1
|
Lewis AJ, Richards AC, Mendez AA, Dhakal BK, Jones TA, Sundsbak JL, Eto DS, Mulvey MA. Plant Phenolics Inhibit Focal Adhesion Kinase and Suppress Host Cell Invasion by Uropathogenic Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.23.568486. [PMID: 38045282 PMCID: PMC10690256 DOI: 10.1101/2023.11.23.568486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Traditional folk treatments for the prevention and management of urinary tract infections (UTIs) and other infectious diseases often include plants and plant extracts that are rich in phenolic and polyphenolic compounds. These have been ascribed a variety of activities, including inhibition of bacterial interactions with host cells. Here we tested a panel of four well-studied phenolic compounds - caffeic acid phenethyl ester (CAPE), resveratrol, catechin, and epigallocatechin gallate - for effects on host cell adherence and invasion by uropathogenic Escherichia coli (UPEC). These bacteria, which are the leading cause of UTIs, can bind and subsequently invade bladder epithelial cells via an actin-dependent process. Intracellular UPEC reservoirs within the bladder are often protected from antibiotics and host defenses, and likely contribute to the development of chronic and recurrent infections. Using cell culture-based assays, we found that only resveratrol had a notable negative effect on UPEC adherence to bladder cells. However, both CAPE and resveratrol significantly inhibited UPEC entry into the host cells, coordinate with attenuated phosphorylation of the host actin regulator Focal Adhesion Kinase (FAK, or PTK2) and marked increases in the numbers of focal adhesion structures. We further show that the intravesical delivery of resveratrol inhibits UPEC infiltration of the bladder mucosa in a murine UTI model, and that resveratrol and CAPE can disrupt the ability of other invasive pathogens to enter host cells. Together, these results highlight the therapeutic potential of molecules like CAPE and resveratrol, which could be used to augment antibiotic treatments by restricting pathogen access to protective intracellular niches.
Collapse
Affiliation(s)
- Adam J. Lewis
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Amanda C. Richards
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
- School of Biological Sciences, 257 S 1400 E, University of Utah, Salt Lake City, UT 84112, USA; Henry Eyring Center for Cell & Genome Science, 1390 Presidents Circle, University of Utah, Salt Lake City, UT 84112, USA
| | - Alejandra A. Mendez
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
- School of Biological Sciences, 257 S 1400 E, University of Utah, Salt Lake City, UT 84112, USA; Henry Eyring Center for Cell & Genome Science, 1390 Presidents Circle, University of Utah, Salt Lake City, UT 84112, USA
| | - Bijaya K. Dhakal
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Tiffani A. Jones
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Jamie L. Sundsbak
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Danelle S. Eto
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew A. Mulvey
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
- School of Biological Sciences, 257 S 1400 E, University of Utah, Salt Lake City, UT 84112, USA; Henry Eyring Center for Cell & Genome Science, 1390 Presidents Circle, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
2
|
Aghagoli G, Fedulov AV, Shinnick JK. Epigenetics and recurrent urinary tract infections: an update on current research and potential clinical application. Epigenomics 2023; 15:961-964. [PMID: 37905413 DOI: 10.2217/epi-2023-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Tweetable abstract Exploring uropathogenic E. coli-induced epigenetic changes in uroepithelial cells contributing to recurrent UTIs and potential therapeutic strategies. Understanding these mechanisms could inform novel UTI interventions.
Collapse
Affiliation(s)
- Ghazal Aghagoli
- The Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
- Department of Urogynecology & Reconstructive Pelvic Surgery, Women & Infants Hospital, Providence, RI 02903, USA
| | - Alexey V Fedulov
- The Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
- Department of Surgery, Rhode Island Hospital, Providence, RI 02903, USA
| | - Julia K Shinnick
- The Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
- Department of Urogynecology & Reconstructive Pelvic Surgery, Women & Infants Hospital, Providence, RI 02903, USA
| |
Collapse
|
3
|
Zhurilov PA, Andriyanov PA, Tutrina AI, Razheva IV, Liskova EA, Gladkova NA, Kashina DD, Yashin IV, Blokhin AA. Characterization and comparative analysis of the Escherichia marmotae M-12 isolate from bank vole (Myodes glareolus). Sci Rep 2023; 13:13949. [PMID: 37626115 PMCID: PMC10457355 DOI: 10.1038/s41598-023-41223-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023] Open
Abstract
The Escherichia marmotae is a bacterium of the Enterobacterales order, which was first isolated from the Himalayan marmot (Marmota himalayana). Recently E. marmotae has been shown to cause severe infections in humans. Wild animals were suggested to be a natural reservoir of this bacterium. The present study describes the first case of E. marmotae isolation from an apparently healthy wild bank vole (Myodes glareolus). Phenotype, as well as genotype-based techniques, were applied to characterize E. marmotae M-12 isolate. E. marmotae M-12 had the capsule-positive phenotype, high adhesion to human erythrocytes and HEp-2 cells as well as a low invasion into HEp-2 cells. E. marmotae M-12 was avirulent in mice. The phylogenomic analyses of E. marmotae showed dispersed phylogenetic structure among isolates of different origins. Virulome analysis of M-12 isolate revealed the presence of the following factors: siderophores, heme uptake systems, capsule synthesis, curli and type I fimbriae, flagella proteins, OmpA porin, etc. Comparative virulome analysis among available E. marmotae genomes revealed the presence of capsule K1 genes mostly in pathogenic isolates and OmpA porin presence among all strains. We assume that the K1 capsule and OmpA porin play a key role in the virulence of E. marmotae. Pathogenesis of the latter might be similar to extraintestinal pathogenic E. coli.
Collapse
Affiliation(s)
- Pavel A Zhurilov
- Federal Research Center for Virology and Microbiology, Branch in Nizhny Novgorod, 603950, Nizhny Novgorod, Russia.
