1
|
Dondalska A, Axberg Pålsson S, Spetz AL. Is There a Role for Immunoregulatory and Antiviral Oligonucleotides Acting in the Extracellular Space? A Review and Hypothesis. Int J Mol Sci 2022; 23:ijms232314593. [PMID: 36498932 PMCID: PMC9735517 DOI: 10.3390/ijms232314593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Here, we link approved and emerging nucleic acid-based therapies with the expanding universe of small non-coding RNAs (sncRNAs) and the innate immune responses that sense oligonucleotides taken up into endosomes. The Toll-like receptors (TLRs) 3, 7, 8, and 9 are located in endosomes and can detect nucleic acids taken up through endocytic routes. These receptors are key triggers in the defense against viruses and/or bacterial infections, yet they also constitute an Achilles heel towards the discrimination between self- and pathogenic nucleic acids. The compartmentalization of nucleic acids and the activity of nucleases are key components in avoiding autoimmune reactions against nucleic acids, but we still lack knowledge on the plethora of nucleic acids that might be released into the extracellular space upon infections, inflammation, and other stress responses involving increased cell death. We review recent findings that a set of single-stranded oligonucleotides (length of 25-40 nucleotides (nt)) can temporarily block ligands destined for endosomes expressing TLRs in human monocyte-derived dendritic cells. We discuss knowledge gaps and highlight the existence of a pool of RNA with an approximate length of 30-40 nt that may still have unappreciated regulatory functions in physiology and in the defense against viruses as gatekeepers of endosomal uptake through certain routes.
Collapse
|
2
|
Huang YL, Huang MT, Sung PS, Chou TY, Yang RB, Yang AS, Yu CM, Hsu YW, Chang WC, Hsieh SL. Endosomal TLR3 co-receptor CLEC18A enhances host immune response to viral infection. Commun Biol 2021; 4:229. [PMID: 33603190 PMCID: PMC7893028 DOI: 10.1038/s42003-021-01745-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
Human C-type lectin member 18A (CLEC18A) is ubiquitously expressed in human, and highest expression levels are found in human myeloid cells and liver. In contrast, mouse CLEC18A (mCLEC18A) is only expressed in brain, kidney and heart. However, the biological functions of CLEC18A are still unclear. We have shown that a single amino acid change (S339 →R339) in CTLD domain has profound effect in their binding to polysaccharides and house dust mite allergens. In this study, we further demonstrate that CLEC18A and its mutant CLEC18A(S339R) associate with TLR3 in endosome and bind poly (I:C) specifically. Compared to TLR3 alone, binding affinity to poly (I:C) is further increased in TLR3-CLEC18A and TLR3-CLEC18A(S339R) complexes. Moreover, CLEC18A and CLEC18A(S339R) enhance the production of type I and type III interferons (IFNs), but not proinflammatory cytokines, in response to poly (I:C) or H5N1 influenza A virus (IAV) infection. Compared to wild type (WT) mice, ROSA-CLEC18A and ROSA-CLEC18A(S339R) mice generate higher amounts of interferons and are more resistant to H5N1 IAV infection. Thus, CLEC18A is a TLR3 co-receptor, and may contribute to the differential immune responses to poly (I:C) and IAV infection between human and mouse.
Collapse
Affiliation(s)
- Ya-Lang Huang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Pei-Shan Sung
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Teh-Ying Chou
- Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - An-Suei Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chung-Ming Yu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Wen Hsu
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shie-Liang Hsieh
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
- Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan.
- Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
3
|
SIDT1-dependent absorption in the stomach mediates host uptake of dietary and orally administered microRNAs. Cell Res 2020; 31:247-258. [PMID: 32801357 PMCID: PMC8026584 DOI: 10.1038/s41422-020-0389-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Dietary microRNAs have been shown to be absorbed by mammals and regulate host gene expression, but the absorption mechanism remains unknown. Here, we show that SIDT1 expressed on gastric pit cells in the stomach is required for the absorption of dietary microRNAs. SIDT1-deficient mice show reduced basal levels and impaired dynamic absorption of dietary microRNAs. Notably, we identified the stomach as the primary site for dietary microRNA absorption, which is dramatically attenuated in the stomachs of SIDT1-deficient mice. Mechanistic analyses revealed that the uptake of exogenous microRNAs by gastric pit cells is SIDT1 and low-pH dependent. Furthermore, oral administration of plant-derived miR2911 retards liver fibrosis, and this protective effect was abolished in SIDT1-deficient mice. Our findings reveal a major mechanism underlying the absorption of dietary microRNAs, uncover an unexpected role of the stomach and shed light on developing small RNA therapeutics by oral delivery.
