1
|
Jo M, Lee JS, Tocheny CE, Lero MW, Bui QT, Morgan JS, Shaw LM. Fluorescent tagging of endogenous IRS2 with an auxin-dependent degron to assess dynamic intracellular localization and function. J Biol Chem 2024; 300:107796. [PMID: 39305958 PMCID: PMC11513485 DOI: 10.1016/j.jbc.2024.107796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Insulin Receptor Substrate 2 (IRS2) is a signaling adaptor protein for the insulin (IR) and Insulin-like Growth Factor-1 (IGF-1R) receptors. In breast cancer, IRS2 contributes to both the initiation of primary tumor growth and the establishment of secondary metastases through regulation of cancer stem cell (CSC) function and invasion. However, how IRS2 mediates its diverse functions is not well understood. We used CRISPR/Cas9-mediated gene editing to modify endogenous IRS2 to study the expression, localization, and function of this adaptor protein. A cassette containing an auxin-inducible degradation (AID) sequence, 3x-FLAG tag, and mNeon-green was introduced at the N-terminus of the IRS2 protein to provide rapid and reversible control of IRS2 protein degradation and analysis of endogenous IRS2 expression and localization. Live fluorescence imaging of these cells revealed that IRS2 shuttles between the cytoplasm and nucleus in response to growth regulatory signals in a PI3K-dependent manner. Inhibition of nuclear export or deletion of a putative nuclear export sequence in the C-terminal tail promotes nuclear retention of IRS2, implicating nuclear export in the mechanism by which IRS2 intracellular localization is regulated. Moreover, the acute induction of IRS2 degradation reduces tumor cell invasion, demonstrating the potential for therapeutic targeting of this adaptor protein. Our data highlight the value of our model of endogenously tagged IRS2 as a tool to study IRS2 localization and function.
Collapse
Affiliation(s)
- Minjeong Jo
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Ji-Sun Lee
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Claire E Tocheny
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Michael W Lero
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Quyen Thu Bui
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Jennifer S Morgan
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Leslie M Shaw
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA.
| |
Collapse
|
2
|
Zhang M, Zheng X, Wang C, Li S. Data-independent acquisition combined with liquid chromatography mass spectrometry technique to detect prognostic protein markers in type I gastric neuroendocrine neoplasm. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9849. [PMID: 38887896 DOI: 10.1002/rcm.9849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
RATIONALE This study used proteomics-based data-independent acquisition (DIA) technology with the aim of screening for differential expression proteins in type I gastric neuroendocrine neoplasm (g-NEN). METHODS Differential expression proteins in type I g-NEN and peritumoral tissues were screened using DIA with liquid chromatography/tandem mass spectrometry (DIA-LC/MS/MS). The identified proteins were then functionally analysed using bioinformatics methods. We selected the three most highly expressed proteins, combined with patients' clinical data, for prognostic analysis. RESULTS Compared with peritumoral tissues, 224 proteins were up-regulated, and 70 were down-regulated. The most significantly enriched biological processes and pathways were vacuolar proton-transporting V-type ATPase complex assembly and metabolism-related pathways. PCSK1, FBXO2, ACSL1, IRS2, and PTPRZ1 expression was markedly up-regulated in type I g-NENs. High IRS2 expression significantly correlated with a shorter time to recurrence. CONCLUSIONS Our study provides a comprehensive proteomic signature based on DIA-LC/MS/MS and highlights high IRS2 expression as a potential prognostic marker for type I gNENs.
Collapse
Affiliation(s)
- Meng Zhang
- Division of Gastroenterology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Xiuli Zheng
- Department of Endoscopy, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Chunyan Wang
- Division of Gastroenterology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Shengmian Li
- Division of Gastroenterology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
3
|
Identification and Validation of a Novel Glycolysis-Related Gene Signature for Predicting the Prognosis and Therapeutic Response in Triple-Negative Breast Cancer. Adv Ther 2023; 40:310-330. [PMID: 36316558 DOI: 10.1007/s12325-022-02330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/21/2022] [Indexed: 01/21/2023]
Abstract
INTRODUCTION A high malignancy rate and poor prognosis are common problems with triple-negative breast cancer (TNBC). There is increasing evidence that glycolysis plays vital roles in tumorigenesis, tumor invasion, immune evasion, chemoresistance, and metastasis. However, a comprehensive analysis of the diagnostic and prognostic significance of glycolysis in TNBC is lacking. METHODS Transcriptomic and clinical data of TNBC patients were obtained from The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) databases, respectively. Glycolysis-related genes (GRGs) were collected from the Molecular Signatures Database (MSigDB). Differential comparative analysis was performed to obtain the differentially expressed (DE)-GRGs associated with TNBC. Based on the DE-GRGs, a glycolysis-related risk signature was established using Least Absolute Shrinkage and Selector Operation (LASSO) and multivariable Cox regression analyses. The prognostic value, tumor microenvironment, mutation status, and chemotherapy response of different risk groups were analyzed. An independent cohort from the METABRIC database was used for external validation. Furthermore, the expression patterns of five genes derived from the prognostic model were validated by quantitative real-time polymerase chain reaction (RT-qPCR). RESULTS The glycolysis-related prognostic signature included five genes (IFNG, ACSS2, IRS2, GFUS, and GAL3ST1) and predicted the prognosis of TNBC patients independent of clinical factors (p < 0.05). Patients were divided into high- and low-risk groups based on the median risk score. Compared to low-risk TNBC patients, high-risk patients had significantly decreased overall survival (HR = 2.718, p < 0.001). Receiver operating characteristic and calibration curves demonstrated that the model had high performance in terms of predicting survival and risk stratification. The results remained consistent after external verification. Additionally, the tumor immune microenvironment significantly differed between the risk groups. Low-risk TNBC patients had a better immunotherapy response than high-risk patients. High-risk TNBC patients with a poor prognosis may benefit from targeted therapy. CONCLUSIONS This study developed a novel glycolysis and prognosis-related (GRP) signature based on GRGs to predict the prognosis of TNBC patients, and may aid clinical decision-making for these patients.
Collapse
|
4
|
Omar IS, Abd Jamil AH, Mat Adenan NA, Chung I. MPA alters metabolic phenotype of endometrial cancer-associated fibroblasts from obese women via IRS2 signaling. PLoS One 2022; 17:e0270830. [PMID: 35816477 PMCID: PMC9273069 DOI: 10.1371/journal.pone.0270830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 06/20/2022] [Indexed: 11/18/2022] Open
Abstract
Obese women have a higher risk of developing endometrial cancer (EC) than lean women. Besides affecting EC progression, obesity also affects sensitivity of patients to treatment including medroxprogesterone acetate (MPA). Obese women have a lower response to MPA with an increased risk for tumor recurrence. While MPA inhibits the growth of normal fibroblasts, human endometrial cancer-associated fibroblasts (CAFs) were reported to be less responsive to MPA. However, it is still unknown how CAFs from obese women respond to progesterone. CAFs from the EC tissues of obese (CO) and non-obese (CN) women were established as primary cell models. MPA increased cell proliferation and downregulated stromal differentiation genes, including BMP2 in CO than in CN. Induction of IRS2 (a BMP2 regulator) mRNA expression by MPA led to activation of glucose metabolism in CO, with evidence of greater mRNA levels of GLUT6, GAPDH, PKM2, LDHA, and increased in GAPDH enzymatic activity. Concomitantly, MPA increased the mRNA expression of a fatty acid transporter, CD36 and lipid droplet formation in CO. MPA-mediated increase in glucose metabolism genes in CO was reversed with a progesterone receptor inhibitor, mifepristone (RU486), leading to a decreased proliferation. Our data suggests that PR signaling is aberrantly activated by MPA in CAFs isolated from endometrial tissues of obese women, leading to activation of IRS2 and glucose metabolism, which may lead to lower response and sensitivity to progesterone in obese women.