| | - Pavel A Andriyanov
- Federal Research Center for Virology and Microbiology, Branch in Nizhny Novgorod, 603950, Nizhny Novgorod, Russia
| | - Anastasia I Tutrina
- Federal Research Center for Virology and Microbiology, Branch in Nizhny Novgorod, 603950, Nizhny Novgorod, Russia
| | - Irina V Razheva
- Federal Research Center for Virology and Microbiology, Branch in Nizhny Novgorod, 603950, Nizhny Novgorod, Russia
| | - Elena A Liskova
- Federal Research Center for Virology and Microbiology, Branch in Nizhny Novgorod, 603950, Nizhny Novgorod, Russia
| | - Nadezda A Gladkova
- Federal Research Center for Virology and Microbiology, Branch in Nizhny Novgorod, 603950, Nizhny Novgorod, Russia
| | - Daria D Kashina
- Federal Research Center for Virology and Microbiology, Branch in Nizhny Novgorod, 603950, Nizhny Novgorod, Russia
| | - Ivan V Yashin
- Federal Research Center for Virology and Microbiology, Branch in Nizhny Novgorod, 603950, Nizhny Novgorod, Russia
| | - Andrey A Blokhin
- Federal Research Center for Virology and Microbiology, Branch in Nizhny Novgorod, 603950, Nizhny Novgorod, Russia
| |
Collapse
|
4
|
Repurposing HDAC inhibitors to enhance ribonuclease 4 and 7 expression and reduce urinary tract infection. Proc Natl Acad Sci U S A 2023; 120:e2213363120. [PMID: 36652479 PMCID: PMC9942862 DOI: 10.1073/pnas.2213363120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
With the emergence of antibiotic-resistant bacteria, innovative approaches are needed for the treatment of urinary tract infections. Boosting antimicrobial peptide expression may provide an alternative to antibiotics. Here, we developed reporter cell lines and performed a high-throughput screen of clinically used drugs to identify compounds that boost ribonuclease 4 and 7 expression (RNase 4 and 7), peptides that have antimicrobial activity against antibiotic-resistant uropathogens. This screen identified histone deacetylase (HDAC) inhibitors as effective RNase 4 and RNase 7 inducers. Validation studies in primary human kidney and bladder cells confirmed pan-HDAC inhibitors as well as the HDAC class I inhibitor, MS-275, induce RNase 4 and RNase 7 to protect human kidney and bladder cells from uropathogenic Escherichia coli. When we administered MS-275 to mice, RNase 4 and 7 expression increased and mice were protected from acute transurethral E. coli challenge. In support of this mechanism, MS-275 treatment increased acetylated histone H3 binding to the RNASE4 and RNASE7 promoters. Overexpression and knockdown of HDAC class I proteins identified HDAC3 as a primary regulator of RNase 4 and 7. These results demonstrate the protective effects of enhancing RNase 4 and RNase 7, opening the door to repurposing medications as antibiotic conserving therapeutics for urinary tract infection.
Collapse
|
5
|
Joshi CS, Mora A, Felder PA, Mysorekar IU. NRF2 promotes urothelial cell response to bacterial infection by regulating reactive oxygen species and RAB27B expression. Cell Rep 2021; 37:109856. [PMID: 34686330 DOI: 10.1016/j.celrep.2021.109856] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 08/16/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) cause urinary tract infections (UTIs) by invading urothelial cells. In response, the host mounts an inflammatory response to expel bacteria. Here, we show that the NF-E2-related factor 2 (NRF2) pathway is activated in response to UPEC-triggered reactive oxygen species (ROS) production. We demonstrate the molecular sequence of events wherein NRF2 activation in urothelial cells reduces ROS production, inflammation, and cell death, promotes UPEC expulsion, and reduces the bacterial load. In contrast, loss of NRF2 leads to increased ROS production, bacterial burden, and inflammation, both in vitro and in vivo. NRF2 promotes UPEC expulsion by regulating transcription of the RAB-GTPase RAB27B. Finally, dimethyl fumarate, a US Food and Administration-approved NRF2 inducer, reduces the inflammatory response, increases RAB27B expression, and lowers bacterial burden in urothelial cells and in a mouse UTI model. Our findings elucidate mechanisms underlying the host response to UPEC and provide a potential strategy to combat UTIs.
Collapse
Affiliation(s)
- Chetanchandra S Joshi
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amy Mora
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paul A Felder
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Indira U Mysorekar
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Al-Sarraj F. The effect of antibiotics and photodynamic therapy on extended-spectrum beta-lactamase (ESBL) positive of Escherichia coli and Klebsiella pneumoniae in urothelial cells. Saudi J Biol Sci 2021; 28:5561-5567. [PMID: 34588866 PMCID: PMC8459124 DOI: 10.1016/j.sjbs.2021.05.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 01/10/2023] Open
Abstract
Background/aim Urinary tract infections are commonly caused by the bacteria Escherichia coli and Klebsiella pneumoniae (UTI). The emergence of extended-spectrum -lactamase (ESBL)-producing bacteria strains has made UTI treatment more difficult. Materials and methods The aim of this study was to characterize E. coli and K. pneumoniae strains' cytotoxic effects, antibiotic sensitivity, interaction with urothelial cells, and reaction to photodynamic therapy. Results As demonstrated by the higher number of colonies formed, the ESBL + E. coli and K. Pneumonia showed a higher degree of binding with human urothelial cells. With the urothelial cells, K. Pneumonia had the highest binding ability. The cytotoxicity of non-ESBL generating E. coli and K. Pneumonia, on the other hand, was higher. With longer incubation, the discrepancy between the cytotoxic effects of non-ESBL producer and ESBL + E. coli decreased. K. Pneumonia was the opposite. The concentration of ESBL-negative E. coli was easily decreased by photodynamic therapy; however, after a two-hour incubation period, the number of E. coli ESBL + colonies increased from 124 percent to 294 percent. Conclusion With the duration of the incubation period, the number of non-ESBL-producing K. Pneumonia increased. Even with longer incubation times, the number of K. Pneumonia ESBL + colonies decreased, contrary to expectations. The findings show that the two bacterial species differed in terms of cytotoxicity, interaction with urothelial cells, and photodynamic therapy response.
Collapse
Affiliation(s)
- Faisal Al-Sarraj
- Department of Biological Sciences, Faculty of Science, P.O. Box 80203, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
7
|
De Gaetano GV, Lentini G, Galbo R, Coppolino F, Famà A, Teti G, Beninati C. Invasion and trafficking of hypervirulent group B streptococci in polarized enterocytes. PLoS One 2021; 16:e0253242. [PMID: 34129624 PMCID: PMC8205152 DOI: 10.1371/journal.pone.0253242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022] Open
Abstract
Streptococcus agalactiae (group B streptococcus or GBS) is a commensal bacterium that can frequently behave as a pathogen, particularly in the neonatal period and in the elderly. The gut is a primary site of GBS colonization and a potential port of entry during neonatal infections caused by hypervirulent clonal complex 17 (CC17) strains. Here we studied the interactions between the prototypical CC17 BM110 strain and polarized enterocytes using the Caco-2 cell line. GBS could adhere to and invade these cells through their apical or basolateral surfaces. Basolateral invasion was considerably more efficient than apical invasion and predominated under conditions resulting in weakening of cell-to-cell junctions. Bacterial internalization occurred by a mechanism involving caveolae- and lipid raft-dependent endocytosis and actin re-organization, but not clathrin-dependent endocytosis. In the first steps of Caco-2 invasion, GBS colocalized with the early endocytic marker EEA-1, to later reside in acidic vacuoles. Taken together, these data suggest that CC17 GBS selectively adheres to the lateral surface of enterocytes from which it enters through caveolar lipid rafts using a classical, actin-dependent endocytic pathway. These data may be useful to develop alternative preventive strategies aimed at blocking GBS invasion of the intestinal barrier.