Collapse
|
4
|
Aslaksen S, Wolff AB, Vigeland MD, Breivik L, Sheng Y, Oftedal BE, Artaza H, Skinningsrud B, Undlien DE, Selmer KK, Husebye ES, Bratland E. Identification and characterization of rare toll-like receptor 3 variants in patients with autoimmune Addison's disease. J Transl Autoimmun 2019; 1:100005. [PMID: 32743495 PMCID: PMC7388336 DOI: 10.1016/j.jtauto.2019.100005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/16/2019] [Accepted: 05/19/2019] [Indexed: 12/13/2022] Open
Abstract
Autoimmune Addison's disease (AAD) is a classic organ-specific autoimmune disease characterized by an immune-mediated attack on the adrenal cortex. As most autoimmune diseases, AAD is believed to be caused by a combination of genetic and environmental factors, and probably interactions between the two. Persistent viral infections have been suggested to play a triggering role, by invoking inflammation and autoimmune destruction. The inability of clearing infections can be due to aberrations in innate immunity, including mutations in genes involved in the recognition of conserved microbial patterns. In a whole exome sequencing study of anonymized AAD patients, we discovered several rare variants predicted to be damaging in the gene encoding Toll-like receptor 3 (TLR3). TLR3 recognizes double stranded RNAs, and is therefore a major factor in antiviral defense. We here report the occurrence and functional characterization of five rare missense variants in TLR3 of patients with AAD. Most of these variants occurred together with a common TLR3 variant that has been associated with a wide range of immunopathologies. The biological implications of these variants on TLR3 function were evaluated in a cell-based assay, revealing a partial loss-of-function effect of three of the rare variants. In addition, rare mutations in other members of the TLR3-interferon (IFN) signaling pathway were detected in the AAD patients. Together, these findings indicate a potential role for TLR3 and downstream signaling proteins in the pathogenesis in a subset of AAD patients.
Collapse
Affiliation(s)
- Sigrid Aslaksen
- Department of Clinical Science, University of Bergen, Norway.,KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Anette B Wolff
- Department of Clinical Science, University of Bergen, Norway.,KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Magnus D Vigeland
- Institute of Clinical Medicine, University of Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Norway
| | - Lars Breivik
- Department of Clinical Science, University of Bergen, Norway.,KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Norway
| | - Ying Sheng
- Department of Medical Genetics, Oslo University Hospital, Norway
| | - Bergithe E Oftedal
- Department of Clinical Science, University of Bergen, Norway.,KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Haydee Artaza
- Department of Clinical Science, University of Bergen, Norway.,KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | | | - Dag E Undlien
- Institute of Clinical Medicine, University of Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Norway
| | - Kaja K Selmer
- Department of Research and Development, Division of Neuroscience, Oslo University Hospital and the University of Oslo, Norway.,National Centre for Epilepsy, Oslo University Hospital, Norway
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, Norway.,KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Norway
| | - Eirik Bratland
- Department of Clinical Science, University of Bergen, Norway.,KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| |
Collapse
|
5
|
Topping KD, Kelly DG. Investigation of binding characteristics of immobilized toll-like receptor 3 with poly(I:C) for potential biosensor application. Anal Biochem 2018; 564-565:133-140. [PMID: 29842862 DOI: 10.1016/j.ab.2018.05.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/03/2018] [Accepted: 05/23/2018] [Indexed: 11/19/2022]
Abstract
Toll-like receptor 3 (TLR3), a pathogen recognition receptor of the innate immune response, recognizes and is activated by double-stranded RNA (dsRNA), which is indicative of viral exposure. A sensor design exercise was conducted, using surface plasmon resonance detection, through the examination of several immobilization approaches for TLR3 as a biorecognition element (BRE) onto a modified gold surface. To examine the TLR3-dsRNA interaction a synthetic analogue mimic, poly (I:C), was used. The interaction binding characteristics were determined and compared to literature data to establish the optimal immobilization method for the TLR3 BRE. A preliminary evaluation of the efficacy of the selected TLR3 surface as a broad-spectrum viral biosensor was also performed. Amine-coupling was found to be the most reliable method for manufacturing repeatable and consistent TLR3 BRE sensor surfaces, although this immobilization schema is not tailored to place the receptor in a spatially-specific orientation. The equilibrium dissociation constant (KD) measured for this immobilized TLR3-poly (I:C) interaction was 117 ± 3.30 pM. This evaluation included a cross-reactivity study using a selection of purified E. coli and synthetic double- and single-stranded nucleic acids. The results of this design exercise and ligand binding study will inform future work towards the development of a broad-spectrum viral sensor device.
Collapse
Affiliation(s)
- Kristin D Topping
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, P.O. Box 17000, Station Forces, Kingston, K7K 7B4, Ontario, Canada.
| | - David G Kelly
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, P.O. Box 17000, Station Forces, Kingston, K7K 7B4, Ontario, Canada
| |
Collapse
|
6
|
Abstract
Pattern recognition receptors (PRRs) survey intra- and extracellular spaces for pathogen-associated molecular patterns (PAMPs) within microbial products of infection. Recognition and binding to cognate PAMP ligand by specific PRRs initiates signaling cascades that culminate in a coordinated intracellular innate immune response designed to control infection. In particular, our immune system has evolved specialized PRRs to discriminate viral nucleic acid from host. These are critical sensors of viral RNA to trigger innate immunity in the vertebrate host. Different families of PRRs of virus infection have been defined and reveal a diversity of PAMP specificity for wide viral pathogen coverage to recognize and extinguish virus infection. In this review, we discuss recent insights in pathogen recognition by the RIG-I-like receptors, related RNA helicases, Toll-like receptors, and other RNA sensor PRRs, to present emerging themes in innate immune signaling during virus infection.
