1
|
Lavilla CJ, Billacura MP, Khatun S, Cotton DP, Lee VK, Bhattacharya S, Caton PW, Sale C, Wallis JD, Garner AC, Turner MD. Carnosinase inhibition enhances reactive species scavenging in high fat diet. Life Sci 2025; 364:123448. [PMID: 39923839 DOI: 10.1016/j.lfs.2025.123448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
AIMS Life expectancy is typically reduced by 2-4 years in people with a body mass index (BMI) of 30-35 kg/m2 and by 8-10 years in people with a BMI of 40-50 kg/m2. Obesity is also associated with onset, or exacerbation of, multiple chronic diseases. Mechanistically, this, in part, involves formation of advanced glycation and lipidation end-products that directly bond with proteins, lipids, or DNA, thereby perturbing typical cellular function. Here we seek to prevent these damaging adduction events through inhibition of carnosinase enzymes that rapidly degrade the physiological reactive species scavenger, carnosine, in the body. MAIN METHODS Herein we performed in silico computational modelling of a compound library of ∼53,000 molecules to identify carnosine-like molecules with intrinsic resistance to carnosinase turnover. KEY FINDINGS We show that leading candidate molecules reduced reactive species in C2C12 myotubes, and that mice fed N-methyl-[6-(2-furyl)pyrid-3-yl]methylamine alongside a high fat diet had significantly decreased amounts of damaging plasma 4-hydroxynonenal and 3-nitrotyrosine reactive species. Oral administration of N-methyl-[6-(2-furyl)pyrid-3-yl]methylamine to high fat-fed mice also resulted in a modest ∼10 % reduction in weight gain when compared to mice fed only high fat diet. SIGNIFICANCE Our findings suggest that inhibition of carnosinase enzymes can increase the life-span, and thereby enhance the efficacy, of endogenous carnosine in vivo, thereby offering potential therapeutic benefits against obesity and other cardiometabolic diseases characterised by metabolic stress.
Collapse
Affiliation(s)
- Charlie Jr Lavilla
- Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, UK
| | - Merell P Billacura
- Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, UK
| | - Suniya Khatun
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, UK
| | - Daniel P Cotton
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, UK
| | - Vivian K Lee
- Diabetes & Obesity Theme, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London SE1 1UL, UK
| | - Sreya Bhattacharya
- Diabetes & Obesity Theme, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London SE1 1UL, UK
| | - Paul W Caton
- Diabetes & Obesity Theme, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London SE1 1UL, UK
| | - Craig Sale
- Deparment of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester M1 7EL, UK
| | - John D Wallis
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, UK
| | - A Christopher Garner
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, UK
| | - Mark D Turner
- Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, UK.
| |
Collapse
|
2
|
Moya-Garzon MD, Wang M, Li VL, Lyu X, Wei W, Tung ASH, Raun SH, Zhao M, Coassolo L, Islam H, Oliveira B, Dai Y, Spaas J, Delgado-Gonzalez A, Donoso K, Alvarez-Buylla A, Franco-Montalban F, Letian A, Ward CP, Liu L, Svensson KJ, Goldberg EL, Gardner CD, Little JP, Banik SM, Xu Y, Long JZ. A β-hydroxybutyrate shunt pathway generates anti-obesity ketone metabolites. Cell 2025; 188:175-186.e20. [PMID: 39536746 PMCID: PMC11724754 DOI: 10.1016/j.cell.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 06/12/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
β-Hydroxybutyrate (BHB) is an abundant ketone body. To date, all known pathways of BHB metabolism involve the interconversion of BHB and primary energy intermediates. Here, we identify a previously undescribed BHB secondary metabolic pathway via CNDP2-dependent enzymatic conjugation of BHB and free amino acids. This BHB shunt pathway generates a family of anti-obesity ketone metabolites, the BHB-amino acids. Genetic ablation of CNDP2 in mice eliminates tissue amino acid BHB-ylation activity and reduces BHB-amino acid levels. The most abundant BHB-amino acid, BHB-Phe, is a ketosis-inducible congener of Lac-Phe that activates hypothalamic and brainstem neurons and suppresses feeding. Conversely, CNDP2-KO mice exhibit increased food intake and body weight following exogenous ketone ester supplementation or a ketogenic diet. CNDP2-dependent amino acid BHB-ylation and BHB-amino acid metabolites are also conserved in humans. Therefore, enzymatic amino acid BHB-ylation defines a ketone shunt pathway and bioactive ketone metabolites linked to energy balance.
Collapse
Affiliation(s)
- Maria Dolores Moya-Garzon
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Mengjie Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Veronica L Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Department of Chemistry, Stanford University, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Xuchao Lyu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Department of Biology, Stanford University, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Alan Sheng-Hwa Tung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Department of Biology, Stanford University, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Steffen H Raun
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Meng Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Laetitia Coassolo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Hashim Islam
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Barbara Oliveira
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Yuqin Dai
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Jan Spaas
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | | | - Kenyi Donoso
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Francisco Franco-Montalban
- Departamento de Química Farmacéutica y Orgánica, Universidad de Granada, Campus de Cartuja sn, 18071 Granada, Spain
| | - Anudari Letian
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Catherine P Ward
- Stanford Prevention Research Center, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lichao Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Emily L Goldberg
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Christopher D Gardner
- Stanford Prevention Research Center, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Steven M Banik
- Department of Chemistry, Stanford University, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA; Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA; The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Kim HS, Jung S, Kim MJ, Jeong JY, Hwang IM, Lee JH. Comparative Analysis of N-Lactoyl-phenylalanine and 3-Phenyllactic Acid Production in Lactic Acid Bacteria from Kimchi: Metabolic Insights and Influencing Factors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27177-27186. [PMID: 39606886 DOI: 10.1021/acs.jafc.4c07158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
N-Lactoyl-phenylalanine (Lac-Phe) is a metabolite known for its appetite-suppressing and antiobesity properties, while phenyllactic acid (PLA) is recognized for its antibacterial activity. Both metabolites are derived from phenylalanine and lactic acid metabolism through peptidase and dehydrogenase activities. The aim of this study was to investigate the production of Lac-Phe and PLA in kimchi, focusing on the role of lactic acid bacteria (LAB). Ultrahigh performance liquid chromatography coupled with time-of-flight mass spectrometry was used to quantify these metabolites in homemade and commercial kimchi. Lac-Phe and PLA were detected in both kimchi sample types. Various genera, including Lactobacillus, Leuconostoc, and Weissella, were evaluated for Lac-Phe and PLA production. LAB strains exhibiting high Lac-Phe production generally showed lower PLA production, indicating an inverse relationship between these two metabolites. Analysis of dipeptidase sequences revealed that the presence of carnosine dipeptidase 2 (CNDP2)-like M20 metallopeptidase is crucial for Lac-Phe production in LAB. Additionally, phenylalanine was identified as a major factor for both Lac-Phe and PLA production, whereas lactic acid supplementation did not significantly affect their production levels.
Collapse
Affiliation(s)
- Hyun-Sung Kim
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Sera Jung
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Min Ji Kim
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Ji Young Jeong
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - In Min Hwang
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Jong-Hee Lee
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| |
Collapse
|
4
|
Toviwek B, Koonawootrittriron S, Suwanasopee T, Jattawa D, Pongprayoon P. Why Bestatin Prefers Human Carnosinase 2 (CN2) to Human Carnosinase 1 (CN1). J Phys Chem B 2024; 128:11876-11884. [PMID: 39574306 PMCID: PMC11626516 DOI: 10.1021/acs.jpcb.4c05571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 12/06/2024]
Abstract
Human carnosinases (CNs) are Xaa-His metal-ion-activated aminopeptidases that break down bioactive carnosine and other histidine-containing dipeptides. Carnosine is a bioactive peptide found in meat and prevalently used as a supplement and in functional food formulation. Nonetheless, carnosine is digested by CNs rapidly after ingestion. CNs have two isoforms (carnosinase 1 (CN1) and carnosinase 2 (CN2)), where CN1 is the main player in carnosine digestion. CNs contain a catalytic metal ion pair (Zn2+ for CN1 and Mn2+ for CN2) and two subpockets (S1 and S1' pockets) to accommodate a substrate. Bestatin (BES) has been reported to be active for CN2; however, its inhibition ability for CN1 has remained under debate, because the underlying mechanism remains unclear. This information is important for designing novel CN1-selective inhibitors for proliferating carnosine after ingestion. Thus, molecular dynamics (MD) simulations were performed to explore the binding mechanism of BES to both CN1 and CN2. The binding of BES-CN1 and BES-CN2 was studied in comparison. The results indicated that BES could bind both CNs with different degrees of binding affinity. BES prefers CN2 because: (1) its aryl terminus is trapped by Y197 in an S1 pocket; (ii) the BES polar backbone is firmly bound by catalytic Mn2+ ions; and (iii) the S1' pocket can shrink to accommodate the isopropyl end of BES. In contrast, the high mobility of the aryl end and the complete loss of metal-BES interactions in CN1 cause a loose BES binding. Seemingly, polar termini were required for a good CN1 inhibitor.
