-cell Function and Protection. Int J Mol Sci 2021; 22:1833. [PMID: 33673206 PMCID: PMC7918544 DOI: 10.3390/ijms22041833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes (T2D) is one of the prominent causes of morbidity and mortality in the United States and beyond, reaching global pandemic proportions. One hallmark of T2D is dysfunctional glucose-stimulated insulin secretion from the pancreatic β-cell. Insulin is secreted via the recruitment of insulin secretory granules to the plasma membrane, where the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and SNARE regulators work together to dock the secretory granules and release insulin into the circulation. SNARE proteins and their regulators include the Syntaxins, SNAPs, Sec1/Munc18, VAMPs, and double C2-domain proteins. Recent studies using genomics, proteomics, and biochemical approaches have linked deficiencies of exocytosis proteins with the onset and progression of T2D. Promising results are also emerging wherein restoration or enhancement of certain exocytosis proteins to β-cells improves whole-body glucose homeostasis, enhances β-cell function, and surprisingly, protection of β-cell mass. Intriguingly, overexpression and knockout studies have revealed novel functions of certain exocytosis proteins, like Syntaxin 4, suggesting that exocytosis proteins can impact a variety of pathways, including inflammatory signaling and aging. In this review, we present the conventional and unconventional functions of β-cell exocytosis proteins in normal physiology and T2D and describe how these insights might improve clinical care for T2D.
Collapse
Affiliation(s)
| | | | | | | | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (D.C.B.); (M.A.); (E.O.); (R.V.)
| |
Collapse
|
8
|
Abstract
The skeletal muscle is the largest organ in the body, by mass. It is also the regulator of glucose homeostasis, responsible for 80% of postprandial glucose uptake from the circulation. Skeletal muscle is essential for metabolism, both for its role in glucose uptake and its importance in exercise and metabolic disease. In this article, we give an overview of the importance of skeletal muscle in metabolism, describing its role in glucose uptake and the diseases that are associated with skeletal muscle metabolic dysregulation. We focus on the role of skeletal muscle in peripheral insulin resistance and the potential for skeletal muscle-targeted therapeutics to combat insulin resistance and diabetes, as well as other metabolic diseases like aging and obesity. In particular, we outline the possibilities and pitfalls of the quest for exercise mimetics, which are intended to target the molecular mechanisms underlying the beneficial effects of exercise on metabolic disease. We also provide a description of the molecular mechanisms that regulate skeletal muscle glucose uptake, including a focus on the SNARE proteins, which are essential regulators of glucose transport into the skeletal muscle. © 2020 American Physiological Society. Compr Physiol 10:785-809, 2020.
Collapse
Affiliation(s)
- Karla E. Merz
- Department of Molecular and Cellular Endocrinology, City of Hope Beckman Research Institute, Duarte, California, USA
- The Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California, USA
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, City of Hope Beckman Research Institute, Duarte, California, USA
| |
Collapse
|
9
|
Zhang J, Oh E, Merz KE, Aslamy A, Veluthakal R, Salunkhe VA, Ahn M, Tunduguru R, Thurmond DC. DOC2B promotes insulin sensitivity in mice via a novel KLC1-dependent mechanism in skeletal muscle. Diabetologia 2019; 62:845-859. [PMID: 30707251 PMCID: PMC6451670 DOI: 10.1007/s00125-019-4824-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Skeletal muscle accounts for >80% of insulin-stimulated glucose uptake; dysfunction of this process underlies insulin resistance and type 2 diabetes. Insulin sensitivity is impaired in mice deficient in the double C2 domain β (DOC2B) protein, while whole-body overexpression of DOC2B enhances insulin sensitivity. Whether insulin sensitivity in the skeletal muscle is affected directly by DOC2B or is secondary to an effect on other tissues is unknown; the underlying molecular mechanisms also remain unclear. METHODS Human skeletal muscle samples from non-diabetic or type 2 diabetic donors were evaluated for loss of DOC2B during diabetes development. For in vivo analysis, new doxycycline-inducible skeletal-muscle-specific Doc2b-overexpressing mice fed standard or high-fat diets were evaluated for insulin and glucose tolerance, and insulin-stimulated GLUT4 accumulation at the plasma membrane (PM). For in vitro analyses, a DOC2B-overexpressing L6-GLUT4-myc myoblast/myotube culture system was coupled with an insulin resistance paradigm. Biochemical and molecular biology methods such as site-directed mutagenesis, co-immunoprecipitation and mass spectrometry were used to identify the molecular mechanisms linking insulin stimulation to DOC2B. RESULTS We identified loss of DOC2B (55% reduction in RNA and 40% reduction in protein) in the skeletal muscle of human donors with type 2 diabetes. Furthermore, inducible enrichment of DOC2B in skeletal muscle of transgenic mice enhanced whole-body glucose tolerance (AUC decreased by 25% for female mice) and peripheral insulin sensitivity (area over the curve increased by 20% and 26% for female and male mice, respectively) in vivo, underpinned by enhanced insulin-stimulated GLUT4 accumulation at the PM. Moreover, DOC2B enrichment in skeletal muscle protected mice from high-fat-diet-induced peripheral insulin resistance, despite the persistence of obesity. In L6-GLUT4-myc myoblasts, DOC2B enrichment was sufficient to preserve normal insulin-stimulated GLUT4 accumulation at the PM in cells exposed to diabetogenic stimuli. We further identified that DOC2B is phosphorylated on insulin stimulation, enhancing its interaction with a microtubule motor protein, kinesin light chain 1 (KLC1). Mutation of Y301 in DOC2B blocked the insulin-stimulated phosphorylation of DOC2B and interaction with KLC1, and it blunted the ability of DOC2B to enhance insulin-stimulated GLUT4 accumulation at the PM. CONCLUSIONS/INTERPRETATION These results suggest that DOC2B collaborates with KLC1 to regulate insulin-stimulated GLUT4 accumulation at the PM and regulates insulin sensitivity. Our observation provides a basis for pursuing DOC2B as a novel drug target in the muscle to prevent/treat type 2 diabetes.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
- Anwita Biosciences Inc, San Carlos, CA, USA
| | - Eunjin Oh
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Karla E Merz
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Arianne Aslamy
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Vishal A Salunkhe
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Miwon Ahn
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Ragadeepthi Tunduguru
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
10
|
Marré ML, Piganelli JD, James EA. Protecting functional β cells with a therapeutic peptide. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:372. [PMID: 30370299 DOI: 10.21037/atm.2018.07.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Meghan L Marré
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jon D Piganelli
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eddie A James
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| |
Collapse
|
11
|
Aslamy A, Oh E, Olson EM, Zhang J, Ahn M, Moin ASM, Tunduguru R, Salunkhe VA, Veluthakal R, Thurmond DC. Doc2b Protects β-Cells Against Inflammatory Damage and Enhances Function. Diabetes 2018; 67:1332-1344. [PMID: 29661782 PMCID: PMC6014558 DOI: 10.2337/db17-1352] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/09/2018] [Indexed: 12/12/2022]
Abstract
Loss of functional β-cell mass is an early feature of type 1 diabetes. To release insulin, β-cells require soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes, as well as SNARE complex regulatory proteins like double C2 domain-containing protein β (Doc2b). We hypothesized that Doc2b deficiency or overabundance may confer susceptibility or protection, respectively, to the functional β-cell mass. Indeed, Doc2b+/- knockout mice show an unusually severe response to multiple-low-dose streptozotocin (MLD-STZ), resulting in more apoptotic β-cells and a smaller β-cell mass. In addition, inducible β-cell-specific Doc2b-overexpressing transgenic (βDoc2b-dTg) mice show improved glucose tolerance and resist MLD-STZ-induced disruption of glucose tolerance, fasting hyperglycemia, β-cell apoptosis, and loss of β-cell mass. Mechanistically, Doc2b enrichment enhances glucose-stimulated insulin secretion (GSIS) and SNARE activation and prevents the appearance of apoptotic markers in response to cytokine stress and thapsigargin. Furthermore, expression of a peptide containing the Doc2b tandem C2A and C2B domains is sufficient to confer the beneficial effects of Doc2b enrichment on GSIS, SNARE activation, and apoptosis. These studies demonstrate that Doc2b enrichment in the β-cell protects against diabetogenic and proapoptotic stress. Furthermore, they identify a Doc2b peptide that confers the beneficial effects of Doc2b and may be a therapeutic candidate for protecting functional β-cell mass.