Collapse
Affiliation(s)
- Intan Sofia Omar
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Universiti Malaya Cancer Research Institute, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Amira Hajirah Abd Jamil
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Noor Azmi Mat Adenan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Obstetrics and Gynaecology, Ara Damansara and Subang Jaya Medical Center, Ramsay Sime Darby Health Care, Subang Jaya, Selangor, Malaysia
| | - Ivy Chung
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Altered Transcriptional Regulation of Glycolysis in Circulating CD8+ T Cells of Rheumatoid Arthritis Patients. Genes (Basel) 2022; 13:genes13071216. [PMID: 35886000 PMCID: PMC9323564 DOI: 10.3390/genes13071216] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
Peripheral T lymphocytes of rheumatoid arthritis (RA) patients show pathological changes in their metabolic pathways, especially glycolysis. These changes may drive the increased proliferation and tissue invasiveness of RA T cells. In order to study the transcriptional regulation underlying these alterations, we analysed publicly available RNA sequencing data from circulating T lymphocyte subsets of healthy individuals, untreated RA patients, and patients undergoing treatment for RA. Differential co-expression networks were created using sample-wise edge weights from an analysis called “linear interpolation to obtain network estimates for single sample” (lionessR), and annotated using the Gene Transcription Regulation Database (GTRD). Genes with high centrality scores were identified. CD8+ effector memory cells (Tem) and CD8+CD45RA+ effector memory cells (Temra) showed large changes in the transcriptional regulation of glycolysis in untreated RA. PFKFB3 and GAPDH were differentially regulated and had high centrality scores in CD8+ Tem cells. PFKFB3 downregulation may be due to HIF1A post transcriptional inhibition. Tocilizumab treatment partially reversed the RA-associated differential expression of several metabolic and regulatory genes. MYC was upregulated and had high centrality scores in RA CD8+ Temra cells; however, its glycolysis targets were unaltered. The upregulation of the PI3K-AKT and mTOR pathways may explain MYC upregulation.
Collapse
|
6
|
Lero MW, Shaw LM. Diversity of insulin and IGF signaling in breast cancer: Implications for therapy. Mol Cell Endocrinol 2021; 527:111213. [PMID: 33607269 PMCID: PMC8035314 DOI: 10.1016/j.mce.2021.111213] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
This review highlights the significance of the insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF-1R) signaling pathway in cancer and assesses its potential as a therapeutic target. Our emphasis is on breast cancer, but this pathway is central to the behavior of many cancers. An understanding of how IR/IGF-1R signaling contributes to the function of the normal mammary gland provides a foundation for understanding its aberrations in breast cancer. Specifically, dysregulation of the expression and function of ligands (insulin, IGF-1 and IGF-2), receptors and their downstream signaling effectors drive breast cancer initiation and progression, often in a subtype-dependent manner. Efforts to target this pathway for the treatment of cancer have been hindered by several factors including a lack of biomarkers to select patients that could respond to targeted therapy and adverse effects on normal metabolism. To this end, we discuss ongoing efforts aimed at overcoming such obstacles.
Collapse
Affiliation(s)
- Michael W Lero
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Leslie M Shaw
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
7
|
Bappy HJA, Goswami A, Huda N, Hosen MI, Nabi AN. Gender specific association of missense variant rs1805097 of IRS-2 and noncoding variant rs841853 of GLUT-1 genes with susceptibility to type 2 diabetes in Bangladeshi population. GENE REPORTS 2020; 21:100866. [DOI: 10.1016/j.genrep.2020.100866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Piper AJ, Clark JL, Mercado-Matos J, Matthew-Onabanjo AN, Hsieh CC, Akalin A, Shaw LM. Insulin Receptor Substrate-1 (IRS-1) and IRS-2 expression levels are associated with prognosis in non-small cell lung cancer (NSCLC). PLoS One 2019; 14:e0220567. [PMID: 31393907 PMCID: PMC6687170 DOI: 10.1371/journal.pone.0220567] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/18/2019] [Indexed: 11/22/2022] Open
Abstract
The insulin-like growth factor-1 (IGF-1) signaling pathway has been implicated in non-small cell lung cancer (NSCLC) outcomes and resistance to targeted therapies. However, little is known regarding the molecular mechanisms by which this pathway contributes to the biology of NSCLC. The insulin receptor substrate (IRS) proteins are cytoplasmic adaptor proteins that signal downstream of the IGF-1R and determine the functional outcomes of this signaling pathway. In this study, we assessed the expression patterns of IRS-1 and IRS-2 in NSCLC to identify associations between IRS-1 and IRS-2 expression levels and survival outcomes in the two major histological subtypes of NSCLC, adenocarcinoma (ADC) and squamous cell carcinoma (SCC). High IRS-2 expression was significantly associated with decreased overall survival in adenocarcinoma (ADC) patients, whereas low IRS-1 cytoplasmic expression showed a trend toward association with decreased overall survival in squamous cell carcinoma (SCC) patients. Tumors with low IRS-1 and high IRS-2 expression were found to be associated with poor outcomes in ADC and SCC, indicating a potential role for IRS-2 in the aggressive behavior of NSCLC. Our results suggest distinct contributions of IRS-1 and IRS-2 to the biology of ADC and SCC that impact disease progression.
Collapse
Affiliation(s)
- Andrew J. Piper
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jennifer L. Clark
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jose Mercado-Matos
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Asia N. Matthew-Onabanjo
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Chung-Cheng Hsieh
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ali Akalin
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Leslie M. Shaw
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
9
|
Yun S, Wu Y, Niu R, Feng C, Wang J. Effects of lead exposure on brain glucose metabolism and insulin signaling pathway in the hippocampus of rats. Toxicol Lett 2019; 310:23-30. [PMID: 30980912 DOI: 10.1016/j.toxlet.2019.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/07/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022]
Abstract
The aim of this study was to determine whether Pb affects glucose metabolism in the hippocampus of rats. Male Sprague-Dawley rats aged 21 days were orally administered a 0.1%, 0.2%, or 0.3% lead acetate solution in deionized water for 65 days. Then, the weight of the rats; brain Pb content; brain glucose levels; activities of hexokinase, fructose-6-phosphate kinase, pyruvate kinase, glucose-6-phosphate dehydrogenase; expression of genes related to the insulin signaling pathway; as well as the gene and protein expression of glucose transporter (GLUT)-1 and GLUT-3 in the hippocampus were evaluated. The results showed that Pb content in the brain tissue of rats in the dose groups significantly increased, whereas the body weight gain, activities of glucose metabolism-related enzymes, and expression of the insulin signaling pathway-related genes significantly decreased compared to the corresponding values in the control group. In comparison with the control group, the brain glucose levels increased significantly in the low-dose group, but there were no significant differences with the middle- and high-dose groups. Furthermore, the mRNA of GLUT-1 in the three dose groups and the GLUT-3 in the middle- and high-dose groups rose markedly, while the GLUT-1 and GLUT-3 protein expression significantly increased in the middle- and high-dose groups and in the high-dose group, respectively. Taken together, the results showed that Pb exposure resulted in a lower body weight gain, higher brain Pb content and also affected brain glucose metabolism and the insulin signaling pathway.
Collapse
Affiliation(s)
- Shaojun Yun
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Ecological Animal Science and Environmental Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Yanli Wu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, 030801, China
| | - Ruiyan Niu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, 030801, China.
