1
|
Mercurio I, D’Abrosca G, della Valle M, Malgieri G, Fattorusso R, Isernia C, Russo L, Di Gaetano S, Pedone EM, Pirone L, Del Gatto A, Zaccaro L, Alberga D, Saviano M, Mangiatordi GF. Molecular interactions between a diphenyl scaffold and PED/PEA15: Implications for type II diabetes therapeutics targeting PED/PEA15 - Phospholipase D1 interaction. Comput Struct Biotechnol J 2024; 23:2001-2010. [PMID: 38770160 PMCID: PMC11103223 DOI: 10.1016/j.csbj.2024.04.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
In a recent study, we have identified BPH03 as a promising scaffold for the development of compounds aimed at modulating the interaction between PED/PEA15 (Phosphoprotein Enriched in Diabetes/Phosphoprotein Enriched in Astrocytes 15) and PLD1 (phospholipase D1), with potential applications in type II diabetes therapy. PED/PEA15 is known to be overexpressed in certain forms of diabetes, where it binds to PLD1, thereby reducing insulin-stimulated glucose transport. The inhibition of this interaction reestablishes basal glucose transport, indicating PED as a potential target of ligands capable to recover glucose tolerance and insulin sensitivity. In this study, we employ computational methods to provide a detailed description of BPH03 interaction with PED, evidencing the presence of a hidden druggable pocket within its PLD1 binding surface. We also elucidate the conformational changes that occur during PED interaction with BPH03. Moreover, we report new NMR data supporting the in-silico findings and indicating that BPH03 disrupts the PED/PLD1 interface displacing PLD1 from its interaction with PED. Our study represents a significant advancement toward the development of potential therapeutics for the treatment of type II diabetes.
Collapse
Affiliation(s)
- Ivan Mercurio
- Institute of Crystallography, CNR, Via Amendola 122/o, 70126 Bari, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Gianluca D’Abrosca
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy
- Institute of Crystallography, CNR, Via Vivaldi 43, 81100, Caserta, Italy
| | - Maria della Valle
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Sonia Di Gaetano
- Institute of Biostructures and Bioimaging, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Emilia Maria Pedone
- Institute of Biostructures and Bioimaging, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Luciano Pirone
- Institute of Biostructures and Bioimaging, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Annarita Del Gatto
- Institute of Biostructures and Bioimaging, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Laura Zaccaro
- Institute of Biostructures and Bioimaging, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Domenico Alberga
- Institute of Crystallography, CNR, Via Amendola 122/o, 70126 Bari, Italy
| | - Michele Saviano
- Institute of Crystallography, CNR, Via Vivaldi 43, 81100, Caserta, Italy
| | | |
Collapse
|
2
|
Monti A, Vitagliano L, Caporale A, Ruvo M, Doti N. Targeting Protein-Protein Interfaces with Peptides: The Contribution of Chemical Combinatorial Peptide Library Approaches. Int J Mol Sci 2023; 24:7842. [PMID: 37175549 PMCID: PMC10178479 DOI: 10.3390/ijms24097842] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Protein-protein interfaces play fundamental roles in the molecular mechanisms underlying pathophysiological pathways and are important targets for the design of compounds of therapeutic interest. However, the identification of binding sites on protein surfaces and the development of modulators of protein-protein interactions still represent a major challenge due to their highly dynamic and extensive interfacial areas. Over the years, multiple strategies including structural, computational, and combinatorial approaches have been developed to characterize PPI and to date, several successful examples of small molecules, antibodies, peptides, and aptamers able to modulate these interfaces have been determined. Notably, peptides are a particularly useful tool for inhibiting PPIs due to their exquisite potency, specificity, and selectivity. Here, after an overview of PPIs and of the commonly used approaches to identify and characterize them, we describe and evaluate the impact of chemical peptide libraries in medicinal chemistry with a special focus on the results achieved through recent applications of this methodology. Finally, we also discuss the role that this methodology can have in the framework of the opportunities, and challenges that the application of new predictive approaches based on artificial intelligence is generating in structural biology.
Collapse
Affiliation(s)
- Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| | - Andrea Caporale
- Institute of Crystallography (IC), National Research Council (CNR), Strada Statale 14 km 163.5, Basovizza, 34149 Triese, Italy;
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| |
Collapse
|
3
|
Novel insights on nucleopeptide binding: A spectroscopic and in silico investigation on the interaction of a thymine-bearing tetrapeptide with a homoadenine DNA. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117975] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
4
|
La Manna S, De Benedictis I, Marasco D. Proteomimetics of Natural Regulators of JAK-STAT Pathway: Novel Therapeutic Perspectives. Front Mol Biosci 2022; 8:792546. [PMID: 35047557 PMCID: PMC8762217 DOI: 10.3389/fmolb.2021.792546] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022] Open
Abstract
The JAK-STAT pathway is a crucial cellular signaling cascade, including an intricate network of Protein-protein interactions (PPIs) responsible for its regulation. It mediates the activities of several cytokines, interferons, and growth factors and transduces extracellular signals into transcriptional programs to regulate cell growth and differentiation. It is essential for the development and function of both innate and adaptive immunities, and its aberrant deregulation was highlighted in neuroinflammatory diseases and in crucial mechanisms for tumor cell recognition and tumor-induced immune escape. For its involvement in a multitude of biological processes, it can be considered a valuable target for the development of drugs even if a specific focus on possible side effects associated with its inhibition is required. Herein, we review the possibilities to target JAK-STAT by focusing on its natural inhibitors as the suppressor of cytokine signaling (SOCS) proteins. This protein family is a crucial checkpoint inhibitor in immune homeostasis and a valuable target in immunotherapeutic approaches to cancer and immune deficiency disorders.
Collapse
Affiliation(s)
| | | | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
5
|
Farina B, Pirone L, D’Abrosca G, Della Valle M, Russo L, Isernia C, Sassano M, Del Gatto A, Di Gaetano S, Zaccaro L, Malgieri G, Pedone EM, Fattorusso R. Screening a Molecular Fragment Library to Modulate the PED/PEA15-Phospholipase D1 Interaction in Cellular Lysate Environments. ACS Chem Biol 2021; 16:2798-2807. [PMID: 34825823 DOI: 10.1021/acschembio.1c00688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The overexpression of PED/PEA15, the phosphoprotein enriched in diabetes/phosphoprotein enriched in the astrocytes 15 protein (here referred simply to as PED), observed in some forms of type II diabetes, reduces the transport of insulin-stimulated glucose by binding to the phospholipase D1 (PLD1). The inhibition of the PED/PLD1 interaction was shown to restore basal glucose transport, indicating PED as a pharmacological target for the development of drugs capable of improving insulin sensitivity and glucose tolerance. We here report the identification and selection of PED ligands by means of NMR screening of a library of small organic molecules, NMR characterization of the PED/PLD1 interaction in lysates of cells expressing PLD1, and modulation of such interactions using BPH03, the best selected ligand. Overall, we complement the available literature data by providing detailed information on the structural determinants of the PED/PLD1 interaction in a cellular lysate environment and indicate BPH03 as a precious scaffold for the development of novel compounds that are able to modulate such interactions with possible therapeutic applications in type II diabetes.