Collapse
Affiliation(s)
| | - Germana Lentini
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Roberta Galbo
- Department of Chemical, Biological and Pharmaceutical Sciences, University of Messina, Messina, Italy
| | | | - Agata Famà
- Department of Human Pathology, University of Messina, Messina, Italy
| | | | - Concetta Beninati
- Department of Human Pathology, University of Messina, Messina, Italy
- Scylla Biotech Srl, Messina, Italy
- * E-mail:
| |
Collapse
|
8
|
Hatton NE, Baumann CG, Fascione MA. Developments in Mannose-Based Treatments for Uropathogenic Escherichia coli-Induced Urinary Tract Infections. Chembiochem 2021; 22:613-629. [PMID: 32876368 PMCID: PMC7894189 DOI: 10.1002/cbic.202000406] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/28/2020] [Indexed: 12/16/2022]
Abstract
During their lifetime almost half of women will experience a symptomatic urinary tract infection (UTI) with a further half experiencing a relapse within six months. Currently UTIs are treated with antibiotics, but increasing antibiotic resistance rates highlight the need for new treatments. Uropathogenic Escherichia coli (UPEC) is responsible for the majority of symptomatic UTI cases and thus has become a key pathological target. Adhesion of type one pilus subunit FimH at the surface of UPEC strains to mannose-saturated oligosaccharides located on the urothelium is critical to pathogenesis. Since the identification of FimH as a therapeutic target in the late 1980s, a substantial body of research has been generated focusing on the development of FimH-targeting mannose-based anti-adhesion therapies. In this review we will discuss the design of different classes of these mannose-based compounds and their utility and potential as UPEC therapeutics.
Collapse
Affiliation(s)
- Natasha E. Hatton
- York Structural Biology Lab, Department of ChemistryUniversity of YorkHeslington RoadYorkYO10 5DDUK
| | | | - Martin A. Fascione
- York Structural Biology Lab, Department of ChemistryUniversity of YorkHeslington RoadYorkYO10 5DDUK
| |
Collapse
|
9
|
Brannon JR, Dunigan TL, Beebout CJ, Ross T, Wiebe MA, Reynolds WS, Hadjifrangiskou M. Invasion of vaginal epithelial cells by uropathogenic Escherichia coli. Nat Commun 2020; 11:2803. [PMID: 32499566 PMCID: PMC7272400 DOI: 10.1038/s41467-020-16627-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 05/13/2020] [Indexed: 11/09/2022] Open
Abstract
Host-associated reservoirs account for the majority of recurrent and oftentimes recalcitrant infections. Previous studies established that uropathogenic E. coli - the primary cause of urinary tract infections (UTIs) - can adhere to vaginal epithelial cells preceding UTI. Here, we demonstrate that diverse urinary E. coli isolates not only adhere to, but also invade vaginal cells. Intracellular colonization of the vaginal epithelium is detected in acute and chronic murine UTI models indicating the ability of E. coli to reside in the vagina following UTI. Conversely, in a vaginal colonization model, E. coli are detected inside vaginal cells and the urinary tract, indicating that vaginal colonization can seed the bladder. More critically, bacteria are identified inside vaginal cells from clinical samples from women with a history of recurrent UTI. These findings suggest that E. coli can establish a vaginal intracellular reservoir, where it may reside safely from extracellular stressors prior to causing an ascending infection.
Collapse
Affiliation(s)
- John R Brannon
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Nashville, TN, USA.
| | - Taryn L Dunigan
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Nashville, TN, USA
| | - Connor J Beebout
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Nashville, TN, USA
| | - Tamia Ross
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Nashville, TN, USA
| | - Michelle A Wiebe
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Nashville, TN, USA
| | | | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Nashville, TN, USA.
- Department of Urology, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology & Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
10
|
Role for FimH in Extraintestinal Pathogenic Escherichia coli Invasion and Translocation through the Intestinal Epithelium. Infect Immun 2017; 85:IAI.00581-17. [PMID: 28808163 DOI: 10.1128/iai.00581-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 12/27/2022] Open
Abstract
The translocation of bacteria across the intestinal epithelium of immunocompromised patients can lead to bacteremia and life-threatening sepsis. Extraintestinal pathogenic Escherichia coli (ExPEC), so named because this pathotype infects tissues distal to the intestinal tract, is a frequent cause of such infections, is often multidrug resistant, and chronically colonizes a sizable portion of the healthy population. Although several virulence factors and their roles in pathogenesis are well described for ExPEC strains that cause urinary tract infections and meningitis, they have not been linked to translocation through intestinal barriers, a fundamentally distant yet important clinical phenomenon. Using untransformed ex situ human intestinal enteroids and transformed Caco-2 cells, we report that ExPEC strain CP9 binds to and invades the intestinal epithelium. ExPEC harboring a deletion of the gene encoding the mannose-binding type 1 pilus tip protein FimH demonstrated reduced binding and invasion compared to strains lacking known E. coli virulence factors. Furthermore, in a murine model of chemotherapy-induced translocation, ExPEC lacking fimH colonized at levels comparable to that of the wild type but demonstrated a statistically significant reduction in translocation to the kidneys, spleen, and lungs. Collectively, this study indicates that FimH is important for ExPEC translocation, suggesting that the type 1 pilus is a therapeutic target for the prevention of this process. Our study also highlights the use of human intestinal enteroids in the study of enteric diseases.
Collapse
|
11
|
Abstract
Within the mammalian urinary tract uropathogenic bacteria face many challenges, including the shearing flow of urine, numerous antibacterial molecules, the bactericidal effects of phagocytes, and a scarcity of nutrients. These problems may be circumvented in part by the ability of uropathogenic Escherichia coli and several other uropathogens to invade the epithelial cells that line the urinary tract. By entering host cells, uropathogens can gain access to additional nutrients and protection from both host defenses and antibiotic treatments. Translocation through host cells can facilitate bacterial dissemination within the urinary tract, while the establishment of stable intracellular bacterial populations may create reservoirs for relapsing and chronic urinary tract infections. Here we review the mechanisms and consequences of host cell invasion by uropathogenic bacteria, with consideration of the defenses that are brought to bear against facultative intracellular pathogens within the urinary tract. The relevance of host cell invasion to the pathogenesis of urinary tract infections in human patients is also assessed, along with some of the emerging treatment options that build upon our growing understanding of the infectious life cycle of uropathogenic E. coli and other uropathogens.
Collapse
|
12
|
Magistro G, Marcon J, Schubert S, Gratzke C, Stief CG. [Pathogenesis of urinary tract infections : An update]. Urologe A 2017; 56:720-727. [PMID: 28455576 DOI: 10.1007/s00120-017-0391-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Urinary tract infections are among the most common bacterial infections worldwide. The management has become a public health concern of socioeconomic importance. Every second woman will experience at least one episode in her lifetime. Due to the emergence of multiresistant pathogens and the developmental void, treatment has become more challenging over the years. Deciphering the complex molecular interaction between host and pathogen is necessary to identify potent treatment targets for future approaches. The objective of this review is to present novel aspects on the pathogenesis of urinary tract infections and its relevance for clinical practice.