Collapse
Affiliation(s)
- Arianne Aslamy
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolic Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Eunjin Oh
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolic Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Erika M Olson
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolic Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Jing Zhang
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolic Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Miwon Ahn
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolic Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Abu Saleh Md Moin
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolic Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Ragadeepthi Tunduguru
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolic Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Vishal A Salunkhe
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolic Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolic Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolic Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
12
|
Houy S, Groffen AJ, Ziomkiewicz I, Verhage M, Pinheiro PS, Sørensen JB. Doc2B acts as a calcium sensor for vesicle priming requiring synaptotagmin-1, Munc13-2 and SNAREs. eLife 2017; 6:27000. [PMID: 29274147 PMCID: PMC5758110 DOI: 10.7554/elife.27000] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 12/21/2017] [Indexed: 01/08/2023] Open
Abstract
Doc2B is a cytosolic protein with binding sites for Munc13 and Tctex-1 (dynein light chain), and two C2-domains that bind to phospholipids, Ca2+ and SNAREs. Whether Doc2B functions as a calcium sensor akin to synaptotagmins, or in other calcium-independent or calcium-dependent capacities is debated. We here show by mutation and overexpression that Doc2B plays distinct roles in two sequential priming steps in mouse adrenal chromaffin cells. Mutating Ca2+-coordinating aspartates in the C2A-domain localizes Doc2B permanently at the plasma membrane, and renders an upstream priming step Ca2+-independent, whereas a separate function in downstream priming depends on SNARE-binding, Ca2+-binding to the C2B-domain of Doc2B, interaction with ubMunc13-2 and the presence of synaptotagmin-1. Another function of Doc2B – inhibition of release during sustained calcium elevations – depends on an overlapping protein domain (the MID-domain), but is separate from its Ca2+-dependent priming function. We conclude that Doc2B acts as a vesicle priming protein.
Collapse
Affiliation(s)
- Sébastien Houy
- Neuronal Secretion Group, Department of Neuroscience, University of Copenhagen, København, Denmark
| | - Alexander J Groffen
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU Medical Center, Amsterdam, Netherlands
| | - Iwona Ziomkiewicz
- Neuronal Secretion Group, Department of Neuroscience, University of Copenhagen, København, Denmark.,Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca R&D, Cambridge, United Kingdom
| | - Matthijs Verhage
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU Medical Center, Amsterdam, Netherlands.,Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research, VrijeUniversiteit, Amsterdam, Netherlands
| | - Paulo S Pinheiro
- Neuronal Secretion Group, Department of Neuroscience, University of Copenhagen, København, Denmark
| | - Jakob Balslev Sørensen
- Neuronal Secretion Group, Department of Neuroscience, University of Copenhagen, København, Denmark
| |
Collapse
|
13
|
Morey C, Kienle CN, Klöpper TH, Burkhardt P, Fasshauer D. Evidence for a conserved inhibitory binding mode between the membrane fusion assembly factors Munc18 and syntaxin in animals. J Biol Chem 2017; 292:20449-20460. [PMID: 29046354 DOI: 10.1074/jbc.m117.811182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/10/2017] [Indexed: 12/30/2022] Open
Abstract
The membrane fusion necessary for vesicle trafficking is driven by the assembly of heterologous SNARE proteins orchestrated by the binding of Sec1/Munc18 (SM) proteins to specific syntaxin SNARE proteins. However, the precise mode of interaction between SM proteins and SNAREs is debated, as contrasting binding modes have been found for different members of the SM protein family, including the three vertebrate Munc18 isoforms. While different binding modes could be necessary, given their roles in different secretory processes in different tissues, the structural similarity of the three isoforms makes this divergence perplexing. Although the neuronal isoform Munc18a is well-established to bind tightly to both the closed conformation and the N-peptide of syntaxin 1a, thereby inhibiting SNARE complex formation, Munc18b and -c, which have a more widespread distribution, are reported to mainly interact with the N-peptide of their partnering syntaxins and are thought to instead promote SNARE complex formation. We have reinvestigated the interaction between Munc18c and syntaxin 4 (Syx4). Using isothermal titration calorimetry, we found that Munc18c, like Munc18a, binds to both the closed conformation and the N-peptide of Syx4. Furthermore, using a novel kinetic approach, we found that Munc18c, like Munc18a, slows down SNARE complex formation through high-affinity binding to syntaxin. This strongly suggests that secretory Munc18s in general control the accessibility of the bound syntaxin, probably preparing it for SNARE complex assembly.
Collapse
Affiliation(s)
- Czuee Morey
- From the Département des neurosciences fondamentales, Université de Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | - C Nickias Kienle
- From the Département des neurosciences fondamentales, Université de Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | - Tobias H Klöpper
- Whitehat Life Sciences Ltd., 20 Wenlock Road, N1 7GU London, United Kingdom, and
| | - Pawel Burkhardt
- the Marine Biological Association, Citadel Hill Marine Laboratory, Plymouth PL1 2PB, United Kingdom
| | - Dirk Fasshauer
- From the Département des neurosciences fondamentales, Université de Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland,
| |
Collapse
|
14
|
Lutz SZ, Ullrich A, Häring HU, Ullrich S, Gerst F. Sunitinib specifically augments glucose-induced insulin secretion. Cell Signal 2017; 36:91-97. [PMID: 28449948 DOI: 10.1016/j.cellsig.2017.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/07/2017] [Accepted: 04/23/2017] [Indexed: 01/01/2023]
Abstract
The tyrosine kinase inhibitor sunitinib is used for the treatment of numerous cancers in humans. In diabetic patients, sunitinib lowers blood glucose levels and improves glycaemic control. This study aims to analyse whether sunitinib has specific and direct effects on insulin secreting β-cells. Regulation of insulin secretion, of cellular cAMP levels and activation of signalling pathways were examined upon exposure of rat insulinoma INS-1E cells to sunitinib under specific stimulatory and inhibitory conditions. Secreted insulin and cellular cAMP levels were measured using RIA and ELISA, respectively. Protein phosphorylations were examined on western blots. Sunitinib enhanced glucose-induced insulin secretion (GIIS) concentration-dependently, reaching a maximal stimulation at 2μM. Sunitinib further augmented insulin secretion in the presence of elevated cAMP levels and the FFAR1 agonists. Adrenaline and the PKA inhibitor H89 counteracted the stimulatory effect of sunitinib on secretion. However, sunitinib altered neither the cellular levels of cAMP nor the phosphorylation of PKA. Sunitinib did not reduce IGF-1-induced phosphorylation of AKT/PKB and ERK1/2. In conclusion, these results suggest that sunitinib stimulates GIIS by a direct effect on β-cells, which may contribute to the glucose-lowering action of the tyrosine kinase inhibitor in humans.
Collapse
Affiliation(s)
- Stefan Z Lutz
- German Center for Diabetes Research (DZD e.V.), Germany; Institute for Diabetes Research and Metabolic Diseases IDM of the Helmholtz Center Munich at the Eberhard-Karls-University of Tübingen, Germany; University Hospital Tübingen, Internal Medicine IV, Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
| | - Axel Ullrich
- Department of Molecular Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Hans-Ulrich Häring
- German Center for Diabetes Research (DZD e.V.), Germany; Institute for Diabetes Research and Metabolic Diseases IDM of the Helmholtz Center Munich at the Eberhard-Karls-University of Tübingen, Germany; University Hospital Tübingen, Internal Medicine IV, Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
| | - Susanne Ullrich
- German Center for Diabetes Research (DZD e.V.), Germany; Institute for Diabetes Research and Metabolic Diseases IDM of the Helmholtz Center Munich at the Eberhard-Karls-University of Tübingen, Germany; University Hospital Tübingen, Internal Medicine IV, Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
| | - Felicia Gerst
- German Center for Diabetes Research (DZD e.V.), Germany; Institute for Diabetes Research and Metabolic Diseases IDM of the Helmholtz Center Munich at the Eberhard-Karls-University of Tübingen, Germany; University Hospital Tübingen, Internal Medicine IV, Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Otfried-Müller-Str. 10, 72076 Tübingen, Germany.