Collapse
Affiliation(s)
- Kwan T Chow
- Center for Innate Immunity and Immune Disease and Department of Immunology, University of Washington, Seattle, Washington 98109, USA; , ,
| | - Michael Gale
- Center for Innate Immunity and Immune Disease and Department of Immunology, University of Washington, Seattle, Washington 98109, USA; , ,
| | - Yueh-Ming Loo
- Center for Innate Immunity and Immune Disease and Department of Immunology, University of Washington, Seattle, Washington 98109, USA; , ,
| |
Collapse
|
7
|
Gillet FX, Garcia RA, Macedo LLP, Albuquerque EVS, Silva MCM, Grossi-de-Sa MF. Investigating Engineered Ribonucleoprotein Particles to Improve Oral RNAi Delivery in Crop Insect Pests. Front Physiol 2017; 8:256. [PMID: 28503153 PMCID: PMC5408074 DOI: 10.3389/fphys.2017.00256] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/10/2017] [Indexed: 01/15/2023] Open
Abstract
Genetically modified (GM) crops producing double-stranded RNAs (dsRNAs) are being investigated largely as an RNA interference (RNAi)-based resistance strategy against crop insect pests. However, limitations of this strategy include the sensitivity of dsRNA to insect gut nucleases and its poor insect cell membrane penetration. Working with the insect pest cotton boll weevil (Anthonomus grandis), we showed that the chimeric protein PTD-DRBD (peptide transduction domain—dsRNA binding domain) combined with dsRNA forms a ribonucleoprotein particle (RNP) that improves the effectiveness of the RNAi mechanism in the insect. The RNP slows down nuclease activity, probably by masking the dsRNA. Furthermore, PTD-mediated internalization in insect gut cells is achieved within minutes after plasma membrane contact, limiting the exposure time of the RNPs to gut nucleases. Therefore, the RNP provides an approximately 2-fold increase in the efficiency of insect gene silencing upon oral delivery when compared to naked dsRNA. Taken together, these data demonstrate the role of engineered RNPs in improving dsRNA stability and cellular entry, representing a path toward the design of enhanced RNAi strategies in GM plants against crop insect pests.
Collapse
Affiliation(s)
| | - Rayssa A Garcia
- Embrapa Genetic Resources and BiotechnologyBrasília, Brazil.,Department of Cellular Biology, Brasilia Federal University (UnB)Brasília, Brazil
| | | | | | | | - Maria F Grossi-de-Sa
- Embrapa Genetic Resources and BiotechnologyBrasília, Brazil.,Graduate Program in Genomics and Biotechnology, Catholic University of BrasiliaBrasilia, Brazil
| |
Collapse
|
8
|
Jose AM. Movement of regulatory RNA between animal cells. Genesis 2015; 53:395-416. [PMID: 26138457 PMCID: PMC4915348 DOI: 10.1002/dvg.22871] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 06/28/2015] [Accepted: 06/29/2015] [Indexed: 12/12/2022]
Abstract
Recent studies suggest that RNA can move from one cell to another and regulate genes through specific base-pairing. Mechanisms that modify or select RNA for secretion from a cell are unclear. Secreted RNA can be stable enough to be detected in the extracellular environment and can enter the cytosol of distant cells to regulate genes. Mechanisms that import RNA into the cytosol of an animal cell can enable uptake of RNA from many sources including other organisms. This role of RNA is akin to that of steroid hormones, which cross cell membranes to regulate genes. The potential diagnostic use of RNA in human extracellular fluids has ignited interest in understanding mechanisms that enable the movement of RNA between animal cells. Genetic model systems will be essential to gain more confidence in proposed mechanisms of RNA transport and to connect an extracellular RNA with a specific biological function. Studies in the worm C. elegans and in other animals have begun to reveal parts of this novel mechanism of cell-to-cell communication. Here, I summarize the current state of this nascent field, highlight the many unknowns, and suggest future directions.
Collapse
Affiliation(s)
- Antony M Jose
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| |
Collapse
|
9
|
Beyond dsRNA: Toll-like receptor 3 signalling in RNA-induced immune responses. Biochem J 2014; 458:195-201. [PMID: 24524192 DOI: 10.1042/bj20131492] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The innate immune system recognizes pathogen- and damage-associated molecular patterns using pattern-recognition receptors that activate a wide range of signalling cascades to maintain host homoeostasis against infection and inflammation. Endosomal TLR3 (Toll-like receptor 3), a type I transmembrane protein, senses RNAs derived from cells with viral infection or sterile tissue damage, leading to the induction of type I interferon and cytokine production, as well as dendritic cell maturation. It has been accepted that TLR3 recognizes perfect dsRNA, but little has been addressed experimentally with regard to the structural features of virus- or host-derived RNAs that activate TLR3. Recently, a TLR3 agonist was identified, which was a virus-derived 'structured' RNA with incomplete stem structures. Both dsRNA and structured RNA are similarly internalized through clathrin- and raftlin-dependent endocytosis and delivered to endosomal TLR3. The dsRNA uptake machinery, in addition to TLR3, is critical for extracellular viral RNA-induced immune responses. A wide spectrum of TLR3 ligand structures beyond dsRNA and their delivery systems provide new insights into the physiological role of TLR3 in virus- or host-derived RNA-induced immune responses. In the present paper, we focus on the system for extracellular recognition of RNA and its delivery to TLR3.
Collapse
|
10
|
Lee BL, Barton GM. Trafficking of endosomal Toll-like receptors. Trends Cell Biol 2014; 24:360-9. [PMID: 24439965 DOI: 10.1016/j.tcb.2013.12.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/14/2013] [Accepted: 12/19/2013] [Indexed: 02/08/2023]
Abstract
Over the past decade we have learned much about nucleic acid recognition by the innate immune system and in particular by Toll-like receptors (TLRs). These receptors localize to endosomal compartments where they are poised to recognize microbial nucleic acids. Multiple regulatory mechanisms function to limit responses to self DNA or RNA, and breakdowns in these mechanisms can contribute to autoimmune or inflammatory disorders. In this review we discuss our current understanding of the cell biology of TLRs involved in nucleic acid recognition and how localization and trafficking of these receptors regulates their function.