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Medicine, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
10
|
Molecular Connection Between Diabetes and Dementia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1128:103-131. [DOI: 10.1007/978-981-13-3540-2_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Identification of a Novel Invasion-Promoting Region in Insulin Receptor Substrate 2. Mol Cell Biol 2018; 38:MCB.00590-17. [PMID: 29685905 DOI: 10.1128/mcb.00590-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/15/2018] [Indexed: 12/13/2022] Open
Abstract
Although the insulin receptor substrate (IRS) proteins IRS1 and IRS2 share considerable homology and activate common signaling pathways, their contributions to breast cancer are distinct. IRS1 has been implicated in the proliferation and survival of breast tumor cells. In contrast, IRS2 facilitates glycolysis, invasion, and metastasis. To determine the mechanistic basis for IRS2-dependent functions, we investigated unique structural features of IRS2 that are required for invasion. Our studies revealed that the ability of IRS2 to promote invasion is dependent upon upstream insulin-like growth factor 1 receptor (IGF-1R)/insulin receptor (IR) activation and the recruitment and activation of phosphatidylinositol 3-kinase (PI3K), functions shared with IRS1. In addition, a 174-amino-acid region in the IRS2 C-terminal tail, which is not conserved in IRS1, is also required for IRS2-mediated invasion. Importantly, this "invasion (INV) region" is sufficient to confer invasion-promoting ability when swapped into IRS1. However, the INV region is not required for the IRS2-dependent regulation of glucose uptake. Bone morphogenetic protein 2-inducible kinase (BMP2K) binds to the INV region and contributes to IRS2-dependent invasion. Taken together, our data advance the mechanistic understanding of how IRS2 regulates invasion and reveal that IRS2 functions important for cancer can be independently targeted without interfering with the metabolic activities of this adaptor protein.
Collapse
|
12
|
Rojas-Gutierrez E, Muñoz-Arenas G, Treviño S, Espinosa B, Chavez R, Rojas K, Flores G, Díaz A, Guevara J. Alzheimer's disease and metabolic syndrome: A link from oxidative stress and inflammation to neurodegeneration. Synapse 2017; 71:e21990. [PMID: 28650104 DOI: 10.1002/syn.21990] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and one of the most important causes of morbidity and mortality among the aging population. AD diagnosis is made post-mortem, and the two pathologic hallmarks, particularly evident in the end stages of the illness, are amyloid plaques and neurofibrillary tangles. Currently, there is no curative treatment for AD. Additionally, there is a strong relation between oxidative stress, metabolic syndrome, and AD. The high levels of circulating lipids and glucose imbalances amplify lipid peroxidation that gradually diminishes the antioxidant systems, causing high levels of oxidative metabolism that affects cell structure, leading to neuronal damage. Accumulating evidence suggests that AD is closely related to a dysfunction of both insulin signaling and glucose metabolism in the brain, leading to an insulin-resistant brain state. Four drugs are currently used for this pathology: Three FDA-approved cholinesterase inhibitors and one NMDA receptor antagonist. However, wide varieties of antioxidants are promissory to delay or prevent the symptoms of AD and may help in treating the disease. Therefore, therapeutic efforts to achieve attenuation of oxidative stress could be beneficial in AD treatment, attenuating Aβ-induced neurotoxicity and improve neurological outcomes in AD. The term inflammaging characterizes a widely accepted paradigm that aging is accompanied by a low-grade chronic up-regulation of certain pro-inflammatory responses in the absence of overt infection, and is a highly significant risk factor for both morbidity and mortality in the elderly.
Collapse
Affiliation(s)
- Eduardo Rojas-Gutierrez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Guadalupe Muñoz-Arenas
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Blanca Espinosa
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias-INER, Ciudad de México, Mexico
| | - Raúl Chavez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Karla Rojas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Jorge Guevara
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
13
|
Mercado-Matos J, Clark JL, Piper AJ, Janusis J, Shaw LM. Differential involvement of the microtubule cytoskeleton in insulin receptor substrate 1 (IRS-1) and IRS-2 signaling to AKT determines the response to microtubule disruption in breast carcinoma cells. J Biol Chem 2017; 292:7806-7816. [PMID: 28320862 DOI: 10.1074/jbc.m117.785832] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Indexed: 01/17/2023] Open
Abstract
The insulin receptor substrate (IRS) proteins serve as essential signaling intermediates for the activation of PI3K by both the insulin-like growth factor 1 receptor (IGF-1R) and its close family member, the insulin receptor (IR). Although IRS-1 and IRS-2 share significant homology, they regulate distinct cellular responses downstream of these receptors and play divergent roles in breast cancer. To investigate the mechanism by which signaling through IRS-1 and IRS-2 results in differential outcomes, we assessed the involvement of the microtubule cytoskeleton in IRS-dependent signaling. Treatment with drugs that either stabilize or disrupt microtubules reveal that an intact microtubule cytoskeleton contributes to IRS-2- but not IRS-1-mediated activation of AKT by IGF-1. Proximal IGF-1R signaling events, including IRS tyrosine phosphorylation and recruitment of PI3K, are not inhibited by microtubule disruption, indicating that IRS-2 requires the microtubule cytoskeleton at the level of downstream effector activation. IRS-2 colocalization with tubulin is enhanced upon Taxol-mediated microtubule stabilization, which, together with the signaling data, suggests that the microtubule cytoskeleton may facilitate access of IRS-2 to downstream effectors such as AKT. Of clinical relevance is that our data reveal that expression of IRS-2 sensitizes breast carcinoma cells to apoptosis in response to treatment with microtubule-disrupting drugs, identifying IRS-2 as a potential biomarker for the response of breast cancer patients to Vinca alkaloid drug treatment.
Collapse
Affiliation(s)
- Jose Mercado-Matos
- From the Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Jennifer L Clark
- From the Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Andrew J Piper
- From the Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Jenny Janusis
- From the Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Leslie M Shaw
- From the Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
14
|
Yang ZQ, Zhang HL, Duan CC, Geng S, Wang K, Yu HF, Yue ZP, Guo B. IGF1 regulates RUNX1 expression via IRS1/2: Implications for antler chondrocyte differentiation. Cell Cycle 2017; 16:522-532. [PMID: 28055425 DOI: 10.1080/15384101.2016.1274471] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although IGF1 is important for the proliferation and differentiation of chondrocytes, its underlying molecular mechanism is still unknown. Here we addressed the physiologic function of IGF1 in antler cartilage and explored the interplay of IGF1, IRS1/2 and RUNX1 in chondrocyte differentiation. The results showed that IGF1 was highly expressed in antler chondrocytes. Exogenous rIGF1 could increase the proliferation of chondrocytes and cell proportion in the S phase, whereas IGF1R inhibitor PQ401 abrogated the induction by rIGF1. Simultaneously, IGF1 could stimulate the expression of IHH which was a well-known marker for prehypertrophic chondrocytes. Further analysis evidenced that IGF1 regulated the expression of IRS1/2 whose silencing resulted in a rise of IHH mRNA levels, but the regulation was impeded by PQ401. Knockdown of IRS1 or IRS2 with specific siRNA could greatly enhance rIGF1-induced chondrocyte differentiation and reduce the expression of RUNX1. Extraneous rRUNX1 might rescue the effects of IRS1 or IRS2 siRNA on the differentiation. In antler chondrocytes, IGF1 played a role in modulating the expression of RUNX1 through IGF1R. Moreover, attenuation of RUNX1 expression advanced the differentiation elicited by rIGF1, while administration of rRUNX1 to chondrocytes treated with IGF1 siRNA or PQ401 reduced their differentiation. Additionally, siRNA-mediated downregulation of IRS1 or IRS2 in the chondrocytes impaired the interaction between IGF1 and RUNX1. Collectively, IGF1 could promote the proliferation and differentiation of antler chondrocytes. Furthermore, IRS1/2 might act downstream of IGF1 to regulate chondrocyte differentiation through targeting RUNX1.