Collapse
Affiliation(s)
- Biancamaria Farina
- Istituto di Biostrutture e Bioimmagini, CNR, via Mezzocannone 16, 80134 Napoli, Italy
| | - Luciano Pirone
- Istituto di Biostrutture e Bioimmagini, CNR, via Mezzocannone 16, 80134 Napoli, Italy
| | - Gianluca D’Abrosca
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania─L. Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Maria Della Valle
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania─L. Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Luigi Russo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania─L. Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Carla Isernia
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania─L. Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Marica Sassano
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania─L. Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Annarita Del Gatto
- Istituto di Biostrutture e Bioimmagini, CNR, via Mezzocannone 16, 80134 Napoli, Italy
| | - Sonia Di Gaetano
- Istituto di Biostrutture e Bioimmagini, CNR, via Mezzocannone 16, 80134 Napoli, Italy
| | - Laura Zaccaro
- Istituto di Biostrutture e Bioimmagini, CNR, via Mezzocannone 16, 80134 Napoli, Italy
| | - Gaetano Malgieri
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania─L. Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Emilia M. Pedone
- Istituto di Biostrutture e Bioimmagini, CNR, via Mezzocannone 16, 80134 Napoli, Italy
| | - Roberto Fattorusso
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania─L. Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
6
|
La Manna S, Florio D, Di Natale C, Scognamiglio PL, Sibillano T, Netti PA, Giannini C, Marasco D. Type F mutation of nucleophosmin 1 Acute Myeloid Leukemia: A tale of disorder and aggregation. Int J Biol Macromol 2021; 188:207-214. [PMID: 34364939 DOI: 10.1016/j.ijbiomac.2021.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/19/2021] [Accepted: 08/03/2021] [Indexed: 01/15/2023]
Abstract
Protein aggregation is suggested as a reversible, wide-spread physiological process used by cells to regulate their growth and adapt to different stress conditions. Nucleophosmin 1(NPM1) protein is an abundant multifunctional nucleolar chaperone and its gene is the most frequently mutated in Acute Myeloid Leukemia (AML) patients. So far, the role of NPM1 mutations in leukemogenesis has remained largely elusive considering that they have the double effect of unfolding the C-terminal domain (CTD) and delocalizing the protein in the cytosol (NPM1c+). This mislocalization heavily impacts on cell cycle regulation. Our recent investigations unequivocally demonstrated an amyloid aggregation propensity introduced by AML mutations. Herein, employing complementary biophysical assays, we have characterized a N-terminal extended version of type F AML mutation of CTD and proved that it is able to form assemblies with amyloid character and fibrillar morphology. The present study represents an additional phase of knowledge to deepen the roles exerted by different types of cytoplasmatic NPM1c+ forms to develop in the future potential therapeutics for their selective targeting.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy
| | - Concetta Di Natale
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", Italy
| | - Pasqualina Liana Scognamiglio
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", Italy
| | - Teresa Sibillano
- Institute of Crystallography (IC), National Research Council, 70125 Bari, Italy
| | - Paolo A Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC), National Research Council, 70125 Bari, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy.
| |
Collapse
|
7
|
Sivaccumar JP, Leonardi A, Iaccarino E, Corvino G, Sanguigno L, Chambery A, Russo R, Valletta M, Latino D, Capasso D, Doti N, Ruvo M, Sandomenico A. Development of a New Highly Selective Monoclonal Antibody against Preferentially Expressed Antigen in Melanoma (PRAME) and Identification of the Target Epitope by Bio-Layer Interferometry. Int J Mol Sci 2021; 22:ijms22063166. [PMID: 33804612 PMCID: PMC8003813 DOI: 10.3390/ijms22063166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Monoclonal antibodies (mAbs) against cancer biomarkers are key reagents in diagnosis and therapy. One such relevant biomarker is a preferentially expressed antigen in melanoma (PRAME) that is selectively expressed in many tumors. Knowing mAb’s epitope is of utmost importance for understanding the potential activity and therapeutic prospective of the reagents. Methods: We generated a mAb against PRAME immunizing mice with PRAME fragment 161–415; the affinity of the antibody for the protein was evaluated by ELISA and SPR, and its ability to detect the protein in cells was probed by cytofluorimetry and Western blotting experiments. The antibody epitope was identified immobilizing the mAb on bio-layer interferometry (BLI) sensor chip, capturing protein fragments obtained following trypsin digestion and performing mass spectrometry analyses. Results: A mAb against PRAME with an affinity of 35 pM was obtained and characterized. Its epitope on PRAME was localized on residues 202–212, taking advantage of the low volumes and lack of fluidics underlying the BLI settings. Conclusions: The new anti-PRAME mAb recognizes the folded protein on the surface of cell membranes suggesting that the antibody’s epitope is well exposed. BLI sensor chips can be used to identify antibody epitopes.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibody Specificity
- Antigens, Neoplasm/immunology
- Antineoplastic Agents, Immunological/chemistry
- Antineoplastic Agents, Immunological/immunology
- Antineoplastic Agents, Immunological/pharmacology
- Dose-Response Relationship, Drug
- Drug Development
- Enzyme-Linked Immunosorbent Assay
- Epitopes/chemistry
- Epitopes/immunology
- Flow Cytometry
- Humans
- Interferometry
- Kinetics
- Melanoma
- Mice
- Molecular Targeted Therapy
- Protein Binding/immunology
- Recombinant Proteins
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80142 Napoli, Italy; (A.L.); (L.S.)
| | - Emanuela Iaccarino
- Istituto di Biostrutture e Bioimmagini, CNR, 80134 Napoli, Italy; (J.P.S.); (E.I.); (G.C.); (D.L.); (N.D.)
| | - Giusy Corvino
- Istituto di Biostrutture e Bioimmagini, CNR, 80134 Napoli, Italy; (J.P.S.); (E.I.); (G.C.); (D.L.); (N.D.)
| | - Luca Sanguigno
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80142 Napoli, Italy; (A.L.); (L.S.)
| | - Angela Chambery
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche (DISTABIF), Università L. Vanvitelli, 80100 Caserta, Italy; (A.C.); (R.R.); (M.V.)
| | - Rosita Russo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche (DISTABIF), Università L. Vanvitelli, 80100 Caserta, Italy; (A.C.); (R.R.); (M.V.)
| | - Mariangela Valletta
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche (DISTABIF), Università L. Vanvitelli, 80100 Caserta, Italy; (A.C.); (R.R.); (M.V.)
| | - Debora Latino
- Istituto di Biostrutture e Bioimmagini, CNR, 80134 Napoli, Italy; (J.P.S.); (E.I.); (G.C.); (D.L.); (N.D.)
| | - Domenica Capasso
- Centro di Servizio di Ateneo per le Scienze e Tecnologie per la Vita (CESTEV), Università di Napoli Federico II, 80145 Napoli, Italy;
| | - Nunzianna Doti
- Istituto di Biostrutture e Bioimmagini, CNR, 80134 Napoli, Italy; (J.P.S.); (E.I.); (G.C.); (D.L.); (N.D.)
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, CNR, 80134 Napoli, Italy; (J.P.S.); (E.I.); (G.C.); (D.L.); (N.D.)
- Correspondence: (M.R.); (A.S.)
| | - Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini, CNR, 80134 Napoli, Italy; (J.P.S.); (E.I.); (G.C.); (D.L.); (N.D.)
- Correspondence: (M.R.); (A.S.)
| |
Collapse
|
8
|
Sivaccumar J, Sandomenico A, Vitagliano L, Ruvo M. Monoclonal Antibodies: A Prospective and Retrospective View. Curr Med Chem 2021; 28:435-471. [PMID: 32072887 DOI: 10.2174/0929867327666200219142231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Monoclonal Antibodies (mAbs) represent one of the most important classes of biotherapeutic agents. They are used to cure many diseases, including cancer, autoimmune diseases, cardiovascular diseases, angiogenesis-related diseases and, more recently also haemophilia. They can be highly varied in terms of format, source, and specificity to improve efficacy and to obtain more targeted applications. This can be achieved by leaving substantially unchanged the basic structural components for paratope clustering. OBJECTIVES The objective was to trace the most relevant findings that have deserved prestigious awards over the years, to report the most important clinical applications and to emphasize their latest emerging therapeutic trends. RESULTS We report the most relevant milestones and new technologies adopted for antibody development. Recent efforts in generating new engineered antibody-based formats are briefly reviewed. The most important antibody-based molecules that are (or are going to be) used for pharmacological practice have been collected in useful tables. CONCLUSION The topics here discussed prove the undisputed role of mAbs as innovative biopharmaceuticals molecules and as vital components of targeted pharmacological therapies.
Collapse
Affiliation(s)
- Jwala Sivaccumar
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Luigi Vitagliano
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| |
Collapse
|
9
|
Auclair N, Sané AT, Delvin E, Spahis S, Levy E. Phospholipase D as a Potential Modulator of Metabolic Syndrome: Impact of Functional Foods. Antioxid Redox Signal 2021; 34:252-278. [PMID: 32586106 DOI: 10.1089/ars.2020.8081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significance: Cardiometabolic disorders (CMD) are composed of a plethora of metabolic dysfunctions such as dyslipidemia, nonalcoholic fatty liver disease, insulin resistance, and hypertension. The development of these disorders is highly linked to inflammation and oxidative stress (OxS), two metabolic states closely related to physiological and pathological conditions. Given the drastically rising CMD prevalence, the discovery of new therapeutic targets/novel nutritional approaches is of utmost importance. Recent Advances: The tremendous progress in methods/technologies and animal modeling has allowed the clarification of phospholipase D (PLD) critical roles in multiple cellular processes, whether directly or indirectly via phosphatidic acid, the lipid product mediating signaling functions. In view of its multiple features and implications in various diseases, PLD has emerged as a drug target. Critical Issues: Although insulin stimulates PLD activity and, in turn, PLD regulates insulin signaling, the impact of the two important PLD isoforms on the metabolic syndrome components remains vague. Therefore, after outlining PLD1/PLD2 characteristics and functions, their role in inflammation, OxS, and CMD has been analyzed and critically reported in the present exhaustive review. The influence of functional foods and nutrients in the regulation of PLD has also been examined. Future Directions: Available evidence supports the implication of PLD in CMD, but only few studies emphasize its mechanisms of action and specific regulation by nutraceutical compounds. Therefore, additional investigations are first needed to clarify the functional role of nutraceutics and, second, to elucidate whether targeting PLDs with food compounds represents an appropriate therapeutic strategy to treat CMD. Antioxid. Redox Signal. 34, 252-278.
