1
|
Zhao G, Jia M, Zhu S, Ren H, Wang G, Xin G, Sun M, Wang X, Lin Q, Jiang Q, Zhang C. Mitotic ER-mitochondria contact enhances mitochondrial Ca 2+ influx to promote cell division. Cell Rep 2024; 43:114794. [PMID: 39342616 DOI: 10.1016/j.celrep.2024.114794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/31/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
Cell division is tightly regulated and requires an expanded energy supply. However, how this energy is generated remains unclear. Here, we establish a correlation between two mitochondrial Ca2+ influx events and ATP production during mitosis. While both events promote ATP production during mitosis, the second event, the Ca2+ influx surge, is substantial. To facilitate this Ca2+ influx surge, the lamin B receptor (LBR) organizes a mitosis-specific endoplasmic reticulum (ER)-mitochondrial contact site (ERMCS), creating a rapid Ca2+ transport pathway. LBR acts as a tether, connecting the ER Ca2+ release channel IP3R with the mitochondrial VDAC2. Depletion of LBR disrupts the Ca2+ influx surge, reduces ATP production, and postpones the metaphase-anaphase transition and subsequent cell division. These findings provide insight into the mechanisms underlying mitotic energy production and supply required for cell proliferation.
Collapse
Affiliation(s)
- Gan Zhao
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Mingkang Jia
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Shicong Zhu
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - He Ren
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Guopeng Wang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Guangwei Xin
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Mengjie Sun
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiangyang Wang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qiaoyu Lin
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qing Jiang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Chuanmao Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China; The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
2
|
Rah SY, Joe Y, Park J, Ryter SW, Park C, Chung HT, Kim UH. CD38/ADP-ribose/TRPM2-mediated nuclear Ca 2+ signaling is essential for hepatic gluconeogenesis in fasting and diabetes. Exp Mol Med 2023; 55:1492-1505. [PMID: 37394593 PMCID: PMC10393965 DOI: 10.1038/s12276-023-01034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/06/2023] [Accepted: 04/17/2023] [Indexed: 07/04/2023] Open
Abstract
Hepatic glucose production by glucagon is crucial for glucose homeostasis during fasting, yet the underlying mechanisms remain incompletely delineated. Although CD38 has been detected in the nucleus, its function in this compartment is unknown. Here, we demonstrate that nuclear CD38 (nCD38) controls glucagon-induced gluconeogenesis in primary hepatocytes and liver in a manner distinct from CD38 occurring in the cytoplasm and lysosomal compartments. We found that the localization of CD38 in the nucleus is required for glucose production by glucagon and that nCD38 activation requires NAD+ supplied by PKCδ-phosphorylated connexin 43. In fasting and diabetes, nCD38 promotes sustained Ca2+ signals via transient receptor potential melastatin 2 (TRPM2) activation by ADP-ribose, which enhances the transcription of glucose-6 phosphatase and phosphoenolpyruvate carboxykinase 1. These findings shed light on the role of nCD38 in glucagon-induced gluconeogenesis and provide insight into nuclear Ca2+ signals that mediate the transcription of key genes in gluconeogenesis under physiological conditions.
Collapse
Affiliation(s)
- So-Young Rah
- Department of Biochemistry and National Creative Research Laboratory for Ca2+ Signaling Network, Jeonbuk National University, Medical School, Keum-am dong, Jeonju, 54907, Republic of Korea
| | - Yeonsoo Joe
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Jeongmin Park
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea
| | | | - Chansu Park
- Department of Biochemistry and National Creative Research Laboratory for Ca2+ Signaling Network, Jeonbuk National University, Medical School, Keum-am dong, Jeonju, 54907, Republic of Korea
| | - Hun Taeg Chung
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea.
| | - Uh-Hyun Kim
- Department of Biochemistry and National Creative Research Laboratory for Ca2+ Signaling Network, Jeonbuk National University, Medical School, Keum-am dong, Jeonju, 54907, Republic of Korea.
- Department of Biochemistry, School of Medicine, Wonkwang University, Iksan, 54538, Republic of Korea.
| |
Collapse
|
3
|
Martucci LL, Cancela JM. Neurophysiological functions and pharmacological tools of acidic and non-acidic Ca2+ stores. Cell Calcium 2022; 104:102582. [DOI: 10.1016/j.ceca.2022.102582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 02/08/2023]
|
4
|
Zeng F, Zhu L, Liao Q, Li X, Zhou Y. Adenosine diphosphate ribose cyclase: An important regulator of human pathological and physiological processes. J Cell Physiol 2022; 237:2064-2077. [PMID: 35098541 DOI: 10.1002/jcp.30688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/17/2021] [Accepted: 01/08/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Feng Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
- Cancer Research Institute, Basic School of Medicine Central South University Changsha Hunan China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| | - Ling Zhu
- Department of Neurology, Xiangtan Central Hospital Xiangtan Central Hospital Xiangtan Hunan China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| | - Xin Li
- Breast Cancer Center, Department of General Surgery, Xiangya Hospital Central South University Changsha China
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
- Cancer Research Institute, Basic School of Medicine Central South University Changsha Hunan China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| |
Collapse
|
5
|
Bédécarrats A, Puygrenier L, Castro O'Byrne J, Lade Q, Simmers J, Nargeot R. Organelle calcium-derived voltage oscillations in pacemaker neurons drive the motor program for food-seeking behavior in Aplysia. eLife 2021; 10:68651. [PMID: 34190043 PMCID: PMC8263059 DOI: 10.7554/elife.68651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
The expression of motivated behaviors depends on both external and internally arising neural stimuli, yet the intrinsic releasing mechanisms for such variably occurring behaviors remain elusive. In isolated nervous system preparations of Aplysia, we have found that irregularly expressed cycles of motor output underlying food-seeking behavior arise from regular membrane potential oscillations of varying magnitude in an identified pair of interneurons (B63) in the bilateral buccal ganglia. This rhythmic signal, which is specific to the B63 cells, is generated by organelle-derived intracellular calcium fluxes that activate voltage-independent plasma membrane channels. The resulting voltage oscillation spreads throughout a subset of gap junction-coupled buccal network neurons and by triggering plateau potential-mediated bursts in B63, can initiate motor output driving food-seeking action. Thus, an atypical neuronal pacemaker mechanism, based on rhythmic intracellular calcium store release and intercellular propagation, can act as an autonomous intrinsic releaser for the occurrence of a motivated behavior.
Collapse
Affiliation(s)
| | - Laura Puygrenier
- Univ. Bordeaux, INCIA, UMR 5287, F-33076 Bordeaux, Bordeaux, France
| | | | - Quentin Lade
- Univ. Bordeaux, INCIA, UMR 5287, F-33076 Bordeaux, Bordeaux, France
| | - John Simmers
- Univ. Bordeaux, INCIA, UMR 5287, F-33076 Bordeaux, Bordeaux, France
| | - Romuald Nargeot
- Univ. Bordeaux, INCIA, UMR 5287, F-33076 Bordeaux, Bordeaux, France
| |
Collapse
|
6
|
Gunaratne GS, Brailoiu E, He S, Unterwald EM, Patel S, Slama JT, Walseth TF, Marchant JS. Essential requirement for JPT2 in NAADP-evoked Ca 2+ signaling. Sci Signal 2021; 14:14/675/eabd5605. [PMID: 33758061 DOI: 10.1126/scisignal.abd5605] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a second messenger that releases Ca2+ from acidic organelles through the activation of two-pore channels (TPCs) to regulate endolysosomal trafficking events. NAADP action is mediated by NAADP-binding protein(s) of unknown identity that confer NAADP sensitivity to TPCs. Here, we used a "clickable" NAADP-based photoprobe to isolate human NAADP-binding proteins and identified Jupiter microtubule-associated homolog 2 (JPT2) as a TPC accessory protein required for endogenous NAADP-evoked Ca2+ signaling. JPT2 was also required for the translocation of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus through the endolysosomal system. Thus, JPT2 is a component of the NAADP receptor complex that is essential for TPC-dependent Ca2+ signaling and control of coronaviral entry.