| |
Collapse
|
15
|
Aslamy A, Thurmond DC. Exocytosis proteins as novel targets for diabetes prevention and/or remediation? Am J Physiol Regul Integr Comp Physiol 2017; 312:R739-R752. [PMID: 28356294 DOI: 10.1152/ajpregu.00002.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 12/17/2022]
Abstract
Diabetes remains one of the leading causes of morbidity and mortality worldwide, affecting an estimated 422 million adults. In the US, it is predicted that one in every three children born as of 2000 will suffer from diabetes in their lifetime. Type 2 diabetes results from combinatorial defects in pancreatic β-cell glucose-stimulated insulin secretion and in peripheral glucose uptake. Both processes, insulin secretion and glucose uptake, are mediated by exocytosis proteins, SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes, Sec1/Munc18 (SM), and double C2-domain protein B (DOC2B). Increasing evidence links deficiencies in these exocytosis proteins to diabetes in rodents and humans. Given this, emerging studies aimed at restoring and/or enhancing cellular levels of certain exocytosis proteins point to promising outcomes in maintaining functional β-cell mass and enhancing insulin sensitivity. In doing so, new evidence also shows that enhancing exocytosis protein levels may promote health span and longevity and may also harbor anti-cancer and anti-Alzheimer's disease capabilities. Herein, we present a comprehensive review of the described capabilities of certain exocytosis proteins and how these might be targeted for improving metabolic dysregulation.
Collapse
Affiliation(s)
- Arianne Aslamy
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Debbie C Thurmond
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; and .,Department of Molecular and Cellular Endocrinology, Beckman Research Institute of City of Hope, Duarte, California
| |
Collapse
|
16
|
Tunduguru R, Thurmond DC. Promoting Glucose Transporter-4 Vesicle Trafficking along Cytoskeletal Tracks: PAK-Ing Them Out. Front Endocrinol (Lausanne) 2017; 8:329. [PMID: 29209279 PMCID: PMC5701999 DOI: 10.3389/fendo.2017.00329] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/06/2017] [Indexed: 12/27/2022] Open
Abstract
Glucose is the principal cellular energy source in humans and maintenance of glucose homeostasis is critical for survival. Glucose uptake into peripheral skeletal muscle and adipose tissues requires the trafficking of vesicles containing glucose transporter-4 (GLUT4) from the intracellular storage compartments to the cell surface. Trafficking of GLUT4 storage vesicles is initiated via the canonical insulin signaling cascade in skeletal muscle and fat cells, as well as via exercise-induced contraction in muscle cells. Recent studies have elucidated steps in the signaling cascades that involve remodeling of the cytoskeleton, a process that underpins the mechanical movement of GLUT4 vesicles. This review is focused upon an alternate phosphoinositide-3 kinase-dependent pathway involving Ras-related C3 botulinum toxin substrate 1 signaling through the p21-activated kinase p21-activated kinase 1 and showcases related signaling events that co-regulate both the depolymerization and re-polymerization of filamentous actin. These new insights provide an enriched understanding into the process of glucose transport and yield potential new targets for interventions aimed to improve insulin sensitivity and remediate insulin resistance, pre-diabetes, and the progression to type 2 diabetes.
Collapse
Affiliation(s)
- Ragadeepthi Tunduguru
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute of City of Hope, Duarte, CA, United States
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute of City of Hope, Duarte, CA, United States
- *Correspondence: Debbie C. Thurmond,
| |
Collapse
|
17
|
Doc2b serves as a scaffolding platform for concurrent binding of multiple Munc18 isoforms in pancreatic islet β-cells. Biochem J 2015; 464:251-8. [PMID: 25190515 DOI: 10.1042/bj20140845] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Biphasic glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells involves soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor (SNARE) protein-regulated exocytosis. SNARE complex assembly further requires the regulatory proteins Munc18c, Munc18-1 and Doc2b. Munc18-1 and Munc18c are required for first- and second-phase GSIS respectively. These distinct Munc18-1 and Munc18c roles are related to their transient high-affinity binding with their cognate target (t-)SNAREs, Syntaxin 1A and Syntaxin 4 respectively. Doc2b is essential for both phases of GSIS, yet the molecular basis for this remains unresolved. Because Doc2b binds to Munc18-1 and Munc18c via its distinct C2A and C2B domains respectively, we hypothesized that Doc2b may provide a plasma membrane-localized scaffold/platform for transient docking of these Munc18 isoforms during GSIS. Towards this, macromolecular complexes composed of Munc18c, Doc2b and Munc18-1 were detected in β-cells. In vitro interaction assays indicated that Doc2b is required to bridge the interaction between Munc18c and Munc18-1 in the macromolecular complex; Munc18c and Munc18-1 failed to associate in the absence of Doc2b. Competition-based GST-Doc2b interaction assays revealed that Doc2b could simultaneously bind both Munc18-1 and Munc18c. Hence these data support a working model wherein Doc2b functions as a docking platform/scaffold for transient interactions with the multiple Munc18 isoforms operative in insulin release, promoting SNARE assembly.
Collapse
|
18
|
Ramalingam L, Yoder SM, Oh E, Thurmond DC. Munc18c: a controversial regulator of peripheral insulin action. Trends Endocrinol Metab 2014; 25:601-8. [PMID: 25028245 PMCID: PMC4253632 DOI: 10.1016/j.tem.2014.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/12/2014] [Accepted: 06/20/2014] [Indexed: 12/19/2022]
Abstract
Insulin resistance, a hallmark of impaired glucose tolerance and type 2 diabetes (T2D), arises from dysfunction of insulin action and subsequent glucose uptake by peripheral tissues, predominantly skeletal muscle and fat. Exocytosis of glucose transporter (GLUT4)-containing vesicles facilitated by soluble NSF (N-ethylmaleimide-sensitive factor) attachment receptor (SNARE) protein isoforms, and Munc18c (mammalian homolog of Unc-18c) mediates this glucose uptake. Emerging evidences, including recent human clinical studies, point to pivotal roles for Munc18c in peripheral insulin action in adipose and skeletal muscle. Intriguing new advances are also initiating debates regarding the molecular mechanism(s) controlling Munc18c action. The objective of this review is therefore to present a balanced perspective of new continuities and controversies surrounding the regulation and requirement for Munc18c in the regulation of peripheral insulin action.
Collapse
Affiliation(s)
- Latha Ramalingam
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Stephanie M Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Eunjin Oh
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Debbie C Thurmond
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
19
|
Kioumourtzoglou D, Sadler JBA, Black HL, Berends R, Wellburn C, Bryant NJ, Gould GW. Studies of the regulated assembly of SNARE complexes in adipocytes. Biochem Soc Trans 2014; 42:1396-400. [PMID: 25233421 DOI: 10.1042/bst20140114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2024]
Abstract
Insulin plays a fundamental role in whole-body glucose homeostasis. Central to this is the hormone's ability to rapidly stimulate the rate of glucose transport into adipocytes and muscle cells [1]. Upon binding its receptor, insulin stimulates an intracellular signalling cascade that culminates in redistribution of glucose transporter proteins, specifically the GLUT4 isoform, from intracellular stores to the plasma membrane, a process termed 'translocation' [1,2]. This is an example of regulated membrane trafficking [3], a process that also underpins other aspects of physiology in a number of specialized cell types, for example neurotransmission in brain/neurons and release of hormone-containing vesicles from specialized secretory cells such as those found in pancreatic islets. These processes invoke a number of intriguing biological questions as follows. How is the machinery involved in these membrane trafficking events mobilized in response to a stimulus? How do the signalling pathways that detect the external stimulus interface with the trafficking machinery? Recent studies of insulin-stimulated GLUT4 translocation offer insight into such questions. In the present paper, we have reviewed these studies and draw parallels with other regulated trafficking systems.