Collapse
Affiliation(s)
- Nickolas Auclair
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Department of Pharmacology & Physiology and Université de Montréal, Montreal, Quebec, Canada
| | - Alain T Sané
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Edgard Delvin
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Schohraya Spahis
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Emile Levy
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Department of Pharmacology & Physiology and Université de Montréal, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
10
|
La Manna S, Lopez-Sanz L, Bernal S, Jimenez-Castilla L, Prieto I, Morelli G, Gomez-Guerrero C, Marasco D. Antioxidant Effects of PS5, a Peptidomimetic of Suppressor of Cytokine Signaling 1, in Experimental Atherosclerosis. Antioxidants (Basel) 2020; 9:antiox9080754. [PMID: 32824091 PMCID: PMC7465353 DOI: 10.3390/antiox9080754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
The chronic activation of the Janus kinase/signal transducer and activator of the transcription (JAK/STAT) pathway is linked to oxidative stress, inflammation and cell proliferation. Suppressors of cytokine signaling (SOCS) proteins negatively regulate the JAK/STAT, and SOCS1 possesses a small kinase inhibitory region (KIR) involved in the inhibition of JAK kinases. Several studies showed that KIR-SOCS1 mimetics can be considered valuable therapeutics in several disorders (e.g., diabetes, neurological disorders and atherosclerosis). Herein, we investigated the antioxidant and atheroprotective effects of PS5, a peptidomimetic of KIR-SOCS1, both in vitro (vascular smooth muscle cells and macrophages) and in vivo (atherosclerosis mouse model) by analyzing gene expression, intracellular O2•− production and atheroma plaque progression and composition. PS5 was revealed to be able to attenuate NADPH oxidase (NOX1 and NOX4) and pro-inflammatory gene expression, to upregulate antioxidant genes and to reduce atheroma plaque size, lipid content and monocyte/macrophage accumulation. These findings confirm that KIR-SOCS1-based drugs could be excellent antioxidant agents to contrast atherosclerosis.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi- University of Naples “Federico II”, 80134 Naples, Italy; (S.L.M.); (G.M.)
- Renal and Vascular Inflammation Group, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), 28040 Madrid, Spain; (L.L.-S.); (S.B.); (L.J.-C.); (I.P.)
| | - Laura Lopez-Sanz
- Renal and Vascular Inflammation Group, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), 28040 Madrid, Spain; (L.L.-S.); (S.B.); (L.J.-C.); (I.P.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - Susana Bernal
- Renal and Vascular Inflammation Group, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), 28040 Madrid, Spain; (L.L.-S.); (S.B.); (L.J.-C.); (I.P.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - Luna Jimenez-Castilla
- Renal and Vascular Inflammation Group, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), 28040 Madrid, Spain; (L.L.-S.); (S.B.); (L.J.-C.); (I.P.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - Ignacio Prieto
- Renal and Vascular Inflammation Group, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), 28040 Madrid, Spain; (L.L.-S.); (S.B.); (L.J.-C.); (I.P.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - Giancarlo Morelli
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi- University of Naples “Federico II”, 80134 Naples, Italy; (S.L.M.); (G.M.)
| | - Carmen Gomez-Guerrero
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
- Correspondence: (C.G.-G.); (D.M.)
| | - Daniela Marasco
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi- University of Naples “Federico II”, 80134 Naples, Italy; (S.L.M.); (G.M.)
- Correspondence: (C.G.-G.); (D.M.)
| |
Collapse
|
11
|
La Manna S, Lopez-Sanz L, Mercurio FA, Fortuna S, Leone M, Gomez-Guerrero C, Marasco D. Chimeric Peptidomimetics of SOCS 3 Able to Interact with JAK2 as Anti-inflammatory Compounds. ACS Med Chem Lett 2020; 11:615-623. [PMID: 32435361 DOI: 10.1021/acsmedchemlett.9b00664] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
The immunomodulatory effects of Suppressor of Cytokine Signaling (SOCS) proteins, that control the JAK/STAT pathway, indicate them as attractive candidates for immunotherapies. Recombinant SOCS3 protein suppresses the effects of inflammation, and its deletion in neurons or in immune cells increases pathological blood vessels growth. Recently, on the basis of the structure of the ternary complex among SOCS3, JAK2, and gp130, we focused on SOCS3 interfacing regions and designed several interfering peptides (IPs) that were able to mimic SOCS3 biological role in triple negative breast cancer (TNBC) models. Herein, to explore other protein regions involved in JAK2 recognition, several new chimeric peptides connecting noncontiguous SOCS3 regions and including a strongly aromatic fragment were investigated. Their ability to recognize the catalytic domain of JAK2 was evaluated through MST (microscale thermophoresis), and the most promising compound, named KIRCONG chim, exhibited a low micromolar value for dissociation constant. The conformational features of chimeric peptides were analyzed through circular dichroism and NMR spectroscopies, and their anti-inflammatory effects were assessed in cell cultures. Overall data suggest the importance of aromatic contribution in the recognition of JAK2 and that SOCS3 peptidomimetics could be endowed with a therapeutic potential in diseases with activated inflammatory cytokines.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples “Federico II”, 80134 Naples, Italy
- Renal and Vascular Inflammation Group, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), 28040 Madrid, Spain
| | - Laura Lopez-Sanz
- Renal and Vascular Inflammation Group, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | | | - Sara Fortuna
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging - CNR, 80134 Naples, Italy
| | - Carmen Gomez-Guerrero
- Renal and Vascular Inflammation Group, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - Daniela Marasco
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples “Federico II”, 80134 Naples, Italy
| |
Collapse
|
12
|
Validation of mouse phosphoprotein enriched in astrocyte 15 (mPEA15) expressing transgenic pig as a potential model in diabetes translational research. 3 Biotech 2020; 10:34. [PMID: 31988828 DOI: 10.1007/s13205-019-2021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/18/2019] [Indexed: 10/25/2022] Open
Abstract
The present study aimed to investigate the characteristics of mPEA15 expressing transgenic pig (TG pig) as a potential model for diabetes. Expression analysis confirmed the ubiquitous expression of mPEA15 in TG pigs at F4. Oral glucose tolerance test results showed that restoration of normal glucose levels was significantly delayed in the TG pigs when compared with that in the wild-type pigs (WT pigs). Primary skeletal muscle cells isolated from TG pigs demonstrated reduced glucose uptake and reduced GLUT4 translocation to the plasma membrane in response to insulin treatment. Combined, these results suggest that mPEA15 expressing pigs has a glucose intolerance and insulin resistance which are known to mediate the pathophysiology of type 2 diabetes mellitus. Thus, mPEA15 transgenic pigs would serve as a promising model for diabetes translational research.