Collapse
Affiliation(s)
- Gihan S Gunaratne
- Department of Pharmacology, University of Minnesota Medical School, 312 Church Street, Minneapolis, MN 55455, USA.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Eugen Brailoiu
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Shijun He
- Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Ellen M Unterwald
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - James T Slama
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Timothy F Walseth
- Department of Pharmacology, University of Minnesota Medical School, 312 Church Street, Minneapolis, MN 55455, USA
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
7
|
Labandeira-Garcia JL, Valenzuela R, Costa-Besada MA, Villar-Cheda B, Rodriguez-Perez AI. The intracellular renin-angiotensin system: Friend or foe. Some light from the dopaminergic neurons. Prog Neurobiol 2020; 199:101919. [PMID: 33039415 PMCID: PMC7543790 DOI: 10.1016/j.pneurobio.2020.101919] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/20/2020] [Accepted: 10/04/2020] [Indexed: 12/11/2022]
Abstract
The renin-angiotensin system (RAS) is one of the oldest hormone systems in vertebrate phylogeny. RAS was initially related to regulation of blood pressure and sodium and water homeostasis. However, local or paracrine RAS were later identified in many tissues, including brain, and play a major role in their physiology and pathophysiology. In addition, a major component, ACE2, is the entry receptor for SARS-CoV-2. Overactivation of tissue RAS leads several oxidative stress and inflammatory processes involved in aging-related degenerative changes. In addition, a third level of RAS, the intracellular or intracrine RAS (iRAS), with still unclear functions, has been observed. The possible interaction between the intracellular and extracellular RAS, and particularly the possible deleterious or beneficial effects of the iRAS activation are controversial. The dopaminergic system is particularly interesting to investigate the RAS as important functional interactions between dopamine and RAS have been observed in the brain and several peripheral tissues. Our recent observations in mitochondria and nucleus of dopaminergic neurons may clarify the role of the iRAS. This may be important for the developing of new therapeutic strategies, since the effects on both extracellular and intracellular RAS must be taken into account, and perhaps better understanding of COVID-19 cell mechanisms.
Collapse
Affiliation(s)
- Jose L Labandeira-Garcia
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain.
| | - Rita Valenzuela
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| | - Maria A Costa-Besada
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| | - Begoña Villar-Cheda
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| | - Ana I Rodriguez-Perez
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| |
Collapse
|
8
|
Guo C, Webb SE, Chan CM, Miller AL. TPC2-mediated Ca 2+ signaling is required for axon extension in caudal primary motor neurons in zebrafish embryos. J Cell Sci 2020; 133:jcs244780. [PMID: 32546534 DOI: 10.1242/jcs.244780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
The role of two-pore channel type 2 (TPC2, encoded by tcpn2)-mediated Ca2+ release was recently characterized in zebrafish during establishment of the early spinal circuitry, one of the key events in the coordination of neuromuscular activity. Here, we extend our study to investigate the in vivo role of TPC2 in the regulation of caudal primary motor neuron (CaP) axon extension. We used a combination of TPC2 knockdown with a translation-blocking morpholino antisense oligonucleotide (MO), TPC2 knockout via the generation of a tpcn2dhkz1a mutant line of zebrafish using CRISPR/Cas9 gene-editing and pharmacological inhibition of TPC2 via incubation with bafilomycin A1 (an H+-ATPase inhibitor) or trans-ned-19 (an NAADP receptor antagonist), and showed that these treatments attenuated CaP Ca2+ signaling and inhibited axon extension. We also characterized the expression of an arc1-like transcript in CaPs grown in primary culture. MO-mediated knockdown of ARC1-like in vivo led to attenuation of the Ca2+ transients in the CaP growth cones and an inhibition of axon extension. Together, our new data suggest a link between ARC1-like, TPC2 and Ca2+ signaling during axon extension in zebrafish.
Collapse
Affiliation(s)
- Chenxi Guo
- Division of Life Science and State Key Laboratory for Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Sarah E Webb
- Division of Life Science and State Key Laboratory for Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ching Man Chan
- Division of Life Science and State Key Laboratory for Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Andrew L Miller
- Division of Life Science and State Key Laboratory for Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
9
|
Webb SE, Kelu JJ, Miller AL. Role of Two-Pore Channels in Embryonic Development and Cellular Differentiation. Cold Spring Harb Perspect Biol 2020; 12:a035170. [PMID: 31358517 PMCID: PMC6942120 DOI: 10.1101/cshperspect.a035170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Since the identification of nicotinic acid adenine dinucleotide phosphate (NAADP) and its putative target, the two-pore channel (TPC), the NAADP/TPC/Ca2+ signaling pathway has been reported to play a role in a diverse range of functions in a variety of different cell types. TPCs have also been associated with a number of diseases, which arise when their activity is perturbed. In addition, TPCs have been shown to play key roles in various embryological processes and during the differentiation of a variety of cell types. Here, we review the role of NAADP/TPC/Ca2+ signaling during early embryonic development and cellular differentiation. We pay particular attention to the role of TPC2 in the development and maturation of early neuromuscular activity in zebrafish, and during the differentiation of isolated osteoclasts, endothelial cells, and keratinocytes. Our aim is to emphasize the conserved features of TPC-mediated Ca2+ signaling in a number of selected examples.
Collapse
Affiliation(s)
- Sarah E Webb
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Hong Kong, PRC
| | - Jeffrey J Kelu
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Hong Kong, PRC
| | - Andrew L Miller
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Hong Kong, PRC
| |
Collapse
|
10
|
Secondo A, Petrozziello T, Tedeschi V, Boscia F, Pannaccione A, Molinaro P, Annunziato L. Nuclear localization of NCX: Role in Ca 2+ handling and pathophysiological implications. Cell Calcium 2019; 86:102143. [PMID: 31865040 DOI: 10.1016/j.ceca.2019.102143] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 02/05/2023]
Abstract
Numerous lines of evidence indicate that nuclear calcium concentration ([Ca2+]n) may be controlled independently from cytosolic events by a local machinery. In particular, the perinuclear space between the inner nuclear membrane (INM) and the outer nuclear membrane (ONM) of the nuclear envelope (NE) likely serves as an intracellular store for Ca2+ ions. Since ONM is contiguous with the endoplasmic reticulum (ER), the perinuclear space is adjacent to the lumen of ER thus allowing a direct exchange of ions and factors between the two organelles. Moreover, INM and ONM are fused at the nuclear pore complex (NPC), which provides the only direct passageway between the nucleoplasm and cytoplasm. However, due to the presence of ion channels, exchangers and transporters, it has been generally accepted that nuclear ion fluxes may occur across ONM and INM. Within the INM, the Na+/Ca2+ exchanger (NCX) isoform 1 seems to play an important role in handling Ca2+ through the different nuclear compartments. Particularly, nuclear NCX preferentially allows local Ca2+ flowing from nucleoplasm into NE lumen thanks to the Na+ gradient created by the juxtaposed Na+/K+-ATPase. Such transfer reduces abnormal elevation of [Ca2+]n within the nucleoplasm thus modulating specific transductional pathways and providing a protective mechanism against cell death. Despite very few studies on this issue, here we discuss those making major contribution to the field, also addressing the pathophysiological implication of nuclear NCX malfunction.