Collapse
Affiliation(s)
- Zhan-Qing Yang
- a College of Veterinary Medicine, Jilin University , Changchun , P. R. China
| | - Hong-Liang Zhang
- a College of Veterinary Medicine, Jilin University , Changchun , P. R. China
| | - Cui-Cui Duan
- b Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences , Changchun , P. R. China
| | - Shuang Geng
- a College of Veterinary Medicine, Jilin University , Changchun , P. R. China
| | - Kai Wang
- a College of Veterinary Medicine, Jilin University , Changchun , P. R. China
| | - Hai-Fan Yu
- a College of Veterinary Medicine, Jilin University , Changchun , P. R. China
| | - Zhan-Peng Yue
- a College of Veterinary Medicine, Jilin University , Changchun , P. R. China
| | - Bin Guo
- a College of Veterinary Medicine, Jilin University , Changchun , P. R. China
| |
Collapse
|
15
|
Insulin Receptor Substrate Adaptor Proteins Mediate Prognostic Gene Expression Profiles in Breast Cancer. PLoS One 2016; 11:e0150564. [PMID: 26991655 PMCID: PMC4798554 DOI: 10.1371/journal.pone.0150564] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/15/2016] [Indexed: 01/08/2023] Open
Abstract
Therapies targeting the type I insulin-like growth factor receptor (IGF-1R) have not been developed with predictive biomarkers to identify tumors with receptor activation. We have previously shown that the insulin receptor substrate (IRS) adaptor proteins are necessary for linking IGF1R to downstream signaling pathways and the malignant phenotype in breast cancer cells. The purpose of this study was to identify gene expression profiles downstream of IGF1R and its two adaptor proteins. IRS-null breast cancer cells (T47D-YA) were engineered to express IRS-1 or IRS-2 alone and their ability to mediate IGF ligand-induced proliferation, motility, and gene expression determined. Global gene expression signatures reflecting IRS adaptor specific and primary vs. secondary ligand response were derived (Early IRS-1, Late IRS-1, Early IRS-2 and Late IRS-2) and functional pathway analysis examined. IRS isoforms mediated distinct gene expression profiles, functional pathways, and breast cancer subtype association. For example, IRS-1/2-induced TGFb2 expression and blockade of TGFb2 abrogated IGF-induced cell migration. In addition, the prognostic value of IRS proteins was significant in the luminal B breast tumor subtype. Univariate and multivariate analyses confirmed that IRS adaptor signatures correlated with poor outcome as measured by recurrence-free and overall survival. Thus, IRS adaptor protein expression is required for IGF ligand responses in breast cancer cells. IRS-specific gene signatures represent accurate surrogates of IGF activity and could predict response to anti-IGF therapy in breast cancer.
Collapse
|
16
|
Malec V, Coulson JM, Urbé S, Clague MJ. Combined Analyses of the VHL and Hypoxia Signaling Axes in an Isogenic Pairing of Renal Clear Cell Carcinoma Cells. J Proteome Res 2015; 14:5263-72. [PMID: 26506913 DOI: 10.1021/acs.jproteome.5b00692] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The loss of function of the Von Hippel-Lindau (VHL) tumor suppressor leads to the development of hypervascular tumors, exemplified by clear-cell-type renal cell carcinoma (RCC). VHL governs the adaptive responses to fluctuation of oxygen levels largely through the regulated suppression of hypoxia inducible factors (HIFs). Here, we combine proteome and phospho-proteomic analysis of isogenic 786-O RCC (±VHL) cells to compare signatures that reflect hypoxia and/or loss of VHL. VHL-independent hypoxic responses, notably include up-regulation of phosphorylation at Ser232 on the pyruvate dehydrogenase α subunit that is known to promote glycolysis. Hypoxic responses governed by VHL include up-regulation of known biomarkers of RCC (e.g., GLUT1, NDRG1) and the signaling adaptor molecule IRS-2. Notably, we also observe down-regulation of linked-components associated with the Jacobs-Stewart cycle, including the intracellular carbonic anhydrase II (CA2), which governs cellular response to CO2 fluctuations that often accompany hypoxia in tumors. Further studies indicate an unusual mechanism of control for CA2 expression that, at least in part, reflects enhanced activity of the NFκB pathway, which is associated with loss of VHL.
Collapse
Affiliation(s)
- Viktor Malec
- Cellular and Molecular Physiology Department, University of Liverpool , Liverpool L69 3BX, United Kingdom
| | - Judy M Coulson
- Cellular and Molecular Physiology Department, University of Liverpool , Liverpool L69 3BX, United Kingdom
| | - Sylvie Urbé
- Cellular and Molecular Physiology Department, University of Liverpool , Liverpool L69 3BX, United Kingdom
| | - Michael J Clague
- Cellular and Molecular Physiology Department, University of Liverpool , Liverpool L69 3BX, United Kingdom
| |
Collapse
|
17
|
Fokidis HB, Yieng Chin M, Ho VW, Adomat HH, Soma KK, Fazli L, Nip KM, Cox M, Krystal G, Zoubeidi A, Tomlinson Guns ES. A low carbohydrate, high protein diet suppresses intratumoral androgen synthesis and slows castration-resistant prostate tumor growth in mice. J Steroid Biochem Mol Biol 2015; 150:35-45. [PMID: 25797030 DOI: 10.1016/j.jsbmb.2015.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 02/08/2015] [Accepted: 03/16/2015] [Indexed: 12/18/2022]
Abstract
Dietary factors continue to preside as dominant influences in prostate cancer prevalence and progression-free survival following primary treatment. We investigated the influence of a low carbohydrate diet, compared to a typical Western diet, on prostate cancer (PCa) tumor growth in vivo. LNCaP xenograft tumor growth was studied in both intact and castrated mice, representing a more advanced castration resistant PCa (CRPC). No differences in LNCaP tumor progression (total tumor volume) with diet was observed for intact mice (P = 0.471) however, castrated mice on the Low Carb diet saw a statistically significant reduction in tumor growth rate compared with Western diet fed mice (P = 0.017). No correlation with serum PSA was observed. Steroid profiles, alongside serum cholesterol and cholesteryl ester levels, were significantly altered by both diet and castration. Specifically, DHT concentration with the Low Carb diet was 58% that of the CRPC-bearing mice on the Western diet. Enzymes in the steroidogenesis pathway were directly impacted and tumors isolated from intact mice on the Low Carb diet had higher AKR1C3 protein levels and lower HSD17B2 protein levels than intact mice on the Western diet (ARK1C3: P = 0.074; HSD17B2: P = 0.091, with α = 0.1). In contrast, CRPC tumors from mice on Low Carb diets had higher concentrations of both HSD17B2 (P = 0.016) and SRD5A1 (P = 0.058 with α = 0.1) enzymes. There was no correlation between tumor growth in castrated mice for Low Carb diet versus Western diet and (a) serum insulin (b) GH serum levels (c) insulin receptor (IR) or (d) IGF-1R in tumor tissue. Intact mice fed Western diet had higher serum insulin which was associated with significantly higher blood glucose and tumor tissue IR. We conclude that both diet and castration have a significant impact on the endocrinology of mice bearing LNCaP xenograft tumors. The observed effects of diet on cholesterol and steroid regulation impact tumor tissue DHT specifically and are likely to be mechanistic drivers behind the observed tumor growth suppression.