Collapse
|
13
|
McDermott MI, Wang Y, Wakelam MJO, Bankaitis VA. Mammalian phospholipase D: Function, and therapeutics. Prog Lipid Res 2019; 78:101018. [PMID: 31830503 DOI: 10.1016/j.plipres.2019.101018] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 01/23/2023]
Abstract
Despite being discovered over 60 years ago, the precise role of phospholipase D (PLD) is still being elucidated. PLD enzymes catalyze the hydrolysis of the phosphodiester bond of glycerophospholipids producing phosphatidic acid and the free headgroup. PLD family members are found in organisms ranging from viruses, and bacteria to plants, and mammals. They display a range of substrate specificities, are regulated by a diverse range of molecules, and have been implicated in a broad range of cellular processes including receptor signaling, cytoskeletal regulation and membrane trafficking. Recent technological advances including: the development of PLD knockout mice, isoform-specific antibodies, and specific inhibitors are finally permitting a thorough analysis of the in vivo role of mammalian PLDs. These studies are facilitating increased recognition of PLD's role in disease states including cancers and Alzheimer's disease, offering potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- M I McDermott
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America.
| | - Y Wang
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America; Department of Chemistry, Texas A&M University, College Station, Texas 77840, United States of America
| |
Collapse
|
14
|
Baig MH, Kausar MA, Husain FM, Shakil S, Ahmad I, Yadav BS, Saeed M. Interfering PLD1-PED/PEA15 interaction using self-inhibitory peptides: An in silico study to discover novel therapeutic candidates against type 2 diabetes. Saudi J Biol Sci 2019; 26:160-164. [PMID: 30622421 PMCID: PMC6319087 DOI: 10.1016/j.sjbs.2018.08.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/13/2018] [Accepted: 08/20/2018] [Indexed: 11/25/2022] Open
Abstract
Diabetes type 2 (T2D) is a very complex disorder with a large number of cases reported worldwide. There are several reported molecular targets which are being used towards drug design. In spite of extensive research efforts, there is no sure shot treatment available. One of the major reasons for this failure or restricted success in T2D research is the identification of a major/breakthrough therapeutic target responsible for the progression of T2D. It has been well documented that one of the major causes mediating the insulin resistance is the interaction of PLD1 with PED/PEA15. Herein, we have performed in silico experiments to investigate the interaction between PLD1 with PED/PEA15. Furthermore, this study has explored pertinent molecular interactions involving the self-derived peptides. The peptides identified in this study are found to be capable of restricting the interaction of these two proteins. Accordingly, the study suggests that the “self-derived peptides” could be used as promising therapeutic candidate(s) against T2D.
Collapse
Affiliation(s)
- Mohammad Hassan Baig
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Corresponding author.
| | - Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Hail, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Saudi Arabia
| | - Shazi Shakil
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Research center for advanced materials science, King Khalid university, Abha, Saudi Arabia
| | - Brijesh S. Yadav
- Department of Bioengineering, University of Information Science and Technology, The Former Yugolav Republic of Macedonia
| | - Mohd Saeed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Saudi Arabia
| |
Collapse
|
15
|
Duranti S, Ferrario C, van Sinderen D, Ventura M, Turroni F. Obesity and microbiota: an example of an intricate relationship. GENES AND NUTRITION 2017. [PMID: 28638490 PMCID: PMC5473000 DOI: 10.1186/s12263-017-0566-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is widely accepted that metabolic disorders, such as obesity, are closely linked to lifestyle and diet. Recently, the central role played by the intestinal microbiota in human metabolism and in progression of metabolic disorders has become evident. In this context, animal studies and human trials have demonstrated that alterations of the intestinal microbiota towards enhanced energy harvest is a characteristic of the obese phenotype. Many publications, involving both animal studies and clinical trials, have reported on the successful exploitation of probiotics and prebiotics to treat obesity. However, the molecular mechanisms underlying these observed anti-obesity effects of probiotics and prebiotic therapies are still obscure. The aim of this mini-review is to discuss the intricate relationship of various factors, including diet, gut microbiota, and host genetics, that are believed to impact on the development of obesity, and to understand how modulation of the gut microbiota with dietary intervention may alleviate obesity-associated symptoms.
Collapse
Affiliation(s)
- Sabrina Duranti
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| | - Chiara Ferrario
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| |
Collapse
|
16
|
Fiory F, Spinelli R, Raciti GA, Parrillo L, D'esposito V, Formisano P, Miele C, Beguinot F. Targetting PED/PEA-15 for diabetes treatment. Expert Opin Ther Targets 2017; 21:571-581. [PMID: 28395542 DOI: 10.1080/14728222.2017.1317749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION PED/PEA-15 is an ubiquitously expressed protein, involved in the regulation of proliferation and apoptosis. It is commonly overexpressed in Type 2 Diabetes (T2D) and in different T2D-associated comorbidities, including cancer and certain neurodegenerative disorders. Areas covered: In mice, Ped/Pea-15 overexpression impairs glucose tolerance and, in combination with high fat diets, further promotes insulin resistance and T2D. It also controls β-cell mass, altering caspase-3 activation and the expression of pro- and antiapoptotic genes. These changes are mediated by PED/PEA-15-PLD1 binding. Overexpression of PLD1 D4 domain specifically blocks Ped/Pea-15-PLD1 interaction, reverting the effect of Ped/Pea-15 in vivo. D4α, a D4 N-terminal peptide, is able to displace Ped/Pea-15-PLD1 binding, but features greater stability in vivo compared to the entire D4 peptide. Here, we review early mechanistic studies on PED/PEA-15 relevance in apoptosis before focusing on its role in cancer and T2D. Finally, we describe potential therapeutic opportunities for T2D based on PED/PEA-15 targeting. Expert opinion: T2D is a major problem for public health and economy. Thus, the identification of new molecules with pharmacological activity for T2D represents an urgent need. Further studies with D4α will help to identify smaller pharmacologically active peptides and innovative molecules of potential pharmacological interest for T2D treatment.
Collapse
Affiliation(s)
- Francesca Fiory
- a National Council of Research , URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore" , Naples , Italy.,b Department of Translational Medical Sciences , University of Naples "Federico II" , Naples , Italy
| | - Rosa Spinelli
- a National Council of Research , URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore" , Naples , Italy.,b Department of Translational Medical Sciences , University of Naples "Federico II" , Naples , Italy
| | - Gregory Alexander Raciti
- a National Council of Research , URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore" , Naples , Italy.,b Department of Translational Medical Sciences , University of Naples "Federico II" , Naples , Italy
| | - Luca Parrillo
- a National Council of Research , URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore" , Naples , Italy.,b Department of Translational Medical Sciences , University of Naples "Federico II" , Naples , Italy
| | - Vittoria D'esposito
- a National Council of Research , URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore" , Naples , Italy.,b Department of Translational Medical Sciences , University of Naples "Federico II" , Naples , Italy
| | - Pietro Formisano
- a National Council of Research , URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore" , Naples , Italy.,b Department of Translational Medical Sciences , University of Naples "Federico II" , Naples , Italy
| | - Claudia Miele
- a National Council of Research , URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore" , Naples , Italy.,b Department of Translational Medical Sciences , University of Naples "Federico II" , Naples , Italy
| | - Francesco Beguinot
- a National Council of Research , URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore" , Naples , Italy.,b Department of Translational Medical Sciences , University of Naples "Federico II" , Naples , Italy
| |
Collapse
|
17
|
On the Quest of Cellular Functions of PEA-15 and the Therapeutic Opportunities. Pharmaceuticals (Basel) 2015; 8:455-73. [PMID: 26263999 PMCID: PMC4588177 DOI: 10.3390/ph8030455] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/18/2015] [Accepted: 07/24/2015] [Indexed: 02/03/2023] Open
Abstract
Phosphoprotein enriched in astrocytes, 15 KDa (PEA-15), a ubiquitously expressed small protein in all mammals, is known for decades for its potent interactions with various protein partners along distinct biological pathways. Most notable interacting partners of PEA-15 include extracellular signal-regulated kinase 1 and 2 (ERK1/2) in the mitogen activated protein kinase (MAPK) pathway, the Fas-associated death domain (FADD) protein involving in the formation of the death-inducing signaling complex (DISC), and the phospholipase D1 (PLD1) affecting the insulin sensitivity. However, the actual cellular functions of PEA-15 are still mysterious, and the question why this protein is expressed in almost all cell and tissue types remains unanswered. Here we synthesize the most recent structural, biological, and clinical studies on PEA-15 with emphases on its anti-apoptotic, anti-proliferative, and anti-inflammative properties, and propose a converged protective role of PEA-15 that maintains the balance of death and survival in different cell types. Under conditions that this delicate balance is unsustainable, PEA-15 may become pathological and lead to various diseases, including cancers and diabetes. Targeting PEA-15 interactions, or the use of PEA-15 protein as therapeutics, may provide a wider window of opportunities to treat these diseases.