Collapse
Affiliation(s)
- G Magistro
- Urologische Klinik und Poliklinik der Universität München, Campus Großhadern, Ludwig-Maximilians-Universität München, Marchioninistr. 15, 81377, München, Deutschland.
| | - J Marcon
- Urologische Klinik und Poliklinik der Universität München, Campus Großhadern, Ludwig-Maximilians-Universität München, Marchioninistr. 15, 81377, München, Deutschland
| | - S Schubert
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität München, München, Deutschland
| | - C Gratzke
- Urologische Klinik und Poliklinik der Universität München, Campus Großhadern, Ludwig-Maximilians-Universität München, Marchioninistr. 15, 81377, München, Deutschland
| | - C G Stief
- Urologische Klinik und Poliklinik der Universität München, Campus Großhadern, Ludwig-Maximilians-Universität München, Marchioninistr. 15, 81377, München, Deutschland
| |
Collapse
|
13
|
Abstract
Urinary tract infections (UTI) are among the most common bacterial infections in humans, affecting millions of people every year. UTI cause significant morbidity in women throughout their lifespan, in infant boys, in older men, in individuals with underlying urinary tract abnormalities, and in those that require long-term urethral catheterization, such as patients with spinal cord injuries or incapacitated individuals living in nursing homes. Serious sequelae include frequent recurrences, pyelonephritis with sepsis, renal damage in young children, pre-term birth, and complications of frequent antimicrobial use including high-level antibiotic resistance and Clostridium difficile colitis. Uropathogenic E. coli (UPEC) cause the vast majority of UTI, but less common pathogens such as Enterococcus faecalis and other enterococci frequently take advantage of an abnormal or catheterized urinary tract to cause opportunistic infections. While antibiotic therapy has historically been very successful in controlling UTI, the high rate of recurrence remains a major problem, and many individuals suffer from chronically recurring UTI, requiring long-term prophylactic antibiotic regimens to prevent recurrent UTI. Furthermore, the global emergence of multi-drug resistant UPEC in the past ten years spotlights the need for alternative therapeutic and preventative strategies to combat UTI, including anti-infective drug therapies and vaccines. In this chapter, we review recent advances in the field of UTI pathogenesis, with an emphasis on the identification of promising drug and vaccine targets. We then discuss the development of new UTI drugs and vaccines, highlighting the challenges these approaches face and the need for a greater understanding of urinary tract mucosal immunity.
Collapse
|
14
|
Strengths and Limitations of Model Systems for the Study of Urinary Tract Infections and Related Pathologies. Microbiol Mol Biol Rev 2016; 80:351-67. [PMID: 26935136 DOI: 10.1128/mmbr.00067-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Urinary tract infections (UTIs) are some of the most common bacterial infections worldwide and are a source of substantial morbidity among otherwise healthy women. UTIs can be caused by a variety of microbes, but the predominant etiologic agent of these infections is uropathogenic Escherichia coli (UPEC). An especially troubling feature of UPEC-associated UTIs is their high rate of recurrence. This problem is compounded by the drastic increase in the global incidence of antibiotic-resistant UPEC strains over the past 15 years. The need for more-effective treatments for UTIs is driving research aimed at bettering our understanding of the virulence mechanisms and host-pathogen interactions that occur during the course of these infections. Surrogate models of human infection, including cell culture systems and the use of murine, porcine, avian, teleost (zebrafish), and nematode hosts, are being employed to define host and bacterial factors that modulate the pathogenesis of UTIs. These model systems are revealing how UPEC strains can avoid or overcome host defenses and acquire scarce nutrients while also providing insight into the virulence mechanisms used by UPEC within compromised individuals, such as catheterized patients. Here, we summarize our current understanding of UTI pathogenesis while also giving an overview of the model systems used to study the initiation, persistence, and recurrence of UTIs and life-threatening sequelae like urosepsis. Although we focus on UPEC, the experimental systems described here can also provide valuable insight into the disease processes associated with other bacterial pathogens both within the urinary tract and elsewhere within the host.
Collapse
|
15
|
Histone Deacetylase 6 Regulates Bladder Architecture and Host Susceptibility to Uropathogenic Escherichia coli. Pathogens 2016; 5:pathogens5010020. [PMID: 26907353 PMCID: PMC4810141 DOI: 10.3390/pathogens5010020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/05/2016] [Indexed: 01/05/2023] Open
Abstract
Histone deacetylase 6 (HDAC6) is a non-canonical, mostly cytosolic histone deacetylase that has a variety of interacting partners and substrates. Previous work using cell-culture based assays coupled with pharmacological inhibitors and gene-silencing approaches indicated that HDAC6 promotes the actin- and microtubule-dependent invasion of host cells by uropathogenic Escherichia coli (UPEC). These facultative intracellular pathogens are the major cause of urinary tract infections. Here, we examined the involvement of HDAC6 in bladder colonization by UPEC using HDAC6 knockout mice. Though UPEC was unable to invade HDAC6(-/-) cells in culture, the bacteria had an enhanced ability to colonize the bladders of mice that lacked HDAC6. This effect was transient, and by six hours post-inoculation bacterial titers in the HDAC6(-/-) mice were reduced to levels seen in wild type control animals. Subsequent analyses revealed that the mutant mice had greater bladder volume capacity and fluid retention, along with much higher levels of acetylated a-tubulin. In addition, infiltrating neutrophils recovered from the HDAC6(-/-) bladder harbored significantly more viable bacteria than their wild type counterparts. Cumulatively, these changes may negate any inhibitory effects that the lack of HDAC6 has on UPEC entry into individual host cells, and suggest roles for HDAC6 in other urological disorders such as urinary retention.
Collapse
|
16
|
Complete Genome Sequence of Uropathogenic Escherichia coli Strain CI5. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00558-15. [PMID: 26021932 PMCID: PMC4447917 DOI: 10.1128/genomea.00558-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Escherichia coli represents the primary etiological agent responsible for urinary tract infections, one of the most common infections in humans. We report here the complete genome sequence of uropathogenic Escherichia coli strain CI5, a clinical pyelonephritis isolate used for studying pathogenesis.
Collapse
|
17
|
Lüthje P, Brauner A. Virulence factors of uropathogenic E. coli and their interaction with the host. Adv Microb Physiol 2014; 65:337-72. [PMID: 25476769 DOI: 10.1016/bs.ampbs.2014.08.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Urinary tract infections (UTIs) belong to the most common infectious diseases worldwide. The most frequently isolated pathogen from uncomplicated UTIs is Escherichia coli. To establish infection in the urinary tract, E. coli has to overcome several defence strategies of the host, including the urine flow, exfoliation of urothelial cells, endogenous antimicrobial factors and invading neutrophils. Thus, uropathogenic E. coli (UPEC) harbour a number of virulence and fitness factors enabling the bacterium to resist and overcome these different defence mechanisms. There is no particular factor which allows the identification of UPEC among the commensal faecal flora apart from the ability to enter the urinary tract and cause an infection. Many of potential virulence or fitness factors occur moreover with high redundancy. Fimbriae are inevitable for adherence to and invasion into the host cells; the type 1 pilus is an established virulence factor in UPEC and indispensable for successful infection of the urinary tract. Flagella and toxins promote bacterial dissemination, while different iron-acquisition systems allow bacterial survival in the iron-limited environment of the urinary tract. The immune response to UPEC is primarily mediated by toll-like receptors recognising lipopolysaccharide, flagella and other structures on the bacterial surface. UPEC have the capacity to subvert this immune response of the host by means of actively impacting on pro-inflammatory signalling pathways, or by physical masking of immunogenic structures. The large repertoire of bacterial virulence and fitness factors in combination with host-related differences results in a complex interaction between host and pathogen in the urinary tract.