Collapse
Affiliation(s)
- Dimitrios Kioumourtzoglou
- *Henry Wellcome Laboratory of Cell Biology, Institute for Molecular, Cell and Systems Biology, Davidson Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Jessica B A Sadler
- *Henry Wellcome Laboratory of Cell Biology, Institute for Molecular, Cell and Systems Biology, Davidson Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Hannah L Black
- †Department of Biology, University of York, Heslington, York YO10 5DD, U.K
| | - Rebecca Berends
- *Henry Wellcome Laboratory of Cell Biology, Institute for Molecular, Cell and Systems Biology, Davidson Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Cassie Wellburn
- *Henry Wellcome Laboratory of Cell Biology, Institute for Molecular, Cell and Systems Biology, Davidson Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Nia J Bryant
- †Department of Biology, University of York, Heslington, York YO10 5DD, U.K
| | - Gwyn W Gould
- *Henry Wellcome Laboratory of Cell Biology, Institute for Molecular, Cell and Systems Biology, Davidson Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
20
|
Ramalingam L, Oh E, Thurmond DC. Doc2b enrichment enhances glucose homeostasis in mice via potentiation of insulin secretion and peripheral insulin sensitivity. Diabetologia 2014; 57:1476-84. [PMID: 24705606 PMCID: PMC4055500 DOI: 10.1007/s00125-014-3227-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 03/11/2014] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS Insulin secretion from pancreatic beta cells and insulin-stimulated glucose uptake into skeletal muscle are processes regulated by similar isoforms of the soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) and mammalian homologue of unc-18 (Munc18) protein families. Double C2 domain β (Doc2b), a SNARE- and Munc18-interacting protein, is implicated as a crucial effector of glycaemic control. However, whether Doc2b is naturally limiting for these processes, and whether Doc2b enrichment might exert a beneficial effect upon glycaemia in vivo, remains undetermined. METHODS Tetracycline-repressible transgenic (Tg) mice engineered to overexpress Doc2b simultaneously in the pancreas, skeletal muscle and adipose tissues were compared with wild-type (Wt) littermate mice regarding glucose and insulin tolerance, islet function in vivo and ex vivo, and skeletal muscle GLUT4 accumulation in transverse tubule/sarcolemmal surface membranes. SNARE complex formation was further assessed using Doc2b overexpressing L6-GLUT4-myc myoblasts to derive mechanisms relatable to physiological in vivo analyses. RESULTS Doc2b Tg mice cleared glucose substantially faster than Wt mice, correlated with enhancements in both phases of insulin secretion and peripheral insulin sensitivity. Heightened peripheral insulin sensitivity correlated with elevated insulin-stimulated GLUT4 vesicle accumulation in cell surface membranes of Doc2b Tg mouse skeletal muscle. Mechanistic studies demonstrated Doc2b enrichment to enhance syntaxin-4-SNARE complex formation in skeletal muscle cells. CONCLUSIONS/INTERPRETATION Doc2b is a limiting factor in SNARE exocytosis events pertinent to glycaemic regulation in vivo. Doc2b enrichment may provide a novel means to simultaneously boost islet and skeletal muscle function in vivo in the treatment and/or prevention of diabetes.
Collapse
Affiliation(s)
- Latha Ramalingam
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | |
Collapse
|
21
|
Abstract
Insulin regulates glucose uptake by controlling the subcellular location of GLUT4 glucose transporters. GLUT4 is sequestered within fat and muscle cells during low-insulin states, and is translocated to the cell surface upon insulin stimulation. The TUG protein is a functional tether that sequesters GLUT4 at the Golgi matrix. To stimulate glucose uptake, insulin triggers TUG endoproteolytic cleavage. Cleavage accounts for a large proportion of the acute effect of insulin to mobilize GLUT4 to the cell surface. During ongoing insulin exposure, endocytosed GLUT4 recycles to the plasma membrane directly from endosomes, and bypasses a TUG-regulated trafficking step. Insulin acts through the TC10α GTPase and its effector protein, PIST, to stimulate TUG cleavage. This action is coordinated with insulin signals through AS160/Tbc1D4 and Tbc1D1 to modulate Rab GTPases, and with other signals to direct overall GLUT4 targeting. Data support the idea that the N-terminal TUG cleavage product, TUGUL, functions as a novel ubiquitin-like protein modifier to facilitate GLUT4 movement to the cell surface. The C-terminal TUG cleavage product is extracted from the Golgi matrix, which vacates an "anchoring" site to permit subsequent cycles of GLUT4 retention and release. Together, GLUT4 vesicle translocation and TUG cleavage may coordinate glucose uptake with physiologic effects of other proteins present in the GLUT4-containing vesicles, and with potential additional effects of the TUG C-terminal product. Understanding this TUG pathway for GLUT4 retention and release will shed light on the regulation of glucose uptake and the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Jonathan P Belman
- Section of Endocrinology and Metabolism, Department of Internal Medicine, and Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, Box 208020, New Haven, CT, 06520-8020, USA
| | | | | |
Collapse
|
22
|
Abstract
GLUT4 is regulated by its intracellular localization. In the absence of insulin, GLUT4 is efficiently retained intracellularly within storage compartments in muscle and fat cells. Upon insulin stimulation (and contraction in muscle), GLUT4 translocates from these compartments to the cell surface where it transports glucose from the extracellular milieu into the cell. Its implication in insulin-regulated glucose uptake makes GLUT4 not only a key player in normal glucose homeostasis but also an important element in insulin resistance and type 2 diabetes. Nevertheless, how GLUT4 is retained intracellularly and how insulin acts on this retention mechanism is largely unclear. In this review, the current knowledge regarding the various molecular processes that govern GLUT4 physiology is discussed as well as the questions that remain.
Collapse
|
23
|
Lim SH, Moon J, Lee M, Lee JR. PTPRT regulates the interaction of Syntaxin-binding protein 1 with Syntaxin 1 through dephosphorylation of specific tyrosine residue. Biochem Biophys Res Commun 2013; 439:40-6. [PMID: 23962429 DOI: 10.1016/j.bbrc.2013.08.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 08/09/2013] [Indexed: 01/25/2023]
Abstract
PTPRT (protein tyrosine phosphatase receptor T), a brain-specific tyrosine phosphatase, has been found to regulate synaptic formation and development of hippocampal neurons, but its regulation mechanism is not yet fully understood. Here, Syntaxin-binding protein 1, a key component of synaptic vesicle fusion machinery, was identified as a possible interaction partner and an endogenous substrate of PTPRT. PTPRT interacted with Syntaxin-binding protein 1 in rat synaptosome, and co-localized with Syntaxin-binding protein 1 in cultured hippocampal neurons. PTPRT dephosphorylated tyrosine 145 located around the linker between domain 1 and 2 of Syntaxin-binding protein 1. Syntaxin-binding protein 1 directly binds to Syntaxin 1, a t-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein, and plays a role as catalysts of SNARE complex formation. Syntaxin-binding protein 1 mutant mimicking non-phosphorylation (Y145F) enhanced the interaction with Syntaxin 1 compared to wild type, and therefore, dephosphorylation of Syntaxin-binding protein 1 appeared to be important for SNARE-complex formation. In conclusion, PTPRT could regulate the interaction of Syntaxin-binding protein 1 with Syntaxin 1, and as a result, the synaptic vesicle fusion appeared to be controlled through dephosphorylation of Syntaxin-binding protein 1.
Collapse
Affiliation(s)
- So-Hee Lim
- Biomedical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | | | | | | |
Collapse
|
24
|
Wolden-Kirk H, Overbergh L, Gysemans C, Brusgaard K, Naamane N, Van Lommel L, Schuit F, Eizirik DL, Christesen H, Mathieu C. Unraveling the effects of 1,25OH2D3 on global gene expression in pancreatic islets. J Steroid Biochem Mol Biol 2013; 136:68-79. [PMID: 23137852 DOI: 10.1016/j.jsbmb.2012.10.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/19/2012] [Accepted: 10/20/2012] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Vitamin D deficiency has been linked to type 1 and 2 diabetes, whereas supplementation may prevent both diseases. However, the extent of the effects of vitamin D or its metabolites directly on pancreatic islets is still largely unknown. The aim of the present study was to investigate how active vitamin D, 1,25(OH)2D3, affects beta cells directly by establishing its effects on global gene expression in healthy murine islets. MATERIALS AND METHODS Pancreatic islets were isolated from 2 to 3 week old C57BL/6 mice and cultured in vitro with 1,25(OH)2D3 or vehicle for 6 and 24h. Total RNA was extracted from the islets and the effects on global gene expression were analyzed using Affymetrix microarrays. RESULTS AND DISCUSSION Exposure to 1,25(OH)2D3 compared to vehicle resulted in 306 and 151 differentially expressed genes after 6 and 24h, respectively (n=4, >1.3-fold, p<0.02). Of these 220 were up-regulated, whereas 86 displayed a decreased expression after 6h. Furthermore, expression levels were increased for 124 and decreased for 27 genes following 24h of exposure. Formation of intercellular junctions, cytoskeletal organization, and intracellular trafficking as well as lipid metabolism and ion transport were among the most affected gene classes. Effects on several genes already identified as being part of vitamin D signaling in other cell types were observed along with genes known to affect insulin release, although with our assay we were not able to detect any effects of 1,25(OH)2D3 on glucose-stimulated insulin release from healthy pancreatic islets. CONCLUSION The effects of 1,25(OH)2D3 on the expression of cytoskeletal and intracellular trafficking genes along with genes involved in ion transport may influence insulin exocytosis. However, an effect of 1,25(OH)2D3 on insulin release could not be detected for healthy islets in contrast to islets subjected to pathological conditions such as cytokine exposure and vitamin D deficiency as suggested by other studies. Thus, in addition to previously identified tolerogenic effects on the immune system, 1,25(OH)2D3 may affect basic functions of pancreatic beta cells, with the potential to render them more resistant to the detrimental conditions encountered during type 1 and 2 diabetes. This article is part of a Special Issue entitled 'Vitamin D Workshop'.