Collapse
Affiliation(s)
- Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy.
| | - Tiziana Petrozziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | | |
Collapse
|
11
|
Kelu JJ, Webb SE, Galione A, Miller AL. Characterization of ADP-ribosyl cyclase 1-like (ARC1-like) activity and NAADP signaling during slow muscle cell development in zebrafish embryos. Dev Biol 2018; 445:211-225. [PMID: 30447180 DOI: 10.1016/j.ydbio.2018.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
We recently demonstrated the requirement of two-pore channel type 2 (TPC2)-mediated Ca2+ release during slow muscle cell differentiation and motor circuit maturation in intact zebrafish embryos. However, the upstream trigger(s) of TPC2/Ca2+ signaling during these developmental processes remains unclear. Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca2+ mobilizing messenger, which is suggested to target TPC2 in mediating the release of Ca2+ from acidic vesicles. Here, we report the molecular cloning of the zebrafish ADP ribosyl cyclase (ARC) homolog (i.e., ARC1-like), which is a putative enzyme for generating NAADP. We characterized the expression of the arc1-like transcript and the NAADP levels between ~ 16 h post-fertilization (hpf) and ~ 48 hpf in whole zebrafish embryos. We showed that if ARC1-like (when fused with either EGFP or tdTomato) was overexpressed it localized in the plasma membrane, and associated with intracellular organelles, such as the acidic vesicles, Golgi complex and sarcoplasmic reticulum, in primary muscle cell cultures. Morpholino (MO)-mediated knockdown of arc1-like or pharmacological inhibition of ARC1-like (via treatment with nicotinamide), led to an attenuation of Ca2+ signaling and disruption of slow muscle cell development. In addition, the injection of arc1-like mRNA into ARC1-like morphants partially rescued the Ca2+ signals and slow muscle cell development. Together, our data might suggest a link between ARC1-like, NAADP, TPC2 and Ca2+ signaling during zebrafish myogenesis.
Collapse
Affiliation(s)
- Jeffrey J Kelu
- Division of Life Science&State Key Laboratory of Molecular Neuroscience, HKUST, Hong Kong
| | - Sarah E Webb
- Division of Life Science&State Key Laboratory of Molecular Neuroscience, HKUST, Hong Kong
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Andrew L Miller
- Division of Life Science&State Key Laboratory of Molecular Neuroscience, HKUST, Hong Kong.
| |
Collapse
|
12
|
Kelu JJ, Webb SE, Galione A, Miller AL. TPC2-mediated Ca 2+ signaling is required for the establishment of synchronized activity in developing zebrafish primary motor neurons. Dev Biol 2018; 438:57-68. [PMID: 29577882 DOI: 10.1016/j.ydbio.2018.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 10/17/2022]
Abstract
During the development of the early spinal circuitry in zebrafish, spontaneous Ca2+ transients in the primary motor neurons (PMNs) are reported to transform from being slow and uncorrelated, to being rapid, synchronized and patterned. In this study, we demonstrated that in intact zebrafish, Ca2+ release via two-pore channel type 2 (TPC2) from acidic stores/endolysosomes is required for the establishment of synchronized activity in the PMNs. Using the SAIGFF213A;UAS:GCaMP7a double-transgenic zebrafish line, Ca2+ transients were visualized in the caudal PMNs (CaPs). TPC2 inhibition via molecular, genetic or pharmacological means attenuated the CaP Ca2+ transients, and decreased the normal ipsilateral correlation and contralateral anti-correlation, indicating a disruption in normal spinal circuitry maturation. Furthermore, treatment with MS-222 resulted in a complete (but reversible) inhibition of the CaP Ca2+ transients, as well as a significant decrease in the concentration of the Ca2+ mobilizing messenger, nicotinic acid adenine diphosphate (NAADP) in whole embryo extract. Together, our new data suggest a novel function for NAADP/TPC2-mediated Ca2+ signaling in the development, coordination, and maturation of the spinal network in zebrafish embryos.
Collapse
Affiliation(s)
- Jeffrey J Kelu
- Division of Life Science&State Key Laboratory of Molecular Neuroscience, HKUST, Hong Kong
| | - Sarah E Webb
- Division of Life Science&State Key Laboratory of Molecular Neuroscience, HKUST, Hong Kong
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Andrew L Miller
- Division of Life Science&State Key Laboratory of Molecular Neuroscience, HKUST, Hong Kong.
| |
Collapse
|
13
|
The intracellular angiotensin system buffers deleterious effects of the extracellular paracrine system. Cell Death Dis 2017; 8:e3044. [PMID: 28880266 PMCID: PMC5636983 DOI: 10.1038/cddis.2017.439] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 12/30/2022]
Abstract
The 'classical' renin-angiotensin system (RAS) is a circulating system that controls blood pressure. Local/paracrine RAS, identified in a variety of tissues, including the brain, is involved in different functions and diseases, and RAS blockers are commonly used in clinical practice. A third type of RAS (intracellular/intracrine RAS) has been observed in some types of cells, including neurons. However, its role is still unknown. The present results indicate that in brain cells the intracellular RAS counteracts the intracellular superoxide/H2O2 and oxidative stress induced by the extracellular/paracrine angiotensin II acting on plasma membrane receptors. Activation of nuclear receptors by intracellular or internalized angiotensin triggers a number of mechanisms that protect the cell, such as an increase in the levels of protective angiotensin type 2 receptors, intracellular angiotensin, PGC-1α and IGF-1/SIRT1. Interestingly, this protective mechanism is altered in isolated nuclei from brains of aged animals. The present results indicate that at least in the brain, AT1 receptor blockers acting only on the extracellular or paracrine RAS may offer better protection of cells.