Collapse
Affiliation(s)
- Borvornwat Toviwek
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Chatuchak, Bangkok 10900, Thailand
| | - Skorn Koonawootrittriron
- Department
of Animal Science, Faculty of Agriculture, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- Tropical
Animal Genetic Special Research Unit, Department of Animal Science,
Faculty of Agriculture, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Thanathip Suwanasopee
- Department
of Animal Science, Faculty of Agriculture, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- Tropical
Animal Genetic Special Research Unit, Department of Animal Science,
Faculty of Agriculture, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Danai Jattawa
- Department
of Animal Science, Faculty of Agriculture, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- Tropical
Animal Genetic Special Research Unit, Department of Animal Science,
Faculty of Agriculture, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Prapasiri Pongprayoon
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Chatuchak, Bangkok 10900, Thailand
- Center
for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural
Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
5
|
Moya-Garzon MD, Wang M, Li VL, Lyu X, Wei W, Tung ASH, Raun SH, Zhao M, Coassolo L, Islam H, Oliveira B, Dai Y, Spaas J, Delgado-Gonzalez A, Donoso K, Alvarez-Buylla A, Franco-Montalban F, Letian A, Ward C, Liu L, Svensson KJ, Goldberg EL, Gardner CD, Little JP, Banik SM, Xu Y, Long JZ. A secondary β-hydroxybutyrate metabolic pathway linked to energy balance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612087. [PMID: 39314488 PMCID: PMC11418978 DOI: 10.1101/2024.09.09.612087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
β-hydroxybutyrate (BHB) is an abundant ketone body. To date, all known pathways of BHB metabolism involve interconversion of BHB and primary energy intermediates. Here we show that CNDP2 controls a previously undescribed secondary BHB metabolic pathway via enzymatic conjugation of BHB and free amino acids. This BHB-ylation reaction produces a family of endogenous ketone metabolites, the BHB-amino acids. Genetic ablation of CNDP2 in mice eliminates tissue amino acid BHB-ylation activity and reduces BHB-amino acid levels. Administration of BHB-Phe, the most abundant BHB-amino acid, to obese mice activates neural populations in the hypothalamus and brainstem and suppresses feeding and body weight. Conversely, CNDP2-KO mice exhibit increased food intake and body weight upon ketosis stimuli. CNDP2-dependent amino acid BHB-ylation and BHB-amino acid metabolites are also conserved in humans. Therefore, the metabolic pathways of BHB extend beyond primary metabolism and include secondary ketone metabolites linked to energy balance.
Collapse
Affiliation(s)
- Maria Dolores Moya-Garzon
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Mengjie Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Veronica L Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Xuchao Lyu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Alan Sheng-Hwa Tung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Steffen H Raun
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Meng Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Laetitia Coassolo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Hashim Islam
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Barbara Oliveira
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Yuqin Dai
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Jan Spaas
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | | | - Kenyi Donoso
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Francisco Franco-Montalban
- Departamento de Química Farmacéutica y Orgánica, Universidad de Granada, Campus de Cartuja sn, 18011, Granada, Spain
| | - Anudari Letian
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Catherine Ward
- Stanford Prevention Research Center, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lichao Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Emily L Goldberg
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Christopher D Gardner
- Stanford Prevention Research Center, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Steven M Banik
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
6
|
Zhang X, Liu X, Chen X, Feng J, Zhao Q, Wu Q, Zhu D. Identification and structure-based engineering of a dipeptidase CpPepD from Clostridium perfringens for the synthesis of l-carnosine. J Biotechnol 2024; 389:86-93. [PMID: 38718874 DOI: 10.1016/j.jbiotec.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
l-Carnosine (l-Car), an endogenous dipeptide presents in muscle and brain tissues of various vertebrates, has a wide range of application values. The enzymatic preparation of l-Car is a promising synthetic method because it avoids the protection and deprotection steps. In the present study, a dipeptidase gene (CpPepD) from Clostridium perfringens with high l-Car synthetic activity was cloned and characterized. In an effort to improve the performance of this enzyme, we carried out site saturation mutagenesis using CpPepD as the template. By the o-phthalaldehyde (OPA)-derived high throughput screening method, mutant A171S was obtained with 2.2-fold enhanced synthetic activity. The enzymatic properties of CpPepD and mutant A171S were investigated. Under the optimized conditions, 63.94 mM (14.46 g L-1) or 67.02 mM (15.16 g L-1) l-Car was produced at the substrate concentrations of 6 M β-Ala and 0.2 M l-His using wild-type or mutant A171S enzyme, respectively. Although the mutation enhanced the enzyme activity, the reaction equilibrium was barely affected.
Collapse
Affiliation(s)
- Xiaohan Zhang
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, PR China; National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Center of Technology Innovation for Synthetic Biology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Xiangtao Liu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Center of Technology Innovation for Synthetic Biology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Xi Chen
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Center of Technology Innovation for Synthetic Biology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Jinhui Feng
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Center of Technology Innovation for Synthetic Biology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Qing Zhao
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, PR China; Tibet NWS Biotechnology Co., Ltd, Tibet 854000, PR China.
| | - Qiaqing Wu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Center of Technology Innovation for Synthetic Biology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Dunming Zhu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Center of Technology Innovation for Synthetic Biology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| |
Collapse
|
7
|
Terrazas-López M, González-Segura L, Díaz-Vilchis A, Aguirre-Mendez KA, Lobo-Galo N, Martínez-Martínez A, Díaz-Sánchez ÁG. The three-dimensional structure of DapE from Enterococcus faecium reveals new insights into DapE/ArgE subfamily ligand specificity. Int J Biol Macromol 2024; 270:132281. [PMID: 38740150 DOI: 10.1016/j.ijbiomac.2024.132281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
DapE is a Zn2+-metallohydrolase recognized as a drug target for bacterial control. It is a homodimer that requires the exchange of interface strands by an induced fit essential for catalysis. Identifying novel anti-DapE agents requires greater structural details. Most of the characterized DapEs are from the Gram-negative group. Here, two high-resolution DapE crystal structures from Enterococcus faecium are presented for the first time with novel aspects. A loosened enzyme intermediate between the open and closed conformations is observed. Substrates may bind to loose state, subsequently it closes, where hydrolysis occurs, and finally, the change to the open state leads to the release of the products. Mutation of His352 suggests a role, along with His194, in the oxyanion stabilization in the mono-metalated Zn2+ isoform, while in the di-metalated isoform, the metal center 2 complements it function. An aromatic-π box potentially involved in the interaction of DapE with other proteins, and a peptide flip could determine the specificity in the Gram-positive ArgE/DapE group. Finally, details of two extra-catalytic cavities whose geometry changes depending on the conformational state of the enzyme are presented. These cavities could be a target for developing non-competitive agents that trap the enzyme in an inactive state.
Collapse
Affiliation(s)
- Manuel Terrazas-López
- Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Chihuahua, CP 32310, Mexico
| | - Lilian González-Segura
- Universidad Nacional Autónoma de México, Facultad de Química, Departamento de Bioquímica, Ciudad Universitaria, Ciudad de México, 04510, Mexico.
| | - Adelaida Díaz-Vilchis
- Universidad Nacional Autónoma de México, Facultad de Química, Departamento de Bioquímica, Ciudad Universitaria, Ciudad de México, 04510, Mexico
| | - Kelly Annecy Aguirre-Mendez
- Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Chihuahua, CP 32310, Mexico
| | - Naún Lobo-Galo
- Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Chihuahua, CP 32310, Mexico
| | - Alejandro Martínez-Martínez
- Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Chihuahua, CP 32310, Mexico
| | - Ángel G Díaz-Sánchez
- Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Chihuahua, CP 32310, Mexico.
| |
Collapse
|
8
|
Miyaji S, Ito T, Kitaiwa T, Nishizono K, Agake SI, Harata H, Aoyama H, Umahashi M, Sato M, Inaba J, Fushinobu S, Yokoyama T, Maruyama-Nakashita A, Hirai MY, Ohkama-Ohtsu N. N 2-Acetylornithine deacetylase functions as a Cys-Gly dipeptidase in the cytosolic glutathione degradation pathway in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1603-1618. [PMID: 38441834 DOI: 10.1111/tpj.16700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 05/31/2024]
Abstract
Glutathione (GSH) is required for various physiological processes in plants, including redox regulation and detoxification of harmful compounds. GSH also functions as a repository for assimilated sulfur and is actively catabolized in plants. In Arabidopsis, GSH is mainly degraded initially by cytosolic enzymes, γ-glutamyl cyclotransferase, and γ-glutamyl peptidase, which release cysteinylglycine (Cys-Gly). However, the subsequent enzyme responsible for catabolizing this dipeptide has not been identified to date. In the present study, we identified At4g17830 as a Cys-Gly dipeptidase, namely cysteinylglycine peptidase 1 (CGP1). CGP1 complemented the phenotype of the yeast mutant that cannot degrade Cys-Gly. The Arabidopsis cgp1 mutant had lower Cys-Gly degradation activity than the wild type and showed perturbed concentrations of thiol compounds. Recombinant CGP1 showed reasonable Cys-Gly degradation activity in vitro. Metabolomic analysis revealed that cgp1 exhibited signs of severe sulfur deficiency, such as elevated accumulation of O-acetylserine (OAS) and the decrease in sulfur-containing metabolites. Morphological changes observed in cgp1, including longer primary roots of germinating seeds, were also likely associated with sulfur starvation. Notably, At4g17830 has previously been reported to encode an N2-acetylornithine deacetylase (NAOD) that functions in the ornithine biosynthesis. The cgp1 mutant did not show a decrease in ornithine content, whereas the analysis of CGP1 structure did not rule out the possibility that CGP1 has Cys-Gly dipeptidase and NAOD activities. Therefore, we propose that CGP1 is a Cys-Gly dipeptidase that functions in the cytosolic GSH degradation pathway and may play dual roles in GSH and ornithine metabolism.
Collapse
Affiliation(s)
- Shunsuke Miyaji
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Takehiro Ito
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Taisuke Kitaiwa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Kosuke Nishizono
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Shin-Ichiro Agake
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Hiroki Harata
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Haruna Aoyama
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Minori Umahashi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Muneo Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Jun Inaba
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Tadashi Yokoyama
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, 960-1296, Japan
| | - Akiko Maruyama-Nakashita
- Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Bioagricultural Science, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Naoko Ohkama-Ohtsu
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
9
|
Toviwek B, Suwanasopee T, Koonawootrittriron S, Jattawa D, Pongprayoon P. Binding Modes of Carnostatine, Homocarnosine, and Ophidine to Human Carnosinase 1. ACS OMEGA 2023; 8:42966-42975. [PMID: 38024708 PMCID: PMC10653059 DOI: 10.1021/acsomega.3c06139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Carnosine (CAR), anserine (ANS), homocarnosine (H-CAR), and ophidine (OPH) are histidine-containing dipeptides that show a wide range of therapeutic properties. With their potential physiological effects, these bioactive dipeptides are considered as bioactive food components. However, such dipeptides display low stability due to their rapid degradation by human serum carnosinase 1 (CN1). A dimeric CN1 hydrolyzes such histidine-containing compounds with different degrees of reactivities. A selective CN inhibitor, carnostatine (CARN), was reported to effectively inhibit CN's activity. To date, the binding mechanisms of CAR and ANS have been recently reported, while no clear information about H-CAR, OPH, and CARN binding is available. Thus, in this work, molecular dynamics simulations were employed to elucidate the binding mechanism of H-CAR, OPH, and CARN. Among all, the amine end and imidazole ring are the main players for trapping all of the ligands in a pocket. OPH shows the poorest binding affinity, while CARN displays the tightest binding. Such firm binding is due to the longer amine chain and the additional hydroxyl (-OH) group of CARN. H-CAR and CARN are analogous, but the absence of the -OH moiety in H-CAR significantly enhances its mobility, resulting in the reduction in binding affinity. For OPH which is an ANS analogue, the methylated imidazole ring destroys the OPH-CN1 interaction network at this region, consequentially leading to the poor binding ability. An insight into how CN recognizes and binds its substrates obtained here will be useful for designing an effective strategy to prolong the lifetime of CAR and its analogues after ingestion.
