1
|
Koopmans T, van Rooij E. Molecular gatekeepers of endogenous adult mammalian cardiomyocyte proliferation. Nat Rev Cardiol 2025:10.1038/s41569-025-01145-y. [PMID: 40195566 DOI: 10.1038/s41569-025-01145-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 04/09/2025]
Abstract
Irreversible cardiac fibrosis, cardiomyocyte death and chronic cardiac dysfunction after myocardial infarction pose a substantial global health-care challenge, with no curative treatments available. To regenerate the injured heart, cardiomyocytes must proliferate to replace lost myocardial tissue - a capability that adult mammals have largely forfeited to adapt to the demanding conditions of life. Using various preclinical models, our understanding of cardiomyocyte proliferation has progressed remarkably, leading to the successful reactivation of cell cycle induction in adult animals, with functional recovery after cardiac injury. Central to this success is the targeting of key pathways and structures that drive cardiomyocyte maturation after birth - nucleation and ploidy, sarcomere structure, developmental signalling, chromatin and epigenetic regulation, the microenvironment and metabolic maturation - forming a complex regulatory framework that allows efficient cellular contraction but restricts cardiomyocyte proliferation. In this Review, we explore the molecular pathways underlying these core mechanisms and how their manipulation can reactivate the cell cycle in cardiomyocytes, potentially contributing to cardiac repair.
Collapse
Affiliation(s)
- Tim Koopmans
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands.
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
2
|
Cai D, Liu C, Li H, Wang C, Bai L, Feng J, Hu M, Wang H, Song S, Xie Y, Chen Z, Zhong J, Lian H, Yang Z, Zhang Y, Nie Y. Foxk1 and Foxk2 promote cardiomyocyte proliferation and heart regeneration. Nat Commun 2025; 16:2877. [PMID: 40128196 PMCID: PMC11933303 DOI: 10.1038/s41467-025-57996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 03/10/2025] [Indexed: 03/26/2025] Open
Abstract
Promoting endogenous cardiomyocyte proliferation is a promising strategy for cardiac repair. Identifying key factors that regulate cardiomyocyte proliferation can advance the development of novel therapies for heart regeneration. Here, we identify Foxk1 and Foxk2 as key regulators of cardiomyocyte proliferation, whose expression declines during postnatal heart development. Cardiomyocyte-specific knockout of Foxk1 or Foxk2 impairs neonatal heart regeneration after myocardial infarction (MI) injury. AAV9-mediated Foxk1 or Foxk2 overexpression extends the postnatal cardiomyocyte proliferative window and enhances cardiac repair in adult mice after MI. Mechanistically, Foxk1 and Foxk2 drive cardiomyocyte cell cycle progression by directly activating CCNB1 and CDK1 expression, forming the CCNB1/CDK1 complex that facilitates G2/M transition. Moreover, Foxk1 and Foxk2 promote cardiomyocyte proliferation by upregulating HIF1α expression, which enhances glycolysis and the pentose phosphate pathway (PPP), which further favors cardiomyocyte proliferation. These findings establish Foxk1 and Foxk2 as promising therapeutic targets for cardiac injury.
Collapse
Affiliation(s)
- Dongcheng Cai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Chungeng Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Department of Spine Surgery and Institute for Orthopaedic Research, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, PR China
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Haotong Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Chiyin Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
- Department of Cardiac Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Lina Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Jie Feng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Miaoqing Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Hao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Shen Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yifan Xie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Ziwei Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Jiajun Zhong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
- Department of Cardiac Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Hong Lian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Zhiwei Yang
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yuhui Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, PR China.
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, PR China.
| |
Collapse
|
3
|
Chen C, Wang J, Zhang S, Zhu X, Hu J, Liu C, Liu L. Epigenetic regulation of diverse regulated cell death modalities in cardiovascular disease: Insights into necroptosis, pyroptosis, ferroptosis, and cuproptosis. Redox Biol 2024; 76:103321. [PMID: 39186883 PMCID: PMC11388786 DOI: 10.1016/j.redox.2024.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024] Open
Abstract
Cell death constitutes a critical component of the pathophysiology of cardiovascular diseases. A growing array of non-apoptotic forms of regulated cell death (RCD)-such as necroptosis, ferroptosis, pyroptosis, and cuproptosis-has been identified and is intimately linked to various cardiovascular conditions. These forms of RCD are governed by genetically programmed mechanisms within the cell, with epigenetic modifications being a common and crucial regulatory method. Such modifications include DNA methylation, RNA methylation, histone methylation, histone acetylation, and non-coding RNAs. This review recaps the roles of DNA methylation, RNA methylation, histone modifications, and non-coding RNAs in cardiovascular diseases, as well as the mechanisms by which epigenetic modifications regulate key proteins involved in cell death. Furthermore, we systematically catalog the existing epigenetic pharmacological agents targeting novel forms of RCD and their mechanisms of action in cardiovascular diseases. This article aims to underscore the pivotal role of epigenetic modifications in precisely regulating specific pathways of novel RCD in cardiovascular diseases, thus offering potential new therapeutic avenues that may prove more effective and safer than traditional treatments.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China.
| | - Shan Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jun Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Chao Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Lanchun Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| |
Collapse
|
4
|
Zhu X, Xu M, Millar SE. HDAC1/2 and HDAC3 play distinct roles in controlling adult Meibomian gland homeostasis. Ocul Surf 2024; 33:39-49. [PMID: 38679196 PMCID: PMC11179976 DOI: 10.1016/j.jtos.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE To investigate the roles of HDAC1/2 and HDAC3 in adult Meibomian gland (MG) homeostasis. METHODS HDAC1/2 or HDAC3 were inducibly deleted in MG epithelial cells of adult mice. The morphology of MG was examined. Proliferation, apoptosis, and expression of MG acinus and duct marker genes, meibocyte differentiation genes, and HDAC target genes, were analyzed via immunofluorescence, TUNEL assay, and RNA in situ hybridization. RESULTS Co-deletion of HDAC1/2 in MG epithelium caused gradual loss of acini and formation of cyst-like structures in the central duct. These phenotypes required homozygous deletion of both HDAC1 and HDAC2, indicating that they function redundantly in the adult MG. Short-term deletion of HDAC1/2 in MG epithelium had little effect on meibocyte maturation but caused decreased proliferation of acinar basal cells, excessive DNA damage, ectopic apoptosis, and increased p53 acetylation and p16 expression in the MG. By contrast, HDAC3 deletion in MG epithelium caused dilation of central duct, atrophy of acini, defective meibocyte maturation, increased acinar basal cell proliferation, and ectopic apoptosis and DNA damage. Levels of p53 acetylation and p21 expression were elevated in HDAC3-deficient MGs, while the expression of the differentiation regulator PPARγ and the differentiation markers PLIN2 and FASN was downregulated. CONCLUSIONS HDAC1 and HDAC2 function redundantly in adult Meibomian gland epithelial progenitor cells and are essential for their proliferation and survival, but not for acinar differentiation, while HDAC3 is required to limit acinar progenitor cell proliferation and permit differentiation. HDAC1/2 and HDAC3 have partially overlapping roles in maintaining survival of MG cells.
Collapse
Affiliation(s)
- Xuming Zhu
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mingang Xu
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sarah E Millar
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
5
|
Lu J, Qian S, Sun Z. Targeting histone deacetylase in cardiac diseases. Front Physiol 2024; 15:1405569. [PMID: 38983721 PMCID: PMC11232433 DOI: 10.3389/fphys.2024.1405569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/31/2024] [Indexed: 07/11/2024] Open
Abstract
Histone deacetylases (HDAC) catalyze the removal of acetylation modifications on histones and non-histone proteins, which regulates gene expression and other cellular processes. HDAC inhibitors (HDACi), approved anti-cancer agents, emerge as a potential new therapy for heart diseases. Cardioprotective effects of HDACi are observed in many preclinical animal models of heart diseases. Genetic mouse models have been developed to understand the role of each HDAC in cardiac functions. Some of the findings are controversial. Here, we provide an overview of how HDACi and HDAC impact cardiac functions under physiological or pathological conditions. We focus on in vivo studies of zinc-dependent classical HDACs, emphasizing disease conditions involving cardiac hypertrophy, myocardial infarction (MI), ischemic reperfusion (I/R) injury, and heart failure. In particular, we review how non-biased omics studies can help our understanding of the mechanisms underlying the cardiac effects of HDACi and HDAC.
Collapse
Affiliation(s)
- Jiao Lu
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, United States
| | - Sichong Qian
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, United States
| | - Zheng Sun
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
6
|
Shetty MG, Pai P, Padavu M, Satyamoorthy K, Kampa Sundara B. Synergistic therapeutics: Co-targeting histone deacetylases and ribonucleotide reductase for enhanced cancer treatment. Eur J Med Chem 2024; 269:116324. [PMID: 38520762 DOI: 10.1016/j.ejmech.2024.116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
The development of cancer is influenced by several variables, including altered protein expression, and signaling pathways. Cancers are inherently heterogeneous and exhibit genetic and epigenetic aberrations; therefore, developing therapies that act on numerous biological targets is encouraged. To achieve this, two approaches are employed: combination therapy and dual/multiple targeting chemotherapeutics. Two enzymes, histone deacetylases (HDACs) and ribonucleotide reductase (RR), are crucial for several biological functions, including replication and repair of DNA, division of cells, transcription of genes, etc. However, it has been noted that different cancers exhibit abnormal functions of these enzymes. Potent inhibitors for each of these proteins have been extensively researched. Many medications based on these inhibitors have been successfully food and drug administration (FDA) approved, and the majority are undergoing various stages of clinical testing. This review discusses various studies of HDAC and RR inhibitors in combination therapy and dual-targeting chemotherapeutics.
Collapse
Affiliation(s)
- Manasa Gangadhar Shetty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Padmini Pai
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Mythili Padavu
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kapaettu Satyamoorthy
- Shri Dharmasthala Manjunatheshwara (SDM) University, Manjushree Nagar, Sattur, Dharwad, 580009, India
| | - Babitha Kampa Sundara
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
7
|
Ahmed MS, Nguyen NUN, Nakada Y, Hsu CC, Farag A, Lam NT, Wang P, Thet S, Menendez-Montes I, Elhelaly WM, Lou X, Secco I, Tomczyk M, Zentilin L, Pei J, Cui M, Dos Santos M, Liu X, Liu Y, Zaha D, Walcott G, Tomchick DR, Xing C, Zhang CC, Grishin NV, Giacca M, Zhang J, Sadek HA. Identification of FDA-approved drugs that induce heart regeneration in mammals. NATURE CARDIOVASCULAR RESEARCH 2024; 3:372-388. [PMID: 39183959 PMCID: PMC11343477 DOI: 10.1038/s44161-024-00450-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/06/2024] [Indexed: 08/27/2024]
Abstract
Targeting Meis1 and Hoxb13 transcriptional activity could be a viable therapeutic strategy for heart regeneration. In this study, we performd an in silico screening to identify FDA-approved drugs that can inhibit Meis1 and Hoxb13 transcriptional activity based on the resolved crystal structure of Meis1 and Hoxb13 bound to DNA. Paromomycin (Paro) and neomycin (Neo) induced proliferation of neonatal rat ventricular myocytes in vitro and displayed dose-dependent inhibition of Meis1 and Hoxb13 transcriptional activity by luciferase assay and disruption of DNA binding by electromobility shift assay. X-ray crystal structure revealed that both Paro and Neo bind to Meis1 near the Hoxb13-interacting domain. Administration of Paro-Neo combination in adult mice and in pigs after cardiac ischemia/reperfusion injury induced cardiomyocyte proliferation, improved left ventricular systolic function and decreased scar formation. Collectively, we identified FDA-approved drugs with therapeutic potential for induction of heart regeneration in mammals.