Collapse
|
14
|
Kelu JJ, Chan HLH, Webb SE, Cheng AHH, Ruas M, Parrington J, Galione A, Miller AL. Two-Pore Channel 2 activity is required for slow muscle cell-generated Ca(2+) signaling during myogenesis in intact zebrafish. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2016; 59:313-25. [PMID: 26679948 DOI: 10.1387/ijdb.150206am] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We have recently characterized essential inositol 1,4,5-trisphosphate receptor (IP 3R) and ryanodine receptor (RyR)-mediated Ca(2+) signals generated during the differentiation of slow muscle cells (SMCs) in intact zebrafish embryos. Here, we show that the lysosomal two-pore channel 2 (TPC2) also plays a crucial role in generating, and perhaps triggering, these essential Ca(2+) signals, and thus contributes to the regulation of skeletal muscle myogenesis. We used a transgenic line of zebrafish that expresses the bioluminescent Ca(2+) reporter, aequorin, specifically in skeletal muscle, in conjunction with morpholino (MO)-based and pharmacological inhibition of TPC2, in both intact embryos and isolated SMCs. MO-based knock-down of TPC2 resulted in a dramatic attenuation of the Ca(2+) signals, whereas the introduction of TPCN2-MO and TPCN2 mRNA together partially rescued the Ca(2+) signaling signature. Embryos treated with trans-ned-19 or bafilomycin A1, a specific NAADP receptor inhibitor and vacuolar-type H(+)ATPase inhibitor, respectively, also displayed a similar disruption of SMC Ca(2+) signaling. TPC2 and lysosomes were shown via immunohistochemistry and confocal laser scanning microscopy to be localized in perinuclear and striated cytoplasmic domains of SMCs, coincident with patterns of IP 3R and RyR expression. These data together imply that TPC2-mediated Ca(2+) release from lysosomes acts upstream from RyR- and IP 3R-mediated Ca(2+) release, suggesting that the former might act as a sensitive trigger to initiate the SR-mediated Ca(2+)-induced-Ca(2+)-release essential for SMC myogenesis and function.
Collapse
Affiliation(s)
- Jeffrey J Kelu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, PRC
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Hao B, Webb SE, Miller AL, Yue J. The role of Ca(2+) signaling on the self-renewal and neural differentiation of embryonic stem cells (ESCs). Cell Calcium 2016; 59:67-74. [PMID: 26973143 DOI: 10.1016/j.ceca.2016.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/05/2016] [Accepted: 01/19/2016] [Indexed: 12/12/2022]
Abstract
Embryonic stem cells (ESCs) are promising resources for both scientific research and clinical regenerative medicine. With regards to the latter, ESCs are especially useful for treating several neurodegenerative disorders. Two significant characteristics of ESCs, which make them so valuable, are their capacity for self-renewal and their pluripotency, both of which are regulated by the integration of various signaling pathways. Intracellular Ca(2+) signaling is involved in several of these pathways. It is known to be precisely controlled by different Ca(2+) channels and pumps, which play an important role in a variety of cellular activities, including proliferation, differentiation and apoptosis. Here, we provide a review of the recent work conducted to investigate the function of Ca(2+) signaling in the self-renewal and the neural differentiation of ESCs. Specifically, we describe the role of intracellular Ca(2+) mobilization mediated by RyRs (ryanodine receptors); by cADPR (cyclic adenosine 5'-diphosphate ribose) and CD38 (cluster of differentiation 38/cADPR hydrolase); and by NAADP (nicotinic acid adenine dinucleotide phosphate) and TPC2 (two pore channel 2). We also discuss the Ca(2+) influx mediated by SOCs (store-operated Ca(2+) channels), TRPCs (transient receptor potential cation channels) and LTCC (L-type Ca(2+) channels) in the pluripotent ESCs as well as in neural differentiation of ESCs. Moreover, we describe the integration of Ca(2+) signaling in the other signaling pathways that are known to regulate the fate of ESCs.
Collapse
Affiliation(s)
- Baixia Hao
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Sarah E Webb
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Andrew L Miller
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Jianbo Yue
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
16
|
Pinto MCX, Kihara AH, Goulart VAM, Tonelli FMP, Gomes KN, Ulrich H, Resende RR. Calcium signaling and cell proliferation. Cell Signal 2015; 27:2139-49. [PMID: 26275497 DOI: 10.1016/j.cellsig.2015.08.006] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/04/2015] [Accepted: 08/10/2015] [Indexed: 12/17/2022]
Abstract
Cell proliferation is orchestrated through diverse proteins related to calcium (Ca(2+)) signaling inside the cell. Cellular Ca(2+) influx that occurs first by various mechanisms at the plasma membrane, is then followed by absorption of Ca(2+) ions by mitochondria and endoplasmic reticulum, and, finally, there is a connection of calcium stores to the nucleus. Experimental evidence indicates that the fluctuation of Ca(2+) from the endoplasmic reticulum provides a pivotal and physiological role for cell proliferation. Ca(2+) depletion in the endoplasmatic reticulum triggers Ca(2+) influx across the plasma membrane in an phenomenon called store-operated calcium entries (SOCEs). SOCE is activated through a complex interplay between a Ca(2+) sensor, denominated STIM, localized in the endoplasmic reticulum and a Ca(2+) channel at the cell membrane, denominated Orai. The interplay between STIM and Orai proteins with cell membrane receptors and their role in cell proliferation is discussed in this review.
Collapse
Affiliation(s)
- Mauro Cunha Xavier Pinto
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Univtreersidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Presyes 748, 05508-000 São Paulo, SP, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil
| | - Alexandre Hiroaki Kihara
- Universidade Federal do ABC, Centro de Matemática, Computação e Cognição, Rua Arcturus (Jd Antares), 09606-070, São Bernardo do Campo, SP, Brazil
| | - Vânia A M Goulart
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Univtreersidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil
| | - Fernanda M P Tonelli
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Univtreersidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil
| | - Katia N Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Univtreersidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Presyes 748, 05508-000 São Paulo, SP, Brazil
| | - Rodrigo R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Univtreersidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil.
| |
Collapse
|
17
|
Yarotskyy V, Dirksen RT. Monovalent cationic channel activity in the inner membrane of nuclei from skeletal muscle fibers. Biophys J 2015; 107:2027-36. [PMID: 25418088 DOI: 10.1016/j.bpj.2014.09.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 09/24/2014] [Accepted: 09/30/2014] [Indexed: 12/28/2022] Open
Abstract
Nuclear ion channels remain among the least studied and biophysically characterized channels. Although considerable progress has been made in characterizing calcium release channels in the nuclear membrane, very little is known regarding the properties of nuclear monovalent cationic channels. Here, we describe a method to isolate nuclei from adult skeletal muscle fibers that are suitable for electrophysiological experiments. Using this approach, we show for the first time, to our knowledge, that a nuclear monovalent cationic channel (NMCC) is prominently expressed in the inner membrane of nuclei isolated from flexor digitorum brevis skeletal muscle fibers of adult mice. In isotonic 140 mM KCl, the skeletal muscle NMCC exhibits a unitary conductance of ?160 pS and high, voltage-independent open probability. Based on single-channel reversal potential measurements, NMCCs are slightly more permeable to potassium ions over sodium (PK/PNa = 2.68 ± 0.21) and cesium (PK/PCs = 1.39 ± 0.03) ions. In addition, NMCCs do not permeate divalent cations, are inhibited by calcium ions, and demonstrate weak rectification in asymmetric Ca(2+)-containing solutions. Together, these studies characterize a voltage-independent NMCC in skeletal muscle, the properties of which are ideally suited to serve as a countercurrent mechanism during calcium release from the nuclear envelope.
Collapse
Affiliation(s)
- Viktor Yarotskyy
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York.