Collapse
MESH Headings
- 3-Hydroxysteroid Dehydrogenases/genetics
- 3-Hydroxysteroid Dehydrogenases/metabolism
- 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics
- 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/metabolism
- Adenocarcinoma/diet therapy
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Aldo-Keto Reductase Family 1 Member C3
- Androgens/biosynthesis
- Animals
- Blood Glucose/metabolism
- Castration
- Cholesterol/blood
- Cholesterol Esters/blood
- Diet, Carbohydrate-Restricted
- Diet, Western
- Dietary Proteins/administration & dosage
- Estradiol Dehydrogenases/genetics
- Estradiol Dehydrogenases/metabolism
- Gene Expression Regulation
- Growth Hormone/blood
- Humans
- Hydroxyprostaglandin Dehydrogenases/genetics
- Hydroxyprostaglandin Dehydrogenases/metabolism
- Insulin/blood
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Neoplasm Transplantation
- Prostate/drug effects
- Prostate/metabolism
- Prostate/pathology
- Prostate-Specific Antigen/blood
- Prostatic Neoplasms, Castration-Resistant/diet therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Receptor, Insulin/genetics
- Receptor, Insulin/metabolism
- Transplantation, Heterologous
- Tumor Burden/drug effects
Collapse
Affiliation(s)
- H Bobby Fokidis
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V6H-3Z6, Canada; Department of Psychology, University of British Columbia, Vancouver, British Columbia V6T-1Z4, Canada
| | - Mei Yieng Chin
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V6H-3Z6, Canada
| | - Victor W Ho
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z-1L3, Canada
| | - Hans H Adomat
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V6H-3Z6, Canada
| | - Kiran K Soma
- Department of Psychology, University of British Columbia, Vancouver, British Columbia V6T-1Z4, Canada
| | - Ladan Fazli
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V6H-3Z6, Canada
| | - Ka Mun Nip
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V6H-3Z6, Canada
| | - Michael Cox
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V6H-3Z6, Canada
| | - Gerald Krystal
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z-1L3, Canada
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V6H-3Z6, Canada
| | - Emma S Tomlinson Guns
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V6H-3Z6, Canada.
| |
Collapse
|
18
|
Cioce M, Valerio M, Casadei L, Pulito C, Sacconi A, Mori F, Biagioni F, Manetti C, Muti P, Strano S, Blandino G. Metformin-induced metabolic reprogramming of chemoresistant ALDHbright breast cancer cells. Oncotarget 2015; 5:4129-43. [PMID: 24980829 PMCID: PMC4147311 DOI: 10.18632/oncotarget.1864] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Metabolic remodeling is a hallmark of cancer progression and may affect tumor chemoresistance. Here we investigated by 1H-NMR/PCA analysis the metabolic profile of chemoresistant breast cancer cell subpopulations (ALDHbright cells) and their response to metformin, a promising anticancer metabolic modulator. The purified ALDHbright cells exhibited a different metabolic profile as compared to their chemosensitive ALDHlow counterparts. Metformin treatment strongly affected the metabolism of the ALDHbright cells thereby affecting, among the others, the glutathione metabolism, whose upregulation is a feature of progenitor-like, chemoresistant cell subpopulations. Globally, metformin treatment reduced the differences between ALDHbright and ALDHlow cells, making the former more similar to the latter. Metformin broadly modulated microRNAs in the ALDHbright cells, with a large fraction of them predicted to target the same metabolic pathways experimentally identified by 1H-NMR. Additionally, metformin modulated the levels of c-MYC and IRS-2, and this correlated with changes of the microRNA-33a levels. In summary, we observed, both by 1H-NMR and microRNA expression studies, that metformin treatment reduced the differences between the chemoresistant ALDHbright cells and the chemosensitive ALDHlow cells. This works adds on the potential therapeutic relevance of metformin and shows the potential for metabolic reprogramming to modulate cancer chemoresistance.
Collapse
Affiliation(s)
- Mario Cioce
- Department of Cardiothoracic Surgery, NYU Langone Medical Center, New York, NY USA. These two authors contributed equally
| | - MariaCristina Valerio
- Department of Chemistry, University of Rome 'La Sapienza', 00185 Rome, Italy. These two authors contributed equally
| | - Luca Casadei
- Department of Chemistry, University of Rome 'La Sapienza', 00185 Rome, Italy
| | - Claudio Pulito
- Molecular Chemoprevention Group, Italian National Cancer Institute "Regina Elena", Rome, Italy
| | - Andrea Sacconi
- Translational Oncogenomic Unit, Italian National Cancer Institute "Regina Elena", Rome, Italy
| | - Federica Mori
- Molecular Chemoprevention Group, Italian National Cancer Institute "Regina Elena", Rome, Italy
| | - Francesca Biagioni
- Translational Oncogenomic Unit, Italian National Cancer Institute "Regina Elena", Rome, Italy
| | - Cesare Manetti
- Department of Chemistry, University of Rome 'La Sapienza', 00185 Rome, Italy
| | - Paola Muti
- Department of Oncology, McMaster University, Hamilton, Ontario, L8V 5C2, Canada
| | - Sabrina Strano
- Translational Oncogenomic Unit, Italian National Cancer Institute "Regina Elena", Rome, Italy
| | - Giovanni Blandino
- Molecular Chemoprevention Group, Italian National Cancer Institute "Regina Elena", Rome, Italy
| |
Collapse
|
19
|
Beclin 1 regulates growth factor receptor signaling in breast cancer. Oncogene 2015; 34:5352-62. [PMID: 25639875 PMCID: PMC4522409 DOI: 10.1038/onc.2014.454] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 01/09/2023]
Abstract
Beclin 1 is a haploinsufficient tumor suppressor that is decreased in many human tumors. The function of beclin 1 in cancer has been attributed primarily to its role in the degradative process of macroautophagy. However, beclin 1 is a core component of the vacuolar protein sorting 34 (Vps34)/class III phosphatidylinositoI-3 kinase (PI3KC3) and Vps15/p150 complex that regulates multiple membrane-trafficking events. In the current study, we describe an alternative mechanism of action for beclin 1 in breast cancer involving its control of growth factor receptor signaling. We identify a specific stage of early endosome maturation that is regulated by beclin 1, the transition of APPL1-containing phosphatidyIinositol 3-phosphate-negative (PI3P(-)) endosomes to PI3P(+) endosomes. Beclin 1 regulates PI3P production in response to growth factor stimulation to control the residency time of growth factor receptors in the PI3P(-)/APPL(+)-signaling-competent compartment. As a result, suppression of BECN1 sustains growth factor-stimulated AKT and ERK activation resulting in increased breast carcinoma cell invasion. In human breast tumors, beclin 1 expression is inversely correlated with AKT and ERK phosphorylation. Our data identify a novel role for beclin 1 in regulating growth factor signaling and reveal a mechanism by which loss of beclin 1 expression would enhance breast cancer progression.