Collapse
Affiliation(s)
- Borvornwat Toviwek
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Chatuchak, Bangkok 10900, Thailand
| | - Thanathip Suwanasopee
- Department
of Animal Science, Faculty of Agriculture, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Skorn Koonawootrittriron
- Department
of Animal Science, Faculty of Agriculture, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Danai Jattawa
- Department
of Animal Science, Faculty of Agriculture, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Prapasiri Pongprayoon
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Chatuchak, Bangkok 10900, Thailand
- Center
for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural
Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
10
|
Guo X, Jiang Q, Li Z, Cheng C, Feng Y, He Y, Zuo L, Ding W, Zhang D, Feng L. Crystal structural analysis and characterization for MlrC enzyme of Sphingomonas sp. ACM-3962 involved in linearized microcystin degradation. CHEMOSPHERE 2023; 317:137866. [PMID: 36642149 DOI: 10.1016/j.chemosphere.2023.137866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Microcystinase C (MlrC), one key hydrolase of the microcystinase family, plays an important role in linearized microsystin (L-MC) degradation. However, the three-dimensional structure and structural features of MlrC are still unclear. This study obtained high specific activity and high purity of MlrC by heterologous expression, and revealed that MlrC derived from Sphingomonas sp. ACM-3962 (ACM-MlrC) can degrade linearized products of MC-LR, MC-RR and MC-YR to product 3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid (Adda), indicating the degradation function and significance in MC-detoxification. More importantly, this study reported the crystal structure of ACM-MlrC at 2.6 Å resolution for the first time, which provides a basis for further understanding the structural characteristics and functions of MlrC. MlrC had a dual-domain feature, namely N and C terminal domain respectively. The N-terminal domain contained a Glutamate-Aspartate-Histidine-Histidine catalytic quadruplex coordinated with zinc ion in each monomer. The importance of zinc ions and their coordinated residues was analyzed by dialysis and site-directed mutagenesis methods. Moreover, the important influence of the N/C-terminal flexible regions of ACM-MlrC was also analyzed by sequence truncation, and then the higher yield and total activity of variants were obtained, which was beneficial to study the better function and application of MlrC.
Collapse
Affiliation(s)
- Xiaoliang Guo
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Qinqin Jiang
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Zengru Li
- The Institute of Physics, Chinese Academy of Sciences, P.O.Box 603, Beijing, 100190, China
| | - Cai Cheng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yu Feng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yanlin He
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Lingzi Zuo
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Wei Ding
- The Institute of Physics, Chinese Academy of Sciences, P.O.Box 603, Beijing, 100190, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Lingling Feng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
11
|
Pandya VK, Shankar SS, Sonwane BP, Rajesh S, Rathore R, Kumaran S, Kulkarni MJ. Mechanistic insights on anserine hydrolyzing activities of human carnosinases. Biochim Biophys Acta Gen Subj 2023; 1867:130290. [PMID: 36529243 DOI: 10.1016/j.bbagen.2022.130290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 11/16/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Anserine and carnosine represent histidine-containing dipeptides that exert a pluripotent protective effect on human physiology. Anserine is known to protect against oxidative stress in diabetes and cardiovascular diseases. Human carnosinases (CN1 and CN2) are dipeptidases involved in the homeostasis of carnosine. In poikilothermic vertebrates, the anserinase enzyme is responsible for hydrolyzing anserine. However, there is no specific anserine hydrolyzing enzyme present in humans. In this study, we have systematically investigated the anserine hydrolyzing activity of human CN1 and CN2. A targeted multiple reaction monitoring (MRM) based approach was employed for studying the enzyme kinetics of CN1 and CN2 using carnosine and anserine as substrates. Surprisingly, both CN1 and CN2 can hydrolyze anserine effectively. The observed catalytic turnover rate (Vmax/[E]t) was 21.6 s-1 and 2.8 s-1 for CN1 and CN2, respectively. CN1 is almost eight-fold more efficient in hydrolyzing anserine compared to CN2, which is comparable to the efficiency of the carnosine hydrolyzing activity of CN2. The Michaelis constant (Km) value for CN1 (1.96 mM) is almost three-fold lower compared to CN2 (6.33 mM), representing higher substrate affinity for anserine-CN1 interactions. Molecular docking studies showed that anserine binds at the catalytic site of the carnosinases with an affinity similar to carnosine. Overall, the present study elucidated the inherent promiscuity of human carnosinases in hydrolyzing anserine using a sensitive LC-MS/MS approach.
Collapse
Affiliation(s)
- Vaibhav Kumar Pandya
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India.
| | - S Shiva Shankar
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Babasaheb P Sonwane
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - S Rajesh
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Rajeshwari Rathore
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sangaralingam Kumaran
- CSIR-Institute of Microbial Technology, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mahesh J Kulkarni
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
12
|
Tancharoen C, Tovivek B, Niramitranon J, Kityakarn S, Luksirikul P, Gorinstein S, Pongprayoon P. Exploring the structural and dynamic differences between human carnosinase I (CN1) and II (CN2). Proteins 2023; 91:822-830. [PMID: 36637795 DOI: 10.1002/prot.26469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/06/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023]
Abstract
Human carnosinases (CNs) are dimeric dipeptidases in the metallopeptidase M20 family. Two isoforms of carnosinases (Zn2+ -containing carnosinase 1 (CN1) found in serum and Mn2+ -carnosinase 2 (CN2) in tissue) were identified. Both CNs cleave histidine-containing (Xaa-His) dipeptides such as carnosine where CN2 was found to accept a broader spectrum of substrates. A loss of CN function, resulting in a high carnosine concentration, reduces risk for diabetes and neurological disorders. Although several studies on CN activities and its Michaelis complex were conducted, all shed the light on CN1 activity where the CN2 data is limited. Also, the molecular details on CN1 and CN2 similarity and dissimilarity in structure and function remain unclear. Thus, in this work, molecular dynamics (MD) simulations were employed to study structure and dynamics of human CN1 and CN2 in comparison. The results show that the different catalytic ability of both CNs is due to their pocket size and environment. CN2 can accept a wider range of substrate due to the wider mouth of a binding pocket. The L1 loop seems to play a role in gating activity. Comparing to CN2, CN1 provides more electronegative entrance, more wettability, and higher stability of catalytic metal ion-pair in the active site which allow more efficient water-mediated catalysis. The microscopic understanding obtained here can serve as a basis for CN inhibition strategies resulting in higher carnosine levels and consequently mitigating complications associated with diseases such as diabetes and neurological disorder.
Collapse
Affiliation(s)
| | - Borvornwat Tovivek
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Jitti Niramitranon
- Department of Computer Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
| | - Sutasinee Kityakarn
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Patraporn Luksirikul
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| | - Shela Gorinstein
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Prapasiri Pongprayoon
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
13
|
Toviwek B, Koonawootrittriron S, Suwanasopee T, Pongprayoon P. Molecular insights into the binding of carnosine and anserine to human serum carnosinase 1 (CN1). PEERJ PHYSICAL CHEMISTRY 2022. [DOI: 10.7717/peerj-pchem.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Carnosine (CAR) and anserine (ANS) are histidine-containing dipeptides that show the therapeutic properties and protective abilities against diabetes and cognitive deficit. Both dipeptides are rich in meat products and have been used as a supplement. However, in humans, both compounds have a short half-life due to the rapid degradation by dizinc carnosinase 1 (CN1) which is a hurdle for its therapeutic application. To date, a comparative study of carnosine- and anserine-CN1 complexes is limited. Thus, in this work, molecular dynamics (MD) simulations were performed to explore the binding of carnosine and anserine to CN1. CN1 comprises 2 chains (Chains A and B). Both monomers are found to work independently and alternatingly. The displacement of Zn2+ pair is found to disrupt the substrate binding. CN1 employs residues from the neighbour chain (H235, T335, and T337) to form the active site. This highlights the importance of a dimer for enzymatic activity. Anserine is more resistant to CN 1 than carnosine because of its bulky and dehydrated imidazole moiety. Although both dipeptides can direct the peptide oxygen to the active Zn2+ which can facilitate the catalytic reaction, the bulky methylated imidazole on anserine promotes various poses that can retard the hydrolytic activity in contrast to carnosine. Anserine is likely to be the temporary competitive inhibitor by retarding the carnosine catabolism.