Collapse
Affiliation(s)
- H Wolden-Kirk
- Clinical and Experimental Endocrinology, University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, Box 902, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yu H, Rathore SS, Davis EM, Ouyang Y, Shen J. Doc2b promotes GLUT4 exocytosis by activating the SNARE-mediated fusion reaction in a calcium- and membrane bending-dependent manner. Mol Biol Cell 2013; 24:1176-84. [PMID: 23427263 PMCID: PMC3623638 DOI: 10.1091/mbc.e12-11-0810] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reconstitution of GLUT4 vesicle fusion in a defined fusion system shows that the C2-domain factor Doc2b activates the SNARE-dependent fusion reaction by a calcium- and membrane bending–dependent mechanism. Of importance, certain features of Doc2b function appear to be distinct from how synaptotagmin-1 promotes synaptic release. The glucose transporter GLUT4 plays a central role in maintaining body glucose homeostasis. On insulin stimulation, GLUT4-containing vesicles fuse with the plasma membrane, relocating GLUT4 from intracellular reservoirs to the cell surface to uptake excess blood glucose. The GLUT4 vesicle fusion reaction requires soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNAREs) as the core fusion engine and a group of regulatory proteins. In particular, the soluble C2-domain factor Doc2b plays a key role in GLUT4 vesicle fusion, but its molecular mechanism has been unclear. Here we reconstituted the SNARE-dependent GLUT4 vesicle fusion in a defined proteoliposome fusion system. We observed that Doc2b binds to GLUT4 exocytic SNAREs and potently accelerates the fusion kinetics in the presence of Ca2+. The stimulatory activity of Doc2b requires intact Ca2+-binding sites on both the C2A and C2B domains. Using electron microscopy, we observed that Doc2b strongly bends the membrane bilayer, and this membrane-bending activity is essential to the stimulatory function of Doc2b in fusion. These results demonstrate that Doc2b promotes GLUT4 exocytosis by accelerating the SNARE-dependent fusion reaction by a Ca2+- and membrane bending–dependent mechanism. Of importance, certain features of Doc2b function appear to be distinct from how synaptotagmin-1 promotes synaptic neurotransmitter release, suggesting that exocytic Ca2+ sensors may possess divergent mechanisms in regulating vesicle fusion.
Collapse
Affiliation(s)
- Haijia Yu
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | | | | | | | |
Collapse
|
26
|
Ramalingam L, Oh E, Yoder SM, Brozinick JT, Kalwat MA, Groffen AJ, Verhage M, Thurmond DC. Doc2b is a key effector of insulin secretion and skeletal muscle insulin sensitivity. Diabetes 2012; 61:2424-32. [PMID: 22698913 PMCID: PMC3447898 DOI: 10.2337/db11-1525] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 04/02/2012] [Indexed: 11/13/2022]
Abstract
Exocytosis of intracellular vesicles, such as insulin granules, is carried out by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) and Sec1/Munc18 (SM) proteins. An additional regulatory protein, Doc2b (double C2 domain), has recently been implicated in exocytosis from clonal β-cells and 3T3-L1 adipocytes. Here, we investigated the role of Doc2b in insulin secretion, insulin sensitivity, and the maintenance of whole-body glucose homeostasis. Doc2b heterozygous (Doc2b(+/-)) and homozygous (Doc2b(-/-)) knockout mice exhibited significant whole-body glucose intolerance and peripheral insulin resistance, compared with wild-type littermates. Correspondingly, Doc2b(+/-) and Doc2b(-/-) mice exhibited decreased responsiveness of pancreatic islets to glucose in vivo, with significant attenuation of both phases of insulin secretion ex vivo. Peripheral insulin resistance correlated with ablated insulin-stimulated glucose uptake and GLUT4 vesicle translocation in skeletal muscle from Doc2b-deficient mice, which was coupled to impairments in Munc18c-syntaxin 4 dissociation and in SNARE complex assembly. Hence, Doc2b is a key positive regulator of Munc18c-syntaxin 4-mediated insulin secretion as well as of insulin responsiveness in skeletal muscle, and thus a key effector for glucose homeostasis in vivo. Doc2b's actions in glucose homeostasis may be related to its ability to bind Munc18c and/or directly promote fusion of insulin granules and GLUT4 vesicles in a stimulus-dependent manner.
Collapse
Affiliation(s)
- Latha Ramalingam
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Eunjin Oh
- Department of Pediatrics, Herman B Wells Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Stephanie M. Yoder
- Department of Pediatrics, Herman B Wells Center, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Michael A. Kalwat
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Alexander J. Groffen
- Department of Functional Genomics and Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University and VU Medical Center, Amsterdam, the Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics and Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University and VU Medical Center, Amsterdam, the Netherlands
| | - Debbie C. Thurmond
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Pediatrics, Herman B Wells Center, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
27
|
Park M, Touihri S, Müller I, Mayer U, Jürgens G. Sec1/Munc18 protein stabilizes fusion-competent syntaxin for membrane fusion in Arabidopsis cytokinesis. Dev Cell 2012; 22:989-1000. [PMID: 22595672 DOI: 10.1016/j.devcel.2012.03.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 02/01/2012] [Accepted: 03/02/2012] [Indexed: 10/28/2022]
Abstract
Intracellular membrane fusion requires complexes of syntaxins with other SNARE proteins and regulatory Sec1/Munc18 (SM) proteins. In membrane fusion mediating, e.g., neurotransmitter release or glucose-stimulated insulin secretion in mammals, SM proteins preferentially interact with the inactive closed, rather than the active open, conformation of syntaxin or with the assembled SNARE complex. Other membrane fusion processes such as vacuolar fusion in yeast involve like membranes carrying cis-SNARE complexes, and the role of SM protein is unknown. We investigated syntaxin-SM protein interaction in membrane fusion of Arabidopsis cytokinesis, which involves cytokinesis-specific syntaxin KNOLLE and SM protein KEULE. KEULE interacted with an open conformation of KNOLLE that complemented both knolle and keule mutants. This interaction occurred at the cell division plane and required the KNOLLE linker sequence between helix Hc and SNARE domain. Our results suggest that in cytokinesis, SM protein stabilizes the fusion-competent open form of syntaxin, thereby promoting trans-SNARE complex formation.