Collapse
|
20
|
Makinen MW, Salehitazangi M. The Structural Basis of Action of Vanadyl (VO 2+) Chelates in Cells. Coord Chem Rev 2014; 279:1-22. [PMID: 25237207 DOI: 10.1016/j.ccr.2014.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Much emphasis has been given to vanadium compounds as potential therapeutic reagents for the treatment of diabetes mellitus. Thus far, no vanadium compound has proven efficacious for long-term treatment of this disease in humans. Therefore, in review of the research literature, our goal has been to identify properties of vanadium compounds that are likely to favor physiological and biochemical compatibility for further development as therapeutic reagents. We have, therefore, limited our review to those vanadium compounds that have been used in both in vivo experiments with small, laboratory animals and in in vitro studies with primary or cultured cell systems and for which pharmacokinetic and pharmacodynamics results have been reported, including vanadium tissue content, vanadium and ligand lifetime in the bloodstream, structure in solution, and interaction with serum transport proteins. Only vanadyl (VO2+) chelates fulfill these requirements despite the large variety of vanadium compounds of different oxidation states, ligand structure, and coordination geometry synthesized as potential therapeutic agents. Extensive review of research results obtained with use of organic VO2+-chelates shows that the vanadyl chelate bis(acetylacetonato)oxidovanadium(IV) [hereafter abbreviated as VO(acac)2], exhibits the greatest capacity to enhance insulin receptor kinase activity in cells compared to other organic VO2+-chelates, is associated with a dose-dependent capacity to lower plasma glucose in diabetic laboratory animals, and exhibits a sufficiently long lifetime in the blood stream to allow correlation of its dose-dependent action with blood vanadium content. The properties underlying this behavior appear to be its high stability and capacity to remain intact upon binding to serum albumin. We relate the capacity to remain intact upon binding to serum albumin to the requirement to undergo transcytosis through the vascular endothelium to gain access to target tissues in the extravascular space. Serum albumin, as the most abundant transport protein in the blood stream, serves commonly as the carrier protein for small molecules, and transcytosis of albumin through capillary endothelium is regulated by a Src protein tyrosine kinase system. In this respect it is of interest to note that inorganic VO2+ has the capacity to enhance insulin receptor kinase activity of intact 3T3-L1 adipocytes in the presence of albumin, albeit weak; however, in the presence of transferrin no activation is observed. In addition to facilitating glucose uptake, the capacity of VO2+- chelates for insulin-like, antilipolytic action in primary adipocytes has also been reviewed. We conclude that measurement of inhibition of release of only free fatty acids from adipocytes stimulated by epinephrine is not a sufficient basis to ascribe the observations to purely insulin-mimetic, antilipolytic action. Adipocytes are known to contain both phosphodiesterase-3 and phosphodiesterase-4 (PDE3 and PDE4) isozymes, of which insulin antagonizes lipolysis only through PDE3B. It is not known whether the other isozyme in adipocytes is influenced directly by VO2+- chelates. In efforts to promote improved development of VO2+- chelates for therapeutic purposes, we propose synergism of a reagent with insulin as a criterion for evaluating physiological and biochemical specificity of action. We highlight two organic compounds that exhibit synergism with insulin in cellular assays. Interestingly, the only VO2+- chelate for which this property has been demonstrated, thus far, is VO(acac)2.
Collapse
Affiliation(s)
- Marvin W Makinen
- Department of Biochemistry & Molecular Biology, Gordon Center for Integrative Science, The University of Chicago, 929 East 57 Street, Chicago, Illinois 60637 USA
| | - Marzieh Salehitazangi
- Department of Biochemistry & Molecular Biology, Gordon Center for Integrative Science, The University of Chicago, 929 East 57 Street, Chicago, Illinois 60637 USA
| |
Collapse
|
21
|
Landis J, Shaw LM. Insulin receptor substrate 2-mediated phosphatidylinositol 3-kinase signaling selectively inhibits glycogen synthase kinase 3β to regulate aerobic glycolysis. J Biol Chem 2014; 289:18603-13. [PMID: 24811175 DOI: 10.1074/jbc.m114.564070] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Insulin receptor substrate 1 (IRS-1) and IRS-2 are cytoplasmic adaptor proteins that mediate the activation of signaling pathways in response to ligand stimulation of upstream cell surface receptors. Despite sharing a high level of homology and the ability to activate PI3K, only Irs-2 positively regulates aerobic glycolysis in mammary tumor cells. To determine the contribution of Irs-2-dependent PI3K signaling to this selective regulation, we generated an Irs-2 mutant deficient in the recruitment of PI3K. We identified four tyrosine residues (Tyr-649, Tyr-671, Tyr-734, and Tyr-814) that are essential for the association of PI3K with Irs-2 and demonstrate that combined mutation of these tyrosines inhibits glucose uptake and lactate production, two measures of aerobic glycolysis. Irs-2-dependent activation of PI3K regulates the phosphorylation of specific Akt substrates, most notably glycogen synthase kinase 3β (Gsk-3β). Inhibition of Gsk-3β by Irs-2-dependent PI3K signaling promotes glucose uptake and aerobic glycolysis. The regulation of unique subsets of Akt substrates by Irs-1 and Irs-2 may explain their non-redundant roles in mammary tumor biology. Taken together, our study reveals a novel mechanism by which Irs-2 signaling preferentially regulates tumor cell metabolism and adds to our understanding of how this adaptor protein contributes to breast cancer progression.
Collapse
Affiliation(s)
- Justine Landis
- From the Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Leslie M Shaw
- From the Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
22
|
Chen Y, Deng Y, Zhang B, Gong CX. Deregulation of brain insulin signaling in Alzheimer's disease. Neurosci Bull 2014; 30:282-94. [PMID: 24652456 PMCID: PMC5562654 DOI: 10.1007/s12264-013-1408-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/03/2014] [Indexed: 01/09/2023] Open
Abstract
Contrary to the previous belief that insulin does not act in the brain, studies in the last three decades have demonstrated important roles of insulin and insulin signal transduction in various functions of the central nervous system. Deregulated brain insulin signaling and its role in molecular pathogenesis have recently been reported in Alzheimer's disease (AD). In this article, we review the roles of brain insulin signaling in memory and cognition, the metabolism of amyloid β precursor protein, and tau phosphorylation. We further discuss deficiencies of brain insulin signaling and glucose metabolism, their roles in the development of AD, and recent studies that target the brain insulin signaling pathway for the treatment of AD. It is clear now that deregulation of brain insulin signaling plays an important role in the development of sporadic AD. The brain insulin signaling pathway also offers a promising therapeutic target for treating AD and probably other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yanxing Chen
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
| | - Yanqiu Deng
- Department of Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070 China
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314 USA
| |
Collapse
|
23
|
Iqbal MA, Siddiqui FA, Gupta V, Chattopadhyay S, Gopinath P, Kumar B, Manvati S, Chaman N, Bamezai RNK. Insulin enhances metabolic capacities of cancer cells by dual regulation of glycolytic enzyme pyruvate kinase M2. Mol Cancer 2013; 12:72. [PMID: 23837608 PMCID: PMC3710280 DOI: 10.1186/1476-4598-12-72] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/13/2013] [Indexed: 12/13/2022] Open
Abstract
Background Insulin is tightly associated with cancer progression; however, mechanistic insights into such observations are poorly understood. Recent studies show that metabolic transformation is critical to cancer cell proliferation. Here, we attempt to understand the role of insulin in promotion of cancer metabolism. To this end, the role of insulin in regulating glycolytic enzyme pyruvate kinase M2 (PKM2) was examined. Results We observed that insulin up-regulated PKM2 expression, through PI3K/mTOR mediated HIF1α induction, but significantly reduced PKM2 activity independent of this pathway. Drop in PKM2 activity was attributed to subunit dissociation leading to formation of low activity PKM2 oligomers, as assessed by density gradient centrifugation. However, tyrosine 105 phosphorylation of PKM2, known for inhibiting PKM2 activity, remained unaffected on insulin treatment. Interestingly, insulin-induced ROS was found responsible for PKM2 activity reduction. The observed changes in PKM2 status led to augmented cancer metabolism. Insulin-induced PKM2 up-regulation resulted in enhanced aerobic glycolysis as confirmed by PKM2 knockdown studies. Further, PKM2 activity reduction led to characteristic pooling of glycolytic intermediates and increased accumulation of NADPH; suggesting diversion of glucose flux towards macromolecular synthesis, necessary for cancer cell growth. Conclusion The study identifies new PKM2-mediated effects of insulin on cancer metabolism, thus, advancing the understanding of insulin’s role in cancer.