Collapse
Affiliation(s)
- Mahmoud Salama Ahmed
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- These authors contributed equally: Mahmoud Salama Ahmed, Ngoc Uyen Nhi Nguyen
| | - Ngoc Uyen Nhi Nguyen
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- These authors contributed equally: Mahmoud Salama Ahmed, Ngoc Uyen Nhi Nguyen
| | - Yuji Nakada
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ching-Cheng Hsu
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ayman Farag
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicholas T. Lam
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ping Wang
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Suwannee Thet
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ivan Menendez-Montes
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Waleed M. Elhelaly
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xi Lou
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ilaria Secco
- School of Cardiovascular and Metabolic Medicine & Sciences and British Heart Foundation Centre of Research Excellence, King’s College London, London, UK
| | - Mateusz Tomczyk
- School of Cardiovascular and Metabolic Medicine & Sciences and British Heart Foundation Centre of Research Excellence, King’s College London, London, UK
| | - Lorena Zentilin
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Jimin Pei
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Miao Cui
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthieu Dos Santos
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoye Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yan Liu
- Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David Zaha
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gregory Walcott
- Division of Cardiovascular Diseases, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Diana R. Tomchick
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheng Cheng Zhang
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nick V. Grishin
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mauro Giacca
- School of Cardiovascular and Metabolic Medicine & Sciences and British Heart Foundation Centre of Research Excellence, King’s College London, London, UK
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hesham A. Sadek
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
8
|
Wu KJ, Chen Q, Leung CH, Sun N, Gao F, Chen Z. Recent discoveries of the role of histone modifications and related inhibitors in pathological cardiac hypertrophy. Drug Discov Today 2024; 29:103878. [PMID: 38211819 DOI: 10.1016/j.drudis.2024.103878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Pathological cardiac hypertrophy is a common response of the heart to various pathological stimuli. In recent years, various histone modifications, including acetylation, methylation, phosphorylation and ubiquitination, have been identified to have crucial roles in regulating chromatin remodeling and cardiac hypertrophy. Novel drugs targeting these epigenetic changes have emerged as potential treatments for pathological cardiac hypertrophy. In this review, we provide a comprehensive summary of the roles of histone modifications in regulating the development of pathological cardiac hypertrophy, and discuss potential therapeutic targets that could be utilized for its treatment.
Collapse
Affiliation(s)
- Ke-Jia Wu
- Wuxi School of Medicine, Jiangnan University, Jiangsu 214082, PR China
| | - Qi Chen
- Wuxi School of Medicine, Jiangnan University, Jiangsu 214082, PR China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macau; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau; Macao Centre for Research and Development in Chinese Medicine, University of Macau, Taipa 999078, Macau; MoE Frontiers Science Centre for Precision Oncology, University of Macau, Taipa 999078, Macau.
| | - Ning Sun
- Wuxi School of Medicine, Jiangnan University, Jiangsu 214082, PR China.
| | - Fei Gao
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, Chaoyang District, Beijing 100029, PR China.
| | - Zhaoyang Chen
- Department of Cardiology, Heart Center of Fujian Province, Fujian Medical University Union Hospital, 29 Xin-Quan Road, Fuzhou, Fujian 350001, PR China.
| |
Collapse
|
9
|
Jain R, Epstein JA. Epigenetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:341-364. [PMID: 38884720 DOI: 10.1007/978-3-031-44087-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Epigenetics is the study of heritable changes to the genome and gene expression patterns that are not caused by direct changes to the DNA sequence. Examples of these changes include posttranslational modifications to DNA-bound histone proteins, DNA methylation, and remodeling of nuclear architecture. Collectively, epigenetic changes provide a layer of regulation that affects transcriptional activity of genes while leaving DNA sequences unaltered. Sequence variants or mutations affecting enzymes responsible for modifying or sensing epigenetic marks have been identified in patients with congenital heart disease (CHD), and small-molecule inhibitors of epigenetic complexes have shown promise as therapies for adult heart diseases. Additionally, transgenic mice harboring mutations or deletions of genes encoding epigenetic enzymes recapitulate aspects of human cardiac disease. Taken together, these findings suggest that the evolving field of epigenetics will inform our understanding of congenital and adult cardiac disease and offer new therapeutic opportunities.
Collapse
Affiliation(s)
- Rajan Jain
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, Epigenetics Institute and the Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Jonathan A Epstein
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, Epigenetics Institute and the Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Burgon PG, Weldrick JJ, Talab OMSA, Nadeer M, Nomikos M, Megeney LA. Regulatory Mechanisms That Guide the Fetal to Postnatal Transition of Cardiomyocytes. Cells 2023; 12:2324. [PMID: 37759546 PMCID: PMC10528641 DOI: 10.3390/cells12182324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Heart disease remains a global leading cause of death and disability, necessitating a comprehensive understanding of the heart's development, repair, and dysfunction. This review surveys recent discoveries that explore the developmental transition of proliferative fetal cardiomyocytes into hypertrophic postnatal cardiomyocytes, a process yet to be well-defined. This transition is key to the heart's growth and has promising therapeutic potential, particularly for congenital or acquired heart damage, such as myocardial infarctions. Although significant progress has been made, much work is needed to unravel the complex interplay of signaling pathways that regulate cardiomyocyte proliferation and hypertrophy. This review provides a detailed perspective for future research directions aimed at the potential therapeutic harnessing of the perinatal heart transitions.
Collapse
Affiliation(s)
- Patrick G. Burgon
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Jonathan J. Weldrick
- Department of Medicine, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (J.J.W.); (L.A.M.)
| | | | - Muhammad Nadeer
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (O.M.S.A.T.)
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (O.M.S.A.T.)
| | - Lynn A. Megeney
- Department of Medicine, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (J.J.W.); (L.A.M.)
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
11
|
Jin G, Wang K, Zhao Y, Yuan S, He Z, Zhang J. Targeting histone deacetylases for heart diseases. Bioorg Chem 2023; 138:106601. [PMID: 37224740 DOI: 10.1016/j.bioorg.2023.106601] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Histone deacetylases (HDACs) are responsible for the deacetylation of lysine residues in histone or non-histone substrates, leading to the regulation of many biological functions, such as gene transcription, translation and remodeling chromatin. Targeting HDACs for drug development is a promising way for human diseases, including cancers and heart diseases. In particular, numerous HDAC inhibitors have revealed potential clinical value for the treatment of cardiac diseases in recent years. In this review, we systematically summarize the therapeutic roles of HDAC inhibitors with different chemotypes on heart diseases. Additionally, we discuss the opportunities and challenges in developing HDAC inhibitors for the treatment of cardiac diseases.
Collapse
Affiliation(s)
- Gang Jin
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, China
| | - Kaiyue Wang
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, China
| | - Yaohui Zhao
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, China
| | - Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Zhangxu He
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, China.
| | - Jingyu Zhang
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, China.
| |
Collapse
|
12
|
Huang L, Wang Q, Gu S, Cao N. Integrated metabolic and epigenetic mechanisms in cardiomyocyte proliferation. J Mol Cell Cardiol 2023; 181:79-88. [PMID: 37331466 DOI: 10.1016/j.yjmcc.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
Heart disease continues to be the leading cause of mortality worldwide, primarily attributed to the restricted regenerative potential of the adult human heart following injury. In contrast to their adult counterparts, many neonatal mammals can spontaneously regenerate their myocardium in the first few days of life via extensive proliferation of the pre-existing cardiomyocytes. Reasons for the decline in regenerative capacity during postnatal development, and how to control it, remain largely unexplored. Accumulated evidence suggests that the preservation of regenerative potential depends on a conducive metabolic state in the embryonic and neonatal heart. Along with the postnatal increase in oxygenation and workload, the mammalian heart undergoes a metabolic transition, shifting its primary metabolic substrate from glucose to fatty acids shortly after birth for energy advantage. This metabolic switch causes cardiomyocyte cell-cycle arrest, which is widely regarded as a key mechanism for the loss of regenerative capacity. Beyond energy provision, emerging studies have suggested a link between this intracellular metabolism dynamics and postnatal epigenetic remodeling of the mammalian heart that reshapes the expression of many genes important for cardiomyocyte proliferation and cardiac regeneration, since many epigenetic enzymes utilize kinds of metabolites as obligate cofactors or substrates. This review summarizes the current state of knowledge of metabolism and metabolite-mediated epigenetic modifications in cardiomyocyte proliferation, with a particular focus on highlighting the potential therapeutic targets that hold promise to treat human heart failure via metabolic and epigenetic regulations.
Collapse
Affiliation(s)
- Liying Huang
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Qiyuan Wang
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Shanshan Gu
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Nan Cao
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China.
| |
Collapse
|
13
|
Aballo TJ, Roberts DS, Bayne EF, Zhu W, Walcott G, Mahmoud AI, Zhang J, Ge Y. Integrated proteomics reveals alterations in sarcomere composition and developmental processes during postnatal swine heart development. J Mol Cell Cardiol 2023; 176:33-40. [PMID: 36657638 PMCID: PMC10006350 DOI: 10.1016/j.yjmcc.2023.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
The neonatal swine heart possesses an endogenous ability to regenerate injured myocardium through the proliferation of pre-existing cardiomyocyte (CM) populations. However, this regenerative capacity is lost shortly after birth. Normal postnatal developmental processes and the regenerative capacity of mammalian hearts are tightly linked, but not much is known about how the swine cardiac proteome changes throughout postnatal development. Herein, we integrated robust and quantitative targeted "top-down" and global "bottom-up" proteomic workflows to comprehensively define the dynamic landscape of the swine cardiac proteome throughout postnatal maturation. Using targeted top-down proteomics, we were able to identify significant alterations in sarcomere composition, providing new insight into the proteoform landscape of sarcomeres that can disassemble, a process necessary for productive CM proliferation. Furthermore, we quantified global changes in protein abundance using bottom-up proteomics, identified over 700 differentially expressed proteins throughout postnatal development, and mapped these proteins to changes in developmental and metabolic processes. We envision these results will help guide future investigations to comprehensively understand endogenous cardiac regeneration toward the development of novel therapeutic strategies for heart failure.
Collapse
Affiliation(s)
- Timothy J Aballo
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA; Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David S Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Elizabeth F Bayne
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wuqiang Zhu
- Department of Cardiovascular Diseases, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Gregory Walcott
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Ahmed I Mahmoud
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jianyi Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
14
|
Zare A, Salehpour A, Khoradmehr A, Bakhshalizadeh S, Najafzadeh V, Almasi-Turk S, Mahdipour M, Shirazi R, Tamadon A. Epigenetic Modification Factors and microRNAs Network Associated with Differentiation of Embryonic Stem Cells and Induced Pluripotent Stem Cells toward Cardiomyocytes: A Review. Life (Basel) 2023; 13:life13020569. [PMID: 36836926 PMCID: PMC9965891 DOI: 10.3390/life13020569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 02/22/2023] Open
Abstract
More research is being conducted on myocardial cell treatments utilizing stem cell lines that can develop into cardiomyocytes. All of the forms of cardiac illnesses have shown to be quite amenable to treatments using embryonic (ESCs) and induced pluripotent stem cells (iPSCs). In the present study, we reviewed the differentiation of these cell types into cardiomyocytes from an epigenetic standpoint. We also provided a miRNA network that is devoted to the epigenetic commitment of stem cells toward cardiomyocyte cells and related diseases, such as congenital heart defects, comprehensively. Histone acetylation, methylation, DNA alterations, N6-methyladenosine (m6a) RNA methylation, and cardiac mitochondrial mutations are explored as potential tools for precise stem cell differentiation.
