1
|
Tilliole P, Fix S, Godin JD. hnRNPs: roles in neurodevelopment and implication for brain disorders. Front Mol Neurosci 2024; 17:1411639. [PMID: 39086926 PMCID: PMC11288931 DOI: 10.3389/fnmol.2024.1411639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) constitute a family of multifunctional RNA-binding proteins able to process nuclear pre-mRNAs into mature mRNAs and regulate gene expression in multiple ways. They comprise at least 20 different members in mammals, named from A (HNRNP A1) to U (HNRNP U). Many of these proteins are components of the spliceosome complex and can modulate alternative splicing in a tissue-specific manner. Notably, while genes encoding hnRNPs exhibit ubiquitous expression, increasing evidence associate these proteins to various neurodevelopmental and neurodegenerative disorders, such as intellectual disability, epilepsy, microcephaly, amyotrophic lateral sclerosis, or dementias, highlighting their crucial role in the central nervous system. This review explores the evolution of the hnRNPs family, highlighting the emergence of numerous new members within this family, and sheds light on their implications for brain development.
Collapse
Affiliation(s)
- Pierre Tilliole
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Simon Fix
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Juliette D. Godin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|
2
|
Liu L, Nguyen H, Das U, Ogunsola S, Yu J, Lei L, Kung M, Pejhan S, Rastegar M, Xie J. Epigenetic control of adaptive or homeostatic splicing during interval-training activities. Nucleic Acids Res 2024; 52:7211-7224. [PMID: 38661216 PMCID: PMC11229381 DOI: 10.1093/nar/gkae311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024] Open
Abstract
Interval-training activities induce adaptive cellular changes without altering their fundamental identity, but the precise underlying molecular mechanisms are not fully understood. In this study, we demonstrate that interval-training depolarization (ITD) of pituitary cells triggers distinct adaptive or homeostatic splicing responses of alternative exons. This occurs while preserving the steady-state expression of the Prolactin and other hormone genes. The nature of these splicing responses depends on the exon's DNA methylation status, the methyl-C-binding protein MeCP2 and its associated CA-rich motif-binding hnRNP L. Interestingly, the steady expression of the Prolactin gene is also reliant on MeCP2, whose disruption leads to exacerbated multi-exon aberrant splicing and overexpression of the hormone gene transcripts upon ITD, similar to the observed hyperprolactinemia or activity-dependent aberrant splicing in Rett Syndrome. Therefore, epigenetic control is crucial for both adaptive and homeostatic splicing and particularly the steady expression of the Prolactin hormone gene during ITD. Disruption in this regulation may have significant implications for the development of progressive diseases.
Collapse
Affiliation(s)
- Ling Liu
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Hai Nguyen
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Urmi Das
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Samuel Ogunsola
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jiankun Yu
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Lei Lei
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Matthew Kung
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Shervin Pejhan
- Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Mojgan Rastegar
- Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jiuyong Xie
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
3
|
Wu ZH, He LL, Wang CC, Liang C, Li HY, Zhong DW, Dong ZX, Zhang LJ, Zhang XQ, Ge LF, Chen S. Unveiling unique alternative splicing responses to low temperature in Zoysia japonica through ZjRTD1.0, a high-quality reference transcript dataset. PHYSIOLOGIA PLANTARUM 2024; 176:e14280. [PMID: 38644527 DOI: 10.1111/ppl.14280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/29/2024] [Accepted: 03/09/2024] [Indexed: 04/23/2024]
Abstract
Inadequate reference databases in RNA-seq analysis can hinder data utilization and interpretation. In this study, we have successfully constructed a high-quality reference transcript dataset, ZjRTD1.0, for Zoysia japonica, a widely-used turfgrass with exceptional tolerance to various abiotic stress, including low temperatures and salinity. This dataset comprises 113,089 transcripts from 57,143 genes. BUSCO analysis demonstrates exceptional completeness (92.4%) in ZjRTD1.0, with reduced proportions of fragmented (3.3%) and missing (4.3%) orthologs compared to prior datasets. ZjRTD1.0 enables more precise analyses, including transcript quantification and alternative splicing assessments using public datasets, which identified a substantial number of differentially expressed transcripts (DETs) and differential alternative splicing (DAS) events, leading to several novel findings on Z. japonica's responses to abiotic stresses. First, spliceosome gene expression influenced alternative splicing significantly under abiotic stress, with a greater impact observed during low-temperature stress. Then, a significant positive correlation was found between the number of differentially expressed genes (DEGs) encoding protein kinases and the frequency of DAS events, suggesting the role of protein phosphorylation in regulating alternative splicing. Additionally, our results suggest possible involvement of serine/arginine-rich (SR) proteins and heterogeneous nuclear ribonucleoproteins (hnRNPs) in generating inclusion/exclusion isoforms under low-temperature stress. Furthermore, our investigation revealed a significantly enhanced overlap between DEGs and differentially alternatively spliced genes (DASGs) in response to low-temperature stress, suggesting a unique co-regulatory mechanism governing transcription and splicing in the context of low-temperature response. In conclusion, we have proven that ZjRTD1.0 will serve as a reliable and useful resource for future transcriptomic analyses in Z. japonica.