Collapse
Affiliation(s)
- Mohd Askandar Iqbal
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Clark JL, Dresser K, Hsieh CC, Sabel M, Kleer CG, Khan A, Shaw LM. Membrane localization of insulin receptor substrate-2 (IRS-2) is associated with decreased overall survival in breast cancer. Breast Cancer Res Treat 2011; 130:759-72. [PMID: 21258861 PMCID: PMC3128655 DOI: 10.1007/s10549-011-1353-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 01/10/2011] [Indexed: 12/15/2022]
Abstract
Recent studies have identified a role for insulin receptor substrate-2 (IRS-2) in promoting motility and metastasis in breast cancer. However, no published studies to date have examined IRS-2 expression in human breast tumors. We examined IRS-2 expression by immunohistochemistry (IHC) in normal breast tissue, benign breast lesions, and malignant breast tumors from the institutional pathology archives and a tumor microarray from a separate institution. Three distinct IRS-2 staining patterns were noted: diffusely cytoplasmic, punctate cytoplasmic, and localized to the cell membrane. The individual and pooled datasets were analyzed for associations of IRS-2 staining pattern with core clinical parameters and clinical outcomes. Univariate analysis revealed a trend toward decreased overall survival (OS) with IRS-2 membrane staining, and this association became significant upon multivariate analysis (P = 0.01). In progesterone receptor negative (PR-) tumors, in particular, IRS-2 staining at the membrane correlated with significantly worse OS than other IRS-2 staining patterns (P < 0.001). When PR status and IRS-2 staining pattern were evaluated in combination, PR- tumors with IRS-2 at the membrane were associated with a significantly decreased OS when compared with all other combinations (P = 0.002). Evaluation of IRS-2 staining patterns could potentially be used to identify patients with PR- tumors who would most benefit from aggressive treatment.
Collapse
MESH Headings
- Adult
- Aged
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/pathology
- Cell Line, Tumor
- Cell Membrane/metabolism
- Female
- Humans
- Insulin Receptor Substrate Proteins/metabolism
- Kaplan-Meier Estimate
- Mammary Glands, Human/metabolism
- Mammary Glands, Human/pathology
- Middle Aged
- Neoplasm Grading
- Neoplasm Staging
- Prognosis
- Protein Transport
- Receptor, ErbB-2/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
Collapse
Affiliation(s)
- Jennifer L. Clark
- Department of Cancer Biology, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01605, USA
| | - Karen Dresser
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Chung-Cheng Hsieh
- Department of Cancer Biology, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01605, USA
| | - Michael Sabel
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Celina G. Kleer
- Department of Pathology, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Ashraf Khan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Leslie M. Shaw
- Department of Cancer Biology, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01605, USA
| |
Collapse
|
25
|
Abstract
To identify microRNAs (miRNAs) associated with estrogen receptor (ESR1) status, we profiled luminal A, ESR1+ breast cancer cell lines versus triple negative (TN), which lack ERα, progesterone receptor and Her2/neu. Although two thirds of the differentially expressed miRNAs are higher in ESR1+ breast cancer cells, some miRNAs, such as miR-222/221 and miR-29a, are dramatically higher in ESR1- cells (∼100- and 16-fold higher, respectively). MiR-222/221 (which target ESR1 itself) and miR-29a are predicted to target the 3' UTR of Dicer1. Addition of these miRNAs to ESR1+ cells reduces Dicer protein, whereas antagonizing miR-222 in ESR1- cells increases Dicer protein. We demonstrate via luciferase reporter assays that these miRNAs directly target the Dicer1 3' UTR. In contrast, miR-200c, which promotes an epithelial phenotype, is 58-fold higher in the more well-differentiated ERα+ cells, and restoration of miR-200c to ERα- cells causes increased Dicer protein, resulting in increased levels of other mature miRNAs typically low in ESR1- cells. Together, our findings explain why Dicer is low in ERα negative breast cancers, since such cells express high miR-221/222 and miR-29a levels (which repress Dicer) and low miR-200c (which positively affect Dicer levels). Furthermore, we find that miR-7, which is more abundant in ERα+ cells and is estrogen regulated, targets growth factor receptors and signaling intermediates such as EGFR, IGF1R, and IRS-2. In summary, miRNAs differentially expressed in ERα+ versus ERα- breast cancers actively control some of the most distinguishing characteristics of the luminal A and TN subtypes, such as ERα itself, Dicer, and growth factor receptor levels.
Collapse
|
26
|
Shaw LM. The insulin receptor substrate (IRS) proteins: at the intersection of metabolism and cancer. Cell Cycle 2011; 10:1750-6. [PMID: 21597332 DOI: 10.4161/cc.10.11.15824] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence supports a connection between cancer and metabolism and emphasizes the need to understand how tumors respond to the metabolic microenvironment and how tumor cell metabolism is regulated. The insulin receptor (IR) and its close family member the insulin-like growth factor-1 receptor (IGF-1R) mediate the cellular response to insulin in normal cells and their function is tightly regulated to maintain metabolic homeostasis. These receptors are also expressed on tumor cells and their expression correlates with tumor progression and poor prognosis. Understanding how the IR/IGF-1R pathway functions in tumors is increasing in importance as the efficacy of drugs that target metabolic pathways, such as metformin, are investigated in prospective clinical trials. This review will focus on key signaling intermediates of the IR and IGF-1R, the Insulin Receptor Substrate (IRS) proteins, with an emphasis on IRS-2, and discuss how these adaptor proteins play a pivotal role at the intersection of metabolism and cancer.
Collapse
Affiliation(s)
- Leslie M Shaw
- University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
27
|
Li N, Tan W, Li J, Li P, Lee S, Wang Y, Gong Y. Glucose Metabolism in Breast Cancer and its Implication in Cancer Therapy. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/ijcm.2011.22022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Xiao C, Kim HS, Lahusen T, Wang RH, Xu X, Gavrilova O, Jou W, Gius D, Deng CX. SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice. J Biol Chem 2010; 285:36776-84. [PMID: 20847051 DOI: 10.1074/jbc.m110.168039] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucose homeostasis in mammals is mainly regulated by insulin signaling. It was previously shown that SIRT6 mutant mice die before 4 weeks of age, displaying profound abnormalities, including low insulin, hypoglycemia, and premature aging. To investigate mechanisms underlying the pleiotropic phenotypes associated with SIRT6 deficiency, we generated mice carrying targeted disruption of SIRT6. We found that 60% of SIRT6(-/-) animals had very low levels of blood glucose and died shortly after weaning. The remaining animals, which have relatively higher concentrations of glucose, survived the early post-weaning lethality, but most died within one year of age. Significantly, feeding the mice with glucose-containing water increased blood glucose and rescued 83% of mutant mice, suggesting that the hypoglycemia is a major cause for the lethality. We showed that SIRT6 deficiency results in more abundant membrane association of glucose transporters 1 and 4, which enhances glucose uptake. We further demonstrated that SIRT6 negatively regulates AKT phosphorylation at Ser-473 and Thr-308 through inhibition of multiple upstream molecules, including insulin receptor, IRS1, and IRS2. The absence of SIRT6, consequently, enhances insulin signaling and activation of AKT, leading to hypoglycemia. These data uncover an essential role of SIRT6 in modulating glucose metabolism through mediating insulin sensitivity.