Collapse
Affiliation(s)
- Misoon Park
- Zentrum für Molekularbiologie der Pflanzen, Entwicklungsgenetik, University of Tübingen, Auf der Morgenstelle 3, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
28
|
Oh E, Kalwat MA, Kim MJ, Verhage M, Thurmond DC. Munc18-1 regulates first-phase insulin release by promoting granule docking to multiple syntaxin isoforms. J Biol Chem 2012; 287:25821-33. [PMID: 22685295 DOI: 10.1074/jbc.m112.361501] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Attenuated levels of the Sec1/Munc18 (SM) protein Munc18-1 in human islet β-cells is coincident with type 2 diabetes, although how Munc18-1 facilitates insulin secretion remains enigmatic. Herein, using conventional Munc18-1(+/-) and β-cell specific Munc18-1(-/-) knock-out mice, we establish that Munc18-1 is required for the first phase of insulin secretion. Conversely, human islets expressing elevated levels of Munc18-1 elicited significant potentiation of only first-phase insulin release. Insulin secretory changes positively correlated with insulin granule number at the plasma membrane: Munc18-1-deficient cells lacked 35% of the normal component of pre-docked insulin secretory granules, whereas cells with elevated levels of Munc18-1 exhibited a ∼20% increase in pre-docked granule number. Pre-docked syntaxin 1-based SNARE complexes bound by Munc18-1 were detected in β-cell lysates but, surprisingly, were reduced by elevation of Munc18-1 levels. Paradoxically, elevated Munc18-1 levels coincided with increased binding of syntaxin 4 to VAMP2 at the plasma membrane. Accordingly, syntaxin 4 was a requisite for Munc18-1 potentiation of insulin release. Munc18c, the cognate SM isoform for syntaxin 4, failed to bind SNARE complexes. Given that Munc18-1 does not pair with syntaxin 4, these data suggest a novel indirect role for Munc18-1 in facilitating syntaxin 4-mediated granule pre-docking to support first-phase insulin exocytosis.
Collapse
Affiliation(s)
- Eunjin Oh
- Department of Pediatrics, Herman B. Wells Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
Despite daily fasting and feeding, plasma glucose levels are normally maintained within a narrow range owing to the hormones insulin and glucagon. Insulin increases glucose uptake into fat and muscle cells through the regulated trafficking of vesicles that contain glucose transporter type 4 (GLUT4). New insights into insulin signalling reveal that phosphorylation events initiated by the insulin receptor regulate key GLUT4 trafficking proteins, including small GTPases, tethering complexes and the vesicle fusion machinery. These proteins, in turn, control GLUT4 movement through the endosomal system, formation and retention of specialized GLUT4 storage vesicles and targeted exocytosis of these vesicles. Understanding these processes may help to explain the development of insulin resistance in type 2 diabetes and provide new potential therapeutic targets.
Collapse
|
30
|
Kalwat MA, Wiseman DA, Luo W, Wang Z, Thurmond DC. Gelsolin associates with the N terminus of syntaxin 4 to regulate insulin granule exocytosis. Mol Endocrinol 2011; 26:128-41. [PMID: 22108804 DOI: 10.1210/me.2011-1112] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The plasma membrane soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) protein syntaxin (Syn)4 is required for biphasic insulin secretion, although how it regulates each phase remains unclear. In a screen to identify new Syn4-interacting factors, the calcium-activated F-actin-severing protein gelsolin was revealed. Gelsolin has been previously implicated as a positive effector of insulin secretion, although a molecular mechanism to underlie this function is lacking. Toward this, our in vitro binding studies showed the Syn4-gelsolin interaction to be direct and mediated by the N-terminal Ha domain (amino acid residues 39-70) of Syn4. Syn4-gelsolin complexes formed under basal conditions and dissociated upon acute glucose or KCl stimulation; nifedipine blocked dissociation. The dissociating action of secretagogues could be mimicked by expression of the N-terminal Ha domain of Syn4 fused to green fluorescent protein (GFP) (GFP-39-70). Furthermore, GFP-39-70 expression in isolated mouse islet and clonal MIN6 β-cells initiated insulin release in the absence of appropriate stimuli. Consistent with this, the inhibitory GFP-39-70 peptide also initiated Syn4 activation in the absence of stimuli. Moreover, although MIN6 β-cells expressing the GFP-39-70 peptide maintained normal calcium influx in response to KCl, KCl-stimulated insulin secretion and the triggering pathway of insulin secretion were significantly impaired. Taken together, these data support a mechanistic model for gelsolin's role in insulin exocytosis: gelsolin clamps unsolicited soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE)-regulated exocytosis through direct association with Syn4 in the absence of appropriate stimuli, which is relieved upon stimulus-induced calcium influx to activate gelsolin and induce its dissociation from Syn4 to facilitate insulin exocytosis.
Collapse
Affiliation(s)
- Michael A Kalwat
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
31
|
Bhatnagar S, Oler AT, Rabaglia ME, Stapleton DS, Schueler KL, Truchan NA, Worzella SL, Stoehr JP, Clee SM, Yandell BS, Keller MP, Thurmond DC, Attie AD. Positional cloning of a type 2 diabetes quantitative trait locus; tomosyn-2, a negative regulator of insulin secretion. PLoS Genet 2011; 7:e1002323. [PMID: 21998599 PMCID: PMC3188574 DOI: 10.1371/journal.pgen.1002323] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 08/11/2011] [Indexed: 01/19/2023] Open
Abstract
We previously mapped a type 2 diabetes (T2D) locus on chromosome 16 (Chr 16) in an F2 intercross from the BTBR T (+) tf (BTBR) Lepob/ob and C57BL/6 (B6) Lepob/ob mouse strains. Introgression of BTBR Chr 16 into B6 mice resulted in a consomic mouse with reduced fasting plasma insulin and elevated glucose levels. We derived a panel of sub-congenic mice and narrowed the diabetes susceptibility locus to a 1.6 Mb region. Introgression of this 1.6 Mb fragment of the BTBR Chr 16 into lean B6 mice (B6.16BT36–38) replicated the phenotypes of the consomic mice. Pancreatic islets from the B6.16BT36–38 mice were defective in the second phase of the insulin secretion, suggesting that the 1.6 Mb region encodes a regulator of insulin secretion. Within this region, syntaxin-binding protein 5-like (Stxbp5l) or tomosyn-2 was the only gene with an expression difference and a non-synonymous coding single nucleotide polymorphism (SNP) between the B6 and BTBR alleles. Overexpression of the b-tomosyn-2 isoform in the pancreatic β-cell line, INS1 (832/13), resulted in an inhibition of insulin secretion in response to 3 mM 8-bromo cAMP at 7 mM glucose. In vitro binding experiments showed that tomosyn-2 binds recombinant syntaxin-1A and syntaxin-4, key proteins that are involved in insulin secretion via formation of the SNARE complex. The B6 form of tomosyn-2 is more susceptible to proteasomal degradation than the BTBR form, establishing a functional role for the coding SNP in tomosyn-2. We conclude that tomosyn-2 is the major gene responsible for the T2D Chr 16 quantitative trait locus (QTL) we mapped in our mouse cross. Our findings suggest that tomosyn-2 is a key negative regulator of insulin secretion. Humans carry many genetic variants that confer small effects on metabolic traits relevant to type 2 diabetes. These effects are amplified by environmental stressors like obesity. We used morbid obesity as a sensitizer to identify genes that contribute to the diabetes susceptibility of the BTBR mouse strain. Using mapping and breeding strategies, we were able to narrow a genetic region to one containing just 13 genes. One of these genes, tomosyn-2, emerged as a prime candidate. Our functional studies showed that tomosyn-2 is an inhibitor of insulin secretion, and it binds to the proteins involved in the fusion of insulin containing granules with the plasma membrane. We found a coding mutation and demonstrated that this mutation affects the stability of the protein product. Our work with Tomosyn-2 provides new insights into the regulation of insulin secretion and emphasizes that negative regulation is critical for avoiding insulin-induced hypoglycemia.
Collapse
Affiliation(s)
- Sushant Bhatnagar
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Angie T. Oler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mary E. Rabaglia
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Donald S. Stapleton
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kathryn L. Schueler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nathan A. Truchan
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sara L. Worzella
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jonathan P. Stoehr
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Susanne M. Clee
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Brian S. Yandell
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Debbie C. Thurmond
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
32
|
Abstract
Delivery of the glucose transporter type 4 (GLUT4) from an intracellular location to the cell surface in response to insulin represents a specialized form of membrane traffic, known to be impaired in the disease states of insulin resistance and type 2 diabetes. Like all membrane trafficking events, this translocation of GLUT4 requires members of the SNARE family of proteins. Here, we discuss two SNARE complexes that have been implicated in insulin-regulated GLUT4 traffic: one regulating the final delivery of GLUT4 to the cell surface in response to insulin and the other controlling GLUT4's intracellular trafficking.