Collapse
Affiliation(s)
- Borvornwat Toviwek
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | - Thanathip Suwanasopee
- Department of Animal Science, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Prapasiri Pongprayoon
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
14
|
Yachnin BJ, Azouz LR, White RE, Minetti CASA, Remeta DP, Tan VM, Drake JM, Khare SD. Massively parallel, computationally guided design of a proenzyme. Proc Natl Acad Sci U S A 2022; 119:e2116097119. [PMID: 35377786 PMCID: PMC9169645 DOI: 10.1073/pnas.2116097119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/25/2022] [Indexed: 01/28/2023] Open
Abstract
Confining the activity of a designed protein to a specific microenvironment would have broad-ranging applications, such as enabling cell type-specific therapeutic action by enzymes while avoiding off-target effects. While many natural enzymes are synthesized as inactive zymogens that can be activated by proteolysis, it has been challenging to redesign any chosen enzyme to be similarly stimulus responsive. Here, we develop a massively parallel computational design, screening, and next-generation sequencing-based approach for proenzyme design. For a model system, we employ carboxypeptidase G2 (CPG2), a clinically approved enzyme that has applications in both the treatment of cancer and controlling drug toxicity. Detailed kinetic characterization of the most effectively designed variants shows that they are inhibited by ∼80% compared to the unmodified protein, and their activity is fully restored following incubation with site-specific proteases. Introducing disulfide bonds between the pro- and catalytic domains based on the design models increases the degree of inhibition to 98% but decreases the degree of restoration of activity by proteolysis. A selected disulfide-containing proenzyme exhibits significantly lower activity relative to the fully activated enzyme when evaluated in cell culture. Structural and thermodynamic characterization provides detailed insights into the prodomain binding and inhibition mechanisms. The described methodology is general and could enable the design of a variety of proproteins with precise spatial regulation.
Collapse
Affiliation(s)
- Brahm J. Yachnin
- Department of Chemistry & Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Laura R. Azouz
- Department of Chemistry & Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Ralph E. White
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Conceição A. S. A. Minetti
- Department of Chemistry & Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - David P. Remeta
- Department of Chemistry & Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Victor M. Tan
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Department of Pharmacology, Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - Justin M. Drake
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455
- Department of Urology, University of Minnesota, Minneapolis, MN 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Sagar D. Khare
- Department of Chemistry & Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| |
Collapse
|
15
|
Li G, Dai QQ, Li GB. MeCOM: A Method for Comparing Three-Dimensional Metalloenzyme Active Sites. J Chem Inf Model 2022; 62:730-739. [PMID: 35044164 DOI: 10.1021/acs.jcim.1c01335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Since metalloenzymes are a large collection of metal ion(s) dependent enzymes, comparison analyses of metalloenzyme active sites are critical for metalloenzyme de novo design, function investigation, and inhibitor development. Here, we report a method named MeCOM for comparing metalloenzyme active sites. It is characterized by metal ion(s) centric active site recognition and three-dimensional superimposition using α-carbon or pharmacophore features. The test results revealed that for the given metalloenzymes, MeCOM could effectively recognize the active sites, extract active site features, and superimpose the active sites; it also could correctly identify similar active sites, differentiate dissimilar active sites, and evaluate the similarity degree. Moreover, MeCOM showed potential to establish new associations between structurally distinct metalloenzymes by active site comparison. MeCOM is freely available at https://mecom.ddtmlab.org.
Collapse
Affiliation(s)
- Gen Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qing-Qing Dai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Trumbić Ž, Hrabar J, Palevich N, Carbone V, Mladineo I. Molecular and evolutionary basis for survival, its failure, and virulence factors of the zoonotic nematode Anisakis pegreffii. Genomics 2021; 113:2891-2905. [PMID: 34186188 DOI: 10.1016/j.ygeno.2021.06.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/30/2022]
Abstract
Parasitism is a highly successful life strategy and a driving force in genetic diversity that has evolved many times over. Accidental infections of non-targeted hosts represent an opportunity for lateral host switches and parasite niche expansion. However, if directed toward organisms that are phylogenetically distant from parasite's natural host, such as humans, it may present a dead-end environment where the parasite fails to mature or is even killed by host immunity. One example are nematodes of Anisakidae family, genus Anisakis, that through evolution have lost the ability to propagate in terrestrial hosts, but can survive for a limited time in humans causing anisakiasis. To scrutinize versatility of Anisakis to infect an evolutionary-distant host, we performed transcriptomic profiling of larvae successfully migrating through the rat, a representative model of accidental human infection and compared it to that of larvae infecting an evolutionary-familiar, paratenic host (fish). In a homeothermic accidental host Anisakis upregulated ribosome-related genes, cell division, cuticle constituents, oxidative phosphorylation, in an unsuccessful attempt to molt to the next stage. In contrast, in the paratenic poikilothermic host where metabolic pathways were moderately upregulated or silenced, larvae prepared for dormancy by triggering autophagy and longevity pathways. Identified differences and the modelling of handful of shared transcripts, provide the first insights into evolution of larval nematode virulence, warranting their further investigation as potential drug therapy targets.
Collapse
Affiliation(s)
- Željka Trumbić
- University Department of Marine Studies, University of Split, 21000 Split, Croatia
| | - Jerko Hrabar
- Laboratory of Aquaculture, Institute of Oceanography & Fisheries, 21000 Split, Croatia
| | - Nikola Palevich
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4410, New Zealand
| | - Vincenzo Carbone
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4410, New Zealand
| | - Ivona Mladineo
- Laboratory of Functional Helminthology, Institute of Parasitology, Biology Centre of Czech Academy of Science, 37005 Ceske Budejovice, Czech Republic.
| |
Collapse
|
17
|
Saghatelian A. Networking in Circulation: Lipoproteins, PM20D1, and N-acyl Amino Acid Bioactivity. Cell Chem Biol 2021; 27:1112-1113. [PMID: 32946756 DOI: 10.1016/j.chembiol.2020.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
N-acyl amino acids are a class of biologically active lipids that control thermogenesis, and their biosynthesis is facilitated by PM20D1. In this issue of Cell Chemical Biology, Kim et al. (2020) identify a lipoprotein-albumin network in the blood that regulates physiological levels of N-acyl amino acids.
Collapse
Affiliation(s)
- Alan Saghatelian
- The Salk Institute for Biological Studies, Clayton Foundation Laboratories for Peptide Biology, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA.
| |
Collapse
|
18
|
Tanaka KI, Kawahara M. Carnosine and Lung Disease. Curr Med Chem 2020; 27:1714-1725. [PMID: 31309876 DOI: 10.2174/0929867326666190712140545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 05/24/2019] [Accepted: 06/28/2019] [Indexed: 12/22/2022]
Abstract
Carnosine (β-alanyl-L-histidine) is a small dipeptide with numerous activities, including antioxidant effects, metal ion chelation, proton buffering capacity, and inhibitory effects on protein carbonylation and glycation. Carnosine has been mostly studied in organs where it is abundant, including skeletal muscle, cerebral cortex, kidney, spleen, and plasma. Recently, the effect of supplementation with carnosine has been studied in organs with low levels of carnosine, such as the lung, in animal models of influenza virus or lipopolysaccharide-induced acute lung injury and pulmonary fibrosis. Among the known protective effects of carnosine, its antioxidant effect has attracted increasing attention for potential use in treating lung disease. In this review, we describe the in vitro and in vivo biological and physiological actions of carnosine. We also report our recent study and discuss the roles of carnosine or its related compounds in organs where carnosine is present in only small amounts (especially the lung) and its protective mechanisms.
Collapse
Affiliation(s)
- Ken-Ichiro Tanaka
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| |
Collapse
|
19
|
Comparative Cerebroprotective Potential of d- and l-Carnosine Following Ischemic Stroke in Mice. Int J Mol Sci 2020; 21:ijms21093053. [PMID: 32357505 PMCID: PMC7246848 DOI: 10.3390/ijms21093053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
l-carnosine is an attractive therapeutic agent for acute ischemic stroke based on its robust preclinical cerebroprotective properties and wide therapeutic time window. However, large doses are needed for efficacy because carnosine is rapidly degraded in serum by carnosinases. The need for large doses could be particularly problematic when translating to human studies, as humans have much higher levels of serum carnosinases. We hypothesized that d-carnosine, which is not a substrate for carnosinases, may have a better pharmacological profile and may be more efficacious at lower doses than l-carnosine. To test our hypothesis, we explored the comparative pharmacokinetics and neuroprotective properties of d- and L-carnosine in acute ischaemic stroke in mice. We initially investigated the pharmacokinetics of d- and L-carnosine in serum and brain after intravenous (IV) injection in mice. We then investigated the comparative efficacy of d- and l-carnosine in a mouse model of transient focal cerebral ischemia followed by in vitro testing against excitotoxicity and free radical generation using primary neuronal cultures. The pharmacokinetics of d- and l-carnosine were similar in serum and brain after IV injection in mice. Both d- and l-carnosine exhibited similar efficacy against mouse focal cerebral ischemia. In vitro studies in neurons showed protection against excitotoxicity and the accumulation of free radicals. d- and l-carnosine exhibit similar pharmacokinetics and have similar efficacy against experimental stroke in mice. Since humans have far higher levels of carnosinases, d-carnosine may have more favorable pharmacokinetics in future human studies.
Collapse
|
20
|
Chmielewska K, Dzierzbicka K, Inkielewicz-Stępniak I, Przybyłowska M. Therapeutic Potential of Carnosine and Its Derivatives in the Treatment of Human Diseases. Chem Res Toxicol 2020; 33:1561-1578. [PMID: 32202758 DOI: 10.1021/acs.chemrestox.0c00010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite significant progress in the pathogenesis, diagnosis, treatment, and prevention of cancer and neurodegenerative diseases, their occurrence and mortality are still high around the world. The resistance of cancer cells to the drugs remains a significant problem in oncology today, while in the case of neuro-degenerative diseases, therapies reversing the process are still yet to be found. Furthermore, it is important to seek new chemotherapeutics reversing side effects of currently used drugs or helping them perform their function to inhibit progression of the disease. Carnosine, a dipeptide constisting of β-alanine and l-histidine, has a variety of functions to mention: antioxidant, antiglycation, and reducing the toxicity of metal ions. It has therefore been proposed to act as a therapeutic agent for many pathological states. The aim of this paper was to find if carnosine and its derivatives can be helpful in treating various diseases. Literature search presented in this review includes review and original papers found in SciFinder, PubMed, and Google Scholar. Searches were based on substantial keywords concerning therapeutic usage of carnosine and its derivatives in several diseases including neurodegenerative disorders and cancer. In this paper, we review articles and find that carnosine and its derivatives are potential therapeutic agents in many diseases including cancer, neurodegenerative diseases, diabetes, and schizophrenia. Carnosine and its derivatives can be used in treating neurodegenerative diseases, cancer, diabetes, or schizophrenia, although their usage is limited. Therefore, there's an urge to synthesize and analyze new substances, overcoming the limitation of carnosine itself.