Collapse
Affiliation(s)
- Bettina L Lee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Gregory M Barton
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
11
|
Toll-like receptor 3 recognizes incomplete stem structures in single-stranded viral RNA. Nat Commun 2013; 4:1833. [PMID: 23673618 DOI: 10.1038/ncomms2857] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 04/10/2013] [Indexed: 12/19/2022] Open
Abstract
Endosomal Toll-like receptor 3 (TLR3) serves as a sensor of viral infection and sterile tissue necrosis. Although TLR3 recognizes double-stranded RNA, little is known about structural features of virus- or host-derived RNAs that activate TLR3 in infection/inflammatory states. Here we demonstrate that poliovirus-derived single-stranded RNA segments harbouring stem structures with bulge/internal loops are potent TLR3 agonists. Functional poliovirus-RNAs are resistant to degradation and efficiently induce interferon-α/β and proinflammatory cytokines in human and mouse cells in a TLR3-dependent manner. The N- and C-terminal double-stranded RNA-binding sites of TLR3 are required for poliovirus-RNA-mediated TLR3 activation. Like polyriboinosinic:polyribocytidylic acid, a synthetic double-stranded RNA, these RNAs are internalized into cells via raftlin-mediated endocytosis and colocalized with TLR3. Raftlin-associated RNA uptake machinery and the TLR3 RNA-sensing system appear to recognize an appropriate topology of multiple RNA duplexes in poliovirus-RNAs. Hence, TLR3 is a sensor of extracellular viral/host RNA with stable stem structures derived from infection or inflammation-damaged cells.
Collapse
|
12
|
Matsumoto M, Funami K, Oshiumi H, Seya T. Toll-IL-1-receptor-containing adaptor molecule-1: a signaling adaptor linking innate immunity to adaptive immunity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:487-510. [PMID: 23663980 DOI: 10.1016/b978-0-12-386931-9.00018-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The innate immune system senses microbial infections using pattern-recognition receptors and signals to activate adaptive immunity. Type I transmembrane protein Toll-like receptors (TLRs) play important roles in antimicrobial immune responses. Upon the recognition of pathogen-associated molecular patterns, TLRs homo- or heterodimerize and recruit distinct adaptor molecules to the intracellular TIR domains. Toll-IL-1-receptor-containing adaptor molecule-1 (TICAM-1) is a signaling adaptor downstream of TLRs 3 and 4 that recognizes virus-derived double-stranded RNA and lipopolysaccharide, respectively. TLR3 is expressed on the endosomal membrane in myeloid DCs, where TLR3-mediated signaling is initiated. Once TICAM-1 is activated, transcription factors, IRF-3, NF-κB, and AP-1, are activated, leading to production of IFN-β and proinflammatory cytokines and maturation of dendritic cells, which are capable of activating NK cells and cytotoxic T cells. Hence, TICAM-1 signaling appears to link innate immunity to adaptive immunity. In this review, we summarize the current knowledge on TICAM-1 and discuss its role in virus infection and antitumor immunity.
Collapse
Affiliation(s)
- Misako Matsumoto
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | |
Collapse
|
13
|
Qi R, Singh D, Kao CC. Proteolytic processing regulates Toll-like receptor 3 stability and endosomal localization. J Biol Chem 2012; 287:32617-29. [PMID: 22865861 PMCID: PMC3463343 DOI: 10.1074/jbc.m112.387803] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/30/2012] [Indexed: 11/06/2022] Open
Abstract
Toll-like receptors (TLRs) 3, 7, and 9 are innate immune receptors that recognize nucleic acids from pathogens in endosomes and initiate signaling transductions that lead to cytokine production. Activation of TLR9 for signaling requires proteolytic processing within the ectodomain by endosome-associated proteases. Whether TLR3 requires similar proteolytic processing to become competent for signaling remains unclear. Herein we report that human TLR3 is proteolytically processed to form two fragments in endosomes. Unc93b1 is required for processing by transporting TLR3 through the Golgi complex and to the endosomes. Proteolytic cleavage requires the eight-amino acid Loop1 within leucine-rich repeat 12 of the TLR3 ectodomain. Proteolytic cleavage is not required for TLR3 signaling in response to poly(I:C), although processing could modulate the degree of response toward viral double-stranded RNAs, especially in mouse cells. Both the full-length and cleaved fragments of TLR3 can bind poly(I:C) and are present in endosomes. However, although the full-length TLR3 has a half-life in HEK293T cells of 3 h, the cleaved fragments have half-lives in excess of 7 h. Inhibition of TLR3 cleavage by either treatment with cathepsin inhibitor or by a mutation in Loop1 decreased the abundance of TLR3 in endosomes targeted for lysosomal degradation.