Collapse
Affiliation(s)
- Petra Lüthje
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
18
|
Blango MG, Ott EM, Erman A, Veranic P, Mulvey MA. Forced resurgence and targeting of intracellular uropathogenic Escherichia coli reservoirs. PLoS One 2014; 9:e93327. [PMID: 24667805 PMCID: PMC3965547 DOI: 10.1371/journal.pone.0093327] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/03/2014] [Indexed: 11/19/2022] Open
Abstract
Intracellular quiescent reservoirs of uropathogenic Escherichia coli (UPEC), which can seed the bladder mucosa during the acute phase of a urinary tract infection (UTI), are protected from antibiotic treatments and are extremely difficult to eliminate. These reservoirs are a potential source for recurrent UTIs that affect millions annually. Here, using murine infection models and the bladder cell exfoliant chitosan, we demonstrate that intracellular UPEC populations shift within the stratified layers of the urothelium during the course of a UTI. Following invasion of the terminally differentiated superficial layer of epithelial cells that line the bladder lumen, UPEC can multiply and disseminate, eventually establishing reservoirs within underlying immature host cells. If given access, UPEC can invade the superficial and immature bladder cells equally well. As infected immature host cells differentiate and migrate towards the apical surface of the bladder, UPEC can reinitiate growth and discharge into the bladder lumen. By inducing the exfoliation of the superficial layers of the urothelium, chitosan stimulates rapid regenerative processes and the reactivation and efflux of quiescent intracellular UPEC reservoirs. When combined with antibiotics, chitosan treatment significantly reduces bacterial loads within the bladder and may therefore be of therapeutic value to individuals with chronic, recurrent UTIs.
Collapse
Affiliation(s)
- Matthew G. Blango
- Division of Microbiology and Immunology, Pathology Department, University of Utah, Salt Lake City, Utah, United States of America
| | - Elizabeth M. Ott
- Division of Microbiology and Immunology, Pathology Department, University of Utah, Salt Lake City, Utah, United States of America
| | - Andreja Erman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljublijana, Slovenia
| | - Peter Veranic
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljublijana, Slovenia
| | - Matthew A. Mulvey
- Division of Microbiology and Immunology, Pathology Department, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
19
|
Gouin SG, Roos G, Bouckaert J. Discovery and Application of FimH Antagonists. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_52] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
20
|
Ingersoll MA, Albert ML. From infection to immunotherapy: host immune responses to bacteria at the bladder mucosa. Mucosal Immunol 2013; 6:1041-53. [PMID: 24064671 DOI: 10.1038/mi.2013.72] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/20/2013] [Indexed: 02/04/2023]
Abstract
The pathogenesis of urinary tract infection and mechanisms of the protective effect of Bacillus Calmette-Guerin (BCG) therapy for bladder cancer highlight the importance of studying the bladder as a unique mucosal surface. Innate responses to bacteria are reviewed, and although our collective knowledge remains incomplete, we discuss how adaptive immunity may be generated following bacterial challenge in the bladder microenvironment. Interestingly, the widely held belief that the bladder is sterile has been challenged recently, indicating the need for further study of the impact of commensal microorganisms on the immune response to uropathogen infection or intentional instillation of BCG. This review addresses the aspects of bladder biology that have been well explored and defines what still must be discovered about the immunobiology of this understudied organ.
Collapse
Affiliation(s)
- M A Ingersoll
- 1] Unité d'Immunobiologie des Cellules Dendritiques, Department of Immunology, Institut Pasteur, Paris, France [2] INSERM U818, Department of Immunology, Institut Pasteur, Paris, France [3] Université Paris Descartes, Paris, France
| | | |
Collapse
|
21
|
Lamberti Y, Gorgojo J, Massillo C, Rodriguez ME. Bordetella pertussis entry into respiratory epithelial cells and intracellular survival. Pathog Dis 2013; 69:194-204. [PMID: 23893966 DOI: 10.1111/2049-632x.12072] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 06/28/2013] [Accepted: 07/18/2013] [Indexed: 01/06/2023] Open
Abstract
Bordetella pertussis is the causative agent of pertussis, aka whooping cough. Although generally considered an extracellular pathogen, this bacterium has been found inside respiratory epithelial cells, which might represent a survival strategy inside the host. Relatively little is known, however, about the mechanism of internalization and the fate of B. pertussis inside the epithelia. We show here that B. pertussis is able to enter those cells by a mechanism dependent on microtubule assembly, lipid raft integrity, and the activation of a tyrosine-kinase-mediated signaling. Once inside the cell, a significant proportion of the intracellular bacteria evade phagolysosomal fusion and remain viable in nonacidic lysosome-associated membrane-protein-1-negative compartments. In addition, intracellular B. pertussis was found able to repopulate the extracellular environment after complete elimination of the extracellular bacteria with polymyxin B. Taken together, these data suggest that B. pertussis is able to survive within respiratory epithelial cells and by this means potentially contribute to host immune system evasion.
Collapse
Affiliation(s)
- Yanina Lamberti
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | | | |
Collapse
|
22
|
The Cpx stress response system potentiates the fitness and virulence of uropathogenic Escherichia coli. Infect Immun 2013; 81:1450-9. [PMID: 23429541 DOI: 10.1128/iai.01213-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Strains of uropathogenic Escherichia coli (UPEC) are the primary cause of urinary tract infections, representing one of the most widespread and successful groups of pathogens on the planet. To colonize and persist within the urinary tract, UPEC must be able to sense and respond appropriately to environmental stresses, many of which can compromise the bacterial envelope. The Cpx two-component envelope stress response system is comprised of the inner membrane histidine kinase CpxA, the cytosolic response regulator CpxR, and the periplasmic auxiliary factor CpxP. Here, by using deletion mutants along with mouse and zebrafish infection models, we show that the Cpx system is critical to the fitness and virulence of two reference UPEC strains, the cystitis isolate UTI89 and the urosepsis isolate CFT073. Specifically, deletion of the cpxRA operon impaired the ability of UTI89 to colonize the murine bladder and greatly reduced the virulence of CFT073 during both systemic and localized infections within zebrafish embryos. These defects coincided with diminished host cell invasion by UTI89 and increased sensitivity of both strains to complement-mediated killing and the aminoglycoside antibiotic amikacin. Results obtained with the cpxP deletion mutants were more complicated, indicating variable strain-dependent and niche-specific requirements for this well-conserved auxiliary factor.