Collapse
|
18
|
Fiory F, Parrillo L, Raciti GA, Zatterale F, Nigro C, Mirra P, Falco R, Ulianich L, Di Jeso B, Formisano P, Miele C, Beguinot F. PED/PEA-15 inhibits hydrogen peroxide-induced apoptosis in Ins-1E pancreatic beta-cells via PLD-1. PLoS One 2014; 9:e113655. [PMID: 25489735 PMCID: PMC4260953 DOI: 10.1371/journal.pone.0113655] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 10/30/2014] [Indexed: 12/20/2022] Open
Abstract
The small scaffold protein PED/PEA-15 is involved in several different physiologic and pathologic processes, such as cell proliferation and survival, diabetes and cancer. PED/PEA-15 exerts an anti-apoptotic function due to its ability to interfere with both extrinsic and intrinsic apoptotic pathways in different cell types. Recent evidence shows that mice overexpressing PED/PEA-15 present larger pancreatic islets and increased beta-cells mass. In the present work we investigated PED/PEA-15 role in hydrogen peroxide-induced apoptosis in Ins-1E beta-cells. In pancreatic islets isolated from TgPED/PEA-15 mice hydrogen peroxide-induced DNA fragmentation was lower compared to WT islets. TUNEL analysis showed that PED/PEA-15 overexpression increases the viability of Ins-1E beta-cells and enhances their resistance to apoptosis induced by hydrogen peroxide exposure. The activity of caspase-3 and the cleavage of PARP-1 were markedly reduced in Ins-1E cells overexpressing PED/PEA-15 (Ins-1EPED/PEA-15). In parallel, we observed a decrease of the mRNA levels of pro-apoptotic genes Bcl-xS and Bad. In contrast, the expression of the anti-apoptotic gene Bcl-xL was enhanced. Accordingly, DNA fragmentation was higher in control cells compared to Ins-1EPED/PEA-15 cells. Interestingly, the preincubation with propranolol, an inhibitor of the pathway of PLD-1, a known interactor of PED/PEA-15, responsible for its deleterious effects on glucose tolerance, abolishes the antiapoptotic effects of PED/PEA-15 overexpression in Ins-1E beta-cells. The same results have been obtained by inhibiting PED/PEA-15 interaction with PLD-1 in Ins-1EPED/PEA-15. These results show that PED/PEA-15 overexpression is sufficient to block hydrogen peroxide-induced apoptosis in Ins-1E cells through a PLD-1 mediated mechanism.
Collapse
Affiliation(s)
- Francesca Fiory
- Dipartimento di Scienze Mediche e Traslazionali dell'Università di Napoli “Federico II”, Naples, Italy
- URT dell'Istituto di Endocrinologia e Oncologia Sperimentale Gaetano Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Luca Parrillo
- Dipartimento di Scienze Mediche e Traslazionali dell'Università di Napoli “Federico II”, Naples, Italy
- URT dell'Istituto di Endocrinologia e Oncologia Sperimentale Gaetano Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Gregory Alexander Raciti
- Dipartimento di Scienze Mediche e Traslazionali dell'Università di Napoli “Federico II”, Naples, Italy
- URT dell'Istituto di Endocrinologia e Oncologia Sperimentale Gaetano Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Federica Zatterale
- Dipartimento di Scienze Mediche e Traslazionali dell'Università di Napoli “Federico II”, Naples, Italy
- URT dell'Istituto di Endocrinologia e Oncologia Sperimentale Gaetano Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Cecilia Nigro
- Dipartimento di Scienze Mediche e Traslazionali dell'Università di Napoli “Federico II”, Naples, Italy
- URT dell'Istituto di Endocrinologia e Oncologia Sperimentale Gaetano Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Paola Mirra
- Dipartimento di Scienze Mediche e Traslazionali dell'Università di Napoli “Federico II”, Naples, Italy
- URT dell'Istituto di Endocrinologia e Oncologia Sperimentale Gaetano Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Roberta Falco
- Dipartimento di Scienze Mediche e Traslazionali dell'Università di Napoli “Federico II”, Naples, Italy
- URT dell'Istituto di Endocrinologia e Oncologia Sperimentale Gaetano Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Luca Ulianich
- Dipartimento di Scienze Mediche e Traslazionali dell'Università di Napoli “Federico II”, Naples, Italy
- URT dell'Istituto di Endocrinologia e Oncologia Sperimentale Gaetano Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Bruno Di Jeso
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce, Italy
| | - Pietro Formisano
- Dipartimento di Scienze Mediche e Traslazionali dell'Università di Napoli “Federico II”, Naples, Italy
- URT dell'Istituto di Endocrinologia e Oncologia Sperimentale Gaetano Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Claudia Miele
- Dipartimento di Scienze Mediche e Traslazionali dell'Università di Napoli “Federico II”, Naples, Italy
- URT dell'Istituto di Endocrinologia e Oncologia Sperimentale Gaetano Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
- * E-mail: (CM); (FB)
| | - Francesco Beguinot
- Dipartimento di Scienze Mediche e Traslazionali dell'Università di Napoli “Federico II”, Naples, Italy
- URT dell'Istituto di Endocrinologia e Oncologia Sperimentale Gaetano Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
- * E-mail: (CM); (FB)
| |
Collapse
|
19
|
Greig FH, Nixon GF. Phosphoprotein enriched in astrocytes (PEA)-15: a potential therapeutic target in multiple disease states. Pharmacol Ther 2014; 143:265-74. [PMID: 24657708 PMCID: PMC4127788 DOI: 10.1016/j.pharmthera.2014.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phosphoprotein enriched in astrocytes-15 (PEA-15) is a cytoplasmic protein that sits at an important junction in intracellular signalling and can regulate diverse cellular processes, such as proliferation and apoptosis, dependent upon stimulation. Regulation of these processes occurs by virtue of the unique interaction of PEA-15 with other signalling proteins. PEA-15 acts as a cytoplasmic tether for the mitogen-activated protein kinases, extracellular signal-regulated kinase 1/2 (ERK1/2) preventing nuclear localisation. In order to release ERK1/2, PEA-15 requires to be phosphorylated via several potential pathways. PEA-15 (and its phosphorylation state) therefore regulates many ERK1/2-dependent processes, including proliferation, via regulating ERK1/2 nuclear translocation. In addition, PEA-15 contains a death effector domain (DED) which allows interaction with other DED-containing proteins. PEA-15 can bind the DED-containing apoptotic adaptor molecule, Fas-associated death domain protein (FADD) which is also dependent on the phosphorylation status of PEA-15. PEA-15 binding of FADD can inhibit apoptosis as bound FADD cannot participate in the assembly of apoptotic signalling complexes. Through these protein–protein interactions, PEA-15-regulated cellular effects have now been investigated in a number of disease-related studies. Changes in PEA-15 expression and regulation have been observed in diabetes mellitus, cancer, neurological disorders and the cardiovascular system. These changes have been suggested to contribute to the pathology related to each of these disease states. As such, new therapeutic targets based around PEA-15 and its associated interactions are now being uncovered and could provide novel avenues for treatment strategies in multiple diseases.
Collapse
Affiliation(s)
- Fiona H Greig
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Graeme F Nixon
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
20
|
Twomey EC, Cordasco DF, Kozuch SD, Wei Y. Substantial conformational change mediated by charge-triad residues of the death effector domain in protein-protein interactions. PLoS One 2013; 8:e83421. [PMID: 24391764 PMCID: PMC3877032 DOI: 10.1371/journal.pone.0083421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 11/03/2013] [Indexed: 11/18/2022] Open
Abstract
Protein conformational changes are commonly associated with the formation of protein complexes. The non-catalytic death effector domains (DEDs) mediate protein-protein interactions in a variety of cellular processes, including apoptosis, proliferation and migration, and glucose metabolism. Here, using NMR residual dipolar coupling (RDC) data, we report a conformational change in the DED of the phosphoprotein enriched in astrocytes, 15 kDa (PEA-15) protein in the complex with a mitogen-activated protein (MAP) kinase, extracellular regulated kinase 2 (ERK2), which is essential in regulating ERK2 cellular distribution and function in cell proliferation and migration. The most significant conformational change in PEA-15 happens at helices α2, α3, and α4, which also possess the highest flexibility among the six-helix bundle of the DED. This crucial conformational change is modulated by the D/E-RxDL charge-triad motif, one of the prominent structural features of DEDs, together with a number of other electrostatic and hydrogen bonding interactions on the protein surface. Charge-triad motif promotes the optimal orientation of key residues and expands the binding interface to accommodate protein-protein interactions. However, the charge-triad residues are not directly involved in the binding interface between PEA-15 and ERK2.