Collapse
Affiliation(s)
- Afshin Zare
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Aria Salehpour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Shabnam Bakhshalizadeh
- Reproductive Development, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Vahid Najafzadeh
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Sahar Almasi-Turk
- Department of Basic Sciences, School of Medicine, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran
- Correspondence: (M.M.); (R.S.); (A.T.)
| | - Reza Shirazi
- Department of Anatomy, School of Medical Sciences, Medicine & Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Correspondence: (M.M.); (R.S.); (A.T.)
| | - Amin Tamadon
- PerciaVista R&D Co., Shiraz 7135644144, Iran
- Correspondence: (M.M.); (R.S.); (A.T.)
| |
Collapse
|
15
|
Kabir F, Atkinson R, Cook AL, Phipps AJ, King AE. The role of altered protein acetylation in neurodegenerative disease. Front Aging Neurosci 2023; 14:1025473. [PMID: 36688174 PMCID: PMC9845957 DOI: 10.3389/fnagi.2022.1025473] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/03/2022] [Indexed: 01/06/2023] Open
Abstract
Acetylation is a key post-translational modification (PTM) involved in the regulation of both histone and non-histone proteins. It controls cellular processes such as DNA transcription, RNA modifications, proteostasis, aging, autophagy, regulation of cytoskeletal structures, and metabolism. Acetylation is essential to maintain neuronal plasticity and therefore essential for memory and learning. Homeostasis of acetylation is maintained through the activities of histone acetyltransferases (HAT) and histone deacetylase (HDAC) enzymes, with alterations to these tightly regulated processes reported in several neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). Both hyperacetylation and hypoacetylation can impair neuronal physiological homeostasis and increase the accumulation of pathophysiological proteins such as tau, α-synuclein, and Huntingtin protein implicated in AD, PD, and HD, respectively. Additionally, dysregulation of acetylation is linked to impaired axonal transport, a key pathological mechanism in ALS. This review article will discuss the physiological roles of protein acetylation and examine the current literature that describes altered protein acetylation in neurodegenerative disorders.
Collapse
|
16
|
Dsilva P, Pai P, Shetty MG, Babitha KS. The role of histone deacetylases in embryonic development. Mol Reprod Dev 2023; 90:14-26. [PMID: 36534913 DOI: 10.1002/mrd.23659] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 09/16/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
The basic units of chromatin are nucleosomes, that are made up of DNA wrapped around histone cores. Histone lysine residue is a common location for posttranslational modifications, with acetylation being the second most prevalent. Histone acetyltransferases (HATs/KATs) and histone deacetylases (HDACs/KDACs) regulate histone acetylation, which is important in gene expression control. HDACs/KDACs regulate gene expressions through the repression of the transcription machinery. HDAC/KDAC isoforms play a major role during various stages of embryo development and neurogenesis. In specific, class I and II HDACs/KDACs are involved in cardiac muscle differentiation and development. An insight into different pathways and genes associated with embryonic development, the effect of HDAC/KDAC activity during the embryonic stem cell differentiation, preimplantation, embryo development, gastrulation, and the role of different HDAC/KDAC inhibitors during the process of embryogenesis is summarized in the present review article.
Collapse
Affiliation(s)
- Priyanka Dsilva
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Padmini Pai
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manasa Gangadhar Shetty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kampa S Babitha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
17
|
Fadaei S, Zarepour F, Parvaresh M, Motamedzadeh A, Tamehri Zadeh SS, Sheida A, Shabani M, Hamblin MR, Rezaee M, Zarei M, Mirzaei H. Epigenetic regulation in myocardial infarction: Non-coding RNAs and exosomal non-coding RNAs. Front Cardiovasc Med 2022; 9:1014961. [PMID: 36440025 PMCID: PMC9685618 DOI: 10.3389/fcvm.2022.1014961] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/17/2022] [Indexed: 08/13/2023] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of deaths globally. The early diagnosis of MI lowers the rate of subsequent complications and maximizes the benefits of cardiovascular interventions. Many efforts have been made to explore new therapeutic targets for MI, and the therapeutic potential of non-coding RNAs (ncRNAs) is one good example. NcRNAs are a group of RNAs with many different subgroups, but they are not translated into proteins. MicroRNAs (miRNAs) are the most studied type of ncRNAs, and have been found to regulate several pathological processes in MI, including cardiomyocyte inflammation, apoptosis, angiogenesis, and fibrosis. These processes can also be modulated by circular RNAs and long ncRNAs via different mechanisms. However, the regulatory role of ncRNAs and their underlying mechanisms in MI are underexplored. Exosomes play a crucial role in communication between cells, and can affect both homeostasis and disease conditions. Exosomal ncRNAs have been shown to affect many biological functions. Tissue-specific changes in exosomal ncRNAs contribute to aging, tissue dysfunction, and human diseases. Here we provide a comprehensive review of recent findings on epigenetic changes in cardiovascular diseases as well as the role of ncRNAs and exosomal ncRNAs in MI, focusing on their function, diagnostic and prognostic significance.
Collapse
Affiliation(s)
- Sara Fadaei
- Department of Internal Medicine and Endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehrnoosh Parvaresh
- Department of Physical Medicine and Rehabilitation, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Shabani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Department of Anesthesiology, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Mehdi Rezaee
- Department of Anesthesiology, School of Medicine, Shahid Madani Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Zarei
- Tehran Heart Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
18
|
Zhao K, Mao Y, Li Y, Yang C, Wang K, Zhang J. The roles and mechanisms of epigenetic regulation in pathological myocardial remodeling. Front Cardiovasc Med 2022; 9:952949. [PMID: 36093141 PMCID: PMC9458904 DOI: 10.3389/fcvm.2022.952949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/10/2022] [Indexed: 11/22/2022] Open
Abstract
Pathological myocardial remodeling was still one of the leading causes of death worldwide with an unmet therapeutic need. A growing number of researchers have addressed the role of epigenome changes in cardiovascular diseases, paving the way for the clinical application of novel cardiovascular-related epigenetic targets in the future. In this review, we summarized the emerged advances of epigenetic regulation, including DNA methylation, Histone posttranslational modification, Adenosine disodium triphosphate (ATP)-dependent chromatin remodeling, Non-coding RNA, and RNA modification, in pathological myocardial remodeling. Also, we provided an overview of the mechanisms that potentially involve the participation of these epigenetic regulation.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yukang Mao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yansong Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanxi Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kai Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Kai Wang
| | - Jing Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Jing Zhang
| |
Collapse
|
19
|
Kulthinee S, Yano N, Zhuang S, Wang L, Zhao TC. Critical Functions of Histone Deacetylases (HDACs) in Modulating Inflammation Associated with Cardiovascular Diseases. PATHOPHYSIOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR PATHOPHYSIOLOGY 2022; 29:471-485. [PMID: 35997393 PMCID: PMC9397025 DOI: 10.3390/pathophysiology29030038] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
Histone deacetylases (HDACs) are a superfamily of enzymes that catalyze the removal of acetyl functional groups from lysine residues of histone and non-histone proteins. There are 18 mammalian HDACs, which are classified into four classes based on the primary homology with yeast HDACs. Among these groups, Class I and II HDACs play a major role in lysine deacetylation of the N-terminal histone tails. In mammals, HDACs play a pivotal role in the regulation of gene transcription, cell growth, survival, and proliferation. HDACs regulate the expression of inflammatory genes, as evidenced by the potent anti-inflammatory activity of pan-HDAC inhibitors, which were implicated in several pathophysiologic states in the inflammation process. However, it is unclear how each of the 18 HDAC proteins specifically contributes to the inflammatory gene expression. It is firmly established that inflammation and its inability to converge are central mechanisms in the pathogenesis of several cardiovascular diseases (CVDs). Emerging evidence supports the hypothesis that several different pro-inflammatory cytokines regulated by HDACs are associated with various CVDs. Based on this hypothesis, the potential for the treatment of CVDs with HDAC inhibitors has recently begun to attract attention. In this review, we will briefly discuss (1) pathophysiology of inflammation in cardiovascular disease, (2) the function of HDACs in the regulation of atherosclerosis and cardiovascular diseases, and (3) the possible therapeutic implications of HDAC inhibitors in cardiovascular diseases. Recent studies reveal that histone deacetylase contributes critically to mediating the pathophysiology of inflammation in cardiovascular disease. HDACs are also recognized as one of the major mechanisms in the regulation of inflammation and cardiovascular function. HDACs show promise in developing potential therapeutic implications of HDAC inhibitors in cardiovascular and inflammatory diseases.
Collapse
Affiliation(s)
- Supaporn Kulthinee
- Cardiovascular and Metabolism Laboratories, Department of Surgery and Plastic Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Naohiro Yano
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, RI 02903, USA
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, RI 02903, USA
| | - Lijiang Wang
- Cardiovascular and Metabolism Laboratories, Department of Surgery and Plastic Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Ting C. Zhao
- Cardiovascular and Metabolism Laboratories, Department of Surgery and Plastic Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- Department of Surgery, Boston University Medical School, Boston, MA 02118, USA
- Correspondence: ; Tel.: +1-401-456-8266; Fax: +1-401-456-2507
| |
Collapse
|
20
|
Hdac8 Inhibitor Alleviates Transverse Aortic Constriction-Induced Heart Failure in Mice by Downregulating Ace1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6227330. [PMID: 35126818 PMCID: PMC8813277 DOI: 10.1155/2022/6227330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022]
Abstract
Background Heart failure is characterized by activation of the renin-angiotensin-aldosterone system, which is involved in the regulation of cardiac hypertrophy and hypertension. Recently, we reported that Hdac8 inhibition alleviates isoproterenol-induced and angiotensin II-induced cardiac hypertrophy or hypertension in mice. Here, the effect and regulatory mechanisms of the Hdac8 selective inhibitor PCI34051 on pressure overload-induced heart failure were examined. Methods and Results At week 6 posttransverse aortic constriction (TAC), mice were administered with PCI34051 (3, 10, or 30 mg/kg bodyweight/day) for 2 weeks. The therapeutic effects of PCI34051 on TAC-induced cardiac and lung hypertrophy were determined by examining the heart weight-to-bodyweight and lung weight-to-bodyweight ratios and the cross-sectional cardiomyocyte area. Echocardiography analysis revealed that PCI34051 mitigated TAC-induced decreased ejection fraction and fractional shortening. Additionally, the expression of Hdac8 was upregulated in the cardiac and pulmonary tissues of TAC mice. The expression levels of Ace1 and Agtr1 were upregulated, whereas those of Ace2 and Agtr2 were downregulated in TAC mice. PCI34051 treatment or Hdac8 knockdown alleviated inflammation as evidenced by Rela downregulation and Nfkbia upregulation in mice, as well as in cardiomyocytes, but not in cardiac fibroblasts. Hdac8 overexpression-induced Rela pathway activation was downregulated in Ace1 knockdown cells. Picrosirius red staining, real-time polymerase chain reaction, and western blotting analyses revealed that PCI34051 alleviated fibrosis and downregulated fibrosis-related genes. Moreover, PCI34051 or Hdac8 knockdown in rat cardiac fibroblasts alleviated cardiac fibrosis through the Tgfb1-Smad2/3 pathway. The results of overexpression and knockdown experiments revealed that Hdac8 and Ace1 promote inflammation and fibrosis. Conclusions Treatment with PCI34051 enhanced cardiac and lung functions in the TAC-induced heart failure mouse model. These data suggest that HDAC8 is a potential novel therapeutic target for heart failure accompanied by pathological lung diseases.