Collapse
Affiliation(s)
- Nia J Bryant
- Henry Wellcome Laboratory of Cell Biology, Institute of Molecular, Cell and Systems Biology, Davidson Building, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | |
Collapse
|
33
|
Jewell JL, Oh E, Ramalingam L, Kalwat MA, Tagliabracci VS, Tackett L, Elmendorf JS, Thurmond DC. Munc18c phosphorylation by the insulin receptor links cell signaling directly to SNARE exocytosis. ACTA ACUST UNITED AC 2011; 193:185-99. [PMID: 21444687 PMCID: PMC3082181 DOI: 10.1083/jcb.201007176] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
SNARE complex assembly and mobilization of GLUT4 vesicles is coordinated through direct targeting of Munc18c by the insulin receptor tyrosine kinase. How the Sec1/Munc18–syntaxin complex might transition to form the SNARE core complex remains unclear. Toward this, Munc18c tyrosine phosphorylation has been correlated with its dissociation from syntaxin 4. Using 3T3-L1 adipocytes subjected to small interfering ribonucleic acid reduction of Munc18c as a model of impaired insulin-stimulated GLUT4 vesicle exocytosis, we found that coordinate expression of Munc18c–wild type or select phosphomimetic Munc18c mutants, but not phosphodefective mutants, restored GLUT4 vesicle exocytosis, suggesting a requirement for Munc18c tyrosine phosphorylation at Tyr219 and Tyr521. Surprisingly, the insulin receptor (IR) tyrosine kinase was found to target Munc18c at Tyr521 in vitro, rapidly binding and phosphorylating endogenous Munc18c within adipocytes and skeletal muscle. IR, but not phosphatidylinositol 3-kinase, activation was required. Altogether, we identify IR as the first known tyrosine kinase for Munc18c as part of a new insulin-signaling step in GLUT4 vesicle exocytosis, exemplifying a new model for the coordination of SNARE assembly and vesicle mobilization events in response to a single extracellular stimulus.
Collapse
Affiliation(s)
- Jenna L Jewell
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
One of the most important metabolic actions of insulin is catalysing glucose uptake into skeletal muscle and adipose tissue. This is accomplished via activation of the phosphatidylinositol-3-kinase/Akt signalling pathway and subsequent translocation of GLUT4 from intracellular storage vesicles to the plasma membrane. As such, this represents an ideal system for studying the convergence of signal transduction and protein trafficking. The GLUT4 translocation process is complex, but can be dissected into at least four discrete trafficking steps. This raises the question as to which of these is the major regulated step in insulin-stimulated GLUT4 translocation. Numerous molecules have been reported to regulate GLUT4 trafficking. However, with the exception of TBC1D4, the molecular details of these distal signalling arms of the insulin signalling network and how they modify distinct steps of GLUT4 trafficking have not been established. We discuss the need to adopt a more global approach to expand and deepen our understanding of the molecular processes underpinning this system. Strategies that facilitate the generation of detailed models of the entire insulin signalling network will enable us to identify the critical nodes that control GLUT4 traffic and decipher emergent properties of the system that are not currently apparent.
Collapse
Affiliation(s)
- Alexander F Rowland
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
| | | | | |
Collapse
|
35
|
Wiseman DA, Kalwat MA, Thurmond DC. Stimulus-induced S-nitrosylation of Syntaxin 4 impacts insulin granule exocytosis. J Biol Chem 2011; 286:16344-54. [PMID: 21393240 DOI: 10.1074/jbc.m110.214031] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Glucose-stimulated insulin release from pancreatic islet β-cells involves increased levels of reactive oxygen and nitrogen species. Although this is normal, under pathophysiological conditions such as chronic hyperglycemia and inflammation, insulin exocytosis fails, and yet the mechanistic reason for failure is unclear. Hypothesizing that exocytotic proteins might be targets of S-nitrosylation, with their dysfunction under conditions of nitrosative stress serving as a mechanistic basis for insulin secretory dysfunction, we identified the t-SNARE protein Syntaxin 4 as a target of modification by S-nitrosylation. The cellular content of S-nitrosylated Syntaxin 4 peaked acutely, within 5 min of glucose stimulation in both human islets and MIN6 β-cells, corresponding to the time at which Syntaxin 4 activation was detectable. S-Nitrosylation was mapped to Syntaxin 4 residue Cys(141), located within the Hc domain predicted to increase accessibility for v-SNARE interaction. A C141S-Syntaxin 4 mutant resisted S-nitrosylation induced in vitro by the nitric oxide donor compound S-nitroso-L-glutathione, failed to exhibit glucose-induced activation and VAMP2 binding, and failed to potentiate insulin release akin to that of wild-type Syntaxin 4. Strikingly, S-nitrosylation of Syntaxin 4 could be induced by acute treatment with inflammatory cytokines (TNFα, IL-1β, and IFNγ), coordinate with inappropriate Syntaxin 4 activation and insulin release in the absence of the glucose stimulus, consistent with nitrosative stress and dysfunctional exocytosis, preceding the cell dysfunction and death associated with more chronic stimulation (24 h). Taken together, these data indicate a significant role for reactive nitrogen species in the insulin exocytosis mechanism in β-cells and expose a potential pathophysiological exploitation of this mechanism to underlie dysfunctional exocytosis.
Collapse
Affiliation(s)
- Dean A Wiseman
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
36
|
Khanna M, Chelladurai B, Gavini A, Li L, Shao M, Courtney D, Turchi JJ, Matei D, Meroueh S. Targeting ovarian tumor cell adhesion mediated by tissue transglutaminase. Mol Cancer Ther 2011; 10:626-36. [PMID: 21330459 DOI: 10.1158/1535-7163.mct-10-0912] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tissue transglutaminase (TG2) is a transpeptidase involved in protein cross-linking through generation of ε-(γ-glutamyl)lysine isopeptide bonds. It also promotes cell adhesion through interaction with fibronectin and facilitates formation of fibronectin-integrin complexes. This interaction is involved in tumor cell adhesion to the matrix and in the process of tumor dissemination. Its inhibition by small molecules may therefore be useful in blocking metastasis. To that end, we screened more than 800,000 compounds following an in silico docking approach targeting two distinct cavities in the vicinity of the fibronectin-binding site on TG2. A total of 120 compounds were acquired and tested in cell culture-based assays for inhibition of ovarian tumor cell adhesion and proliferation. Seven compounds showed more than 50% inhibition of cell adhesion at a concentration of 25 μmol/L. A follow-up fluorescence polarization study revealed that one compound in particular (ITP-79) inhibited binding of a TG2 peptide to a 42-kDa fragment of fibronectin in a dose-dependent manner. This inhibition was confirmed in cancer cells by coimmunoprecipitation. A competition assay with surface plasmon resonance showed that ITP-79 modulated binding of TG2 to fibronectin. Direct binding of compounds that inhibited adhesion to TG2 were examined with differential scanning fluorimetry, which measures the effect of the compound on the melting temperature of the target. Two compounds, including ITP-79, reduced TG2 stabilization, mimicking the effects of GTP, a known negative allosteric regulator of TG2 enzymatic function. This suggests a potential allosteric mechanism for the compound in light of its distal target site.
Collapse
Affiliation(s)
- May Khanna
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 535 Barnhill Drive, RT473, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
38
|
Friedrich R, Yeheskel A, Ashery U. DOC2B, C2 domains, and calcium: A tale of intricate interactions. Mol Neurobiol 2010; 41:42-51. [PMID: 20052564 DOI: 10.1007/s12035-009-8094-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Accepted: 12/09/2009] [Indexed: 11/28/2022]
Abstract
Ca(+2)-dependent exocytosis involves vesicle docking, priming, fusion, and recycling. This process is performed and regulated by a vast number of synaptic proteins and depends on proper protein-protein and protein-lipid interactions. Double C2 domain (DOC2) is a protein family of three isoforms found while screening DNA libraries with a C2 probe. DOC2 has three domains: the Munc13-interacting domain and tandem C2s (designated C2A and C2B) connected by a short polar linker. The C2 domain binds phospholipids in a Ca(2+)-dependent manner. This review focuses on the ubiquitously expressed isoform DOC2B. Sequence alignment of the tandem C2 protein family in mouse revealed high homology (81%) between rabphilin-3A and DOC2B proteins. We created a structural model of DOC2B's C2A based on the crystal structure of rabphilin-3A with and without calcium and found that the calcium-binding loops of DOC2B move upon calcium binding, enabling efficient plasma membrane penetration of its C2A. Here, we discuss the potential relation between the DOC2B bioinformatical model and its function and suggest a possible working model for its interaction with other proteins of the exocytotic machinery, including Munc13, Munc18, and syntaxin.