Collapse
Affiliation(s)
- Edward C. Twomey
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, New Jersey, United States of America
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey, United States of America
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, New York, United States of America
| | - Dana F. Cordasco
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, New Jersey, United States of America
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey, United States of America
| | - Stephen D. Kozuch
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey, United States of America
| | - Yufeng Wei
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
21
|
Farina B, Doti N, Pirone L, Malgieri G, Pedone EM, Ruvo M, Fattorusso R. Molecular basis of the PED/PEA15 interaction with the C-terminal fragment of phospholipase D1 revealed by NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1572-80. [PMID: 23608947 DOI: 10.1016/j.bbapap.2013.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/02/2013] [Accepted: 04/13/2013] [Indexed: 10/26/2022]
Abstract
PED/PEA15 is a small protein involved in many protein-protein interactions that modulates the function of a number of key cellular effectors involved in major cell functions, including apoptosis, proliferation and glucose metabolism. In particular, PED/PEA15 interacts with the phospholipase D (PLD) isoforms 1 and 2 increasing protein kinase C-α isoform activity and affects both insulin-stimulated glucose transport and glucose-stimulated insulin secretion. The C-terminal portion (residues 712-1074) of PLD1, named D4, is still able to interact with PED/PEA15. In this study we characterized, by means of NMR spectroscopy, the molecular interaction of PED/PEA15 with D4α, a smaller region of D4, encompassing residues 712-818, shown to have the same affinity for PED/PEA15 and to induce the same effects as D4 in PED/PEA15-overexpressing cells. Chemical shift perturbation (CSP) studies allowed to define D4α binding site of PED/PEA15 and to identify a smaller region likely affected by an allosteric effect. Moreover, ELISA-like experiments showed that three 20-mer overlapping synthetic peptides, covering the 762-801 region of D4α, strongly inhibit PED/PEA15-D4α interaction through their binding to PED/PEA15 with KDs in low micromolar range. Finally, molecular details of the interaction of PED/PEA15 with one of the three peptides have been revealed by CSP and saturation transfer difference (STD) analyses.
Collapse
|
22
|
Cassese A, Raciti GA, Fiory F, Nigro C, Ulianich L, Castanò I, D’Esposito V, Terracciano D, Pastore L, Formisano P, Beguinot F, Miele C. Adenoviral gene transfer of PLD1-D4 enhances insulin sensitivity in mice by disrupting phospholipase D1 interaction with PED/PEA-15. PLoS One 2013; 8:e60555. [PMID: 23585839 PMCID: PMC3621763 DOI: 10.1371/journal.pone.0060555] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/27/2013] [Indexed: 01/10/2023] Open
Abstract
Over-expression of phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes (PED/PEA-15) causes insulin resistance by interacting with the D4 domain of phospholipase D1 (PLD1). Indeed, the disruption of this association restores insulin sensitivity in cultured cells over-expressing PED/PEA-15. Whether the displacement of PLD1 from PED/PEA-15 improves insulin sensitivity in vivo has not been explored yet. In this work we show that treatment with a recombinant adenoviral vector containing the human D4 cDNA (Ad-D4) restores normal glucose homeostasis in transgenic mice overexpressing PED/PEA-15 (Tg ped/pea-15) by improving both insulin sensitivity and secretion. In skeletal muscle of these mice, D4 over-expression inhibited PED/PEA-15-PLD1 interaction, decreased Protein Kinase C alpha activation and restored insulin induced Protein Kinase C zeta activation, leading to amelioration of insulin-dependent glucose uptake. Interestingly, Ad-D4 administration improved insulin sensitivity also in high-fat diet treated obese C57Bl/6 mice. We conclude that PED/PEA-15-PLD1 interaction may represent a novel target for interventions aiming at improving glucose tolerance.
Collapse
Affiliation(s)
- Angela Cassese
- Dipartimento di Scienze Mediche e Traslazionali, Università di Napoli “Federico II” and Istituto di Endocrinologia e Oncologia Sperimentale Gaetano Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Gregory A. Raciti
- Dipartimento di Scienze Mediche e Traslazionali, Università di Napoli “Federico II” and Istituto di Endocrinologia e Oncologia Sperimentale Gaetano Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Francesca Fiory
- Dipartimento di Scienze Mediche e Traslazionali, Università di Napoli “Federico II” and Istituto di Endocrinologia e Oncologia Sperimentale Gaetano Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Cecilia Nigro
- Dipartimento di Scienze Mediche e Traslazionali, Università di Napoli “Federico II” and Istituto di Endocrinologia e Oncologia Sperimentale Gaetano Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Luca Ulianich
- Dipartimento di Scienze Mediche e Traslazionali, Università di Napoli “Federico II” and Istituto di Endocrinologia e Oncologia Sperimentale Gaetano Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Ilenia Castanò
- Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli “Federico II”, Naples, Italy
- CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Vittoria D’Esposito
- Dipartimento di Scienze Mediche e Traslazionali, Università di Napoli “Federico II” and Istituto di Endocrinologia e Oncologia Sperimentale Gaetano Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Daniela Terracciano
- Dipartimento di Scienze Mediche e Traslazionali, Università di Napoli “Federico II” and Istituto di Endocrinologia e Oncologia Sperimentale Gaetano Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Lucio Pastore
- Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli “Federico II”, Naples, Italy
- CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Pietro Formisano
- Dipartimento di Scienze Mediche e Traslazionali, Università di Napoli “Federico II” and Istituto di Endocrinologia e Oncologia Sperimentale Gaetano Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Francesco Beguinot
- Dipartimento di Scienze Mediche e Traslazionali, Università di Napoli “Federico II” and Istituto di Endocrinologia e Oncologia Sperimentale Gaetano Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
- * E-mail: (FB); (CM)
| | - Claudia Miele
- Dipartimento di Scienze Mediche e Traslazionali, Università di Napoli “Federico II” and Istituto di Endocrinologia e Oncologia Sperimentale Gaetano Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
- * E-mail: (FB); (CM)
| |
Collapse
|
23
|
Ungaro P, Mirra P, Oriente F, Nigro C, Ciccarelli M, Vastolo V, Longo M, Perruolo G, Spinelli R, Formisano P, Miele C, Beguinot F. Peroxisome proliferator-activated receptor-γ activation enhances insulin-stimulated glucose disposal by reducing ped/pea-15 gene expression in skeletal muscle cells: evidence for involvement of activator protein-1. J Biol Chem 2012; 287:42951-61. [PMID: 23105093 DOI: 10.1074/jbc.m112.406637] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The gene network responsible for inflammation-induced insulin resistance remains enigmatic. In this study, we show that, in L6 cells, rosiglitazone- as well as pioglitazone-dependent activation of peroxisome proliferator-activated receptor-γ (PPARγ) represses transcription of the ped/pea-15 gene, whose increased activity impairs glucose tolerance in mice and humans. Rosiglitazone enhanced insulin-induced glucose uptake in L6 cells expressing the endogenous ped/pea-15 gene but not in cells expressing ped/pea-15 under the control of an exogenous promoter. The ability of PPARγ to affect ped/pea-15 expression was also lost in cells and in C57BL/6J transgenic mice expressing ped/pea-15 under the control of an exogenous promoter, suggesting that ped/pea-15 repression may contribute to rosiglitazone action on glucose disposal. Indeed, high fat diet mice showed insulin resistance and increased ped/pea-15 levels, although these effects were reduced by rosiglitazone treatment. Both supershift and ChIP assays revealed the presence of the AP-1 component c-JUN at the PED/PEA-15 promoter upon 12-O-tetradecanoylphorbol-13-acetate stimulation of the cells. In these experiments, rosiglitazone treatment reduced c-JUN presence at the PED/PEA-15 promoter. This effect was not associated with a decrease in c-JUN expression. In addition, c-jun silencing in L6 cells lowered ped/pea-15 expression and caused nonresponsiveness to rosiglitazone, although c-jun overexpression enhanced the binding to the ped/pea-15 promoter and blocked the rosiglitazone effect. These results indicate that PPARγ regulates ped/pea-15 transcription by inhibiting c-JUN binding at the ped/pea-15 promoter. Thus, ped/pea-15 is downstream of a major PPARγ-regulated inflammatory network. Repression of ped/pea-15 transcription might contribute to the PPARγ regulation of muscle sensitivity to insulin.