Collapse
Affiliation(s)
- Cuiying Xiao
- Genetics of Development and Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Freeman A, Hetzel U, Cripps P, Mobasheri A. Expression of the plasma membrane markers aquaporin 1 (AQP1), glucose transporter 1 (GLUT1) and Na, K-ATPase in canine mammary glands and mammary tumours. Vet J 2010; 185:90-3. [PMID: 20570191 DOI: 10.1016/j.tvjl.2010.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study investigated the expression of the plasma membrane markers aquaporin 1 (AQP1), glucose transporter 1 (GLUT1) and the alpha1 subunit of Na, K-ATPase in normal canine mammary glands and in benign and malignant mammary tumours, using immunohistochemistry and semi-quantitative histomorphometry. AQP1 immunoreactivity was absent from the majority of specimens studied. GLUT1 immunoreactivity was observed in normal mammary tissue and particularly in the epithelial and mesenchymal cells of benign, and in the epithelial cells of malignant tumours, respectively. Na, K-ATPase immunoreactivity was present in normal and neoplastic mammary epithelium and was significantly increased in the epithelium of both benign and malignant tumours. These results suggest that GLUT1 is more highly expressed in neoplastic epithelium and mesenchyme and that Na, K-ATPase is more highly expressed in neoplastic mammary epithelium. In consequence, these membrane proteins may have potential as diagnostic and prognostic biomarkers of canine mammary neoplasia.
Collapse
Affiliation(s)
- Alistair Freeman
- Small Animal Teaching Hospital, School of Veterinary Science, University of Liverpool, Leahurst Campus, Leahurst, Neston, Wirral CH64 7TE, UK
| | | | | | | |
Collapse
|
30
|
Mitochondrial pyrimidine nucleotide carrier (PNC1) regulates mitochondrial biogenesis and the invasive phenotype of cancer cells. Oncogene 2010; 29:3964-76. [PMID: 20453889 DOI: 10.1038/onc.2010.146] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The insulin-like growth factor (IGF-I) signalling pathway is essential for metabolism, cell growth and survival. It induces expression of the mitochondrial pyrimidine nucleotide carrier 1 (PNC1) in transformed cells, but the consequences of this for cell phenotype are unknown. Here we show that PNC1 is necessary to maintain mitochondrial function by controlling mitochondrial DNA replication and the ratio of transcription of mitochondrial genes relative to nuclear genes. PNC1 suppression causes reduced oxidative phosphorylation and leakage of reactive oxygen species (ROS), which activates the AMPK-PGC1alpha signalling pathway and promotes mitochondrial biogenesis. Overexpression of PNC1 suppresses mitochondrial biogenesis. Suppression of PNC1 causes a profound ROS-dependent epithelial-mesenchymal transition (EMT), whereas overexpression of PNC1 suppresses both basal EMT and induction of EMT by TGF-beta. Overall, our findings indicate that PNC1 is essential for mitochondria maintenance and suggest that its induction by IGF-I facilitates cell growth whereas protecting cells from an ROS-promoted differentiation programme that arises from mitochondrial dysfunction.
Collapse
|
31
|
Abstract
This perspective on the report by McCampbell et al. in this issue of the journal (beginning on page 290) addresses the role of insulin receptor substrate (IRS) proteins in cancer progression. The IRS proteins link many cell-surface receptors to signal transduction pathways. Activation of the phosphoinositide-3 kinase/Akt/mammalian target of rapamycin axis normally results in serine phosphorylation and subsequent downregulation of these adaptor proteins. The authors show that changes in the negative feedback regulation of IRS proteins is associated with the progression of endometrial epithelial cells to hyperplasia and cancer. Therefore, understanding the function of adaptor proteins could provide additional strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Douglas Yee
- Departments of Medicine and Pharmacology, Masonic Cancer Center, University of Minnesota, 420 Delaware Street Southeast, Minneapolis, MN 55455, USA.
| |
Collapse
|
32
|
Mardilovich K, Shaw LM. Hypoxia regulates insulin receptor substrate-2 expression to promote breast carcinoma cell survival and invasion. Cancer Res 2009; 69:8894-901. [PMID: 19920186 DOI: 10.1158/0008-5472.can-09-1152] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Insulin receptor substrate-2 (IRS-2) belongs to the IRS family of adaptor proteins that function as signaling intermediates for growth factor, cytokine, and integrin receptors, many of which have been implicated in cancer. Although the IRS proteins share significant homology, distinct functions have been attributed to each family member in both normal and tumor cells. In cancer, IRS-2 is positively associated with aggressive tumor behavior. In the current study, we show that IRS-2 expression, but not IRS-1 expression, is positively regulated by hypoxia, which selects for tumor cells with increased metastatic potential. We identify IRS-2 as a novel hypoxia-responsive gene and establish that IRS-2 gene transcription increases in a hypoxia-inducible factor-dependent manner in hypoxic environments. IRS-2 is active to mediate insulin-like growth factor I-dependent signals in hypoxia, and enhanced activation of Akt in hypoxia is dependent on IRS-2 expression. Functionally, the elevated expression of IRS-2 facilitates breast carcinoma cell survival and invasion in hypoxia. Collectively, our results reveal a novel mechanism by which IRS-2 contributes to the aggressive behavior of hypoxic tumor cells.
Collapse
Affiliation(s)
- Katerina Mardilovich
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusett 01605, USA
| | | |
Collapse
|
33
|
Fluck MM, Schaffhausen BS. Lessons in signaling and tumorigenesis from polyomavirus middle T antigen. Microbiol Mol Biol Rev 2009; 73:542-63, Table of Contents. [PMID: 19721090 PMCID: PMC2738132 DOI: 10.1128/mmbr.00009-09] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The small DNA tumor viruses have provided a very long-lived source of insights into many aspects of the life cycle of eukaryotic cells. In recent years, the emphasis has been on cancer-related signaling. Here we review murine polyomavirus middle T antigen, its mechanisms, and its downstream pathways of transformation. We concentrate on the MMTV-PyMT transgenic mouse, one of the most studied models of breast cancer, which permits the examination of in situ tumor progression from hyperplasia to metastasis.
Collapse
Affiliation(s)
- Michele M Fluck
- Department of Microbiology and Molecular Genetics, Interdepartmental Program in Cell and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
34
|
Mardilovich K, Pankratz SL, Shaw LM. Expression and function of the insulin receptor substrate proteins in cancer. Cell Commun Signal 2009; 7:14. [PMID: 19534786 PMCID: PMC2709114 DOI: 10.1186/1478-811x-7-14] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Accepted: 06/17/2009] [Indexed: 12/13/2022] Open
Abstract
The Insulin Receptor Substrate (IRS) proteins are cytoplasmic adaptor proteins that function as essential signaling intermediates downstream of activated cell surface receptors, many of which have been implicated in cancer. The IRS proteins do not contain any intrinsic kinase activity, but rather serve as scaffolds to organize signaling complexes and initiate intracellular signaling pathways. As common intermediates of multiple receptors that can influence tumor progression, the IRS proteins are positioned to play a pivotal role in regulating the response of tumor cells to many different microenvironmental stimuli. Limited studies on IRS expression in human tumors and studies on IRS function in human tumor cell lines and in mouse models have provided clues to the potential function of these adaptor proteins in human cancer. A general theme arises from these studies; IRS-1 and IRS-4 are most often associated with tumor growth and proliferation and IRS-2 is most often associated with tumor motility and invasion. In this review, we discuss the mechanisms by which IRS expression and function are regulated and how the IRS proteins contribute to tumor initiation and progression.
Collapse
Affiliation(s)
- Katerina Mardilovich
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | | | |
Collapse
|