Collapse
|
21
|
Pozo MR, Meredith GW, Entcheva E. Human iPSC-Cardiomyocytes as an Experimental Model to Study Epigenetic Modifiers of Electrophysiology. Cells 2022; 11:200. [PMID: 35053315 PMCID: PMC8774228 DOI: 10.3390/cells11020200] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 02/04/2023] Open
Abstract
The epigenetic landscape and the responses to pharmacological epigenetic regulators in each human are unique. Classes of epigenetic writers and erasers, such as histone acetyltransferases, HATs, and histone deacetylases, HDACs, control DNA acetylation/deacetylation and chromatin accessibility, thus exerting transcriptional control in a tissue- and person-specific manner. Rapid development of novel pharmacological agents in clinical testing-HDAC inhibitors (HDACi)-targets these master regulators as common means of therapeutic intervention in cancer and immune diseases. The action of these epigenetic modulators is much less explored for cardiac tissue, yet all new drugs need to be tested for cardiotoxicity. To advance our understanding of chromatin regulation in the heart, and specifically how modulation of DNA acetylation state may affect functional electrophysiological responses, human-induced pluripotent stem-cell-derived cardiomyocyte (hiPSC-CM) technology can be leveraged as a scalable, high-throughput platform with ability to provide patient-specific insights. This review covers relevant background on the known roles of HATs and HDACs in the heart, the current state of HDACi development, applications, and any adverse cardiac events; it also summarizes relevant differential gene expression data for the adult human heart vs. hiPSC-CMs along with initial transcriptional and functional results from using this new experimental platform to yield insights on epigenetic control of the heart. We focus on the multitude of methodologies and workflows needed to quantify responses to HDACis in hiPSC-CMs. This overview can help highlight the power and the limitations of hiPSC-CMs as a scalable experimental model in capturing epigenetic responses relevant to the human heart.
Collapse
Affiliation(s)
| | | | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, DC 20052, USA; (M.R.P.); (G.W.M.)
| |
Collapse
|
22
|
Aitken TJ, Crabtree JE, Jensen DM, Hess KH, Leininger BR, Tessem JS. Decreased proliferation of aged rat beta cells corresponds with enhanced expression of the cell cycle inhibitor p27 KIP1. Biol Cell 2021; 113:507-521. [PMID: 34523154 DOI: 10.1111/boc.202100035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Over 400 million people are diabetic. Type 1 and type 2 diabetes are characterized by decreased functional β-cell mass and, consequently, decreased glucose-stimulated insulin secretion. A potential intervention is transplantation of β-cell containing islets from cadaveric donors. A major impediment to greater application of this treatment is the scarcity of transplant-ready β-cells. Therefore, inducing β-cell proliferation ex vivo could be used to expand functional β-cell mass prior to transplantation. Various molecular pathways are sufficient to induce proliferation of young β-cells; however, aged β-cells are refractory to these proliferative signals. Given that the majority of cadaveric donors fit an aged demographic, defining the mechanisms that impede aged β-cell proliferation is imperative. RESULTS We demonstrate that aged rat (5-month-old) β-cells are refractory to mitogenic stimuli that otherwise induce young rat (5-week-old) β-cell proliferation. We hypothesized that this change in proliferative capacity could be due to differences in cyclin-dependent kinase inhibitor expression. We measured levels of p16INK4a , p15INK4b , p18INK4c , p19INK4d , p21CIP1 , p27KIP1 and p57KIP2 by immunofluorescence analysis. Our data demonstrates an age-dependent increase of p27KIP1 in rat β-cells by immunofluorescence and was validated by increased p27KIP1 protein levels by western blot analysis. Interestingly, HDAC1, which modulates the p27KIP1 promoter acetylation state, is downregulated in aged rat islets. These data demonstrate increased p27KIP1 protein levels at 5 months of age, which may be due to decreased HDAC1 mediated repression of p27KIP1 expression. SIGNIFICANCE As the majority of transplant-ready β-cells come from aged donors, it is imperative that we understand why aged β-cells are refractory to mitogenic stimuli. Our findings demonstrate that increased p27KIP1 expression occurs early in β-cell aging, which corresponds with impaired β-cell proliferation. Furthermore, the correlation between HDAC1 and p27 levels suggests that pathways that activate HDAC1 in aged β-cells could be leveraged to decrease p27KIP1 levels and enhance β-cell proliferation.
Collapse
Affiliation(s)
- Talon J Aitken
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA.,Medical Education Program, Des Moines University, Des Moines, IA, 50312, USA
| | - Jacqueline E Crabtree
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA
| | - Daelin M Jensen
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA.,Biomedical Sciences, Ohio State University, Columbus, OH, 43210, USA
| | - Kavan H Hess
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA.,Medical Education Program, Idaho College of Osteopathic Medicine, Meridian, ID, 83642, USA
| | - Brennan R Leininger
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA.,Dental Education Program, UCLA School of Dentistry, Los Angeles, CA, 90024, USA
| | - Jeffery S Tessem
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
23
|
Kim YJ, Tamadon A, Kim YY, Kang BC, Ku SY. Epigenetic Regulation of Cardiomyocyte Differentiation from Embryonic and Induced Pluripotent Stem Cells. Int J Mol Sci 2021; 22:8599. [PMID: 34445302 PMCID: PMC8395249 DOI: 10.3390/ijms22168599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/17/2022] Open
Abstract
With the intent to achieve the best modalities for myocardial cell therapy, different cell types are being evaluated as potent sources for differentiation into cardiomyocytes. Embryonic stem cells and induced pluripotent stem cells have great potential for future progress in the treatment of myocardial diseases. We reviewed aspects of epigenetic mechanisms that play a role in the differentiation of these cells into cardiomyocytes. Cardiomyocytes proliferate during fetal life, and after birth, they undergo permanent terminal differentiation. Upregulation of cardiac-specific genes in adults induces hypertrophy due to terminal differentiation. The repression or expression of these genes is controlled by chromatin structural and epigenetic changes. However, few studies have reviewed and analyzed the epigenetic aspects of the differentiation of embryonic stem cells and induced pluripotent stem cells into cardiac lineage cells. In this review, we focus on the current knowledge of epigenetic regulation of cardiomyocyte proliferation and differentiation from embryonic and induced pluripotent stem cells through histone modification and microRNAs, the maintenance of pluripotency, and its alteration during cardiac lineage differentiation.
Collapse
Affiliation(s)
- Yong-Jin Kim
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 08308, Korea;
| | - Amin Tamadon
- Department of Marine Stem Cell and Tissue Engineering, Bushehr University of Medical Sciences, Bushehr 14174, Iran;
| | - Yoon-Young Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea;
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea;
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 03080, Korea
| | - Byeong-Cheol Kang
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea;
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea;
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
24
|
Qin J, Guo N, Tong J, Wang Z. Function of histone methylation and acetylation modifiers in cardiac hypertrophy. J Mol Cell Cardiol 2021; 159:120-129. [PMID: 34175302 DOI: 10.1016/j.yjmcc.2021.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 12/15/2022]
Abstract
Cardiac hypertrophy is an adaptive response of the heart to increased workload induced by various physiological or pathological stimuli. It is a common pathological process in multiple cardiovascular diseases, and it ultimately leads to heart failure. The development of cardiac hypertrophy is accompanied by gene expression reprogramming, a process that is largely dependent on epigenetic regulation. Histone modifications such as methylation and acetylation are dynamically regulated under cardiac stress. These consequently contribute to the pathogenesis of cardiac hypertrophy via compensatory or maladaptive transcriptome reprogramming. Histone methylation and acetylation modifiers play crucial roles in epigenetic remodeling during the pathogenesis of cardiac hypertrophy. Regulation of histone methylation and acetylation modifiers serves as a bridge between signal transduction and downstream gene reprogramming. Exploring the role of histone modifiers in cardiac hypertrophy provides novel therapeutic strategies to treat cardiac hypertrophy and heart failure. In this review, we summarize the recent advancements in functional histone methylation and acetylation modifiers in cardiac hypertrophy, with an emphasis on the underlying mechanisms and the therapeutic potential.
Collapse
Affiliation(s)
- Jian Qin
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ningning Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingjing Tong
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zhihua Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
25
|
Zhao T, Kee HJ, Bai L, Kim MK, Kee SJ, Jeong MH. Selective HDAC8 Inhibition Attenuates Isoproterenol-Induced Cardiac Hypertrophy and Fibrosis via p38 MAPK Pathway. Front Pharmacol 2021; 12:677757. [PMID: 33959033 PMCID: PMC8093872 DOI: 10.3389/fphar.2021.677757] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022] Open
Abstract
Histone deacetylase (HDAC) expression and enzymatic activity are dysregulated in cardiovascular diseases. Among Class I HDACs, HDAC2 has been reported to play a key role in cardiac hypertrophy; however, the exact function of HDAC8 remains unknown. Here we investigated the role of HDAC8 in cardiac hypertrophy and fibrosis using the isoproterenol-induced cardiac hypertrophy model system.Isoproterenol-infused mice were injected with the HDAC8 selective inhibitor PCI34051 (30 mg kg−1 body weight). Enlarged hearts were assessed by HW/BW ratio, cross-sectional area, and echocardiography. RT-PCR, western blotting, histological analysis, and cell size measurements were performed. To elucidate the role of HDAC8 in cardiac hypertrophy, HDAC8 knockdown and HDAC8 overexpression were also used. Isoproterenol induced HDAC8 mRNA and protein expression in mice and H9c2 cells, while PCI34051 treatment decreased cardiac hypertrophy in isoproterenol-treated mice and H9c2 cells. PCI34051 treatment also reduced the expression of cardiac hypertrophic markers (Nppa, Nppb, and Myh7), transcription factors (Sp1, Gata4, and Gata6), and fibrosis markers (collagen type I, fibronectin, and Ctgf) in isoproterenol-treated mice. HDAC8 overexpression stimulated cardiac hypertrophy in cells, whereas HDAC8 knockdown reversed those effects. HDAC8 selective inhibitor and HDAC8 knockdown reduced the isoproterenol-induced activation of p38 MAPK, whereas HDAC8 overexpression promoted p38 MAPK phosphorylation. Furthermore, p38 MAPK inhibitor SB203580 significantly decreased the levels of p38 MAPK phosphorylation, as well as ANP and BNP protein expression, induced by HDAC8 overexpression.Here we show that inhibition of HDAC8 activity or expression suppresses cardiac hypertrophy and fibrosis. These findings suggest that HDAC8 could be a promising target to treat cardiac hypertrophy and fibrosis by regulating p38 MAPK.