Collapse
Affiliation(s)
- Rongsu Qi
- From the Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47401
| | - Divyendu Singh
- From the Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47401
| | - C. Cheng Kao
- From the Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47401
| |
Collapse
|
14
|
McEwan DL, Weisman AS, Hunter CP. Uptake of extracellular double-stranded RNA by SID-2. Mol Cell 2012; 47:746-54. [PMID: 22902558 DOI: 10.1016/j.molcel.2012.07.014] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 05/10/2012] [Accepted: 07/10/2012] [Indexed: 01/25/2023]
Abstract
Ingested dsRNAs trigger RNA interference (RNAi) in many invertebrates, including the nematode Caenorhabditis elegans. Here we show that the C. elegans apical intestinal membrane protein SID-2 is required in C. elegans for the import of ingested dsRNA and that, when expressed in Drosophila S2 cells, SID-2 enables the uptake of dsRNAs. SID-2-dependent dsRNA transport requires an acidic extracellular environment and is selective for dsRNAs with at least 50 base pairs. Through structure-function analysis, we identify several SID-2 regions required for this activity, including three extracellular, positively charged histidines. Finally, we find that SID-2-dependent transport is inhibited by drugs that interfere with vesicle transport. Therefore, we propose that environmental dsRNAs are imported from the acidic intestinal lumen by SID-2 via endocytosis and are released from internalized vesicles in a secondary step mediated by the dsRNA channel SID-1. Similar multistep mechanisms may underlie the widespread observations of environmental RNAi.
Collapse
Affiliation(s)
- Deborah L McEwan
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
15
|
Abstract
Besides their well known functions in storage and translation of information nucleic acids have emerged as a target of pattern recognition receptors that drive activation of innate immunity. Due to the paucity of building block monomers used in nucleic acids, discrimination of host and microbial nucleic acids as a means of self/foreign discrimination is a complicated task. Pattern recognition receptors rely on discrimination by sequence, structural features and spatial compartmentalization to differentiate microbial derived nucleic acids from host ones. Microbial nucleic acid detection is important for the sensing of infectious danger and initiating an immune response to microbial attack. Failures in the underlying recognitions systems can have severe consequences: thus, inefficient recognition of microbial nucleic acids may increase susceptibility to infectious diseases. On the other hand, excessive immune responses as a result of failed self/foreign discrimination are associated with autoimmune diseases. This review gives a general overview over the underlying concepts of nucleic acid sensing by Toll-like receptors. Within this general framework, we focus on bacterial RNA and synthetic RNA oligomers.
Collapse
Affiliation(s)
- Alexander Dalpke
- Heidelberg University, Department of Infectious Diseases - Medical Microbiology and Hygiene, Im Neuenheimer Feld 324, Heidelberg 69120, Germany
| | | |
Collapse
|
16
|
Weber C, Müller C, Podszuweit A, Montino C, Vollmer J, Forsbach A. Toll-like receptor (TLR) 3 immune modulation by unformulated small interfering RNA or DNA and the role of CD14 (in TLR-mediated effects). Immunology 2012; 136:64-77. [PMID: 22260507 DOI: 10.1111/j.1365-2567.2012.03559.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Toll-like receptors (TLRs) 3, 7, 8 and 9 stimulate innate immune responses upon recognizing pathogen-derived nucleic acids. TLR3 is located on the cell surface and in cellular endosomes and recognizes double-stranded viral RNA or the synthetic mimic poly rI:rC. Recently, unformulated small interfering RNA (siRNA) has been reported as ligand for surface-expressed murine TLR3. Blockage of TLR3 is achieved by single-stranded DNA. We confirm and expand the observation that poly rI:rC-mediated TLR3 immune activation is blocked in a sequence-, length-, backbone- and CpG-dependent manner. However, human TLR3 is not activated by siRNA, which may be the result of differences in the amino acid composition of the TLR3 loop 1 of mice and humans. Although CD14 was previously described as a co-receptor for murine TLR3 and other nucleic acid-recognizing TLRs, human CD14 acts only as co-receptor to human TLR9, but not TLR3, TLR7 or TLR8. We show that CD14 up-regulates the TLR9 immune response of A, B and C-class oligodeoxynucleotides but down-regulates the phosphoro-diester version of B-class oligodeoxynucleotides.
Collapse
Affiliation(s)
- Cordula Weber
- Pfizer Oligonucleotide Therapeutics Unit - Coley Pharmaceutical GmbH, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Hwang SD, Ohtani M, Hikima JI, Jung TS, Kondo H, Hirono I, Aoki T. Molecular cloning and characterization of Toll-like receptor 3 in Japanese flounder, Paralichthys olivaceus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:87-96. [PMID: 22206867 DOI: 10.1016/j.dci.2011.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/03/2011] [Accepted: 12/05/2011] [Indexed: 05/31/2023]
Abstract
Mammalian Toll-like receptor 3 (TLR3) recognizes extracellular and intracellular viral dsRNA, and then initiates signaling cascades leading to NF-κB activation and interferon (IFN) production. To understand the roles of TLR3 in the fish immune system, TLR3 gene (JfTLR3) was identified from Japanese flounder (Paralichthys olivaceus), which consisted of 4 exons and 3 introns. Its expression in peripheral blood leukocytes increased upon stimulation with poly I:C and CpG ODN 1668. Exposure to viral hemorrhagic septicemia virus increased expression of JfTLR3 in the blood, liver, head kidney and spleen. Intracellular poly I:C stimulation in JfTLR3-overexpressing YO-K cells significantly induced IFN-inducible and NF-κB-regulated genes. NF-κB activity in JfTLR3-overexpressing YO-K cells was significantly induced by intracellular poly I:C while expression of IFN-inducible genes and NF-κB reporter activity in JfTLR3-overexpressing HINAE cells increased upon stimulation by extracellular poly I:C. These results suggest that JfTLR3 plays an important role in the induction of antiviral immune response.