Collapse
Affiliation(s)
- Klaudia Chmielewska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk 80-233, Poland
| | - Krystyna Dzierzbicka
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk 80-233, Poland
| | - Iwona Inkielewicz-Stępniak
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Maja Przybyłowska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk 80-233, Poland
| |
Collapse
|
21
|
Pandya VK, Sonwane B, Rathore R, Unnikrishnan AG, Kumaran S, Kulkarni MJ. Development of multiple reaction monitoring assay for quantification of carnosine in human plasma. RSC Adv 2020; 10:763-769. [PMID: 35494477 PMCID: PMC9047520 DOI: 10.1039/c9ra08532g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/12/2019] [Indexed: 12/30/2022] Open
Abstract
Carnosine, a histidine containing dipeptide, exerts beneficial effects by scavenging reactive carbonyl compounds (RCCs) that are implicated in pathogenesis of diabetes. However, the reduced carnosine levels may aggravate the severity of diabetes. The precise quantification of carnosine levels may serve as an indicator of pathophysiological state of diabetes. Therefore, we have developed a highly sensitive targeted multiple reaction monitoring (MRM) method for quantification of carnosine in human plasma samples. Various mass spectrometry parameters such as ionization of precursor, fragment abundance and stability, collision energy, tube lens offset voltage were optimized to develop a sensitive and robust assay. Using the optimized MRM assay, the lower limit of detection (LOD) and limit of quantification (LOQ) for carnosine were found to be 0.4 nM and 1.0 nM respectively. Standard curves were constructed ranging from 1.0 nM to 15.0 μM and the levels of carnosine in mice and human plasma were determined. Further, the MRM assay was extended to study carnosine hydrolyzing activity of human carnosinases, the serum carnosinase (CN1) and the cytosolic carnosinase (CN2). CN1 showed three folds higher activity than CN2. The MRM assay developed in this study is highly sensitive and can be used for basal plasma carnosine quantification, which can be developed as a novel marker for scavenging of RCCs in diabetes.
Collapse
Affiliation(s)
- Vaibhav Kumar Pandya
- Proteomics Facility, Biochemical Sciences Division, CSIR-National Chemical Laboratory Pune-411008 India +912025902541
| | - Babasaheb Sonwane
- Proteomics Facility, Biochemical Sciences Division, CSIR-National Chemical Laboratory Pune-411008 India +912025902541
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Rajeshwari Rathore
- Proteomics Facility, Biochemical Sciences Division, CSIR-National Chemical Laboratory Pune-411008 India +912025902541
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | | | - Sangaralingam Kumaran
- CSIR-Institute of Microbial Technology Chandigarh-160036 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Mahesh J Kulkarni
- Proteomics Facility, Biochemical Sciences Division, CSIR-National Chemical Laboratory Pune-411008 India +912025902541
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
22
|
Bhat SY, Qureshi IA. Mutations of key substrate binding residues of leishmanial peptidase T alter its functional and structural dynamics. Biochim Biophys Acta Gen Subj 2020; 1864:129465. [DOI: 10.1016/j.bbagen.2019.129465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/15/2019] [Accepted: 10/24/2019] [Indexed: 11/27/2022]
|
23
|
Carroll L, Karton A, Radom L, Davies MJ, Pattison DI. Carnosine and Carcinine Derivatives Rapidly React with Hypochlorous Acid to Form Chloramines and Dichloramines. Chem Res Toxicol 2019; 32:513-525. [DOI: 10.1021/acs.chemrestox.8b00363] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Luke Carroll
- The Heart Research Institute, Newtown, New South Wales 2042, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
- Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark
| | - Amir Karton
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Leo Radom
- School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Michael J. Davies
- The Heart Research Institute, Newtown, New South Wales 2042, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
- Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark
| | - David I. Pattison
- The Heart Research Institute, Newtown, New South Wales 2042, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
24
|
Jeyaharan D, Brackstone C, Schouten J, Davis P, Dixon AM. Characterisation of the Carboxypeptidase G2 Catalytic Site and Design of New Inhibitors for Cancer Therapy. Chembiochem 2018; 19:1959-1968. [PMID: 29968955 DOI: 10.1002/cbic.201800186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Indexed: 11/08/2022]
Abstract
The enzyme carboxypeptidase G2 (CPG2) is used in antibody-directed enzyme prodrug therapy (ADEPT) to catalyse the formation of an active drug from an inert prodrug. Free CPG2 in the bloodstream must be inhibited before administration of the prodrug in order to avoid a systemic reaction in the patient. Although a few small-molecule CPG2 inhibitors have been reported, none has been taken forward thus far. This lack of progress is due in part to a lack of structural understanding of the CPG2 active site as well as the absence of small molecules that can block the active site whilst targeting the complex for clearance. The work described here aimed to address both areas. We report the structural/functional impact of extensive point mutation across the putative CPG2 catalytic site and adjacent regions for the first time, revealing that residues outside the catalytic region (K208A, S210A and T357A) are crucial to enzyme activity. We also describe novel molecules that inhibit CPG2 whilst maintaining the accessibility of galactosylated moieties aimed at targeting the enzyme for clearance. This work acts as a platform for the future development of high-affinity CPG2 inhibitors that occupy new chemical space and will advance the safe application of ADEPT in cancer treatment.
Collapse
Affiliation(s)
| | - Carla Brackstone
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - James Schouten
- Mologic Ltd, Bedford Technology Park, Thurleigh, Bedford, MK44 2YP, UK
| | - Paul Davis
- Mologic Ltd, Bedford Technology Park, Thurleigh, Bedford, MK44 2YP, UK
| | - Ann M Dixon
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
25
|
Synthesis and Characterization of a Series of Orthogonally Protected l-Carnosine Derivatives. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9680-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Peters V, Zschocke J, Schmitt CP. Carnosinase, diabetes mellitus and the potential relevance of carnosinase deficiency. J Inherit Metab Dis 2018; 41:39-47. [PMID: 29027595 DOI: 10.1007/s10545-017-0099-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/20/2017] [Accepted: 09/26/2017] [Indexed: 12/15/2022]
Abstract
Carnosinase (CN1) is a dipeptidase, encoded by the CNDP1 gene, that degrades histidine-containing dipeptides, such as carnosine, anserine and homocarnosine. Loss of CN1 function (also called carnosinase deficiency or aminoacyl-histidine dipeptidase deficiency) has been reported in a small number of patients with highly elevated blood carnosine concentrations, denoted carnosinaemia; it is unclear whether the variety of clinical symptoms in these individuals is causally related to carnosinase deficiency. Reduced CN1 function should increase serum carnosine concentrations but the genetic basis of carnosinaemia has not been formally confirmed to be due to CNDP1 mutations. A CNDP1 polymorphism associated with low CN1 activity correlates with significantly reduced risk for diabetic nephropathy, especially in women with type 2 diabetes, and may slow progression of chronic kidney disease in children with glomerulonephritis. Studies in rodents demonstrate antiproteinuric and vasculoprotective effects of carnosine, the precise molecular mechanisms, however, are still incompletely understood. Thus, carnosinemia due to CN1 deficiency may be a non-disease; in contrast, carnosine may potentially protect against long-term sequelae of reactive metabolites accumulating, e.g. in diabetes and chronic renal failure.
Collapse
MESH Headings
- Amino Acid Metabolism, Inborn Errors/diagnosis
- Amino Acid Metabolism, Inborn Errors/enzymology
- Amino Acid Metabolism, Inborn Errors/epidemiology
- Amino Acid Metabolism, Inborn Errors/genetics
- Animals
- Brain Diseases, Metabolic, Inborn/diagnosis
- Brain Diseases, Metabolic, Inborn/enzymology
- Brain Diseases, Metabolic, Inborn/epidemiology
- Brain Diseases, Metabolic, Inborn/genetics
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/enzymology
- Diabetes Mellitus, Type 2/epidemiology
- Diabetes Mellitus, Type 2/genetics
- Diabetic Nephropathies/diagnosis
- Diabetic Nephropathies/enzymology
- Diabetic Nephropathies/epidemiology
- Diabetic Nephropathies/genetics
- Dipeptidases/deficiency
- Dipeptidases/genetics
- Humans
- Mutation
- Polymorphism, Genetic
- Prognosis
- Protective Factors
- Risk Factors
Collapse
Affiliation(s)
- Verena Peters
- Centre for Paediatric and Adolescent Medicine, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.
| | - Johannes Zschocke
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Claus P Schmitt
- Centre for Paediatric and Adolescent Medicine, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| |
Collapse
|
27
|
Okumura N, Takao T. The zinc form of carnosine dipeptidase 2 (CN2) has dipeptidase activity but its substrate specificity is different from that of the manganese form. Biochem Biophys Res Commun 2017; 494:484-490. [PMID: 29056506 DOI: 10.1016/j.bbrc.2017.10.100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022]
Abstract
Carnosine dipeptidase II (CN2), a metallopeptidase present in the cytosol of various vertebrate tissues, catalyzes the hydrolysis of carnosine and several other dipeptides in the presence of Mn2+. Although the metal-binding center of mouse CN2 is also able to associate with Zn2+in vitro, it was not known whether the zinc form of CN2 has any enzymatic activity. In the present study, we show that Zn2+ has a higher affinity for binding to CN2 than Mn2+, as evidenced by native mass spectrometry. The issue of whether the zinc form of CN2 has enzymatic activity was also examined using various dipeptides as substrates. The findings indicate that the zinc form of CN2 catalyzes the hydrolysis of several different dipeptides including Leu-His, Met-His and Ala-His at a reaction rate comparable to that for its manganese form. On the other hand, the zinc form of CN2 did not catalyze the hydrolysis of carnosine and several other dipeptides that are hydrolyzed by the manganese form of CN2. Substrate specificity was also examined in HEK293T cells expressing CN2, and the findings indicate that Leu-His, Met-His, but not carnosine, were hydrolyzed in the cell culture. These results suggest that the zinc form of CN2 is an active enzyme, but with a different substrate specificity from that of the manganese form.