Collapse
|
23
|
Affiliation(s)
- Ine Jorgensen
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Patrick C. Seed
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Microbiology and Molecular Genetics, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
24
|
Hannan TJ, Totsika M, Mansfield KJ, Moore KH, Schembri MA, Hultgren SJ. Host-pathogen checkpoints and population bottlenecks in persistent and intracellular uropathogenic Escherichia coli bladder infection. FEMS Microbiol Rev 2012; 36:616-48. [PMID: 22404313 DOI: 10.1111/j.1574-6976.2012.00339.x] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bladder infections affect millions of people yearly, and recurrent symptomatic infections (cystitis) are very common. The rapid increase in infections caused by multidrug-resistant uropathogens threatens to make recurrent cystitis an increasingly troubling public health concern. Uropathogenic Escherichia coli (UPEC) cause the vast majority of bladder infections. Upon entry into the lower urinary tract, UPEC face obstacles to colonization that constitute population bottlenecks, reducing diversity, and selecting for fit clones. A critical mucosal barrier to bladder infection is the epithelium (urothelium). UPEC bypass this barrier when they invade urothelial cells and form intracellular bacterial communities (IBCs), a process which requires type 1 pili. IBCs are transient in nature, occurring primarily during acute infection. Chronic bladder infection is common and can be either latent, in the form of the quiescent intracellular reservoir (QIR), or active, in the form of asymptomatic bacteriuria (ASB/ABU) or chronic cystitis. In mice, the fate of bladder infection, QIR, ASB, or chronic cystitis, is determined within the first 24 h of infection and constitutes a putative host-pathogen mucosal checkpoint that contributes to susceptibility to recurrent cystitis. Knowledge of these checkpoints and bottlenecks is critical for our understanding of bladder infection and efforts to devise novel therapeutic strategies.
Collapse
Affiliation(s)
- Thomas J Hannan
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
25
|
Li J, Song J, Cassidy MG, Rychahou P, Starr ME, Liu J, Li X, Epperly G, Weiss HL, Townsend CM, Gao T, Evers BM. PI3K p110α/Akt signaling negatively regulates secretion of the intestinal peptide neurotensin through interference of granule transport. Mol Endocrinol 2012; 26:1380-93. [PMID: 22700584 DOI: 10.1210/me.2012-1024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Neurotensin (NT), an intestinal peptide secreted from N cells in the small bowel, regulates a variety of physiological functions of the gastrointestinal tract, including secretion, gut motility, and intestinal growth. The class IA phosphatidylinositol 3-kinase (PI3K) family, which comprised of p110 catalytic (α, β and δ) and p85 regulatory subunits, has been implicated in the regulation of hormone secretion from endocrine cells. However, the underlying mechanisms remain poorly understood. In particular, the role of PI3K in intestinal peptide secretion is not known. Here, we show that PI3K catalytic subunit, p110α, negatively regulates NT secretion in vitro and in vivo. We demonstrate that inhibition of p110α, but not p110β, induces NT release in BON, a human endocrine cell line, which expresses NT mRNA and produces NT peptide in a manner analogous to N cells, and QGP-1, a pancreatic endocrine cell line that produces NT peptide. In contrast, overexpression of p110α decreases NT secretion. Consistently, p110α-inhibition increases plasma NT levels in mice. To further delineate the mechanisms contributing to this effect, we demonstrate that inhibition of p110α increases NT granule trafficking by up-regulating α-tubulin acetylation; NT secretion is prevented by overexpression of HDAC6, an α-tubulin deacetylase. Moreover, ras-related protein Rab27A (a small G protein) and kinase D-interacting substrate of 220 kDa (Kidins220), which are associated with NT granules, play a negative and positive role, respectively, in p110α-inhibition-induced NT secretion. Our findings identify the critical role and novel mechanisms for the PI3K signaling pathway in the control of intestinal hormone granule transport and release.
Collapse
Affiliation(s)
- Jing Li
- Department of Surgery, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dhakal BK, Mulvey MA. The UPEC pore-forming toxin α-hemolysin triggers proteolysis of host proteins to disrupt cell adhesion, inflammatory, and survival pathways. Cell Host Microbe 2012; 11:58-69. [PMID: 22264513 DOI: 10.1016/j.chom.2011.12.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 10/05/2011] [Accepted: 12/02/2011] [Indexed: 12/28/2022]
Abstract
Uropathogenic Escherichia coli (UPEC), which are the leading cause of both acute and chronic urinary tract infections, often secrete a labile pore-forming toxin known as α-hemolysin (HlyA). We show that stable insertion of HlyA into epithelial cell and macrophage membranes triggers degradation of the cytoskeletal scaffolding protein paxillin and other host regulatory proteins, as well as components of the proinflammatory NFκB signaling cascade. Proteolysis of these factors requires host serine proteases, and paxillin degradation specifically involves the serine protease mesotrypsin. The induced activation of mesotrypsin by HlyA is preceded by redistribution of mesotrypsin precursors from the cytosol into foci along microtubules and within nuclei. HlyA intoxication also stimulated caspase activation, which occurred independently of effects on host serine proteases. HlyA-induced proteolysis of host proteins likely allows UPEC to not only modulate epithelial cell functions, but also disable macrophages and suppress inflammatory responses.
Collapse
Affiliation(s)
- Bijaya K Dhakal
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah 84112-0565, USA
| | | |
Collapse
|
27
|
Escherichia coli uropathogenesis in vitro: invasion, cellular escape, and secondary infection analyzed in a human bladder cell infection model. Infect Immun 2012; 80:1858-67. [PMID: 22354025 DOI: 10.1128/iai.06075-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) strains are capable of invading bladder epithelial cells (BECs) on the bladder luminal surface. Based primarily on studies in mouse models, invasion is proposed to trigger an intracellular uropathogenic cascade involving intracellular bacterial proliferation followed by escape of elongated, filamentous bacteria from colonized BECs. UPEC filaments on the mouse bladder epithelium are able to revert to rod-shaped bacteria, which are believed to invade neighboring cells to initiate new rounds of intracellular colonization. So far, however, these late-stage infection events have not been replicated in vitro. We have established an in vitro model of human bladder cell infection by the use of a flow chamber (FC)-based culture system, which allows investigation of steps subsequent to initial invasion. Short-term bacterial colonization on the FC-BEC layer led to intracellular colonization. Exposing invaded BECs to a flow of urine, i.e., establishing conditions similar to those faced by UPEC reemerging on the bladder luminal surface, led to outgrowth of filamentous bacteria similar to what has been reported to occur in mice. These filaments were capable of reverting to rods that could invade other BECs. Hence, under growth conditions established to resemble those present in vivo, the elements of the proposed uropathogenic cascade were inducible in a human BEC model system. Here, we describe the model and show how these characteristics are reproduced in vitro.