Collapse
Affiliation(s)
- Seong Don Hwang
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Toll-like receptor 3-mediated tumor invasion in head and neck cancer. Oral Oncol 2011; 48:226-32. [PMID: 22070917 DOI: 10.1016/j.oraloncology.2011.10.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/08/2011] [Accepted: 10/15/2011] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Chronic inflammation associated with some infectious agents can lead to cancer. The Toll-like receptor (TLR) family is one of the largest and best-studied families of pathogen-associated molecular patterns. TLR3 recognizes double-stranded RNA and is a major effector of the immune response against viral pathogens. MATERIALS AND METHODS We investigated TLR3 protein expression in 153 oral squamous cell carcinoma (OSCC) specimens using tissue microarray. Furthermore, we used polyinosinic-polycytidylic acid (poly I:C) to stimulate head and neck cancer cells and an inhibitor of endosomal acidification bafilomycin A1 to block the TLR 3 signaling pathway to clarify the role of TLR 3 in OSCC. RESULTS Cytoplasmic TLR3 staining was observed in the vast majority of OSCC tissues (73.2%). Strong TLR3 expression was significantly correlated with patients whose tumors were poorly differentiated (P=0.028) and with perineural invasion (P=0.023). Three of the four head and neck cell lines tested (Fadu, OC2, and SCC4) expressed TLR3 mRNA, although at various levels. The stimulation of TLR3-expressing OC2 cells with poly I:C caused the phosphorylation of IFN regulatory factor 3 and IκB and sequentially induced the secretion of interleukin-6 and chemokine (C-C motif) ligand 5 (CCL5) in a dose- and time-dependent manner. Moreover, poly I:C stimulation promoted CCL5-mediated migration in OC2 cells. CONCLUSIONS In this report, we provide a novel mechanism for tumor invasion and the TLR3-dependent inflammatory response that could have therapeutic implications for OSCC.
Collapse
|
19
|
Manavalan B, Basith S, Choi S. Similar Structures but Different Roles - An Updated Perspective on TLR Structures. Front Physiol 2011; 2:41. [PMID: 21845181 PMCID: PMC3146039 DOI: 10.3389/fphys.2011.00041] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/11/2011] [Indexed: 01/25/2023] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors that recognize conserved structures in pathogens, trigger innate immune responses, and prime antigen-specific adaptive immunity. Elucidation of crystal structures of TLRs interacting with their ligands such as TLR1-2 with triacylated lipopeptide, TLR2-6 with diacylated lipopeptide, TLR4-MD-2 with LPS, and TLR3 with double-stranded RNA (dsRNA) have enabled an understanding of the initiation of TLR signaling. Agonistic ligands such as LPS, dsRNA, and lipopeptides induce "m" shaped TLR dimers in which C-termini converge at the center. Such central convergence is necessary to bring the two intracellular receptor TIR domains closer together and promote their dimerization, which serves as an essential step in downstream signaling. In this review, we summarize TLR ECD structures that have been reported to date with special emphasis on ligand recognition and activation mechanism.
Collapse
|
20
|
Abstract
The protein-RNA interface has been regarded as "undruggable" despite its importance in many biological processes. The toll-like receptor 3 (TLR3)/double-stranded RNA (dsRNA) complex provides an exciting target for a number of infectious diseases and cancers. We describe the development of a series of small-molecule probes that were shown to be competitive inhibitors of dsRNA binding to TLR3 with high affinity and specificity. In a multitude of assays, compound 4a was profiled as a potent antagonist to TLR3 signaling and also repressed the expression of downstream signaling pathways mediated by the TLR3/dsRNA complex, including TNF-α and IL-1β.
Collapse
Affiliation(s)
- Kui Cheng
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309
| | - Xiaohui Wang
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309
| | - Hang Yin
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309
| |
Collapse
|
21
|
Matsumoto M, Oshiumi H, Seya T. Antiviral responses induced by the TLR3 pathway. Rev Med Virol 2011; 21:67-77. [PMID: 21312311 DOI: 10.1002/rmv.680] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 12/21/2010] [Accepted: 12/21/2010] [Indexed: 12/24/2022]
Abstract
Antiviral responses are successively induced in virus-infected animals, and include primary innate immune responses such as type I interferon (IFN) and cytokine production, secondary natural killer (NK) cell responses, and final cytotoxic T lymphocyte (CTL) responses and antibody production. The endosomal Toll-like receptors (TLRs) and cytoplasmic RIG-I-like receptors (RLRs), which recognize viral nucleic acids, are responsible for virus-induced type I IFN production. RLRs are expressed in most tissues and cells and are primarily implicated in innate immune responses against various viruses through type I IFN production, whereas nucleic acid-sensing TLRs, TLRs 3, 7, 8 and 9, are expressed on the endosomal membrane of dendritic cells (DCs) and play distinct roles in antiviral immunity. TLR3 recognizes viral double-stranded RNA taken up into the endosome and serves to protect the host against viral infection by the induction of a range of responses including type I IFN production and DC-mediated activation of NK cells and CTLs, although the deteriorative role of TLR3 has also been reported in some virus infections. Here, we review the current knowledge on the role of TLR3 during viral infection, and the current understanding of the TLR3-signalling cascade that operates via the adaptor protein TICAM-1 (also called TRIF).