Collapse
Affiliation(s)
- Nobuaki Okumura
- Institute for Protein Research, Osaka University, Suita, Osaka 5650871, Japan.
| | - Toshifumi Takao
- Institute for Protein Research, Osaka University, Suita, Osaka 5650871, Japan
| |
Collapse
|
28
|
Yachnin BJ, Khare SD. Engineering carboxypeptidase G2 circular permutations for the design of an autoinhibited enzyme. Protein Eng Des Sel 2017; 30:321-331. [PMID: 28160000 PMCID: PMC6283397 DOI: 10.1093/protein/gzx005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/11/2017] [Accepted: 01/18/2017] [Indexed: 11/14/2022] Open
Abstract
Carboxypeptidase G2 (CPG2) is an Food and Drug Administration (FDA)-approved enzyme drug used to treat methotrexate (MTX) toxicity in cancer patients receiving MTX treatment. It has also been used in directed enzyme-prodrug chemotherapy, but this strategy has been hampered by off-site activation of the prodrug by the circulating enzyme. The development of a tumor protease activatable CPG2, which could be achieved using a circular permutation of CPG2 fused to an inactivating 'prodomain', would aid in these applications. We report the development of a protease accessibility-based screen to identify candidate sites for circular permutation in proximity of the CPG2 active site. The resulting six circular permutants showed similar expression, structure, thermal stability, and, in four cases, activity levels compared to the wild-type enzyme. We rationalize these results based on structural models of the permutants obtained using the Rosetta software. We developed a cell growth-based selection system, and demonstrated that when fused to periplasm-directing signal peptides, one of our circular permutants confers MTX resistance in Escherichia coli with equal efficiency as the wild-type enzyme. As the permutants have similar properties to wild-type CPG2, these enzymes are promising starting points for the development of autoinhibited, protease-activatable zymogen forms of CPG2 for use in therapeutic contexts.
Collapse
Affiliation(s)
- Brahm J. Yachnin
- Department of Chemistry & Chemical Biology and the Center for Integrative Proteomics, Rutgers University, Piscataway, NJ 08854, USA
| | - Sagar D. Khare
- Department of Chemistry & Chemical Biology and the Center for Integrative Proteomics, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
29
|
Carnosine modulates glutamine synthetase expression in senescent astrocytes exposed to oxygen-glucose deprivation/recovery. Brain Res Bull 2017; 130:138-145. [PMID: 28115195 DOI: 10.1016/j.brainresbull.2017.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 12/22/2022]
Abstract
Carnosine is believed to be neuroprotective in cerebral ischemia. However, few reports concern its function on senescent astrocytes during cerebral ischemia. The aim of this study was to investigate the effects of carnosine on cell damage and glutamine synthetase (GS) expression in D-galactose-induced senescent astrocytes exposed to oxygen-glucose deprivation/recovery (OGD/R). The results showed that OGD/R caused massive cell damage and a significant decrease in GS expression both in the young and senescent astrocytes. The GS expression level was partly recovered whereas it continued to decline in the recovery stage in the young and senescent astrocytes, respectively. Decreased GS expression significantly inhibited glutamate uptake and glutamine production and release. Carnosine prevented the cell damage, rescued the expression of GS and reversed the glutamate uptake activity and glutamine production in the senescent astrocytes exposed to OGD/R. The modulatory effect of carnosine on GS expression was partly antagonized by pyrilamine, a selective histamine H1 receptors antagonist, but not bestatin. Bisindolylmaleimide II, a broad-spectrum inhibitor of PKC could also reverse the action of carnosine on GS expression. Thus, histamine H1 receptors and PKC pathway may be involved in the modulatory action of carnosine in GS expression in the senescent astrocytes exposed to OGD/R.
Collapse
|
30
|
Pavlin M, Rossetti G, De Vivo M, Carloni P. Carnosine and Homocarnosine Degradation Mechanisms by the Human Carnosinase Enzyme CN1: Insights from Multiscale Simulations. Biochemistry 2016; 55:2772-84. [PMID: 27105448 DOI: 10.1021/acs.biochem.5b01263] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The endogenous dipeptide l-carnosine, and its derivative homocarnosine, prevent and reduce several pathologies like amytrophic lateral sclerosis (ALS), Alzheimer's disease, and Parkinson's disease. Their beneficial action is severely hampered because of the hydrolysis by carnosinase enzymes, in particular the human carnosinase, hCN1. This belongs to the metallopeptidase M20 family, where a cocatalytic active site is formed by two Zn(2+) ions, bridged by a hydroxide anion. The protein may exist as a monomer and as a dimer in vivo. Here we used hybrid quantum mechanics/molecular mechanics simulations based on the dimeric apoenzyme's structural information to predict the Michaelis complexes with l-carnosine and its derivative homocarnosine. On the basis of our calculations, we suggest that (i) l-carnosine degradation occurs through a nucleophilic attack of a Zn(2+)-coordinated bridging moiety for both monomer and dimer. This mechanistic hypothesis for hCN1 catalysis differs from previous proposals, while it is in agreement with available experimental data. (ii) The experimentally measured higher affinity of homocarnosine for the enzyme relative to l-carnosine might be explained, at least in part, by more extensive interactions inside the monomeric and dimeric hCN1's active site. (iii) Hydrogen bonds at the binding site, present in the dimer but absent in the monomer, might play a role in the experimentally observed higher activity of the dimeric form. Investigations of the enzymatic reaction are required to establish or disprove this hypothesis. Our results may serve as a basis for the design of potent hCN1 inhibitors.
Collapse
Affiliation(s)
- Matic Pavlin
- Laboratory for Computational Biophysics, German Research School for Simulation Sciences (GRS), Forschungszentrum Jülich-RWTH Aachen , 52425 Jülich, Germany.,Computational Biomedicine Section (INM-9), Institute for Neuroscience and Medicine (INM), and Institute of Advanced Simulation (IAS), Forschungszentrum Jülich , 52425 Jülich, Germany
| | - Giulia Rossetti
- Computational Biomedicine Section (INM-9), Institute for Neuroscience and Medicine (INM), and Institute of Advanced Simulation (IAS), Forschungszentrum Jülich , 52425 Jülich, Germany.,Jülich Supercomputing Center (JSC), Forschungszentrum Jülich , 52425 Jülich, Germany.,Department of Oncology, Hematology and Stem Cell Transplantation, University Hospital Aachen, RWTH Aachen University , Pauwelsstraße 30, 52074 Aachen, Germany
| | - Marco De Vivo
- Computational Biomedicine Section (INM-9), Institute for Neuroscience and Medicine (INM), and Institute of Advanced Simulation (IAS), Forschungszentrum Jülich , 52425 Jülich, Germany.,Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genoa, Italy
| | - Paolo Carloni
- Laboratory for Computational Biophysics, German Research School for Simulation Sciences (GRS), Forschungszentrum Jülich-RWTH Aachen , 52425 Jülich, Germany.,Computational Biomedicine Section (INM-9), Institute for Neuroscience and Medicine (INM), and Institute of Advanced Simulation (IAS), Forschungszentrum Jülich , 52425 Jülich, Germany
| |
Collapse
|
31
|
Okumura N, Tamura J, Takao T. Evidence for an essential role of intradimer interaction in catalytic function of carnosine dipeptidase II using electrospray-ionization mass spectrometry. Protein Sci 2015; 25:511-22. [PMID: 26549037 DOI: 10.1002/pro.2842] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/21/2015] [Accepted: 11/04/2015] [Indexed: 12/19/2022]
Abstract
Carnosine dipeptidase II (CN2/CNDP2) is an M20 family metallopeptidase that hydrolyses various dipeptides including β-alanyl-L-histidine (carnosine). Crystallographic analysis showed that CN2 monomer is composed of one catalytic and one dimerization domains, and likely to form homodimer. In this crystal, H228 residue of the dimerization domain interacts with the substrate analogue bestatin on the active site of the dimer counterpart, indicating that H228 is involved in enzymatic reaction. In the present study, the role of intradimer interaction of CN2 in its catalytic activity was investigated using electrospray-ionization time-of-flight mass spectrometry (ESI-TOF MS). First, a dimer interface mutant I319K was prepared and shown to be present as a folded monomer in solution as examined by using ESI-TOF MS. Since the mutant was inactive, it was suggested that dimer formation is essential to its enzymatic activity. Next, we prepared H228A and D132A mutant proteins with different N-terminal extended sequences, which enabled us to monitor dimer exchange reaction by ESI-TOF MS. The D132A mutant is a metal ligand mutant and also inactive. But the activity was partially recovered time-dependently when H228A and D132A mutant proteins were incubated together. In parallel, H228A/D132A heterodimer was formed as detected by ESI-TOF MS, indicating that interaction of a catalytic center with H228 residue of the other subunit is essential to the enzymatic reaction. These results provide evidence showing that intradimer interaction of H228 with the reaction center of the dimer counterpart is essential to the enzymatic activity of CN2.