Collapse
Affiliation(s)
- Paola Ungaro
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università di Napoli "Federico II", Consiglio Nazionale delle Ricerche, 80131 Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sulzmaier FJ, Valmiki MKG, Nelson DA, Caliva MJ, Geerts D, Matter ML, White EP, Ramos JW. PEA-15 potentiates H-Ras-mediated epithelial cell transformation through phospholipase D. Oncogene 2012; 31:3547-60. [PMID: 22105357 PMCID: PMC3295902 DOI: 10.1038/onc.2011.514] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 09/18/2011] [Accepted: 10/09/2011] [Indexed: 01/22/2023]
Abstract
The small GTPase H-Ras is a proto-oncogene that activates a variety of different pathways including the extracellular-signal-regulated kinase (ERK)/mitogen-activated protein kinase pathway. H-Ras is mutated in many human malignancies, and these mutations cause the protein to be constitutively active. Phosphoprotein enriched in astrocytes, 15 kDa (PEA-15) blocks ERK-dependent gene transcription and inhibits proliferation by sequestering ERK in the cytoplasm. We therefore investigated whether PEA-15 influences H-Ras-mediated transformation. We found that PEA-15 does not block H-Ras-activated proliferation when H-Ras is constitutively active. We show instead that in H-Ras-transformed mouse kidney epithelial cells, co-expression of PEA-15 resulted in enhanced soft agar colony growth and increased tumor growth in vivo. Overexpression of both H-Ras and PEA-15 resulted in accelerated G1/S cell cycle transition and increased activation of the ERK signaling pathway. PEA-15 mediated these effects through activation of its binding partner phospholipase D1 (PLD1). Inhibition of PLD1 or interference with PEA-15/PLD1 binding blocked PEA-15's ability to increase ERK activation. Our findings reveal a novel mechanism by which PEA-15 positively regulates Ras/ERK signaling and increases the proliferation of H-Ras-transformed epithelial cells through enhanced PLD1 expression and activation. Thus, our work provides a surprising mechanism by which PEA-15 augments H-Ras-driven transformation. These data reveal that PEA-15 not only suppresses ERK signaling and tumorigenesis but also alternatively enhances tumorigenesis in the context of active Ras.
Collapse
Affiliation(s)
- F J Sulzmaier
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Twomey EC, Cordasco DF, Wei Y. Profound conformational changes of PED/PEA-15 in ERK2 complex revealed by NMR backbone dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:1382-93. [PMID: 22820249 DOI: 10.1016/j.bbapap.2012.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 05/30/2012] [Accepted: 07/05/2012] [Indexed: 01/09/2023]
Abstract
PED/PEA-15 is a small, non-catalytic, DED containing protein that is widely expressed in different tissues and highly conserved among mammals. PED/PEA-15 has been found to interact with several protein targets in various pathways, including FADD and procaspase-8 (apoptosis), ERK1/2 (cell cycle entry), and PLD1/2 (diabetes). In this research, we have studied the PED/PEA-15 in a complex with ERK2, a MAP kinase, using NMR spectroscopic techniques. MAP Kinase signaling pathways are involved in the regulation of many cellular functions, including cell proliferation, differentiation, apoptosis and survival. ERK1/2 are activated by a variety of external stimuli, including growth factors, hormones and neurotransmitters. Inactivated ERK2 is primarily found in the cytosol. Once the ERK/MAPK cascade is initiated, ERK2 is phosphorylated and stimulated, allowing it to redistribute in the cell nucleus and act as a transcription factor. Previous studies have shown that PED/PEA-15 complexes with ERK2 in the cytoplasm and prevents redistribution into the nucleus. Although the NMR structure and dynamics of PED/PEA-15 in the free form have been documented recently, no detailed structural and dynamic information for the ERK2-bound form is available. Here we report NMR chemical shift perturbation and backbone dynamic studies at the fast ps-ns timescale of PED/PEA-15, in its free form and in the complex with ERK2. These analyses characterize motions and conformational changes involved in ERK2 recognition and binding that orchestrate the reorganization of the DED and immobilization of the C-terminal tail. A new induced fit binding model for PED/PEA-15 is proposed.
Collapse
Affiliation(s)
- Edward C Twomey
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ 07079, USA
| | | | | |
Collapse
|
26
|
Twomey EC, Wei Y. High-definition NMR structure of PED/PEA-15 death effector domain reveals details of key polar side chain interactions. Biochem Biophys Res Commun 2012; 424:141-6. [PMID: 22732408 DOI: 10.1016/j.bbrc.2012.06.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 06/16/2012] [Indexed: 11/17/2022]
Abstract
Death effector domain (DED) proteins constitute a subfamily of the large death domain superfamily that is primarily involved in apoptosis pathways. DED structures have characteristic side chain-side chain interactions among polar residues on the protein surface, forming a network of hydrogen bonds and salt bridges. The polar interaction network is functionally important in promoting protein-protein interactions by maintaining optimal side chain orientations. We have refined the solution DED structure of the PED/PEA-15 protein, a representative member of DED subfamily, using traditional NMR restraints with the addition of residual dipolar coupling (RDC) restraints from two independent alignment media, and employed the explicit solvent refinement protocol. The newly refined DED structure of PED/PEA-15 possesses higher structural quality as indicated by WHAT IF Z-scores, with most significant improvement in the backbone conformation normality quality factor. This higher quality DED structure of PED/PEA-15 leads to the identification of a number of key polar side chain interactions, which are not typically observed in NMR protein structures. The elucidation of polar side chain interactions is a key step towards the understanding of protein-protein interactions involving the death domain superfamily. The NMR structures with extensive details of protein structural features are thereby termed high-definition (HD) NMR structures.
Collapse
Affiliation(s)
- Edward C Twomey
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ 07094-2646, USA
| | | |
Collapse
|
27
|
Selvy PE, Lavieri RR, Lindsley CW, Brown HA. Phospholipase D: enzymology, functionality, and chemical modulation. Chem Rev 2011; 111:6064-119. [PMID: 21936578 PMCID: PMC3233269 DOI: 10.1021/cr200296t] [Citation(s) in RCA: 280] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Paige E Selvy
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37064, USA
| | | | | | | |
Collapse
|
28
|
Scognamiglio PL, Doti N, Grieco P, Pedone C, Ruvo M, Marasco D. Discovery of Small Peptide Antagonists of PED/PEA15-D4α Interaction from Simplified Combinatorial Libraries. Chem Biol Drug Des 2011; 77:319-27. [DOI: 10.1111/j.1747-0285.2011.01094.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Farina B, Pirone L, Russo L, Viparelli F, Doti N, Pedone C, Pedone EM, Fattorusso R. NMR backbone dynamics studies of human PED/PEA-15 outline protein functional sites. FEBS J 2010; 277:4229-40. [PMID: 20825483 DOI: 10.1111/j.1742-4658.2010.07812.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PED/PEA-15 (phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes) is a ubiquitously expressed protein and a key regulator of cell growth and glucose metabolism. PED/PEA-15 mediates both homotypic and heterotypic interactions and is constituted by an N-terminal canonical death effector domain and a C-terminal tail. In the present study, the backbone dynamics of PED/PEA-15 via (15)N R(1) and R(2) and steady-state [(1)H]-(15)N NOE measurements is reported. The dynamic parameters were analyzed using both Lipari-Szabo model-free formalism and a reduced spectral density mapping approach. The results obtained define a polar and charged surface of the death effector domain characterized by internal motions in the micro- to millisecond timescale, which is crucial for the multiple heterotypic functional protein-protein interactions in which PED/PEA-15 is involved. The present study contributes to a better understanding of the molecular basis of the PED/PEA-15 functional interactions and provides a more detailed surface for the design and development of PED/PEA-15 binders.
Collapse
|
30
|
Doti N, Cassese A, Marasco D, Paturzo F, Sabatella M, Viparelli F, Dathan N, Monti SM, Miele C, Formisano P, Beguinot F, Ruvo M. Residues 762-801 of PLD1 mediate the interaction with PED/PEA15. MOLECULAR BIOSYSTEMS 2010; 6:2039-48. [PMID: 20714510 DOI: 10.1039/c005272h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction of Phospholipase D1 (PLD1) by its C-terminal domain D4 with PED/PEA15 has been indicated as a target for type 2 diabetes. PED/PEA15 is overexpressed in several tissues of individuals affected by type 2 diabetes and its overexpression in intact cells and in transgenic animal models impairs insulin regulation of glucose transport by a mechanism mediated by the interaction with D4 and the consequent increase of protein kinase C-alpha activity. Expression of D4 or administration of a peptide mimicking the PED/PEA15 region involved in this interaction to cells stably overexpressing PED/PEA15 reduces its interaction with PLD1, thereby lowering PKC-alpha activation and restoring normal glucose transport mediated by PKC-zeta. By using D4 deletion mutants, we have restricted the PLD1 region involved in PED/PEA15 interaction to an N-terminal fragment named D4alpha (residues 712-818). This region binds PED/PEA15 with the same efficacy as D4 (K(D) approximately 0.7 microM) and, when transfected in different PED/PEA15-overexpressing cells, it is able to reduce PKC-alpha activity and to restore the sensitivity of PKC-zeta to insulin stimulation, independently of the PI3K/Akt signalling. We also show that the effective disruption of the PED/PEA15-PLD1 interaction can restore the normal ERK1/2 signalling. Finally, using a set of overlapping peptides that cover the D4alpha region, we have further restricted the shortest PED/PEA15-binding site to a segment encompassing residues 762-801, suggesting that a quite limited binding interface mostly contributes to the interaction and can thus be a selective target for the design of effective antagonists.