Collapse
Affiliation(s)
- Tingwei Zhao
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hae Jin Kee
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Liyan Bai
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Moon-Ki Kim
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University, Medical School and Hospital, Gwangju, Republic of Korea
| | - Myung Ho Jeong
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea.,Department of Cardiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
26
|
HDAC3 protects against atherosclerosis through inhibition of inflammation via the microRNA-19b/PPARγ/NF-κB axis. Atherosclerosis 2021; 323:1-12. [PMID: 33756273 DOI: 10.1016/j.atherosclerosis.2021.02.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Atherosclerosis (AS) is one of the leading causes of cardiovascular diseases. Studies have revealed critical roles of microRNAs (miRNAs) in the progression of AS. This study was conducted to elucidate the role and mechanism by which miR-19b influences AS. METHODS Human umbilical vein endothelial cells (HUVECs) were treated with oxidized-low-density lipoprotein (ox-LDL), and an AS mouse model was generated with the help of ApoE-/- mice using a high-fat diet regimen. The expression patterns of peroxisome proliferator-activated receptor γ (PPARγ), nuclear factor κB (NF-κB)/p65, miR-19b and histone deacetylase 3 (HDAC3) were then characterized by reverse transcription quantitative polymerase chain reaction and Western blot analysis. In addition, the relationship among PPARγ, NF-κB/p65, miR-19b and HDAC3 was evaluated by co-immunoprecipitation, chromatin immunoprecipitation and dual-luciferase reporter gene assays. Gain- and loss-of-function experiments were also performed to examine their functional significance on ox-LDL-induced inflammation in HUVECs. Enzyme-linked immunosorbent assay was applied to determine the expression patterns of inflammatory factors in AS mice. RESULTS PPARγ and HDAC3 were poorly expressed, while miR-19b and NF-κB/p65 were highly expressed in ox-LDL-induced HUVECs and arterial tissues of AS mice. PPARγ inhibited ox-LDL-induced inflammation in HUVECs by ubiquitination and degradation of NF-κB/p65. miR-19b, downregulated by HDAC3, targeted PPARγ and negatively-regulated its expression. Upregulated PPARγ or HDAC3 or downregulated miR-19b or NF-κB/p65 reduced TNF-α and IL-1β expression levels in ox-LDL-induced HUVECs and AS mice. CONCLUSIONS Collectively, the results show that HDAC3 upregulation prevents inflammation to inhibit AS by inactivating NF-κB/p65 via upregulation of miR-19b-mediated PPARγ, providing a basic therapeutic consideration for AS treatment.
Collapse
|
27
|
Chun P. Therapeutic effects of histone deacetylase inhibitors on heart disease. Arch Pharm Res 2020; 43:1276-1296. [PMID: 33245518 DOI: 10.1007/s12272-020-01297-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/22/2020] [Indexed: 01/04/2023]
Abstract
A wide range of histone deacetylase (HDAC) inhibitors have been studied for their therapeutic potential because the excessive activity and expression of HDACs have been implicated in the pathogenesis of cardiac diseases. An increasing number of preclinical studies have demonstrated the cardioprotective effects of numerous HDAC inhibitors, suggesting a wide variety of mechanisms by which the inhibitors protect against cardiac stress, such as the suppression of cardiac fibrosis and fetal gene expression, enhancement of angiogenesis and mitochondrial biogenesis, prevention of electrical remodeling, and regulation of apoptosis, autophagy, and cell cycle arrest. For the development of isoform-selective HDAC inhibitors with high efficacy and low toxicity, it is important to identify and understand the mechanisms responsible for the effects of the inhibitors. This review highlights the preclinical effects of HDAC inhibitors that act against Zn2+-dependent HDACs and the underlying mechanisms of their protective effects against cardiac hypertrophy, hypertension, myocardial infarction, heart failure, and atrial fibrillation.
Collapse
Affiliation(s)
- Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam, 50834, Republic of Korea.
| |
Collapse
|
28
|
Zhang M, Yang X, Zimmerman RJ, Wang Q, Ross MA, Granger JM, Luczak ED, Bedja D, Jiang H, Feng N. CaMKII exacerbates heart failure progression by activating class I HDACs. J Mol Cell Cardiol 2020; 149:73-81. [PMID: 32971072 DOI: 10.1016/j.yjmcc.2020.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/17/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND Persistent cardiac Ca2+/calmodulin dependent Kinase II (CaMKII) activation plays an essential role in heart failure development. However, the molecular mechanisms underlying CaMKII induced heart failure progression remains incompletely understood. Histone deacetylases (HDACs) are critical for transcriptional responses to stress, and contribute to expression of pathological genes causing adverse ventricular remodeling. Class I HDACs, including HDAC1, HDAC2 and HDAC3, promote pathological cardiac hypertrophy, whereas class IIa HDACs suppress cardiac hypertrophy. While it is known that CaMKII deactivates class IIa HDACs to enhance cardiac hypertrophy, the role of CaMKII in regulating class I HDACs during heart failure progression is unclear. METHODS AND RESULTS CaMKII increases the deacetylase activity of recombinant HDAC1, HDAC2 and HDAC3 via in vitro phosphorylation assays. Phosphorylation sites on HDAC1 and HDAC3 are identified with mass spectrometry. HDAC1 activity is also increased in cardiac-specific CaMKIIδC transgenic mice (CaMKIIδC-tg). Beyond post-translational modifications, CaMKII induces HDAC1 and HDAC3 expression. HDAC1 and HDAC3 expression are significantly increased in CaMKIIδC-tg mice. Inhibition of CaMKII by overexpression of the inhibitory peptide AC3-I in the heart attenuates the upregulation of HDAC1 after myocardial infarction surgery. Importantly, a potent HDAC1 inhibitor Quisinostat improves downregulated autophagy genes and cardiac dysfunction in CaMKIIδC-tg mice. In addition to Quisinostat, selective class I HDACs inhibitors, Apicidin and Entinostat, HDAC3 specific inhibitor RGFP966, as well as HDAC1 and HDAC3 siRNA prevent CaMKII overexpression induced cardiac myocyte hypertrophy. CONCLUSION CaMKII activates class I HDACs in heart failure, which may be a central mechanism for heart failure progression. Selective class I HDACs inhibition may be a novel therapeutic avenue to alleviate CaMKII hyperactivity induced cardiac dysfunction.
Collapse
Affiliation(s)
- Manling Zhang
- Department of Medicine, Division of Cardiology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States; Division of Cardiology, Veteran Affair Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Xue Yang
- Department of Medicine, Division of Cardiology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Raymond J Zimmerman
- Department of Medicine, Division of Cardiology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qin Wang
- Department of Medicine, Division of Cardiology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States; Echocardiography lab at Heart Center, Ningxia General Hospital, Ningxia Medical University, Ningxia, China
| | - Mark A Ross
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Jonathan M Granger
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Elizabeth D Luczak
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Djahida Bedja
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Hong Jiang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ning Feng
- Department of Medicine, Division of Cardiology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States; Division of Cardiology, Veteran Affair Pittsburgh Healthcare System, Pittsburgh, PA, United States.
| |
Collapse
|
29
|
Wang Z, Zhao YT, Zhao TC. Histone deacetylases in modulating cardiac disease and their clinical translational and therapeutic implications. Exp Biol Med (Maywood) 2020; 246:213-225. [PMID: 32727215 DOI: 10.1177/1535370220944128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular diseases are the leading cause of mortality and morbidity worldwide. Histone deacetylases (HDACs) play an important role in the epigenetic regulation of genetic transcription in response to stress or pathological conditions. HDACs interact with a complex co-regulatory network of transcriptional regulators, deacetylate histones or non-histone proteins, and modulate gene expression in the heart. The selective HDAC inhibitors have been considered to be a critical target for the treatment of cardiac disease, especially for ameliorating cardiac dysfunction. In this review, we discuss our current knowledge of the cellular and molecular basis of HDACs in mediating cardiac development and hypertrophy and related pharmacologic interventions in heart disease.
Collapse
Affiliation(s)
- Zhengke Wang
- Department of Surgery, Boston University Medical School, Roger Williams Medical Center, Providence, RI 02908, USA
| | - Yu Tina Zhao
- University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Ting C Zhao
- Departments of Surgery and Plastic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| |
Collapse
|
30
|
Ghosh TK, Aparicio-Sánchez JJ, Buxton S, Brook JD. HDAC4 and 5 repression of TBX5 is relieved by protein kinase D1. Sci Rep 2019; 9:17992. [PMID: 31784580 PMCID: PMC6884511 DOI: 10.1038/s41598-019-54312-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/11/2019] [Indexed: 11/17/2022] Open
Abstract
TBX5 is a T-box family transcription factor that regulates heart and forelimb development in vertebrates and functional deficiencies in this protein result in Holt-Oram syndrome. Recently, we have shown that acetylation of TBX5 potentiates its activity and is important for heart and limb development. Here we report that class II histone deacetylases HDAC4 and HDAC5 associate with TBX5 and repress its role in cardiac gene transcription. Both HDAC4 and HDAC5 deacetylate TBX5, which promotes its relocation to the cytoplasm and HDAC4 antagonizes the physical association and functional cooperation between TBX5 and MEF2C. We also show that protein kinase D1 (PRKD1) relieves the HDAC4/5-mediated repression of TBX5. Thus, this study reveals a novel interaction of HDAC4/5 and PRKD1 in the regulation of TBX5 transcriptional activity.
Collapse
Affiliation(s)
- Tushar K Ghosh
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - José J Aparicio-Sánchez
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Sarah Buxton
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - J David Brook
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
31
|
Lysine acetyltransferases and lysine deacetylases as targets for cardiovascular disease. Nat Rev Cardiol 2019; 17:96-115. [DOI: 10.1038/s41569-019-0235-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2019] [Indexed: 12/28/2022]
|
32
|
Lawlor L, Yang XB. Harnessing the HDAC-histone deacetylase enzymes, inhibitors and how these can be utilised in tissue engineering. Int J Oral Sci 2019; 11:20. [PMID: 31201303 PMCID: PMC6572769 DOI: 10.1038/s41368-019-0053-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 02/07/2023] Open
Abstract
There are large knowledge gaps regarding how to control stem cells growth and differentiation. The limitations of currently available technologies, such as growth factors and/or gene therapies has led to the search of alternatives. We explore here how a cell's epigenome influences determination of cell type, and potential applications in tissue engineering. A prevalent epigenetic modification is the acetylation of DNA core histone proteins. Acetylation levels heavily influence gene transcription. Histone deacetylase (HDAC) enzymes can remove these acetyl groups, leading to the formation of a condensed and more transcriptionally silenced chromatin. Histone deacetylase inhibitors (HDACis) can inhibit these enzymes, resulting in the increased acetylation of histones, thereby affecting gene expression. There is strong evidence to suggest that HDACis can be utilised in stem cell therapies and tissue engineering, potentially providing novel tools to control stem cell fate. This review introduces the structure/function of HDAC enzymes and their links to different tissue types (specifically bone, cardiac, neural tissues), including the history, current status and future perspectives of using HDACis for stem cell research and tissue engineering, with particular attention paid to how different HDAC isoforms may be integral to this field.
Collapse
Affiliation(s)
- Liam Lawlor
- Department of Oral Biology, University of Leeds, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK
- Doctoral Training Centre in Tissue Engineering and Regenerative Medicine, Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Xuebin B Yang
- Department of Oral Biology, University of Leeds, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK.
- Doctoral Training Centre in Tissue Engineering and Regenerative Medicine, Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK.
| |
Collapse
|
33
|
Fujita J, Tohyama S, Kishino Y, Okada M, Morita Y. Concise Review: Genetic and Epigenetic Regulation of Cardiac Differentiation from Human Pluripotent Stem Cells. Stem Cells 2019; 37:992-1002. [PMID: 31021504 DOI: 10.1002/stem.3027] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 04/15/2019] [Indexed: 12/28/2022]
Abstract
Human pluripotent stem cells (hPSCs), including both embryonic stem cells and induced pluripotent stem cells, are the ideal cell sources for disease modeling, drug discovery, and regenerative medicine. In particular, regenerative therapy with hPSC-derived cardiomyocytes (CMs) is an unmet medical need for the treatment of severe heart failure. Cardiac differentiation protocols from hPSCs are made on the basis of cardiac development in vivo. However, current protocols have yet to yield 100% pure CMs, and their maturity is low. Cardiac development is regulated by the cardiac gene network, including transcription factors (TFs). According to our current understanding of cardiac development, cardiac TFs are sequentially expressed during cardiac commitment in hPSCs. Expression levels of each gene are strictly regulated by epigenetic modifications. DNA methylation, histone modification, and noncoding RNAs significantly influence cardiac differentiation. These complex circuits of genetic and epigenetic factors dynamically affect protein expression and metabolic changes in cardiac differentiation and maturation. Here, we review cardiac differentiation protocols and their molecular machinery, closing with a discussion of the future challenges for producing hPSC-derived CMs. Stem Cells 2019;37:992-1002.