Collapse
Affiliation(s)
- Misako Matsumoto
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan.
| | | | | |
Collapse
|
22
|
Abstract
Two of the most promising and complex areas in biologics development, either as research tools or potential therapeutics, are cell-penetrating peptides (CPPs) and RNA interference (RNAi) modulators. Consequently, the combined application of these technologies in pursuit of improved delivery profiles for RNAi cargoes presents its own unique challenges. Direct access to the targeted tissue is luxury not always available to the researcher; however, the example of lung presents an excellent opportunity for presenting methodologies relevant to understanding the local impact of CPP-conjugated RNAi modulators. This chapter therefore expands upon updated protocols established on the study of the function of endogenous RNAi and the utility of CPPs in the delivery of short interfering RNA (siRNA) to therapeutically relevant cells in the lung. Methods for sample collection, preservation, and processing are provided with a view to facilitate qualitative and quantitative analysis of delivery. In addition, a protocol for mapping siRNA delivery by in situ hybridisation is provided.
Collapse
Affiliation(s)
- Sterghios A Moschos
- Biotherapeutics, Pfizer Global Research and Development, Pfizer Inc, Sandwich, Kent, UK
| | | | | |
Collapse
|
23
|
Wang Y, Liu L, Davies DR, Segal DM. Dimerization of Toll-like receptor 3 (TLR3) is required for ligand binding. J Biol Chem 2010; 285:36836-41. [PMID: 20861016 DOI: 10.1074/jbc.m110.167973] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
TLR3 (Toll-like receptor 3) recognizes dsRNA, a potent indicator of viral infection. The extracellular domain of TLR3 dimerizes when it binds dsRNA, and the crystal structure of the dimeric complex reveals three sites of interaction on each extracellular domain, two that bind dsRNA and one that is responsible for dimer formation. The goal of this study was to determine which amino acid residues are essential for forming a stable receptor·ligand complex and whether dimerization of TLR3 is required for dsRNA binding. Using a novel ELISA to analyze dsRNA binding by mutant TLR3 constructs, we identified the essential interacting residues and determined that the simultaneous interaction of all three sites is required for ligand binding. In addition, we show that TLR3 is unable to bind dsRNA when dimerization is prevented by mutating residues in the dimerization site or by immobilizing TLR3 at low density. We conclude that dimerization of TLR3 is essential for ligand binding and that the three TLR3 contact sites individually interact weakly with their binding partners but together form a high affinity receptor·ligand complex.
Collapse
Affiliation(s)
- Yan Wang
- Experimental Immunology Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892-1360, USA
| | | | | | | |
Collapse
|
24
|
Jin B, Sun T, Yu XH, Liu CQ, Yang YX, Lu P, Fu SF, Qiu HB, Yeo AET. Immunomodulatory effects of dsRNA and its potential as vaccine adjuvant. J Biomed Biotechnol 2010; 2010:690438. [PMID: 20671921 PMCID: PMC2910503 DOI: 10.1155/2010/690438] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 05/09/2010] [Indexed: 02/07/2023] Open
Abstract
dsRNA can be detected by pattern recognition receptors, for example, TLR3, MDA-5, NLRP3 to induce proinflammatory cytokines responsible for innate/adaptive immunity. Recognized by endosomal TLR3 in myeloid DCs (mDCs), dsRNA can activate mDCs into mature antigen presenting cells (mAPCs) which in turn present antigen epitopes with MHC-I molecules to naïve T cells. Coadministration of protein and synthetic dsRNA analogues can elicit an antigen-specific Th1-polarized immune response which stimulates the CD8+ CTL response and possibly dampen Th17 response. Synthetic dsRNA analogues have been tested as vaccine adjuvant against viral infections in animal models. However, a dsRNA receptor, TLR3 can be expressed in tumor cells while other members of TLR family, for example, TLR4 and TLR2 have been shown to promote tumor progression, metastasis, and chemoresistance. Thus, the promising potential of dsRNA analogues as a tumor therapeutic vaccine adjuvant should be evaluated cautiously.
Collapse
Affiliation(s)
- Bo Jin
- Department of Digestive Diseases, Naval General Hospital, 6 Fucheng Rd., Beijing 100048, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Innate immunity is the first line of defense against viral infections. It is based on a mechanism of sensing pathogen-associated molecular patterns through host germline-encoded pattern recognition receptors. dsRNA is arguably the most important viral pathogen-associated molecular pattern due to its expression by almost all viruses at some point during their replicative cycle. Viral dsRNA has been studied for over 55 years, first as a toxin, then as a type I interferon inducer, a viral mimetic and an immunomodulator for therapeutic purposes. This article will focus on dsRNA, its structure, generation (both endogenous and viral), host sensing mechanisms and induction of type I interferons. The possible therapeutic applications of these findings will also be discussed. The goal of this article is to give an overview of these mechanisms, highlighting novel findings, while providing a historical perspective.