Collapse
Affiliation(s)
- Nunzianna Doti
- Istituto di Biostrutture e Bioimmagini, CNR, via Mezzocannone 16, 80134 Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
32
|
Haling JR, Wang F, Ginsberg MH. Phosphoprotein enriched in astrocytes 15 kDa (PEA-15) reprograms growth factor signaling by inhibiting threonine phosphorylation of fibroblast receptor substrate 2alpha. Mol Biol Cell 2009; 21:664-73. [PMID: 20032303 PMCID: PMC2820429 DOI: 10.1091/mbc.e09-08-0659] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Changes in expression of PEA-15 contribute to diabetes, tumor invasion, and cellular senescence. PEA-15 increases activation of the ERK MAP kinase pathway; the present study shows that it does so by interfering with ERK1/2 phosphorylation of FRS2, terminator of downstream signaling from FGF receptors. Changes in cellular expression of phosphoprotein enriched in astrocytes of 15 kDa (PEA-15) are linked to insulin resistance, tumor cell invasion, and cellular senescence; these changes alter the activation of the extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein (MAP) kinase pathway. Here, we define the mechanism whereby increased PEA-15 expression promotes and sustains ERK1/2 activation. PEA-15 binding prevented ERK1/2 membrane recruitment and threonine phosphorylation of fibroblast receptor substrate 2α (FRS2α), a key link in fibroblast growth factor (FGF) receptor activation of ERK1/2. This reduced threonine phosphorylation led to increased FGF-induced tyrosine phosphorylation of FRS2α, thereby enhancing downstream signaling. Conversely, short hairpin RNA-mediated depletion of endogenous PEA-15 led to reduced FRS2α tyrosine phosphorylation. Thus, PEA-15 interrupts a negative feedback loop that terminates growth factor receptor signaling downstream of FRS2α. This is the dominant mechanism by which PEA-15 activates ERK1/2 because genetic deletion of FRS2α blocked the capacity of PEA-15 to activate the MAP kinase pathway. Thus, PEA-15 prevents ERK1/2 localization to the plasma membrane, thereby inhibiting ERK1/2-dependent threonine phosphorylation of FRS2α to promote activation of the ERK1/2 MAP kinase pathway.
Collapse
Affiliation(s)
- Jacob R Haling
- Department of Medicine, University of California San Diego, La Jolla, CA 92093-0726, USA
| | | | | |
Collapse
|
33
|
Oriente F, Iovino S, Cassese A, Romano C, Miele C, Troncone G, Balletta M, Perfetti A, Santulli G, Iaccarino G, Valentino R, Beguinot F, Formisano P. Overproduction of phosphoprotein enriched in diabetes (PED) induces mesangial expansion and upregulates protein kinase C-beta activity and TGF-beta1 expression. Diabetologia 2009; 52:2642-52. [PMID: 19789852 DOI: 10.1007/s00125-009-1528-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 08/05/2009] [Indexed: 11/30/2022]
Abstract
AIMS/HYPOTHESIS Overproduction of phosphoprotein enriched in diabetes (PED, also known as phosphoprotein enriched in astrocytes-15 [PEA-15]) is a common feature of type 2 diabetes and impairs insulin action in cultured cells and in mice. Nevertheless, the potential role of PED in diabetic complications is still unknown. METHODS We studied the effect of PED overproduction and depletion on kidney function in animal and cellular models. RESULTS Transgenic mice overexpressing PED (PEDTg) featured age-dependent increases of plasma creatinine levels and urinary volume, accompanied by expansion of the mesangial area, compared with wild-type littermates. Serum and kidney levels of TGF-beta1 were also higher in 6- and 9-month-old PEDTg. Overexpression of PED in human kidney 2 cells significantly increased TGF-beta1 levels, SMAD family members (SMAD)2/3 phosphorylation and fibronectin production. Opposite results were obtained following genetic silencing of PED in human kidney 2 cells by antisense oligonucleotides. Inhibition of phospholipase D and protein kinase C-beta by 2-butanol and LY373196 respectively reduced TGF-beta1, SMAD2/3 phosphorylation and fibronectin production. Moreover, inhibition of TGF-beta1 receptor activity and SMAD2/3 production by SB431542 and antisense oligonucleotides respectively reduced fibronectin secretion by about 50%. TGF-beta1 circulating levels were significantly reduced in Ped knockout mice and positively correlated with PED content in peripheral blood leucocytes of type 2 diabetic patients. CONCLUSIONS/INTERPRETATION These data indicate that PED regulates fibronectin production via phospholipase D/protein kinase C-beta and TGF-beta1/SMAD pathways in kidney cells. Raised PED levels may therefore contribute to the abnormal accumulation of extracellular matrix and renal dysfunction in diabetes.
Collapse
MESH Headings
- Actins/genetics
- Animals
- Astrocytes/metabolism
- Blood Pressure
- DNA Primers
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/physiopathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/physiopathology
- Diabetic Nephropathies/epidemiology
- Fatty Acids, Nonesterified/blood
- Fibronectins/genetics
- Gene Expression Regulation
- Heart Rate
- Humans
- Insulin/blood
- Kidney/physiology
- Kidney Failure, Chronic/etiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Phenotype
- Phosphoproteins/biosynthesis
- Phosphoproteins/genetics
- Protein Kinase C/genetics
- Protein Kinase C beta
- Reverse Transcriptase Polymerase Chain Reaction
- Smad2 Protein/genetics
- Transforming Growth Factor beta1/genetics
- Up-Regulation
Collapse
Affiliation(s)
- F Oriente
- Department of Cellular and Molecular Biology and Pathology, Federico II University of Naples, Via Pansini 5, 80131, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fiory F, Formisano P, Perruolo G, Beguinot F. Frontiers: PED/PEA-15, a multifunctional protein controlling cell survival and glucose metabolism. Am J Physiol Endocrinol Metab 2009; 297:E592-601. [PMID: 19531639 DOI: 10.1152/ajpendo.00228.2009] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PED/PEA-15 is a 15-kDa ubiquitously expressed protein implicated in a number of fundamental cellular functions, including apoptosis, proliferation, and glucose metabolism. PED/PEA-15 lacks enzymatic function and serves mainly as a molecular adaptor. PED/PEA-15 is an endogenous substrate for protein kinase C (PKC), calcium/calmodulin-dependent protein kinase II (CAM kinase II), and Akt. In particular, PKC phosphorylates PED/PEA-15 at Ser(104) and CAM kinase II or Akt at Ser(116), modifying its stability. Evidence obtained over the past 10 years has indicated that PED/PEA-15 regulates cell survival by interfering with both intrinsic and extrinsic apoptotic pathways. In addition, it may also control cell proliferation by interfering with ERK1/2-mediated pathways. Indeed, PED/PEA-15 has been identified as an ERK1/2 interactor, which modifies its subcellular localization and targeting to a specific subset of substrates. Increased PED/PEA-15 levels may affect tumorigenesis and cancer progression as well as sensitivity to anticancer agents. Moreover, PED/PEA-15 affects astrocyte motility and increases susceptibility to skin carcinogenesis in vivo. PED/PEA-15 expression is regulated at the transcriptional and the posttranslational levels. Increased PED/PEA-15 expression has been identified in individuals with type 2 diabetes early during the natural history of the disease. Evidence generated over the past 10 years indicated that this defect contributes to altering glucose tolerance by impairing insulin action and insulin secretion and might play a role in the development of diabetes-associated neurological disorders. Strategies are being devised to target key signaling events in PED/PEA-15 action aimed at improving glucose tolerance and at facilitating cancer cell death.
Collapse
Affiliation(s)
- Francesca Fiory
- Dept. of Cellular and Molecular Biology and Pathology, Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Federico II Univ. of Naples, Naples, Italy
| | | | | | | |
Collapse
|
35
|
Sandomenico A, Monti SM, Sabatella M, De Capua A, Tornatore L, Doti N, Viparelli F, Dathan NA, Pedone C, Ruvo M, Marasco D. Protein-Protein Interactions: A Simple Strategy to Identify Binding Sites and Peptide Antagonists. Chem Biol Drug Des 2009; 73:483-93. [DOI: 10.1111/j.1747-0285.2009.00805.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
|