Collapse
Affiliation(s)
- Nobuaki Okumura
- Laboratory of Homeostatic Integration, Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Jun Tamura
- Mass Spectrometry Business Unit, JEOL Ltd, Akishima, Tokyo, 196-8558, Japan
| | - Toshifumi Takao
- Laboratory of Protein Profiling and Functional Proteomics, Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
32
|
Babizhayev MA. Patenting strategies, the authentication US fiscal methodology, discovery and development of imidazole-containing peptide compounds with free-radical scavenging and transglycating properties acting as targeted drug regulators and homeostatic agents with diverse therapeutic activities for pharmacy of diabetes and metabolic diseases. Expert Opin Ther Pat 2015; 25:1319-39. [PMID: 26372004 DOI: 10.1517/13543776.2015.1064899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Diabetes mellitus is the seventh-leading cause of death in the US and diabetic complications are interlaced with specific diverse microvascular and macrovascular pathologies resulting from hyperglycemia. The society should expand prowess and patenting of biotechnology to cure disease and complications. AREAS COVERED The work summarizes biological activities of patented carnosine mimetics resistant in formulations to enzymatic hydrolysis with human carnosinases that are acting as a universal form of antioxidant, deglycating and transglycating agents that inhibit sugar-mediated protein crosslinking, chelate or inactivate a number of transition metal ions (including ferrous and copper ions), possess lipid peroxidase type of activity and protection of antioxidant enzymes from inactivation. L-Carnosine released systemically from N-acetylcarnosine lubricant eye drops or from skeletal muscle during exercise is transported into hypothalamic tuberomammillary nucleus-histamine neurons and hydrolyzed. The resulting L-histidine is subsequently converted into histamine acting as metabolic fuel feeding for the hypothalamic histaminergic system. This mechanism is responsible for the effects of L-carnosine on autonomic neurotransmission and physiological function of pancreas, stimulating in vivo regeneration of insulin-producing β cells. EXPERT OPINION Therapeutic benefits for imidazole-containing antioxidants (nutraceutical non-hydrolyzed carnosine, carcinine, D-carnosine, ophthalmic prodrug N-acetylcarnosine, leucyl-histidylhydrazide and patented formulations thereof) are an essential part of diabetes treatment.
Collapse
Affiliation(s)
- Mark A Babizhayev
- a Innovative Vision Products, Inc , 3511 Silverside Road, Suite 105, County of New Castle, Delaware, USA +7 499 977 2387 ;
| |
Collapse
|
33
|
Singh AK, Singh M, Pandya VK, G L B, Singh V, Ekka MK, Mittal M, Kumaran S. Molecular basis of peptide recognition in metallopeptidase Dug1p from Saccharomyces cerevisiae. Biochemistry 2014; 53:7870-83. [PMID: 25427234 DOI: 10.1021/bi501263u] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dug1p, a M20 family metallopeptidase and human orthologue of carnosinase, hydrolyzes Cys-Gly dipeptide, the last step of glutathione (GSH) degradation in Saccharomyces cerevisiae. Molecular bases of peptide recognition by Dug1p and other M20 family peptidases remain unclear in the absence of structural information about enzyme-peptide complexes. We report the crystal structure of Dug1p at 2.55 Å resolution in complex with a Gly-Cys dipeptide and two Zn(2+) ions. The dipeptide is trapped in the tunnel-like active site; its C-terminus is held by residues at the S1' binding pocket, whereas the S1 pocket coordinates Zn(2+) ions and the N-terminus of the peptide. Superposition with the carnosinase structure shows that peptide mimics the inhibitor bestatin, but active site features are altered upon peptide binding. The space occupied by the N-terminus of bestatin is left unoccupied in the Dug1p structure, suggesting that tripeptides could bind. Modeling of tripeptides into the Dug1p active site showed tripeptides fit well. Guided by the structure and modeling, we examined the ability of Dug1p to hydrolyze tripeptides, and results show that Dug1p hydrolyzes tripeptides selectively. Point mutations of catalytic residues do not abolish the peptide binding but abolish the hydrolytic activity, suggesting a noncooperative mode in peptide recognition. In summary, results reveal that peptides are recognized primarily through their amino and carboxyl termini, but hydrolysis depends on the properties of peptide substrates, dictated by their respective sequences. Structural similarity between the Dug1p-peptide complex and the bestatin-bound complex of CN2 suggests that the Dug1p-peptide structure can be used as a template for designing natural peptide inhibitors.
Collapse
Affiliation(s)
- Appu Kumar Singh
- G. N. Ramachandran Protein Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR) , Sector 39A, Chandigarh 160036, India
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Structural Insights into the Substrate Specificity of (S)-Ureidoglycolate Amidohydrolase and Its Comparison with Allantoate Amidohydrolase. J Mol Biol 2014; 426:3028-40. [DOI: 10.1016/j.jmb.2014.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/26/2014] [Accepted: 06/30/2014] [Indexed: 11/20/2022]
|
35
|
Bellia F, Vecchio G, Rizzarelli E. Carnosinases, their substrates and diseases. Molecules 2014; 19:2299-329. [PMID: 24566305 PMCID: PMC6271292 DOI: 10.3390/molecules19022299] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/07/2014] [Accepted: 01/28/2014] [Indexed: 02/08/2023] Open
Abstract
Carnosinases are Xaa-His dipeptidases that play diverse functions throughout all kingdoms of life. Human isoforms of carnosinase (CN1 and CN2) under appropriate conditions catalyze the hydrolysis of the dipeptides carnosine (β-alanyl-l-histidine) and homocarnosine (γ-aminobutyryl-l-histidine). Alterations of serum carnosinase (CN1) activity has been associated with several pathological conditions, such as neurological disorders, chronic diseases and cancer. For this reason the use of carnosinase levels as a biomarker in cerebrospinal fluid (CSF) has been questioned. The hydrolysis of imidazole-related dipeptides in prokaryotes and eukaryotes is also catalyzed by aminoacyl-histidine dipeptidases like PepD (EC 3.4.13.3), PepV (EC 3.4.13.19) and anserinase (EC 3.4.13.5). The review deals with the structure and function of this class of enzymes in physiological and pathological conditions. The main substrates of these enzymes, i.e., carnosine, homocarnosine and anserine (β-alanyl-3-methyl-l-histidine) will also be described.
Collapse
Affiliation(s)
- Francesco Bellia
- Institute of Biostructure and Bioimaging, CNR, viale A. Doria 6, 95125 Catania, Italy.
| | - Graziella Vecchio
- Department of Chemical Sciences, University of Catania, viale A. Doria 6, 95125 Catania, Italy.
| | - Enrico Rizzarelli
- Institute of Biostructure and Bioimaging, CNR, viale A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
36
|
Abstract
Carnosine (β-alanyl-l-histidine) was discovered in 1900 as an abundant non-protein nitrogen-containing compound of meat. The dipeptide is not only found in skeletal muscle, but also in other excitable tissues. Most animals, except humans, also possess a methylated variant of carnosine, either anserine or ophidine/balenine, collectively called the histidine-containing dipeptides. This review aims to decipher the physiological roles of carnosine, based on its biochemical properties. The latter include pH-buffering, metal-ion chelation, and antioxidant capacity as well as the capacity to protect against formation of advanced glycation and lipoxidation end-products. For these reasons, the therapeutic potential of carnosine supplementation has been tested in numerous diseases in which ischemic or oxidative stress are involved. For several pathologies, such as diabetes and its complications, ocular disease, aging, and neurological disorders, promising preclinical and clinical results have been obtained. Also the pathophysiological relevance of serum carnosinase, the enzyme actively degrading carnosine into l-histidine and β-alanine, is discussed. The carnosine system has evolved as a pluripotent solution to a number of homeostatic challenges. l-Histidine, and more specifically its imidazole moiety, appears to be the prime bioactive component, whereas β-alanine is mainly regulating the synthesis of the dipeptide. This paper summarizes a century of scientific exploration on the (patho)physiological role of carnosine and related compounds. However, far more experiments in the fields of physiology and related disciplines (biology, pharmacology, genetics, molecular biology, etc.) are required to gain a full understanding of the function and applications of this intriguing molecule.
Collapse
|
37
|
Mutational and structural analysis of L-N-carbamoylase reveals new insights into a peptidase M20/M25/M40 family member. J Bacteriol 2012; 194:5759-68. [PMID: 22904279 DOI: 10.1128/jb.01056-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-Carbamoyl-L-amino acid amidohydrolases (L-carbamoylases) are important industrial enzymes used in kinetic resolution of racemic mixtures of N-carbamoyl-amino acids due to their strict enantiospecificity. In this work, we report the first L-carbamoylase structure belonging to Geobacillus stearothermophilus CECT43 (BsLcar), at a resolution of 2.7 Å. Structural analysis of BsLcar and several members of the peptidase M20/M25/M40 family confirmed the expected conserved residues at the active site in this family, and site-directed mutagenesis revealed their relevance to substrate binding. We also found an unexpectedly conserved arginine residue (Arg(234) in BsLcar), proven to be critical for dimerization of the enzyme. The mutation of this sole residue resulted in a total loss of activity and prevented the formation of the dimer in BsLcar. Comparative studies revealed that the dimerization domain of the peptidase M20/M25/M40 family is a "small-molecule binding domain," allowing further evolutionary considerations for this enzyme family.
Collapse
|
38
|
Vistoli G, Carini M, Aldini G. Transforming dietary peptides in promising lead compounds: the case of bioavailable carnosine analogs. Amino Acids 2012; 43:111-26. [PMID: 22286834 DOI: 10.1007/s00726-012-1224-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/12/2012] [Indexed: 01/12/2023]
Abstract
The ability of carnosine to prevent advanced glycoxidation end products (AGEs) and advanced lipoxidation end products (ALEs) formation, on the one hand, and the convincing evidence that these compounds act as pathogenetic factors, on the other hand, strongly support carnosine as a promising therapeutic agent for oxidative-based diseases. The mechanism/s by which carnosine inhibits AGEs and ALEs is still under investigation but an emerging hypothesis is that carnosine acts by deactivating the AGEs and ALEs precursors and in particular the reactive carbonyl species (RCS) generated by both lipid and sugar oxidation. The ability of carnosine to inhibit AGEs and ALEs formation and the corresponding biological effects has been demonstrated in several in vitro studies and in some animal models. However, such effects are in line of principle, limited in humans, due to the effect of serum carnosinase (absent in rodents), which catalyzes the carnosine hydrolysis to its constitutive amino acids. Such a limitation has prompted a great interest in the design of carnosine derivatives, which maintaining (or improving) the reactivity with RCS, are more resistant to carnosinase. The present paper intends to critically review the most recent studies oriented to obtaining carnosine derivatives, optimized in terms of reactivity with RCS, selectivity (no reaction with physiological aldehydes) and the pharmacokinetic profile (mainly through an enhanced resistance to carnosinase hydrolysis). The review also includes a brief description of AGEs and ALEs as drug targets and the evidence so far reported regarding the ability of carnosine as inhibitor of AGEs and ALEs formation and the proposed reaction mechanisms.