Collapse
Affiliation(s)
- Reut Friedrich
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | | | | |
Collapse
|
39
|
Jewell JL, Oh E, Thurmond DC. Exocytosis mechanisms underlying insulin release and glucose uptake: conserved roles for Munc18c and syntaxin 4. Am J Physiol Regul Integr Comp Physiol 2010; 298:R517-31. [PMID: 20053958 DOI: 10.1152/ajpregu.00597.2009] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Type 2 diabetes has been coined "a two-hit disease," as it involves specific defects of glucose-stimulated insulin secretion from the pancreatic beta cells in addition to defects in peripheral tissue insulin action required for glucose uptake. Both of these processes, insulin secretion and glucose uptake, are mediated by SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein core complexes composed of syntaxin, SNAP-23/25, and VAMP proteins. The SNARE core complex is regulated by the Sec1/Munc18 (SM) family of proteins, which selectively bind to their cognate syntaxin isoforms with high affinity. The process of insulin secretion uses multiple Munc18-syntaxin isoform pairs, whereas insulin action in the peripheral tissues appears to use only the Munc18c-syntaxin 4 pair. Importantly, recent reports have linked obesity and Type 2 diabetes in humans with changes in protein levels and single nucleotide polymorphisms (SNPs) of Munc18 and syntaxin isoforms relevant to these exocytotic processes, although the molecular mechanisms underlying the observed phenotypes remain incomplete (5, 104, 144). Given the conservation of these proteins in two seemingly disparate processes and the need to design and implement novel and more effective clinical interventions, it will be vitally important to delineate the mechanisms governing these conserved SNARE-mediated exocytosis events. Thus, we provide here an up-to-date historical review of advancements in defining the roles and molecular mechanisms of Munc18-syntaxin complexes in the pathophysiology of Type 2 diabetes.
Collapse
Affiliation(s)
- Jenna L Jewell
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | |
Collapse
|
40
|
Wang Z, Thurmond DC. Mechanisms of biphasic insulin-granule exocytosis - roles of the cytoskeleton, small GTPases and SNARE proteins. J Cell Sci 2009; 122:893-903. [PMID: 19295123 DOI: 10.1242/jcs.034355] [Citation(s) in RCA: 278] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The release of insulin from pancreatic islets requires negative regulation to ensure low levels of insulin release under resting conditions, as well as positive regulation to facilitate robust responsiveness to conditions of elevated fuel or glucose. The first phase of release involves the plasma-membrane fusion of a small pool of granules, termed the readily releasable pool; these granules are already at the membrane under basal conditions, and discharge their cargo in response to nutrient and also non-nutrient secretagogues. By contrast, second-phase secretion is evoked exclusively by nutrients, and involves the mobilization of intracellular granules to t-SNARE sites at the plasma membrane to enable the distal docking and fusion steps of insulin exocytosis. Nearly 40 years ago, the actin cytoskeleton was first recognized as a key mediator of biphasic insulin release, and was originally presumed to act as a barrier to block granule docking at the cell periphery. More recently, however, the discovery of cycling GTPases that are involved in F-actin reorganization in the islet beta-cell, combined with the availability of reagents that are more specific and tools with which to study the mechanisms that underlie granule movement, have contributed greatly to our understanding of the role of the cytoskeleton in regulating biphasic insulin secretion. Herein, we provide historical perspective and review recent progress that has been made towards integrating cytoskeletal reorganization and cycling of small Rho-, Rab- and Ras-family GTPases into our current models of stimulus-secretion coupling and second-phase insulin release.
Collapse
Affiliation(s)
- Zhanxiang Wang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|
41
|
Abstract
OBJECTIVE The Sec1/Munc18 protein Munc18c has been implicated in Syntaxin 4-mediated exocytosis events, although its purpose in exocytosis has remained elusive. Given that Syntaxin 4 functions in the second phase of glucose-stimulated insulin secretion (GSIS), we hypothesized that Munc18c would also be required and sought insight into the possible mechanism(s) using the islet beta-cell as a model system. RESEARCH DESIGN AND METHODS Perifusion analyses of isolated Munc18c- (-/+) or Munc18c-depleted (RNAi) mouse islets were used to assess biphasic secretion. Protein interaction studies used subcellular fractions and detergent lysates prepared from MIN6 beta-cells to determine the mechanistic role of Munc18c in Syntaxin 4 activation and docking/fusion of vesicle-associated membrane protein (VAMP)2-containing insulin granules. Electron microscopy was used to gauge changes in granule localization. RESULTS Munc18c (-/+) islets secreted approximately 60% less insulin selectively during second-phase GSIS; RNAi-mediated Munc18c depletion functionally recapitulated this in wild-type and Munc18c (-/+) islets in a gene dosage-dependent manner. Munc18c depletion ablated the glucose-stimulated VAMP2-Syntaxin 4 association as well as Syntaxin 4 activation, correlating with the deficit in insulin release. Remarkably, Munc18c depletion resulted in aberrant granule localization to the plasma membrane in response to glucose stimulation, consistent with its selective effect on the second phase of secretion. CONCLUSIONS Collectively, these studies demonstrate an essential positive role for Munc18c in second-phase GSIS and suggest novel roles for Munc18c in granule localization to the plasma membrane as well as in triggering Syntaxin 4 accessibility to VAMP2 at a step preceding vesicle docking/fusion.
Collapse
Affiliation(s)
- Eunjin Oh
- From the Department of Biochemistry and Molecular Biology, Center for Diabetes Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Debbie C. Thurmond
- From the Department of Biochemistry and Molecular Biology, Center for Diabetes Research, Indiana University School of Medicine, Indianapolis, Indiana
- Corresponding author: Debbie C. Thurmond,
| |
Collapse
|
42
|
Brandie FM, Aran V, Verma A, McNew JA, Bryant NJ, Gould GW. Negative regulation of syntaxin4/SNAP-23/VAMP2-mediated membrane fusion by Munc18c in vitro. PLoS One 2008; 3:e4074. [PMID: 19116655 PMCID: PMC2605266 DOI: 10.1371/journal.pone.0004074] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 12/01/2008] [Indexed: 02/04/2023] Open
Abstract
Background Translocation of the facilitative glucose transporter GLUT4 from an intracellular store to the plasma membrane is responsible for the increased rate of glucose transport into fat and muscle cells in response to insulin. This represents a specialised form of regulated membrane trafficking. Intracellular membrane traffic is subject to multiple levels of regulation by conserved families of proteins in all eukaryotic cells. Notably, all intracellular fusion events require SNARE proteins and Sec1p/Munc18 family members. Fusion of GLUT4-containing vesicles with the plasma membrane of insulin-sensitive cells involves the SM protein Munc18c, and is regulated by the formation of syntaxin 4/SNAP23/VAMP2 SNARE complexes. Methodology/Principal Findings Here we have used biochemical approaches to characterise the interaction(s) of Munc18c with its cognate SNARE proteins and to examine the role of Munc18c in regulating liposome fusion catalysed by syntaxin 4/SNAP23/VAMP2 SNARE complex formation. We demonstrate that Munc18c makes contacts with both t- and v-SNARE proteins of this complex, and directly inhibits bilayer fusion mediated by the syntaxin 4/SNAP23/VAMP2 SNARE complex. Conclusion/Significance Our reductionist approach has enabled us to ascertain a direct inhibitory role for Munc18c in regulating membrane fusion mediated by syntaxin 4/SNAP23/VAMP2 SNARE complex formation. It is important to note that two different SM proteins have recently been shown to stimulate liposome fusion mediated by their cognate SNARE complexes. Given the structural similarities between SM proteins, it seems unlikely that different members of this family perform opposing regulatory functions. Hence, our findings indicate that Munc18c requires a further level of regulation in order to stimulate SNARE-mediated membrane fusion.
Collapse
Affiliation(s)
- Fiona M Brandie
- Henry Wellcome Laboratory of Cell Biology, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | |
Collapse
|