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
18
|
Parrington J, Tunn R. Ca(2+) signals, NAADP and two-pore channels: role in cellular differentiation. Acta Physiol (Oxf) 2014; 211:285-96. [PMID: 24702694 DOI: 10.1111/apha.12298] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/13/2014] [Accepted: 03/27/2014] [Indexed: 02/06/2023]
Abstract
Ca(2+) signals regulate a wide range of physiological processes. Intracellular Ca(2+) stores can be mobilized in response to extracellular stimuli via a range of signal transduction mechanisms, often involving recruitment of diffusible second messenger molecules. The Ca(2+) -mobilizing messengers InsP3 and cADPR release Ca(2+) from the endoplasmic reticulum via the InsP3 and ryanodine receptors, respectively, while a third messenger, NAADP, releases Ca(2+) from acidic endosomes and lysosomes. Bidirectional communication between the endoplasmic reticulum (ER) and acidic organelles may have functional relevance for endolysosomal function as well as for the generation of Ca(2+) signals. The two-pore channels (TPCs) are currently strong candidates for being key components of NAADP-regulated Ca(2+) channels. Ca(2+) signals have been shown to play important roles in differentiation; however, much remains to be established about the exact signalling mechanisms involved. The investigation of the role of NAADP and TPCs in differentiation is still at an early stage, but recent studies have suggested that they are important mediators of differentiation of neurones, skeletal muscle cells and osteoclasts. NAADP signals and TPCs have also been implicated in autophagy, an important process in differentiation. Further studies will be required to identify the precise mechanism of TPC action and their link with NAADP signalling, as well as relating this to their roles in differentiation and other key processes in the cell and organism.
Collapse
Affiliation(s)
- J. Parrington
- Department of Pharmacology; University of Oxford; Oxford UK
| | - R. Tunn
- Department of Pharmacology; University of Oxford; Oxford UK
| |
Collapse
|
19
|
Zhang ZH, Lu YY, Yue J. Two pore channel 2 differentially modulates neural differentiation of mouse embryonic stem cells. PLoS One 2013; 8:e66077. [PMID: 23776607 PMCID: PMC3680454 DOI: 10.1371/journal.pone.0066077] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/01/2013] [Indexed: 12/15/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is an endogenous Ca(2+) mobilizing nucleotide presented in various species. NAADP mobilizes Ca(2+) from acidic organelles through two pore channel 2 (TPC2) in many cell types and it has been previously shown that NAADP can potently induce neuronal differentiation in PC12 cells. Here we examined the role of TPC2 signaling in the neural differentiation of mouse embryonic stem (ES) cells. We found that the expression of TPC2 was markedly decreased during the initial ES cell entry into neural progenitors, and the levels of TPC2 gradually rebounded during the late stages of neurogenesis. Correspondingly, TPC2 knockdown accelerated mouse ES cell differentiation into neural progenitors but inhibited these neural progenitors from committing to neurons. Overexpression of TPC2, on the other hand, inhibited mouse ES cell from entering the early neural lineage. Interestingly, TPC2 knockdown had no effect on the differentiation of astrocytes and oligodendrocytes of mouse ES cells. Taken together, our data indicate that TPC2 signaling plays a temporal and differential role in modulating the neural lineage entry of mouse ES cells, in that TPC2 signaling inhibits ES cell entry to early neural progenitors, but is required for late neuronal differentiation.
Collapse
Affiliation(s)
- Zhe-Hao Zhang
- Department of Physiology, University of Hong Kong, Hong Kong, China
| | - Ying-Ying Lu
- Department of Physiology, University of Hong Kong, Hong Kong, China
| | - Jianbo Yue
- Department of Physiology, University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Morgan AJ, Davis LC, Wagner SKTY, Lewis AM, Parrington J, Churchill GC, Galione A. Bidirectional Ca²⁺ signaling occurs between the endoplasmic reticulum and acidic organelles. ACTA ACUST UNITED AC 2013; 200:789-805. [PMID: 23479744 PMCID: PMC3601362 DOI: 10.1083/jcb.201204078] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
After acidic organelles induce signaling to activate ER calcium ion release, local microdomains of high calcium at ER–acidic organelle junctions feed back to activate further acidic organelle calcium release. The endoplasmic reticulum (ER) and acidic organelles (endo-lysosomes) act as separate Ca2+ stores that release Ca2+ in response to the second messengers IP3 and cADPR (ER) or NAADP (acidic organelles). Typically, trigger Ca2+ released from acidic organelles by NAADP subsequently recruits IP3 or ryanodine receptors on the ER, an anterograde signal important for amplification and Ca2+ oscillations/waves. We therefore investigated whether the ER can signal back to acidic organelles, using organelle pH as a reporter of NAADP action. We show that Ca2+ released from the ER can activate the NAADP pathway in two ways: first, by stimulating Ca2+-dependent NAADP synthesis; second, by activating NAADP-regulated channels. Moreover, the differential effects of EGTA and BAPTA (slow and fast Ca2+ chelators, respectively) suggest that the acidic organelles are preferentially activated by local microdomains of high Ca2+ at junctions between the ER and acidic organelles. Bidirectional organelle communication may have wider implications for endo-lysosomal function as well as the generation of Ca2+ oscillations and waves.
Collapse
Affiliation(s)
- Anthony J Morgan
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, England, UK.
| | | | | | | | | | | | | |
Collapse
|
21
|
Resende RR, Andrade LM, Oliveira AG, Guimarães ES, Guatimosim S, Leite MF. Nucleoplasmic calcium signaling and cell proliferation: calcium signaling in the nucleus. Cell Commun Signal 2013; 11:14. [PMID: 23433362 PMCID: PMC3599436 DOI: 10.1186/1478-811x-11-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 02/12/2013] [Indexed: 01/19/2023] Open
Abstract
Calcium (Ca2+) is an essential signal transduction element involved in the regulation of several cellular activities and it is required at various key stages of the cell cycle. Intracellular Ca2+ is crucial for the orderly cell cycle progression and plays a vital role in the regulation of cell proliferation. Recently, it was demonstrated by in vitro and in vivo studies that nucleoplasmic Ca2+ regulates cell growth. Even though the mechanism by which nuclear Ca2+ regulates cell proliferation is not completely understood, there are reports demonstrating that activation of tyrosine kinase receptors (RTKs) leads to translocation of RTKs to the nucleus to generate localized nuclear Ca2+ signaling which are believed to modulate cell proliferation. Moreover, nuclear Ca2+ regulates the expression of genes involved in cell growth. This review will describe the nuclear Ca2+ signaling machinery and its role in cell proliferation. Additionally, the potential role of nuclear Ca2+ as a target in cancer therapy will be discussed.
Collapse
Affiliation(s)
- Rodrigo R Resende
- Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | | | | | | | | | | |
Collapse
|
22
|
Zampese E, Pizzo P. Intracellular organelles in the saga of Ca2+ homeostasis: different molecules for different purposes? Cell Mol Life Sci 2012; 69:1077-104. [PMID: 21968921 PMCID: PMC11114864 DOI: 10.1007/s00018-011-0845-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 11/28/2022]
Abstract
An increase in the concentration of cytosolic free Ca(2+) is a key component regulating different cellular processes ranging from egg fertilization, active secretion and movement, to cell differentiation and death. The multitude of phenomena modulated by Ca(2+), however, do not simply rely on increases/decreases in its concentration, but also on specific timing, shape and sub-cellular localization of its signals that, combined together, provide a huge versatility in Ca(2+) signaling. Intracellular organelles and their Ca(2+) handling machineries exert key roles in this complex and precise mechanism, and this review will try to depict a map of Ca(2+) routes inside cells, highlighting the uniqueness of the different Ca(2+) toolkit components and the complexity of the interactions between them.