Collapse
Affiliation(s)
- Stephanie J DeWitte-Orr
- McMaster University, Department of Pathology & Molecular Medicine, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | | |
Collapse
|
26
|
|
27
|
Kedmi R, Peer D. RNAi nanoparticles in the service of personalized medicine. Nanomedicine (Lond) 2009; 4:853-5. [DOI: 10.2217/nnm.09.74] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Ranit Kedmi
- Laboratory of Nanomedicine, Department of Cell Research & Immunology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel and Center for Nanoscience & Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Dan Peer
- Laboratory of Nanomedicine, Department of Cell Research & Immunology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel and Center for Nanoscience & Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
28
|
DeWitte-Orr SJ, Mehta DR, Collins SE, Suthar MS, Gale M, Mossman KL. Long double-stranded RNA induces an antiviral response independent of IFN regulatory factor 3, IFN-beta promoter stimulator 1, and IFN. THE JOURNAL OF IMMUNOLOGY 2009; 183:6545-53. [PMID: 19864603 DOI: 10.4049/jimmunol.0900867] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Virus infection elicits a robust innate antiviral response dominated by the production of type 1 IFN. In nonprofessional innate immune cells such as fibroblasts, type 1 IFN is rapidly produced following the recognition of viral dsRNA and the subsequent activation of the constitutively expressed transcription factor IFN regulatory factor 3 (IRF3). Although origin, localization, and length are factors in mediating dsRNA recognition and binding by cellular dsRNA-binding proteins, the biological significance of differential dsRNA binding is unclear, since the subsequent signaling pathways converge on IRF3. In this study, we show a dsRNA length-dependent activation of IRFs, IFNs, and IFN-stimulated genes in mouse fibroblasts. The length dependence was exacerbated in fibroblasts deficient in the mitochondria-associated adaptor IFN-beta promoter stimulator 1 and IRF3, suggesting that antiviral gene induction mediated by short and long dsRNA molecules is predominantly IFN-beta promoter stimulator 1 and IRF3 dependent and independent, respectively. Furthermore, we provide evidence of an innate antiviral response in fibroblasts in the absence of both IRF3 and type 1 IFN induction. Even with these key modulators missing, a 60-90% inhibition of virus replication was observed following 24-h treatment with short or long dsRNA molecules, respectively. These data provide evidence of a novel antiviral pathway that is dependent on dsRNA length, but independent of the type 1 IFN system.
Collapse
Affiliation(s)
- Stephanie J DeWitte-Orr
- Department of Pathology & Molecular Medicine, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Botos I, Liu L, Wang Y, Segal DM, Davies DR. The toll-like receptor 3:dsRNA signaling complex. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1789:667-74. [PMID: 19595807 PMCID: PMC2784288 DOI: 10.1016/j.bbagrm.2009.06.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 06/26/2009] [Indexed: 12/31/2022]
Abstract
Toll-like receptors (TLRs) recognize conserved molecular patterns in invading pathogens and trigger innate immune responses. TLR3 recognizes dsRNA, a molecular signature of most viruses via its ectodomain (ECD). The TLR3-ECD structure consists of a 23 turn coil bent into the shape of a horseshoe with specialized domains capping the N and C-terminal ends of the coil. TLR3-ECDs bind as dimeric units to dsRNA oligonucleotides of at least 45 bp in length, the minimal length required for signal transduction. X-ray analysis has shown that each TLR3-ECD of a dimer binds dsRNA at two sites located at opposite ends of the TLR3 "horseshoe" on the one lateral face that lacks N-linked glycans. Intermolecular contacts between the C-terminal domains of two TLR3-ECDs stabilize the dimer and position the C-terminal residues within 20-25 A of each other, which is thought to be essential for transducing a signal across the plasma membrane in intact TLR3 molecules. Interestingly, in TLRs 1, 2 and 4, which bind lipid ligands using very different interactions from TLR3, the ligands nevertheless promote the formation of a dimer in which the same two lateral surfaces as in the TLR3-ECD:dsRNA complex face each other, bringing their C-termini in close proximity. Thus, a pattern is emerging in which pathogen-derived substances bind to TLR-ECDs, thereby promoting the formation of a dimer in which the glycan-free ligand binding surfaces face each other and the two C-termini are brought in close proximity for signal transduction.
Collapse
Affiliation(s)
- Istvan Botos
- Laboratory of Molecular Biology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Lin Liu
- Laboratory of Molecular Biology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Yan Wang
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - David M. Segal
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - David R. Davies
- Laboratory of Molecular Biology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
30
|
Vollmer J, Krieg AM. Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliv Rev 2009; 61:195-204. [PMID: 19211030 DOI: 10.1016/j.addr.2008.12.008] [Citation(s) in RCA: 444] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2008] [Indexed: 12/21/2022]
Abstract
Toll-like receptor 9 (TLR9) agonists have demonstrated substantial potential as vaccine adjuvants, and as mono- or combination therapies for the treatment of cancer and infectious and allergic diseases. Commonly referred to as CpG oligodeoxynucleotides (ODN), TLR9 agonists directly induce the activation and maturation of plasmacytoid dendritic cells and enhance differentiation of B cells into antibody-secreting plasma cells. Preclinical and early clinical data support the use of TLR9 agonists as vaccine adjuvants, where they can enhance both the humoral and cellular responses to diverse antigens. In mouse tumor models TLR9 agonists have shown activity not only as monotherapy, but also in combination with multiple other therapies including vaccines, antibodies, cellular therapies, other immunotherapies, antiangiogenic agents, radiotherapy, cryotherapy, and some chemotherapies. Phase I and II clinical trials have indicated that these agents have antitumor activity as single agents and enhance the development of antitumor T-cell responses when used as therapeutic vaccine adjuvants. CpG ODN have shown benefit in multiple rodent and primate models of asthma and other allergic diseases, with encouraging results in some early human clinical trials. Although their potential clinical contributions are enormous, the safety and efficacy of these TLR9 agonists in humans remain to be determined.
Collapse
|