Collapse
Affiliation(s)
- Jun Fujita
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Marina Okada
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yuika Morita
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
34
|
HDAC1 overexpression enhances β-cell proliferation by down-regulating Cdkn1b/p27. Biochem J 2018; 475:3997-4010. [PMID: 30322885 DOI: 10.1042/bcj20180465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 12/18/2022]
Abstract
The homeobox transcription factor Nkx6.1 is sufficient to increase functional β-cell mass, where functional β-cell mass refers to the combination of β-cell proliferation, glucose-stimulated insulin secretion (GSIS) and β-cell survival. Here, we demonstrate that the histone deacetylase 1 (HDAC1), which is an early target of Nkx6.1, is sufficient to increase functional β-cell mass. We show that HDAC activity is necessary for Nkx6.1-mediated proliferation, and that HDAC1 is sufficient to increase β-cell proliferation in primary rat islets and the INS-1 832/13 β-cell line. The increase in HDAC1-mediated proliferation occurs while maintaining GSIS and increasing β-cell survival in response to apoptotic stimuli. We demonstrate that HDAC1 overexpression results in decreased expression of the cell cycle inhibitor Cdkn1b/p27 which is essential for inhibiting the G1 to S phase transition of the cell cycle. This corresponds with increased expression of key cell cycle activators, such as Cyclin A2, Cyclin B1 and E2F1, which are activated by activation of the Cdk4/Cdk6/Cyclin D holoenzymes due to down-regulation of Cdkn1b/p27. Finally, we demonstrate that overexpression of Cdkn1b/p27 inhibits HDAC1-mediated β-cell proliferation. Our data suggest that HDAC1 is critical for the Nkx6.1-mediated pathway that enhances functional β-cell mass.
Collapse
|
35
|
Duan HY, Zhou KY, Wang T, Zhang Y, Li YF, Hua YM, Wang C. Disruption of Planar Cell Polarity Pathway Attributable to Valproic Acid-Induced Congenital Heart Disease through Hdac3 Participation in Mice. Chin Med J (Engl) 2018; 131:2080-2088. [PMID: 30127218 PMCID: PMC6111683 DOI: 10.4103/0366-6999.239311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background: Valproic acid (VPA) exposure during pregnancy has been proven to contribute to congenital heart disease (CHD). Our previous findings implied that disruption of planar cell polarity (PCP) signaling pathway in cardiomyocytes might be a factor for the cardiac teratogenesis of VPA. In addition, the teratogenic ability of VPA is positively correlated to its histone deacetylase (HDAC) inhibition activity. This study aimed to investigate the effect of the VPA on cardiac morphogenesis, HDAC1/2/3, and PCP key genes (Vangl2/Scrib/Rac1), subsequently screening out the specific HDACs regulating PCP pathway. Methods: VPA was administered to pregnant C57BL mice at 700 mg/kg intraperitoneally on embryonic day 10.5. Dams were sacrificed on E15.5, and death/absorption rates of embryos were evaluated. Embryonic hearts were observed by hematoxylin-eosin staining to identify cardiac abnormalities. H9C2 cells (undifferentiated rat cardiomyoblasts) were transfected with Hdac1/2/3 specific small interfering RNA (siRNA). Based on the results of siRNA transfection, cells were transfected with Hdac3 expression plasmid and subsequently mock-treated or treated with 8.0 mmol/L VPA. Hdac1/2/3 as well as Vangl2/Scrib/Rac1 mRNA and protein levels were determined by real-time quantitative polymerase chain reaction and Western blotting, respectively. Total HDAC activity was detected by colorimetric assay. Results: VPA could induce CHD (P < 0.001) and inhibit mRNA or protein expression of Hdac1/2/3 as well as Vangl2/Scrib in fetal hearts, in association with total Hdac activity repression (all P < 0.05). In vitro, Hdac3 inhibition could significantly decrease Vangl2/Scrib expression (P < 0.01), while knockdown of Hdac1/2 had no influence (P > 0.05); VPA exposure dramatically decreased the expression of Vanlg2/Scrib together with Hdac activity (P < 0.01), while overexpression of Hdac3 could rescue the VPA-induced inhibition (P > 0.05). Conclusion: VPA could inhibit Hdac1/2/3, Vangl2/Scrib, or total Hdac activity both in vitro and in vivo and Hdac3 might participate in the process of VPA-induced cardiac developmental anomalies.
Collapse
Affiliation(s)
- Hong-Yu Duan
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kai-Yu Zhou
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Zhang
- Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi-Fei Li
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi-Min Hua
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chuan Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
36
|
Converse role of class I and class IIa HDACs in the progression of atrial fibrillation. J Mol Cell Cardiol 2018; 125:39-49. [PMID: 30321539 DOI: 10.1016/j.yjmcc.2018.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/25/2022]
Abstract
Atrial fibrillation (AF), the most common persistent clinical tachyarrhythmia, is associated with altered gene transcription which underlies cardiomyocyte dysfunction, AF susceptibility and progression. Recent research showed class I and class IIa histone deacetylases (HDACs) to regulate pathological and fetal gene expression, and thereby induce hypertrophy and cardiac contractile dysfunction. Whether class I and class IIa HDACs are involved in AF promotion is unknown. We aim to elucidate the role of class I and class IIa HDACs in tachypacing-induced contractile dysfunction in experimental model systems for AF and clinical AF. METHODS AND RESULTS: Class I and IIa HDACs were overexpressed in HL-1 cardiomyocytes followed by calcium transient (CaT) measurements. Overexpression of class I HDACs, HDAC1 or HDAC3, significantly reduced CaT amplitude in control normal-paced (1 Hz) cardiomyocytes, which was further reduced by tachypacing (5 Hz) in HDAC3 overexpressing cardiomyocytes. HDAC3 inhibition by shRNA or by the specific inhibitor, RGFP966, prevented contractile dysfunction in both tachypaced HL-1 cardiomyocytes and Drosophila prepupae. Conversely, overexpression of class IIa HDACs (HDAC4, HDAC5, HDAC7 or HDAC9) did not affect CaT in controls, with HDAC5 and HDAC7 overexpression even protecting against tachypacing-induced CaT loss. Notably, the protective effect of HDAC5 and HDAC7 was abolished in cardiomyocytes overexpressing a dominant negative HDAC5 or HDAC7 mutant, bearing a mutation in the binding domain for myosin enhancer factor 2 (MEF2). Furthermore, tachypacing induced phosphorylation of HDAC5 and promoted its translocation from the nucleus to cytoplasm, leading to up-regulation of MEF2-related fetal gene expression (β-MHC, BNP). In accord, boosting nuclear localization of HDAC5 by MC1568 or Go6983 attenuated CaT loss in tachypaced HL-1 cardiomyocytes and preserved contractile function in Drosophila prepupae. Findings were expanded to clinical AF. Here, patients with AF showed a significant increase in expression levels and activity of HDAC3, phosphorylated HDAC5 and fetal genes (β-MHC, BNP) in atrial tissue compared to controls in sinus rhythm. CONCLUSION: Class I and class IIa HDACs display converse roles in AF progression. Whereas overexpression of Class I HDAC3 induces cardiomyocyte dysfunction, class IIa HDAC5 overexpression reveals protective properties. Accordingly, HDAC3 inhibitors and HDAC5 nuclear boosters show protection from tachypacing-induced changes and therefore may represent interesting therapeutic options in clinical AF.
Collapse
|
37
|
Zhang LX, Du J, Zhao YT, Wang J, Zhang S, Dubielecka PM, Wei L, Zhuang S, Qin G, Chin YE, Zhao TC. Transgenic overexpression of active HDAC4 in the heart attenuates cardiac function and exacerbates remodeling in infarcted myocardium. J Appl Physiol (1985) 2018; 125:1968-1978. [PMID: 30284520 DOI: 10.1152/japplphysiol.00006.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Histone deacetylases (HDACs) play a critical role in modulating cardiac function and ischemic injury. HDAC4 was found to be elevated and activated in response to injury. However, whether HDAC4 mediates cardiac function is currently unknown. In this study, we created myocyte-specific activated HDAC4 transgenic mice to examine the role of HDAC4 in mediating cardiac function during development and response to infarction. There are no differences in cardiac function and gross phenotype between wild-type and cardiomyocyte-specific HDAC4 transgenic mice at 1 mo of age. However, cardiac dysfunction and vascular growth deficiency were displayed in 6-mo-old HDAC4-transgenic mice compared with wild-type mice. Activation of HDAC4 increased heart and myocyte size, hypertrophic proteins, and interstitial fibrosis in 6-mo-old mice but not in 1-mo-old mice. To further define whether activated HDAC4 in the heart could impact myocardial function and remodeling, myocardial infarction was created in both wild-type and cardiomyocyte-specific HDAC4-transgenic mice. In myocardial infarction, the overexpression of activated HDAC4 exacerbated cardiac dysfunction and augmented cardiac remodeling and interstitial fibrosis, which was associated with the reduction of cardiokines in the heart. These results indicate the activation of HDAC4 as a crucial regulator for cardiac function in development and myocardial infarction. NEW & NOTEWORTHY We created myocyte-specific activated HDAC4-transgenic mice to examine the function of HDAC4 in mediating cardiac function. HDAC4 overexpression led to cardiac dysfunction, which was associated with increased hypertrophy and myocardial fibrosis. Furthermore, the overexpression of activated HDAC4 exacerbated cardiac dysfunction, augmented remodeling, and increased apoptosis in the infarcted heart. This is the first demonstration that transgenic overexpression of HDAC4 is crucial for modulation of cardiac function and remodeling.