Collapse
Affiliation(s)
- Enrico Zampese
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| |
Collapse
|
23
|
Ranty B, Cotelle V, Galaud JP, Mazars C. Nuclear Calcium Signaling and Its Involvement in Transcriptional Regulation in Plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:1123-43. [DOI: 10.1007/978-94-007-2888-2_51] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Mazars C, Brière C, Bourque S, Thuleau P. Nuclear calcium signaling: an emerging topic in plants. Biochimie 2011; 93:2068-74. [PMID: 21683118 DOI: 10.1016/j.biochi.2011.05.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/31/2011] [Indexed: 01/02/2023]
Abstract
The calcium ion is probably one of the most studied second messenger both in plant and animal fields. A large number of reviews have browsed the diversity of cytosolic calcium signatures and evaluated their pleiotropic roles in plant and animal cells. In the recent years, an increasing number of reviews has focused on nuclear calcium, especially on the possible roles of nuclear calcium concentration variations on nuclear activities. Experiments initially performed on animal cells gave conflicting results that brought about a controversy about the ability of the nucleus to generate its own calcium signals and to regulate its calcium level. But in plant cells, several converging scientific pieces of evidence support the hypothesis of nucleus autonomy. The present review briefly summarizes data supporting this hypothesis and tries to put forward some possible roles for these nucleus-generated calcium signals in controlling nuclear activity.
Collapse
Affiliation(s)
- Christian Mazars
- Université de Toulouse, Université Paul Sabatier, Laboratoire de Recherche en Sciences végétales, Castanet-Tolosan, France.
| | | | | | | |
Collapse
|
25
|
Kotaka M, Graeff R, Chen Z, Zhang LH, Lee HC, Hao Q. Structural studies of intermediates along the cyclization pathway of Aplysia ADP-ribosyl cyclase. J Mol Biol 2011; 415:514-26. [PMID: 22138343 DOI: 10.1016/j.jmb.2011.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/02/2011] [Accepted: 11/08/2011] [Indexed: 11/19/2022]
Abstract
Cyclic ADP-ribose (cADPR) is a calcium messenger that can mobilize intracellular Ca²⁺ stores and activate Ca²⁺ influx to regulate a wide range of physiological processes. Aplysia cyclase is the first member of the ADP-ribosyl cyclases identified to catalyze the cyclization of NAD⁺ into cADPR. The catalysis involves a two-step reaction, the elimination of the nicotinamide ring and the cyclization of the intermediate resulting in the covalent attachment of the purine ring to the terminal ribose. Aplysia cyclase exhibits a high degree of leniency towards the purine base of its substrate, and the cyclization reaction takes place at either the N1- or the N7-position of the purine ring. To decipher the mechanism of cyclization in Aplysia cyclase, we used a crystallization setup with multiple Aplysia cyclase molecules present in the asymmetric unit. With the use of natural substrates and analogs, not only were we able to capture multiple snapshots during enzyme catalysis resulting in either N1 or N7 linkage of the purine ring to the terminal ribose, we were also able to observe, for the first time, the cyclized products of both N1 and N7 cyclization bound in the active site of Aplysia cyclase.
Collapse
Affiliation(s)
- Masayo Kotaka
- Department of Physiology, University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
26
|
Alonso MT, García-Sancho J. Nuclear Ca(2+) signalling. Cell Calcium 2010; 49:280-9. [PMID: 21146212 DOI: 10.1016/j.ceca.2010.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 10/30/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
Abstract
Ca(2+) signalling is important for controlling gene transcription. Changes of the cytosolic Ca(2+) ([Ca(2+)](C)) may promote migration of transcription factors or transcriptional regulators to the nucleus. Changes of the nucleoplasmic Ca(2+) ([Ca(2+)](N)) can also regulate directly gene expression. [Ca(2+)](N) may change by propagation of [Ca(2+)](C) changes through the nuclear envelope or by direct release of Ca(2+) inside the nucleus. In the last case nuclear and cytosolic signalling can be dissociated. Phosphatidylinositol bisphosphate, phospholipase C and cyclic ADP-ribosyl cyclase are present inside the nucleus. Inositol trisphosphate receptors (IP(3)R) and ryanodine receptors (RyR) have also been found in the nucleus and can be activated by agonists. Furthermore, nuclear location of the synthesizing enzymes and receptors may be atypical, not associated to the nuclear envelope or other membranes. The possible role of nuclear subdomains such as speckles, nucleoplasmic reticulum, multi-macromolecular complexes and nuclear nanovesicles is discussed.
Collapse
Affiliation(s)
- Maria Teresa Alonso
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/Sanz y Forés 3, 47003 Valladolid, Spain
| | | |
Collapse
|
27
|
Patel S, Marchant JS, Brailoiu E. Two-pore channels: Regulation by NAADP and customized roles in triggering calcium signals. Cell Calcium 2010; 47:480-90. [PMID: 20621760 DOI: 10.1016/j.ceca.2010.05.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/30/2010] [Accepted: 05/03/2010] [Indexed: 01/11/2023]
Abstract
NAADP is a potent regulator of cytosolic calcium levels. Much evidence suggests that NAADP activates a novel channel located on an acidic (lysosomal-like) calcium store, the mobilisation of which results in further calcium release from the endoplasmic reticulum. Here, we discuss the recent identification of a family of poorly characterized ion channels (the two-pore channels) as endo-lysosomal NAADP receptors. The generation of calcium signals by these channels is likened to those evoked by depolarisation during excitation-contraction coupling in muscle. We discuss the idea that two-pore channels can mediate a trigger release of calcium which is then amplified by calcium-induced calcium release from the endoplasmic reticulum. This is similar to the activation of voltage-sensitive calcium channels and subsequent mobilisation of sarcoplasmic reticulum calcium stores in cardiac tissue. We suggest that two-pore channels may physically interact with ryanodine receptors to account for more direct release of calcium from the endoplasmic reticulum in analogy with the conformational coupling of voltage-sensitive calcium channels and ryanodine receptors in skeletal muscle. Interaction of two-pore channels with other calcium release channels likely occurs between stores "trans-chatter" and possibly within the same store "cis-chatter". We also speculate that trafficking of two-pore channels through the endo-lysosomal system facilitates interactions with calcium entry channels. Strategic placing of two-pore channels thus provides a versatile means of generating spatiotemporally complex cellular calcium signals.