Collapse
|
28
|
Haglund CM, Welch MD. Pathogens and polymers: microbe-host interactions illuminate the cytoskeleton. ACTA ACUST UNITED AC 2011; 195:7-17. [PMID: 21969466 PMCID: PMC3187711 DOI: 10.1083/jcb.201103148] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intracellular pathogens subvert the host cell cytoskeleton to promote their own survival, replication, and dissemination. Study of these microbes has led to many discoveries about host cell biology, including the identification of cytoskeletal proteins, regulatory pathways, and mechanisms of cytoskeletal function. Actin is a common target of bacterial pathogens, but recent work also highlights the use of microtubules, cytoskeletal motors, intermediate filaments, and septins. The study of pathogen interactions with the cytoskeleton has illuminated key cellular processes such as phagocytosis, macropinocytosis, membrane trafficking, motility, autophagy, and signal transduction.
Collapse
Affiliation(s)
- Cat M Haglund
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
29
|
Colocalization of serum amyloid a with microtubules in human coronary artery endothelial cells. J Biomed Biotechnol 2011; 2011:528276. [PMID: 22131810 PMCID: PMC3205747 DOI: 10.1155/2011/528276] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 07/06/2011] [Indexed: 01/08/2023] Open
Abstract
Serum amyloid A (SAA) acts as a major acute phase protein and represents a sensitive and accurate marker of inflammation. Besides its hepatic origin, as the main source of serum SAA, this protein is also produced extrahepatically. The mRNA levels of SAA become significantly elevated following proinflammatory stimuli, as well as, are induced through their own positive feedback in human primary coronary artery endothelial cells. However, the intracellular functions of SAA are so far unknown. Colocalization of SAA with cytoskeletal filaments has previously been proposed, so we analyzed the colocalization of SAA with all three cytoskeletal elements: actin filaments, vimentin filaments, and microtubules. Immunofluorescent double-labeling analyses confirmed by PLA method revealed a strict colocalization of SAA with microtubules and a very infrequent attachment to vimentin while the distribution of actin filaments appeared clearly separated from SAA staining. Also, no significant colocalization was found between SAA and endomembranes labeled with the fluorescent lipid stain DiO6. However, SAA appears to be located also unbound in the cytosol, as well as inside the nucleus and within nanotubes extending from the cells or bridging neighboring cells. These different locations of SAA in endothelial cells strongly indicate multiple potential functions of this protein.
Collapse
|
30
|
Kim H, White CD, Sacks DB. IQGAP1 in microbial pathogenesis: Targeting the actin cytoskeleton. FEBS Lett 2011; 585:723-9. [PMID: 21295032 DOI: 10.1016/j.febslet.2011.01.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 01/25/2011] [Accepted: 01/26/2011] [Indexed: 11/18/2022]
Abstract
Microbial pathogens cause widespread morbidity and mortality. Central to the pathogens' virulence is manipulation of the host cell's cytoskeleton, which facilitates microbial invasion, multiplication, and avoidance of the innate immune response. IQGAP1 is a ubiquitously expressed scaffold protein that integrates diverse signaling cascades. Research has shown that IQGAP1 binds to and modulates the activity of multiple proteins that participate in bacterial invasion. Here, we review data that support a role for IQGAP1 in infectious disease via its ability to regulate the actin cytoskeleton. In addition, we explore other mechanisms by which IQGAP1 may be exploited by microbial pathogens.
Collapse
Affiliation(s)
- Hugh Kim
- Department of Translational Medicine, Brigham and Women's Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, MA 02115, USA
| | | | | |
Collapse
|
31
|
Sadoul K, Wang J, Diagouraga B, Khochbin S. The tale of protein lysine acetylation in the cytoplasm. J Biomed Biotechnol 2011; 2011:970382. [PMID: 21151618 PMCID: PMC2997609 DOI: 10.1155/2011/970382] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/29/2010] [Indexed: 12/21/2022] Open
Abstract
Reversible posttranslational modification of internal lysines in many cellular or viral proteins is now emerging as part of critical signalling processes controlling a variety of cellular functions beyond chromatin and transcription. This paper aims at demonstrating the role of lysine acetylation in the cytoplasm driving and coordinating key events such as cytoskeleton dynamics, intracellular trafficking, vesicle fusion, metabolism, and stress response.
Collapse
Affiliation(s)
- Karin Sadoul
- 1INSERM, U823, Institut Albert Bonniot, Université Joseph Fourier Grenoble 1, 38700 Grenoble, France
- *Karin Sadoul:
| | - Jin Wang
- 1INSERM, U823, Institut Albert Bonniot, Université Joseph Fourier Grenoble 1, 38700 Grenoble, France
- 2State Key Laboratory of Medical Genomics, Department of Hematology, Ruijin Hospital, Shanghai Institute of Hematology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Boubou Diagouraga
- 1INSERM, U823, Institut Albert Bonniot, Université Joseph Fourier Grenoble 1, 38700 Grenoble, France
| | - Saadi Khochbin
- 1INSERM, U823, Institut Albert Bonniot, Université Joseph Fourier Grenoble 1, 38700 Grenoble, France
| |
Collapse
|
32
|
Hannan TJ, Mysorekar IU, Hung CS, Isaacson-Schmid ML, Hultgren SJ. Early severe inflammatory responses to uropathogenic E. coli predispose to chronic and recurrent urinary tract infection. PLoS Pathog 2010; 6:e1001042. [PMID: 20811584 PMCID: PMC2930321 DOI: 10.1371/journal.ppat.1001042] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 07/13/2010] [Indexed: 01/10/2023] Open
Abstract
Chronic infections are an increasing problem due to the aging population and the increase in antibiotic resistant organisms. Therefore, understanding the host-pathogen interactions that result in chronic infection is of great importance. Here, we investigate the molecular basis of chronic bacterial cystitis. We establish that introduction of uropathogenic E. coli (UPEC) into the bladders of C3H mice results in two distinct disease outcomes: resolution of acute infection or development of chronic cystitis lasting months. The incidence of chronic cystitis is both host strain and infectious dose-dependent. Further, development of chronic cystitis is preceded by biomarkers of local and systemic acute inflammation at 24 hours post-infection, including severe pyuria and bladder inflammation with mucosal injury, and a distinct serum cytokine signature consisting of elevated IL-5, IL-6, G-CSF, and the IL-8 analog KC. Mice deficient in TLR4 signaling or lymphocytes lack these innate responses and are resistant, to varying degrees, to developing chronic cystitis. Treatment of C3H mice with the glucocorticoid anti-inflammatory drug dexamethasone prior to UPEC infection also suppresses the development of chronic cystitis. Finally, individuals with a history of chronic cystitis, lasting at least 14 days, are significantly more susceptible to redeveloping severe, chronic cystitis upon bacterial challenge. Thus, we have discovered that the development of chronic cystitis in C3H mice by UPEC is facilitated by severe acute inflammatory responses early in infection, which subsequently are predisposing to recurrent cystitis, an insidious problem in women. Overall, these results have significant implications for our understanding of how early host-pathogen interactions at the mucosal surface determines the fate of disease.