Collapse
Affiliation(s)
- Ling X Zhang
- Department of Medicine, Rhode Island Hospital, Brown University , Providence, Rhode Island
| | - Jianfeng Du
- Department of Surgery, Boston University Medical School, Roger Williams Medical Center , Providence, Rhode Island
| | - Yu Tina Zhao
- Department of Surgery, Boston University Medical School, Roger Williams Medical Center , Providence, Rhode Island
| | - Jianguo Wang
- Department of Surgery, Boston University Medical School, Roger Williams Medical Center , Providence, Rhode Island
| | - Shouyan Zhang
- Department of Cardiology, Luoyang Central Hospital, Zhengzhou University Affiliated Hospital , Luoyang , China
| | - Patrycja M Dubielecka
- Department of Medicine, Rhode Island Hospital, Brown University , Providence, Rhode Island
| | - Lei Wei
- Department of Orthopedics, Rhode Island Hospital, Brown University , Providence, Rhode Island
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital, Brown University , Providence, Rhode Island
| | - Gangjian Qin
- Department of Biomedical Engineering, University of Alabama at Birmingham , Birmingham, Alabama
| | - Y Eugene Chin
- Key Laboratory of Stem Cell Biology, Institutes of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , China
| | - Ting C Zhao
- Department of Surgery, Boston University Medical School, Roger Williams Medical Center , Providence, Rhode Island
| |
Collapse
|
38
|
Duan HY, Zhou KY, Wang T, Zhang Y, Li YF, Hua YM, Wang C. Disruption of Planar Cell Polarity Pathway Attributable to Valproic Acid-Induced Congenital Heart Disease through Hdac3 Participation in Mice. Chin Med J (Engl) 2018. [PMID: 30127218 DOI: 10.4103/0366-6999.239311.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Valproic acid (VPA) exposure during pregnancy has been proven to contribute to congenital heart disease (CHD). Our previous findings implied that disruption of planar cell polarity (PCP) signaling pathway in cardiomyocytes might be a factor for the cardiac teratogenesis of VPA. In addition, the teratogenic ability of VPA is positively correlated to its histone deacetylase (HDAC) inhibition activity. This study aimed to investigate the effect of the VPA on cardiac morphogenesis, HDAC1/2/3, and PCP key genes (Vangl2/Scrib/Rac1), subsequently screening out the specific HDACs regulating PCP pathway. Methods VPA was administered to pregnant C57BL mice at 700 mg/kg intraperitoneally on embryonic day 10.5. Dams were sacrificed on E15.5, and death/absorption rates of embryos were evaluated. Embryonic hearts were observed by hematoxylin-eosin staining to identify cardiac abnormalities. H9C2 cells (undifferentiated rat cardiomyoblasts) were transfected with Hdac1/2/3 specific small interfering RNA (siRNA). Based on the results of siRNA transfection, cells were transfected with Hdac3 expression plasmid and subsequently mock-treated or treated with 8.0 mmol/L VPA. Hdac1/2/3 as well as Vangl2/Scrib/Rac1 mRNA and protein levels were determined by real-time quantitative polymerase chain reaction and Western blotting, respectively. Total HDAC activity was detected by colorimetric assay. Results VPA could induce CHD (P < 0.001) and inhibit mRNA or protein expression of Hdac1/2/3 as well as Vangl2/Scrib in fetal hearts, in association with total Hdac activity repression (all P < 0.05). In vitro, Hdac3 inhibition could significantly decrease Vangl2/Scrib expression (P < 0.01), while knockdown of Hdac1/2 had no influence (P > 0.05); VPA exposure dramatically decreased the expression of Vanlg2/Scrib together with Hdac activity (P < 0.01), while overexpression of Hdac3 could rescue the VPA-induced inhibition (P > 0.05). Conclusion VPA could inhibit Hdac1/2/3, Vangl2/Scrib, or total Hdac activity both in vitro and in vivo and Hdac3 might participate in the process of VPA-induced cardiac developmental anomalies.
Collapse
Affiliation(s)
- Hong-Yu Duan
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kai-Yu Zhou
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Zhang
- Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi-Fei Li
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi-Min Hua
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chuan Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
39
|
Evans LW, Ferguson BS. Food Bioactive HDAC Inhibitors in the Epigenetic Regulation of Heart Failure. Nutrients 2018; 10:E1120. [PMID: 30126190 PMCID: PMC6115944 DOI: 10.3390/nu10081120] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022] Open
Abstract
Approximately 5.7 million U.S. adults have been diagnosed with heart failure (HF). More concerning is that one in nine U.S. deaths included HF as a contributing cause. Current HF drugs (e.g., β-blockers, ACEi) target intracellular signaling cascades downstream of cell surface receptors to prevent cardiac pump dysfunction. However, these drugs fail to target other redundant intracellular signaling pathways and, therefore, limit drug efficacy. As such, it has been postulated that compounds designed to target shared downstream mediators of these signaling pathways would be more efficacious for the treatment of HF. Histone deacetylation has been linked as a key pathogenetic element for the development of HF. Lysine residues undergo diverse and reversible post-translational modifications that include acetylation and have historically been studied as epigenetic modifiers of histone tails within chromatin that provide an important mechanism for regulating gene expression. Of recent, bioactive compounds within our diet have been linked to the regulation of gene expression, in part, through regulation of the epi-genome. It has been reported that food bioactives regulate histone acetylation via direct regulation of writer (histone acetyl transferases, HATs) and eraser (histone deacetylases, HDACs) proteins. Therefore, bioactive food compounds offer unique therapeutic strategies as epigenetic modifiers of heart failure. This review will highlight food bio-actives as modifiers of histone deacetylase activity in the heart.
Collapse
Affiliation(s)
- Levi W Evans
- Department of Agriculture, Nutrition, & Veterinary Sciences, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
- Environmental Science & Health, University of Nevada, Reno, NV 89557, USA.
| | - Bradley S Ferguson
- Department of Agriculture, Nutrition, & Veterinary Sciences, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
40
|
Thomas EA, D'Mello SR. Complex neuroprotective and neurotoxic effects of histone deacetylases. J Neurochem 2018; 145:96-110. [PMID: 29355955 DOI: 10.1111/jnc.14309] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/05/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022]
Abstract
By their ability to shatter quality of life for both patients and caregivers, neurodegenerative diseases are the most devastating of human disorders. Unfortunately, there are no effective or long-terms treatments capable of slowing down the relentless loss of neurons in any of these diseases. One impediment is the lack of detailed knowledge of the molecular mechanisms underlying the processes of neurodegeneration. While some neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, are mostly sporadic in nature, driven by both environment and genetic susceptibility, many others, including Huntington's disease, spinocerebellar ataxias, and spinal-bulbar muscular atrophy, are genetically inherited disorders. Surprisingly, given their different roots and etiologies, both sporadic and genetic neurodegenerative disorders have been linked to disease mechanisms involving histone deacetylase (HDAC) proteins, which consists of 18 family members with diverse functions. While most studies have implicated certain HDAC subtypes in promoting neurodegeneration, a substantial body of literature suggests that other HDAC proteins can preserve neuronal viability. Of particular interest, however, is the recent realization that a single HDAC subtype can have both neuroprotective and neurotoxic effects. Diverse mechanisms, beyond transcriptional regulation have been linked to these effects, including deacetylation of non-histone proteins, protein-protein interactions, post-translational modifications of the HDAC proteins themselves and direct interactions with disease proteins. The roles of these HDACs in both sporadic and genetic neurodegenerative diseases will be discussed in the current review.
Collapse
Affiliation(s)
- Elizabeth A Thomas
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA
| | - Santosh R D'Mello
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas, USA
| |
Collapse
|
41
|
Russell‐Hallinan A, Watson CJ, Baugh JA. Epigenetics of Aberrant Cardiac Wound Healing. Compr Physiol 2018; 8:451-491. [DOI: 10.1002/cphy.c170029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Janardhan HP, Milstone ZJ, Shin M, Lawson ND, Keaney JF, Trivedi CM. Hdac3 regulates lymphovenous and lymphatic valve formation. J Clin Invest 2017; 127:4193-4206. [PMID: 29035278 PMCID: PMC5663362 DOI: 10.1172/jci92852] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/31/2017] [Indexed: 12/29/2022] Open
Abstract
Lymphedema, the most common lymphatic anomaly, involves defective lymphatic valve development; yet the epigenetic modifiers underlying lymphatic valve morphogenesis remain elusive. Here, we showed that during mouse development, the histone-modifying enzyme histone deacetylase 3 (Hdac3) regulates the formation of both lymphovenous valves, which maintain the separation of the blood and lymphatic vascular systems, and the lymphatic valves. Endothelium-specific ablation of Hdac3 in mice led to blood-filled lymphatic vessels, edema, defective lymphovenous valve morphogenesis, improper lymphatic drainage, defective lymphatic valve maturation, and complete lethality. Hdac3-deficient lymphovenous valves and lymphatic vessels exhibited reduced expression of the transcription factor Gata2 and its target genes. In response to oscillatory shear stress, the transcription factors Tal1, Gata2, and Ets1/2 physically interacted with and recruited Hdac3 to the evolutionarily conserved E-box–GATA–ETS composite element of a Gata2 intragenic enhancer. In turn, Hdac3 recruited histone acetyltransferase Ep300 to form an enhanceosome complex that promoted Gata2 expression. Together, these results identify Hdac3 as a key epigenetic modifier that maintains blood-lymph separation and integrates both extrinsic forces and intrinsic cues to regulate lymphatic valve development.
Collapse
Affiliation(s)
| | | | - Masahiro Shin
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Nathan D Lawson
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - John F Keaney
- Division of Cardiovascular Medicine.,Department of Medicine, and
| | - Chinmay M Trivedi
- Division of Cardiovascular Medicine.,Department of Medicine, and.,Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
43
|
Abstract
Efficient cardiac regeneration is closely associated with the ability of cardiac myocytes to proliferate. Fetal or neonatal mouse hearts containing proliferating cardiac myocytes regenerate even extensive injuries, whereas adult hearts containing mostly post-mitotic cardiac myocytes have lost this ability. The same correlation is seen in some homoiotherm species such as teleost fish and urodelian amphibians leading to the hypothesis that cardiac myocyte proliferation is a major driver of heart regeneration. Although cardiomyocyte proliferation might not be the only prerequisite to restore full organ function after cardiac damage, induction of cardiac myocyte proliferation is an attractive therapeutic option to cure the injured heart and prevent heart failure. To (re)initiate cardiac myocyte proliferation in adult mammalian hearts, a thorough understanding of the molecular circuitry governing cardiac myocyte cell cycle regulation is required. Here, we review the current knowledge in the field focusing on the withdrawal of cardiac myocytes from the cell cycle during the transition from neonatal to adult stages.
Collapse
Affiliation(s)
- Xuejun Yuan
- From the Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (X.Y., T.B.); and Department of Internal Medicine II, Justus Liebig University Giessen, Member of the German Center for Cardiovascular Research (DZHK), Member of the German Center for Lung Research (DZL), Giessen, Germany (T.B.)
| | - Thomas Braun
- From the Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (X.Y., T.B.); and Department of Internal Medicine II, Justus Liebig University Giessen, Member of the German Center for Cardiovascular Research (DZHK), Member of the German Center for Lung Research (DZL), Giessen, Germany (T.B.).
| |
Collapse
|
44
|
Soci UPR, Fernandes T, Barauna VG, Hashimoto NY, de Fátima Alves Mota G, Rosa KT, Irigoyen MC, Philips MI, de Oliveira EM. Epigenetic control of exercise training-induced cardiac hypertrophy by miR-208. Clin Sci (Lond) 2016; 130:2005-2015. [DOI: 10.1042/cs20160480] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Aerobic exercise-induced cardiac hypertrophy (CH) is a physiological response involving accurate orchestration of gene and protein expression of contractile and metabolic components. The microRNAs: miR-208a, miR-208b and miR-499 are each encoded by a myosin gene and thus are also known as ‘MyomiRs’, regulating several mRNA targets that in turn regulate CH and metabolic pathways. To understand the role of myomiRs in the fine-tuning of cardiac myosin heavy chain (MHC) isoform expression by exercise training-induced physiological hypertrophy, Wistar rats were subjected to two different swim training protocols. We observed that high-volume swim training (T2), improved cardiac diastolic function, induced CH and decreased the expression of miR-208a and miR-208b. Consequently, the increased expression of their targets, sex determining region y-related transcription factor 6 (Sox6), Med13, Purβ, specificity proteins (Sp)/Krüppel-like transcription factor 3 (SP3) and HP1β (heterochromatin protein 1β) was more prominent in T2, thus converging to modulate cardiac metabolic and contractile adaptation by exercise training, with an improvement in the α-MHC/β-MHC ratio, bypassing the increase in PPARβ and histone deacetylase (HDAC) class I and II regulation. Altogether, we conclude that high-volume swim training finely assures physiological cardiac remodelling by epigenetic regulation of myomiRs, because inhibition of miR-208a and miR-208b increases the expression of their target proteins and stimulates the interaction among metabolic, contractile and epigenetic genes.