Collapse
Affiliation(s)
- Sandip Patel
- Department of Cell and Developmental Biology, University College London, UK.
| | | | | |
Collapse
|
28
|
Cosker F, Cheviron N, Yamasaki M, Menteyne A, Lund FE, Moutin MJ, Galione A, Cancela JM. The ecto-enzyme CD38 is a nicotinic acid adenine dinucleotide phosphate (NAADP) synthase that couples receptor activation to Ca2+ mobilization from lysosomes in pancreatic acinar cells. J Biol Chem 2010; 285:38251-9. [PMID: 20870729 DOI: 10.1074/jbc.m110.125864] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca(2+)-mobilizing intracellular messenger and is linked to a variety of stimuli and cell surface receptors. However, the enzyme responsible for endogenous NAADP synthesis in vivo is unknown, and it has been proposed that another enzyme differing from ADP-ribosyl cyclase family members may exist. The ecto-enzyme CD38, involved in many functions as diverse as cell proliferation and social behavior, represents an important alternative. In pancreatic acinar cells, the hormone cholecystokinin (CCK) stimulates NAADP production evoking Ca(2+) signals by discharging acidic Ca(2+) stores and leading to digestive enzyme secretion. From cells derived from CD38(-/-) mice, we provide the first physiological evidence that CD38 is required for endogenous NAADP generation in response to CCK stimulation. Furthermore, CD38 expression in CD38-deficient pancreatic AR42J cells remodels Ca(2+)-signaling pathways in these cells by restoring Ca(2+) mobilization from lysosomes during CCK-induced Ca(2+) signaling. In agreement with an intracellular site for messenger synthesis, we found that CD38 is expressed in endosomes. These CD38-containing vesicles, likely of endosomal origin, appear to be proximal to lysosomes but not co-localized with them. We propose that CD38 is an NAADP synthase required for coupling receptor activation to NAADP-mediated Ca(2+) release from lysosomal stores in pancreatic acinar cells.
Collapse
Affiliation(s)
- François Cosker
- CNRS, Institut de Neurobiologie Alfred Fessard, FRC2118, Laboratoire de Neurobiologie Cellulaire et Moléculaire, UPR9040, F-91198 Gif sur Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Tadevosyan A, Maguy A, Villeneuve LR, Babin J, Bonnefoy A, Allen BG, Nattel S. Nuclear-delimited angiotensin receptor-mediated signaling regulates cardiomyocyte gene expression. J Biol Chem 2010; 285:22338-49. [PMID: 20463030 DOI: 10.1074/jbc.m110.121749] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Angiotensin-II (Ang-II) from extracardiac sources and intracardiac synthesis regulates cardiac homeostasis, with mitogenic and growth-promoting effects largely due to altered gene expression. Here, we assessed the possibility that angiotensin-1 (AT1R) or angiotensin-2 (AT2R) receptors on the nuclear envelope mediate effects on cardiomyocyte gene expression. Immunoblots of nucleus-enriched fractions from isolated cardiomyocytes indicated the presence of AT1R and AT2R proteins that copurified with the nuclear membrane marker nucleoporin-62 and histone-3, but not markers of plasma (calpactin-I), Golgi (GRP-78), or endoplasmic reticulum (GM130) membranes. Confocal microscopy revealed AT1R and AT2R proteins on nuclear membranes. Microinjected Ang-II preferentially bound to nuclear sites of isolated cardiomyocytes. AT1R and AT2R ligands enhanced de novo RNA synthesis in isolated cardiomyocyte nuclei incubated with [alpha-(32)P]UTP (e.g. 36.0 +/- 6.0 cpm/ng of DNA control versus 246.4 +/- 15.4 cpm/ng of DNA Ang-II, 390.1 +/- 15.5 cpm/ng of DNA L-162313 (AT1), 180.9 +/- 7.2 cpm/ng of DNA CGP42112A (AT2), p < 0.001). Ang-II application to cardiomyocyte nuclei enhanced NFkappaB mRNA expression, a response that was suppressed by co-administration of AT1R (valsartan) and/or AT2R (PD123177) blockers. Dose-response experiments with Ang-II applied to purified cardiomyocyte nuclei versus intact cardiomyocytes showed greater increases in NFkappaB mRNA levels at saturating concentrations with approximately 2-fold greater affinity upon nuclear application, suggesting preferential nuclear signaling. AT1R, but not AT2R, stimulation increased [Ca(2+)] in isolated cardiomyocyte nuclei. Inositol 1,4,5-trisphosphate receptor blockade by 2-aminoethoxydiphenyl borate prevented AT1R-mediated Ca(2+) release and attenuated AT1R-mediated transcription initiation responses. We conclude that cardiomyocyte nuclear membranes possess angiotensin receptors that couple to nuclear signaling pathways and regulate transcription. Signaling within the nuclear envelope (e.g. from intracellularly synthesized Ang-II) may play a role in Ang-II-mediated changes in cardiac gene expression, with potentially important mechanistic and therapeutic implications.
Collapse
Affiliation(s)
- Artavazd Tadevosyan
- Department of Medicine, Montreal Heart Institute, H1T 1C8 Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Ruas M, Rietdorf K, Arredouani A, Davis LC, Lloyd-Evans E, Koegel H, Funnell TM, Morgan AJ, Ward JA, Watanabe K, Cheng X, Churchill GC, Zhu MX, Platt FM, Wessel GM, Parrington J, Galione A. Purified TPC isoforms form NAADP receptors with distinct roles for Ca(2+) signaling and endolysosomal trafficking. Curr Biol 2010; 20:703-709. [PMID: 20346675 PMCID: PMC2861162 DOI: 10.1016/j.cub.2010.02.049] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 01/07/2010] [Accepted: 02/09/2010] [Indexed: 11/29/2022]
Abstract
Intracellular Ca(2+) signals constitute key elements in signal transduction. Of the three major Ca(2+) mobilizing messengers described, the most potent, nicotinic acid adenine dinucleotide phosphate (NAADP) is the least well understood in terms of its molecular targets [1]. Recently, we showed that heterologous expression of two-pore channel (TPC) proteins enhances NAADP-induced Ca(2+) release, whereas the NAADP response was abolished in pancreatic beta cells from Tpcn2 gene knockout mice [2]. However, whether TPCs constitute native NAADP receptors is unclear. Here we show that immunopurified endogenous TPC complexes possess the hallmark properties ascribed to NAADP receptors, including nanomolar ligand affinity [3-5]. Our study also reveals important functional differences between the three TPC isoforms. Thus, TPC1 and TPC2 both mediate NAADP-induced Ca(2+) release, but the subsequent amplification of this trigger Ca(2+) by IP(3)Rs is more tightly coupled for TPC2. In contrast, TPC3 expression suppressed NAADP-induced Ca(2+) release. Finally, increased TPC expression has dramatic and contrasting effects on endolysosomal structures and dynamics, implicating a role for NAADP in the regulation of vesicular trafficking. We propose that NAADP regulates endolysosomal Ca(2+) storage and release via TPCs and coordinates endoplasmic reticulum Ca(2+) release in a role that impacts on Ca(2+) signaling in health and disease [6].
Collapse
Affiliation(s)
- Margarida Ruas
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Katja Rietdorf
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Abdelilah Arredouani
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Lianne C. Davis
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Emyr Lloyd-Evans
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Heidi Koegel
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Timothy M. Funnell
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Anthony J. Morgan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - John A. Ward
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Keiko Watanabe
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Xiaotong Cheng
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Grant C. Churchill
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Michael X. Zhu
- Department of Neuroscience and Center for Molecular Neurobiology, The Ohio State University, 1060 Carmack Road, Columbus, OH 43210, USA
| | - Frances M. Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Gary M. Wessel
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, 185 Meeting Street, Box G-L173, Providence, RI 02912, USA
| | - John Parrington
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
31
|
Ramakrishnan L, Muller-Steffner H, Bosc C, Vacquier VD, Schuber F, Moutin MJ, Dale L, Patel S. A single residue in a novel ADP-ribosyl cyclase controls production of the calcium-mobilizing messengers cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate. J Biol Chem 2010; 285:19900-9. [PMID: 20385553 DOI: 10.1074/jbc.m110.105312] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate are ubiquitous calcium-mobilizing messengers produced by the same family of multifunctional enzymes, the ADP-ribosyl cyclases. Not all ADP-ribosyl cyclases have been identified, and how production of different messengers is achieved is incompletely understood. Here, we report the cloning and characterization of a novel ADP-ribosyl cyclase (SpARC4) from the sea urchin, a key model organism for the study of calcium-signaling pathways. Like several other members of the ADP-ribosyl cyclase superfamily, SpARC4 is a glycoprotein targeted to the plasma membrane via a glycosylphosphatidylinositol anchor. However, unlike most other members, SpARC4 shows a remarkable preference for producing cyclic ADP-ribose over nicotinic acid adenine dinucleotide phosphate. Mutation of a single residue (tyrosine 142) within a noncanonical active site reversed this striking preference. Our data highlight further diversification of this unusual enzyme family, provide mechanistic insight into multifunctionality, and suggest that different ADP-ribosyl cyclases are fine-tuned to produce specific calcium-mobilizing messengers.