Collapse
Affiliation(s)
- Thomas J. Hannan
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Indira U. Mysorekar
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Chia S. Hung
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Megan L. Isaacson-Schmid
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Scott J. Hultgren
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
33
|
Persistence of uropathogenic Escherichia coli in the face of multiple antibiotics. Antimicrob Agents Chemother 2010; 54:1855-63. [PMID: 20231390 DOI: 10.1128/aac.00014-10] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Numerous antibiotics have proven to be effective at ameliorating the clinical symptoms of urinary tract infections (UTIs), but recurrent and chronic infections continue to plague many individuals. Most UTIs are caused by strains of uropathogenic Escherichia coli (UPEC), which can form both extra- and intracellular biofilm-like communities within the bladder. UPEC also persist inside host urothelial cells in a more quiescent state, sequestered within late endosomal compartments. Here, we tested a panel of 17 different antibiotics, representing seven distinct functional classes, for their effects on the survival of the reference UPEC isolate UTI89 within both biofilms and host bladder urothelial cells. All but one of the tested antibiotics prevented UTI89 growth in broth culture, and most were at least modestly effective against bacteria present within in vitro-grown biofilms. In contrast, only a few of the antibiotics, including nitrofurantoin and the fluoroquinolones ciprofloxacin and sparfloxacin, were able to eliminate intracellular bacteria in bladder cell culture-based assays. However, in a mouse UTI model system in which these antibiotics reached concentrations in the urine specimens that far exceeded minimal inhibitory doses, UPEC reservoirs in bladder tissues were not effectively eradicated. We conclude that the persistence of UPEC within the bladder, regardless of antibiotic treatments, is likely facilitated by a combination of biofilm formation, entry of UPEC into a quiescent or semiquiescent state within host cells, and the stalwart permeability barrier function associated with the bladder urothelium.
Collapse
|
34
|
Sivick KE, Mobley HLT. Waging war against uropathogenic Escherichia coli: winning back the urinary tract. Infect Immun 2010; 78:568-85. [PMID: 19917708 PMCID: PMC2812207 DOI: 10.1128/iai.01000-09] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Urinary tract infection (UTI) caused by uropathogenic Escherichia coli (UPEC) is a substantial economic and societal burden-a formidable public health issue. Symptomatic UTI causes significant discomfort in infected patients, results in lost productivity, predisposes individuals to more serious infections, and usually necessitates antibiotic therapy. There is no licensed vaccine available for prevention of UTI in humans in the United States, likely due to the challenge of targeting a relatively heterogeneous group of pathogenic strains in a unique physiological niche. Despite significant advances in the understanding of UPEC biology, mechanistic details regarding the host response to UTI and full comprehension of genetic loci that influence susceptibility require additional work. Currently, there is an appreciation for the role of classic innate immune responses-from pattern receptor recognition to recruitment of phagocytic cells-that occur during UPEC-mediated UTI. There is, however, a clear disconnect regarding how factors involved in the innate immune response to UPEC stimulate acquired immunity that facilitates enhanced clearance upon reinfection. Unraveling the molecular details of this process is vital in the development of a successful vaccine for prevention of human UTI. Here, we survey the current understanding of host responses to UPEC-mediated UTI with an eye on molecular and cellular factors whose activity may be harnessed by a vaccine that stimulates lasting and sterilizing immunity.
Collapse
Affiliation(s)
- Kelsey E. Sivick
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
35
|
Positive selection identifies an in vivo role for FimH during urinary tract infection in addition to mannose binding. Proc Natl Acad Sci U S A 2009; 106:22439-44. [PMID: 20018753 DOI: 10.1073/pnas.0902179106] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
FimH, the type 1 pilus adhesin of uropathogenic Escherichia coli (UPEC), contains a receptor-binding domain with an acidic binding pocket specific for mannose. The fim operon, and thus type 1 pilus production, is under transcriptional control via phase variation of an invertible promoter element. FimH is critical during urinary tract infection for mediating colonization and invasion of the bladder epithelium and establishment of intracellular bacterial communities (IBCs). In silico analysis of FimH gene sequences from 279 E. coli strains identified specific amino acids evolving under positive selection outside of its mannose-binding pocket. Mutating two of these residues (A27V/V163A) had no effect on phase variation, pilus assembly, or mannose binding in vitro. However, compared to wild-type, this double mutant strain exhibited a 10,000-fold reduction in mouse bladder colonization 24 h after inoculation and was unable to form IBCs even though it bound normally to mannosylated receptors in the urothelium. In contrast, the single A62S mutation altered phase variation, reducing the proportion of piliated cells, reduced mannose binding 8-fold, and decreased bladder colonization 30-fold in vivo compared to wild-type. A phase-locked ON A62S mutant restored virulence to wild-type levels even though in vitro mannose binding remained impaired. Thus, positive selection analysis of FimH has separated mannose binding from in vivo fitness, suggesting that IBC formation is critical for successful infection of the mammalian bladder, providing support for more general use of in silico positive selection analysis to define the molecular underpinnings of bacterial pathogenesis.
Collapse
|
36
|
Croxen MA, Finlay BB. Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol 2009; 8:26-38. [DOI: 10.1038/nrmicro2265] [Citation(s) in RCA: 668] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Pizarro-Cerdá J, Cossart P. Listeria monocytogenesMembrane Trafficking and Lifestyle: The Exception or the Rule? Annu Rev Cell Dev Biol 2009; 25:649-70. [DOI: 10.1146/annurev.cellbio.042308.113331] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Javier Pizarro-Cerdá
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris F75015, France
- INSERM, U604, Paris F75015, France
- INRA, USC2020, Paris F75015, France; ,
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris F75015, France
- INSERM, U604, Paris F75015, France
- INRA, USC2020, Paris F75015, France; ,
| |
Collapse
|
38
|
Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat Chem Biol 2009; 5:913-9. [PMID: 19915538 DOI: 10.1038/nchembio.242] [Citation(s) in RCA: 317] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 08/28/2009] [Indexed: 01/16/2023]
Abstract
Curli are functional extracellular amyloid fibers produced by uropathogenic Escherichia coli (UPEC) and other Enterobacteriaceae. Ring-fused 2-pyridones, such as FN075 and BibC6, inhibited curli biogenesis in UPEC and prevented the in vitro polymerization of the major curli subunit protein CsgA. The curlicides FN075 and BibC6 share a common chemical lineage with other ring-fused 2-pyridones termed pilicides. Pilicides inhibit the assembly of type 1 pili, which are required for pathogenesis during urinary tract infection. Notably, the curlicides retained pilicide activities and inhibited both curli-dependent and type 1-dependent biofilms. Furthermore, pretreatment of UPEC with FN075 significantly attenuated virulence in a mouse model of urinary tract infection. Curli and type 1 pili exhibited exclusive and independent roles in promoting UPEC biofilms, and curli provided a fitness advantage in vivo. Thus, the ability of FN075 to block the biogenesis of both curli and type 1 pili endows unique anti-biofilm and anti-virulence activities on these compounds.
Collapse
|