Collapse
Affiliation(s)
- Ursula Paula Renó Soci
- Department of Biodynamics of Human Movement, Laboratory of Biochemistry and Molecular Biology, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, CEP 05508-030, Brazil
| | - Tiago Fernandes
- Department of Biodynamics of Human Movement, Laboratory of Biochemistry and Molecular Biology, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, CEP 05508-030, Brazil
| | - Valerio Garrone Barauna
- Department of Physiological Sciences, Biomedical Center, Federal University of Espírito Santo, Vitoria, CEP 29075-910, Brazil
| | - Nara Yumi Hashimoto
- Department of Biodynamics of Human Movement, Laboratory of Biochemistry and Molecular Biology, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, CEP 05508-030, Brazil
| | - Gloria de Fátima Alves Mota
- Department of Biodynamics of Human Movement, Laboratory of Biochemistry and Molecular Biology, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, CEP 05508-030, Brazil
| | - Kaleizu Teodoro Rosa
- Department of Biodynamics of Human Movement, Laboratory of Biochemistry and Molecular Biology, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, CEP 05508-030, Brazil
- Department of Physiological Sciences, Biomedical Center, Federal University of Espírito Santo, Vitoria, CEP 29075-910, Brazil
- Heart Institute (InCor), Laboratory of Hypertension, Medical School, University of Sao Paulo, Sao Paulo, CEP 05403-900, Brazil
- Keck Graduate Institute, Center for Rare Disease Therapies, Laboratory of Stem Cells, Claremont, CA 91711, U.S.A
| | - Maria Claudia Irigoyen
- Department of Biodynamics of Human Movement, Laboratory of Biochemistry and Molecular Biology, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, CEP 05508-030, Brazil
- Department of Physiological Sciences, Biomedical Center, Federal University of Espírito Santo, Vitoria, CEP 29075-910, Brazil
- Heart Institute (InCor), Laboratory of Hypertension, Medical School, University of Sao Paulo, Sao Paulo, CEP 05403-900, Brazil
- Keck Graduate Institute, Center for Rare Disease Therapies, Laboratory of Stem Cells, Claremont, CA 91711, U.S.A
| | - Michael Ian Philips
- Keck Graduate Institute, Center for Rare Disease Therapies, Laboratory of Stem Cells, Claremont, CA 91711, U.S.A
| | - Edilamar Menezes de Oliveira
- Department of Biodynamics of Human Movement, Laboratory of Biochemistry and Molecular Biology, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, CEP 05508-030, Brazil
| |
Collapse
|
45
|
Resetting the epigenome for heart regeneration. Semin Cell Dev Biol 2016; 58:2-13. [DOI: 10.1016/j.semcdb.2015.12.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/29/2015] [Indexed: 12/27/2022]
|
46
|
Abstract
With the impressive advancement in high-throughput 'omics' technologies over the past two decades, epigenetic mechanisms have emerged as the regulatory interface between the genome and environmental factors. These mechanisms include DNA methylation, histone modifications, ATP-dependent chromatin remodeling and RNA-based mechanisms. Their highly interdependent and coordinated action modulates the chromatin structure controlling access of the transcription machinery and thereby regulating expression of target genes. Given the rather limited proliferative capability of human cardiomyocytes, epigenetic regulation appears to play a particularly important role in the myocardium. The highly dynamic nature of the epigenome allows the heart to adapt to environmental challenges and to respond quickly and properly to cardiac stress. It is now becoming evident that histone-modifying and chromatin-remodeling enzymes as well as numerous non-coding RNAs play critical roles in cardiac development and function, while their dysregulation contributes to the onset and development of pathological cardiac remodeling culminating in HF. This review focuses on up-to-date knowledge about the epigenetic mechanisms and highlights their emerging role in the healthy and failing heart. Uncovering the determinants of epigenetic regulation holds great promise to accelerate the development of successful new diagnostic and therapeutic strategies in human cardiac disease.
Collapse
Affiliation(s)
- José Marín-García
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Ave., Highland Park, NJ, 08904, USA,
| | | |
Collapse
|
47
|
Yoon S, Eom GH. HDAC and HDAC Inhibitor: From Cancer to Cardiovascular Diseases. Chonnam Med J 2016; 52:1-11. [PMID: 26865995 PMCID: PMC4742605 DOI: 10.4068/cmj.2016.52.1.1] [Citation(s) in RCA: 336] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 11/27/2015] [Accepted: 12/01/2015] [Indexed: 01/15/2023] Open
Abstract
Histone deacetylases (HDACs) are epigenetic regulators that regulate the histone tail, chromatin conformation, protein-DNA interaction, and even transcription. HDACs are also post-transcriptional modifiers that regulate the protein acetylation implicated in several pathophysiologic states. HDAC inhibitors have been highlighted as a novel category of anti-cancer drugs. To date, four HDAC inhibitors, Vorinostat, Romidepsin, Panobinostat, and Belinostat, have been approved by the United States Food and Drug Administration. Principally, these HDAC inhibitors are used for hematologic cancers in clinic with less severe side effects. Clinical trials are continuously expanding to address other types of cancer and also nonmalignant diseases. HDAC inhibition also results in beneficial outcomes in various types of neurodegenerative diseases, inflammation disorders, and cardiovascular diseases. In this review, we will briefly discuss 1) the roles of HDACs in the acquisition of a cancer's phenotype and the general outcome of the HDAC inhibitors in cancer, 2) the functional relevance of HDACs in cardiovascular diseases and the possible therapeutic implications of HDAC inhibitors in cardiovascular disease.
Collapse
Affiliation(s)
- Somy Yoon
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea
| | - Gwang Hyeon Eom
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
48
|
Lewandowski SL, Janardhan HP, Trivedi CM. Histone Deacetylase 3 Coordinates Deacetylase-independent Epigenetic Silencing of Transforming Growth Factor-β1 (TGF-β1) to Orchestrate Second Heart Field Development. J Biol Chem 2015; 290:27067-27089. [PMID: 26420484 DOI: 10.1074/jbc.m115.684753] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Indexed: 11/06/2022] Open
Abstract
About two-thirds of human congenital heart disease involves second heart field-derived structures. Histone-modifying enzymes, histone deacetylases (HDACs), regulate the epigenome; however, their functions within the second heart field remain elusive. Here we demonstrate that histone deacetylase 3 (HDAC3) orchestrates epigenetic silencing of Tgf-β1, a causative factor in congenital heart disease pathogenesis, in a deacetylase-independent manner to regulate development of second heart field-derived structures. In murine embryos lacking HDAC3 in the second heart field, increased TGF-β1 bioavailability is associated with ascending aortic dilatation, outflow tract malrotation, overriding aorta, double outlet right ventricle, aberrant semilunar valve development, bicuspid aortic valve, ventricular septal defects, and embryonic lethality. Activation of TGF-β signaling causes aberrant endothelial-to-mesenchymal transition and altered extracellular matrix homeostasis in HDAC3-null outflow tracts and semilunar valves, and pharmacological inhibition of TGF-β rescues these defects. HDAC3 recruits components of the PRC2 complex, methyltransferase EZH2, EED, and SUZ12, to the NCOR complex to enrich trimethylation of Lys-27 on histone H3 at the Tgf-β1 regulatory region and thereby maintains epigenetic silencing of Tgf-β1 specifically within the second heart field-derived mesenchyme. Wild-type HDAC3 or catalytically inactive HDAC3 expression rescues aberrant endothelial-to-mesenchymal transition and epigenetic silencing of Tgf-β1 in HDAC3-null outflow tracts and semilunar valves. These findings reveal that epigenetic dysregulation within the second heart field is a predisposing factor for congenital heart disease.
Collapse
Affiliation(s)
- Sara L Lewandowski
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Harish P Janardhan
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Chinmay M Trivedi
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605.
| |
Collapse
|
49
|
Targeting histone deacetylases: perspectives for epigenetic-based therapy in cardio-cerebrovascular disease. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2015; 12:153-64. [PMID: 25870619 PMCID: PMC4394331 DOI: 10.11909/j.issn.1671-5411.2015.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 01/09/2023]
Abstract
Although the pathogenesis of cardio-cerebrovascular disease (CCVD) is multifactorial, an increasing number of experimental and clinical studies have highlighted the importance of histone deacetylase (HDAC)-mediated epigenetic processes in the development of cardio-cerebrovascular injury. HDACs are a family of enzymes to balance the acetylation activities of histone acetyltransferases on chromatin remodeling and play essential roles in regulating gene transcription. To date, 18 mammalian HDACs are identified and grouped into four classes based on similarity to yeast orthologs. The zinc-dependent HDAC family currently consists of 11 members divided into three classes (class I, II, and IV) on the basis of structure, sequence homology, and domain organization. In comparison, class III HDACs (also known as the sirtuins) are composed of a family of NAD+-dependent protein-modifying enzymes related to the Sir2 gene. HDAC inhibitors are a group of compounds that block HDAC activities typically by binding to the zinc-containing catalytic domain of HDACs and have displayed anti-inflammatory and antifibrotic effects in the cardio-cerebrovascular system. In this review, we summarize the current knowledge about classifications, functions of HDACs and their roles and regulatory mechanisms in the cardio-cerebrovascular system. Pharmacological targeting of HDAC-mediated epigenetic processes may open new therapeutic avenues for the treatment of CCVD.
Collapse
|
50
|
Trpm4 gene invalidation leads to cardiac hypertrophy and electrophysiological alterations. PLoS One 2014; 9:e115256. [PMID: 25531103 PMCID: PMC4274076 DOI: 10.1371/journal.pone.0115256] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/20/2014] [Indexed: 12/14/2022] Open
Abstract
RATIONALE TRPM4 is a non-selective Ca2+-activated cation channel expressed in the heart, particularly in the atria or conduction tissue. Mutations in the Trpm4 gene were recently associated with several human conduction disorders such as Brugada syndrome. TRPM4 channel has also been implicated at the ventricular level, in inotropism or in arrhythmia genesis due to stresses such as ß-adrenergic stimulation, ischemia-reperfusion, and hypoxia re-oxygenation. However, the physiological role of the TRPM4 channel in the healthy heart remains unclear. OBJECTIVES We aimed to investigate the role of the TRPM4 channel on whole cardiac function with a Trpm4 gene knock-out mouse (Trpm4-/-) model. METHODS AND RESULTS Morpho-functional analysis revealed left ventricular (LV) eccentric hypertrophy in Trpm4-/- mice, with an increase in both wall thickness and chamber size in the adult mouse (aged 32 weeks) when compared to Trpm4+/+ littermate controls. Immunofluorescence on frozen heart cryosections and qPCR analysis showed no fibrosis or cellular hypertrophy. Instead, cardiomyocytes in Trpm4-/- mice were smaller than Trpm4+/+with a higher density. Immunofluorescent labeling for phospho-histone H3, a mitosis marker, showed that the number of mitotic myocytes was increased 3-fold in the Trpm4-/-neonatal stage, suggesting hyperplasia. Adult Trpm4-/- mice presented multilevel conduction blocks, as attested by PR and QRS lengthening in surface ECGs and confirmed by intracardiac exploration. Trpm4-/-mice also exhibited Luciani-Wenckebach atrioventricular blocks, which were reduced following atropine infusion, suggesting paroxysmal parasympathetic overdrive. In addition, Trpm4-/- mice exhibited shorter action potentials in atrial cells. This shortening was unrelated to modifications of the voltage-gated Ca2+ or K+ currents involved in the repolarizing phase. CONCLUSIONS TRPM4 has pleiotropic roles in the heart, including the regulation of conduction and cellular electrical activity which impact heart development.
Collapse
|