Collapse
Affiliation(s)
- Latha Ramakrishnan
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Graeff R, Liu Q, Kriksunov IA, Kotaka M, Oppenheimer N, Hao Q, Lee HC. Mechanism of cyclizing NAD to cyclic ADP-ribose by ADP-ribosyl cyclase and CD38. J Biol Chem 2009; 284:27629-36. [PMID: 19640843 DOI: 10.1074/jbc.m109.030965] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian CD38 and its Aplysia homolog, ADP-ribosyl cyclase (cyclase), are two prominent enzymes that catalyze the synthesis and hydrolysis of cyclic ADP-ribose (cADPR), a Ca(2+) messenger molecule responsible for regulating a wide range of cellular functions. Although both use NAD as a substrate, the cyclase produces cADPR, whereas CD38 produces mainly ADP-ribose (ADPR). To elucidate the catalytic differences and the mechanism of cyclizing NAD, the crystal structure of a stable complex of the cyclase with an NAD analog, ribosyl-2'F-2'deoxynicotinamide adenine dinucleotide (ribo-2'-F-NAD), was determined. The results show that the analog was a substrate of the cyclase and that during the reaction, the nicotinamide group was released and a stable intermediate was formed. The terminal ribosyl unit at one end of the intermediate formed a close linkage with the catalytic residue (Glu-179), whereas the adenine ring at the other end stacked closely with Phe-174, suggesting that the latter residue is likely to be responsible for folding the linear substrate so that the two ends can be cyclized. Mutating Phe-174 indeed reduced cADPR production but enhanced ADPR production, converting the cyclase to be more CD38-like. Changing the equivalent residue in CD38, Thr-221 to Phe, correspondingly enhanced cADPR production, and the double mutation, Thr-221 to Phe and Glu-146 to Ala, effectively converted CD38 to a cyclase. This study provides the first detailed evidence of the cyclization process and demonstrates the feasibility of engineering the reactivity of the enzymes by mutation, setting the stage for the development of tools to manipulate cADPR metabolism in vivo.
Collapse
Affiliation(s)
- Richard Graeff
- Department of Physiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Bootman MD, Fearnley C, Smyrnias I, MacDonald F, Roderick HL. An update on nuclear calcium signalling. J Cell Sci 2009; 122:2337-50. [PMID: 19571113 DOI: 10.1242/jcs.028100] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Over the past 15 years or so, numerous studies have sought to characterise how nuclear calcium (Ca2+) signals are generated and reversed, and to understand how events that occur in the nucleoplasm influence cellular Ca2+ activity, and vice versa. In this Commentary, we describe mechanisms of nuclear Ca2+ signalling and discuss what is known about the origin and physiological significance of nuclear Ca2+ transients. In particular, we focus on the idea that the nucleus has an autonomous Ca2+ signalling system that can generate its own Ca2+ transients that modulate processes such as gene transcription. We also discuss the role of nuclear pores and the nuclear envelope in controlling ion flux into the nucleoplasm.
Collapse
Affiliation(s)
- Martin D Bootman
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham, Cambridge CB22 3AT, UK.
| | | | | | | | | |
Collapse
|
34
|
Berrout J, Isokawa M. Homeostatic and stimulus-induced coupling of the L-type Ca2+ channel to the ryanodine receptor in the hippocampal neuron in slices. Cell Calcium 2009; 46:30-8. [PMID: 19411104 DOI: 10.1016/j.ceca.2009.03.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Revised: 02/20/2009] [Accepted: 03/31/2009] [Indexed: 11/30/2022]
Abstract
Activity-dependent increase in cytosolic calcium ([Ca(2+)](i)) is a prerequisite for many neuronal functions. We previously reported a strong direct depolarization, independent of glutamate receptors, effectively caused a release of Ca(2+) from ryanodine-sensitive stores and induced the synthesis of endogenous cannabinoids (eCBs) and eCB-mediated responses. However, the cellular mechanism that initiated the depolarization-induced Ca(2+)-release is not completely understood. In the present study, we optically recorded [Ca(2+)](i) from CA1 pyramidal neurons in the hippocampal slice and directly monitored miniature Ca(2+) activities and depolarization-induced Ca(2+) signals in order to determine the source(s) and properties of [Ca(2+)](i)-dynamics that could lead to a release of Ca(2+) from the ryanodine receptor. In the absence of depolarizing stimuli, spontaneously occurring miniature Ca(2+) events were detected from a group of hippocampal neurons. This miniature Ca(2+) event persisted in the nominal Ca(2+)-containing artificial cerebrospinal fluid (ACSF), and increased in frequency in response to the bath-application of caffeine and KCl. In contrast, nimodipine, the antagonist of the L-type Ca(2+) channel (LTCC), a high concentration of ryanodine, the antagonist of the ryanodine receptor (RyR), and thapsigargin (TG) reduced the occurrence of the miniature Ca(2+) events. When a brief puff-application of KCl was given locally to the soma of individual neurons in the presence of glutamate receptor antagonists, these neurons generated a transient increase in the [Ca(2+)](i) in the dendrosomal region. This [Ca(2+)](i)-transient was sensitive to nimodipine, TG, and ryanodine suggesting that the [Ca(2+)](i)-transient was caused primarily by the LTCC-mediated Ca(2+)-influx and a release of Ca(2+) from RyR. We observed little contribution from N- or P/Q-type Ca(2+) channels. The coupling between LTCC and RyR was direct and independent of synaptic activities. Immunohistochemical study revealed a cellular localization of LTCC and RyR in a juxtaposed configuration in the proximal dendrites and soma. We conclude in the hippocampal CA1 neuron that: (1) homeostatic fluctuation of the resting membrane potential may be sufficient to initiate functional coupling between LTCC and RyR; (2) the juxtaposed localization of LTCC and RyR has anatomical advantage of synchronizing a Ca(2+)-release from RyR upon the opening of LTCC; and (3) the synchronized Ca(2+)-release from RyR occurs immediately after the activation of LTCC and determines the peak amplitude of depolarization-induced global increase in dendrosomal [Ca(2+)](i).
Collapse
Affiliation(s)
- Jonathan Berrout
- Department of Biological Sciences, The University of Texas at Brownsville, 80 Fort Brown, Brownsville, TX 78520, USA
| | | |
Collapse
|