Collapse
Affiliation(s)
- Giulio Vistoli
- Department of Pharmaceutical Sciences Pietro Pratesi, Università degli Studi di Milano, via Mangiagalli 25, 20133 Milan, Italy
| | | | | |
Collapse
|
39
|
Role of l-carnosine in the control of blood glucose, blood pressure, thermogenesis, and lipolysis by autonomic nerves in rats: involvement of the circadian clock and histamine. Amino Acids 2012; 43:97-109. [DOI: 10.1007/s00726-012-1251-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 02/13/2012] [Indexed: 11/26/2022]
|
40
|
Oku T, Ando S, Tsai HC, Yamashita Y, Ueno H, Shiozaki K, Nishi R, Yamada S. Purification and identification of two carnosine-cleaving enzymes, carnosine dipeptidase I and Xaa-methyl-His dipeptidase, from Japanese eel (Anguilla japonica). Biochimie 2012; 94:1281-90. [PMID: 22525515 DOI: 10.1016/j.biochi.2012.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 02/15/2012] [Indexed: 01/22/2023]
Abstract
Three enzymes, carnosine dipeptidase I (EC 3.4.13.20, CNDP1), carnosine dipeptidase II (EC 3.4.13.18, CNDP2), and Xaa-methyl-His dipeptidase (or anserinase: EC 3.4.13.5, ANSN), are known to be capable of catalyzing the hydrolysis of carnosine (β-alanyl-l-histidine), in vertebrates. Here we report the purification and identification of two unidentified carnosine-cleaving enzymes from Japanese eel (Anguilla japonica). Two different dipeptidases were successfully purified to homogeneity from the skeletal muscle; one exhibited a broad substrate specificity, while the other a narrow specificity. N-terminal amino-acid sequencing, deglycosylation analysis, and genetic analysis clearly revealed that the former is a homodimer of glycosylated subunits, encoded by ANSN, and the latter is another homodimer of glycosylated subunits, encoded by CNDP1; that is, Xaa-methyl-His dipeptidase, and carnosine dipeptidase I respectively. This is the first report on the identification of carnosine dipeptidase I from a non-mammal. Database search revealed presence of a CNDP1 ortholog only from salmonid fishes, including Atlantic salmon and rainbow trout, but not from other ray-finned fish species, such as zebrafish, fugu, and medaka whose genomes have been completely sequenced. The mRNAs of CNDP1 and ANSN are strongly expressed in the liver of Japanese eel, compared with other tissues, while that of CNDP2 is widely distributed in all tissues tested.
Collapse
Affiliation(s)
- Takahiro Oku
- Science of Marine Resources, United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Carnosine derivatives: new multifunctional drug-like molecules. Amino Acids 2011; 43:153-63. [DOI: 10.1007/s00726-011-1178-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 11/22/2011] [Indexed: 10/15/2022]
|
42
|
Botelho TO, Guevara T, Marrero A, Arêde P, Fluxà VS, Reymond JL, Oliveira DC, Gomis-Rüth FX. Structural and functional analyses reveal that Staphylococcus aureus antibiotic resistance factor HmrA is a zinc-dependent endopeptidase. J Biol Chem 2011; 286:25697-709. [PMID: 21622555 PMCID: PMC3138305 DOI: 10.1074/jbc.m111.247437] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/07/2011] [Indexed: 12/17/2022] Open
Abstract
HmrA is an antibiotic resistance factor of methicillin-resistant Staphylococcus aureus. Molecular analysis of this protein revealed that it is not a muramidase or β-lactamase but a nonspecific double-zinc endopeptidase consisting of a catalytic domain and an inserted oligomerization domain, which probably undergo a relative interdomain hinge rotation upon substrate binding. The active-site cleft is located at the domain interface. Four HmrA protomers assemble to a large ∼170-kDa homotetrameric complex of 125 Å. All four active sites are fully accessible and ∼50-70 Å apart, far enough apart to act on a large meshwork substrate independently but simultaneously. In vivo studies with four S. aureus strains of variable resistance levels revealed that the extracellular addition of HmrA protects against loss of viability in the presence of oxacillin and that this protection depends on proteolytic activity. All of these results indicate that HmrA is a peptidase that participates in resistance mechanisms in vivo in the presence of β-lactams. Furthermore, our results have implications for most S. aureus strains of known genomic sequences and several other cocci and bacilli, which harbor close orthologs. This suggests that HmrA may be a new widespread antibiotic resistance factor in bacteria.
Collapse
Affiliation(s)
- Tiago O. Botelho
- From the Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, Barcelona Science Park, Helix Building, c/ Baldiri Reixac, 15-21, E-08028 Barcelona, Spain
| | - Tibisay Guevara
- From the Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, Barcelona Science Park, Helix Building, c/ Baldiri Reixac, 15-21, E-08028 Barcelona, Spain
| | - Aniebrys Marrero
- From the Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, Barcelona Science Park, Helix Building, c/ Baldiri Reixac, 15-21, E-08028 Barcelona, Spain
| | - Pedro Arêde
- the Center for Microbiological Resources, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, P-2829-516 Caparica, Portugal, and
| | - Viviana S. Fluxà
- the Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-301 Berne, Switzerland
| | - Jean-Louis Reymond
- the Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-301 Berne, Switzerland
| | - Duarte C. Oliveira
- the Center for Microbiological Resources, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, P-2829-516 Caparica, Portugal, and
| | - F. Xavier Gomis-Rüth
- From the Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, Barcelona Science Park, Helix Building, c/ Baldiri Reixac, 15-21, E-08028 Barcelona, Spain
| |
Collapse
|
43
|
Babizhayev MA, Deyev AI, Savel'Yeva EL, Lankin VZ, Yegorov YE. Skin beautification with oral non-hydrolized versions of carnosine and carcinine: Effective therapeutic management and cosmetic skincare solutions against oxidative glycation and free-radical production as a causal mechanism of diabetic complications and skin aging. J DERMATOL TREAT 2011; 23:345-84. [DOI: 10.3109/09546634.2010.521812] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Chang CY, Hsieh YC, Wang TY, Chen YC, Wang YK, Chiang TW, Chen YJ, Chang CH, Chen CJ, Wu TK. Crystal structure and mutational analysis of aminoacylhistidine dipeptidase from Vibrio alginolyticus reveal a new architecture of M20 metallopeptidases. J Biol Chem 2010; 285:39500-10. [PMID: 20819954 DOI: 10.1074/jbc.m110.139683] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminoacylhistidine dipeptidases (PepD, EC 3.4.13.3) belong to the family of M20 metallopeptidases from the metallopeptidase H clan that catalyze a broad range of dipeptide and tripeptide substrates, including L-carnosine and L-homocarnosine. Homocarnosine has been suggested as a precursor for the neurotransmitter γ-aminobutyric acid (GABA) and may mediate the antiseizure effects of GABAergic therapies. Here, we report the crystal structure of PepD from Vibrio alginolyticus and the results of mutational analysis of substrate-binding residues in the C-terminal as well as substrate specificity of the PepD catalytic domain-alone truncated protein PepD(CAT). The structure of PepD was found to exist as a homodimer, in which each monomer comprises a catalytic domain containing two zinc ions at the active site center for its hydrolytic function and a lid domain utilizing hydrogen bonds between helices to form the dimer interface. Although the PepD is structurally similar to PepV, which exists as a monomer, putative substrate-binding residues reside in different topological regions of the polypeptide chain. In addition, the lid domain of the PepD contains an "extra" domain not observed in related M20 family metallopeptidases with a dimeric structure. Mutational assays confirmed both the putative di-zinc allocations and the architecture of substrate recognition. In addition, the catalytic domain-alone truncated PepD(CAT) exhibited substrate specificity to l-homocarnosine compared with that of the wild-type PepD, indicating a potential value in applications of PepD(CAT) for GABAergic therapies or neuroprotection.
Collapse
Affiliation(s)
- Chin-Yuan Chang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30010, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Heck T, Makam V, Lutz J, Blank L, Schmid A, Seebach D, Kohler HP, Geueke B. Kinetic Analysis of L-Carnosine Formation by β-Aminopeptidases. Adv Synth Catal 2010. [DOI: 10.1002/adsc.200900697] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Bellia F, Calabrese V, Guarino F, Cavallaro M, Cornelius C, De Pinto V, Rizzarelli E. Carnosinase levels in aging brain: redox state induction and cellular stress response. Antioxid Redox Signal 2009; 11:2759-75. [PMID: 19583493 DOI: 10.1089/ars.2009.2738] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carnosinase is a dipeptidase found almost exclusively in brain and serum. Its natural substrate carnosine, present at high concentration in the brain, has been proposed as an antioxidant in vivo. We investigated the role of carnosinase in brain aging to establish a possible correlation with age-related changes in cellular stress response and redox status. In addition, a stable HeLa cell line expressing recombinant human serum carnosinase CN1 was established. The enzyme was purified from transfected cells, and specific antibodies were produced against it. Brain expression of CN1, Hsp72, heme oxygenase-1, and thioredoxin reductase increased with age, with a maximal induction in hippocampus and substantia nigra, followed by cerebellum, cortex, septum, and striatum. Hsps induction was associated with significant changes in total SH groups, GSH redox state, carbonyls, and HNE levels. A positive correlation between decrease in GSH and increase in Hsp72 expression was observed in all brain regions examined during aging. Increased carnosinase activity in the brain can lead to decreased carnosine levels and GSH/GSSG ratio. These results, consistent with the current notion that oxidative stress and cellular damage are characteristic hallmarks of the aging process, sustain the critical role of cellular stress-response mechanisms as possible targets for novel antiaging strategies.
Collapse
Affiliation(s)
- Francesco Bellia
- Department of Chemical Sciences, University of Catania , Catania Section, Catania, Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
Colocalization of a carnosine-splitting enzyme, tissue carnosinase (CN2)/cytosolic non-specific dipeptidase 2 (CNDP2), with histidine decarboxylase in the tuberomammillary nucleus of the hypothalamus. Neurosci Lett 2008; 445:166-9. [DOI: 10.1016/j.neulet.2008.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 09/03/2008] [Accepted: 09/03/2008] [Indexed: 11/18/2022]
|