Collapse
Affiliation(s)
- Zhi-Hao Wu
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Liang-Liang He
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Cong-Cong Wang
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Chen Liang
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Han-Ying Li
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Dan-Wen Zhong
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Zhao-Xia Dong
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Li-Juan Zhang
- Shenzhen Tourism College of Jinan University, Shenzhen, Guangdong, China
| | - Xiang-Qian Zhang
- College of Food Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Liang-Fa Ge
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Shu Chen
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| |
Collapse
|
4
|
Transcriptome-Wide Detection of Intron/Exon Definition in the Endogenous Pre-mRNA Transcripts of Mammalian Cells and Its Regulation by Depolarization. Int J Mol Sci 2022; 23:ijms231710157. [PMID: 36077555 PMCID: PMC9456152 DOI: 10.3390/ijms231710157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
Pairing of splice sites across an intron or exon is the central point of intron or exon definition in pre-mRNA splicing with the latter mode proposed for most mammalian exons. However, transcriptome-wide pairing within endogenous transcripts has not been examined for the prevalence of each mode in mammalian cells. Here we report such pairings in rat GH3 pituitary cells by measuring the relative abundance of nuclear RNA-Seq reads at the intron start or end (RISE). Interestingly, RISE indexes are positively correlated between 5′ and 3′ splice sites specifically across introns or exons but inversely correlated with the usage of adjacent exons. Moreover, the ratios between the paired indexes were globally modulated by depolarization, which was disruptible by 5-aza-Cytidine. The nucleotide matrices of the RISE-positive splice sites deviate significantly from the rat consensus, and short introns or exons are enriched with the cross-intron or -exon RISE pairs, respectively. Functionally, the RISE-positive genes cluster for basic cellular processes including RNA binding/splicing, or more specifically, hormone production if regulated by depolarization. Together, the RISE analysis identified the transcriptome-wide regulation of either intron or exon definition between weak splice sites of short introns/exons in mammalian cells. The analysis also provides a way to further track the splicing intermediates and intron/exon definition during the dynamic regulation of alternative splicing by extracellular factors.
Collapse
|
5
|
Nguyen H, Xie J. Widespread Separation of the Polypyrimidine Tract From 3' AG by G Tracts in Association With Alternative Exons in Metazoa and Plants. Front Genet 2019; 9:741. [PMID: 30693020 PMCID: PMC6339879 DOI: 10.3389/fgene.2018.00741] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/22/2018] [Indexed: 12/23/2022] Open
Abstract
At the end of introns, the polypyrimidine tract (Py) is often close to the 3′ AG in a consensus (Y)20NCAGgt in humans. Interestingly, we have found that they could also be separated by purine-rich elements including G tracts in thousands of human genes. These regulatory elements between the Py and 3′ AG (REPA) mainly regulate alternative 3′ splice sites (3′ SS) and intron retention. Here we show their widespread distribution and special properties across kingdoms. The purine-rich 3′ SS are found in up to about 60% of the introns among more than 1,000 species/lineages by whole genome analysis, and up to 18% of these introns contain the REPA G-tracts (REPAG) in about 0.6 million of 3′ SS in total. In particular, they are significantly enriched over their 3′ SS and genome backgrounds in metazoa and plants, and highly associated with alternative splicing of genes in diverse functional clusters. Cryptic splice sites harboring such G- and the other purine-triplets tend to be enriched (2–9 folds over the disrupted canonical 3′ SS) and aberrantly used in cancer patients carrying mutations of the SF3B1 or U2AF35, factors critical for branch point (BP) or 3′ AG recognition, respectively. Moreover, the REPAGs are significantly associated with reduced occurrences of BP motifs between the −24 and −4 positions, in particular absent between the −7 and −5 positions in several model organisms examined. The more distant BPs are associated with increased occurrences of alternative splicing in humans and zebrafish. The REPAGs appear to have evolved in a species- or phylum-specific way. Thus, there is widespread separation of the Py and 3′ AG by REPAGs that have evolved differentially. This special 3′ SS arrangement likely contributes to the generation of diverse transcript or protein isoforms in biological functions or diseases through alternative or aberrant splicing.
Collapse
Affiliation(s)
- Hai Nguyen
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Applied Computer Sciences, University of Winnipeg, Winnipeg, MB, Canada
| | - Jiuyong Xie
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
6
|
Multilevel Differential Control of Hormone Gene Expression Programs by hnRNP L and LL in Pituitary Cells. Mol Cell Biol 2018; 38:MCB.00651-17. [PMID: 29610151 PMCID: PMC5974433 DOI: 10.1128/mcb.00651-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/22/2018] [Indexed: 12/20/2022] Open
Abstract
The pituitary-derived somatolactotrophe GH3 cells secrete both growth hormone (GH) and prolactin (PRL). We have found that the hnRNP L and L-like (LL) paralogs differentially regulate alternative splicing of genes in these cells. Here, we show that hnRNP L is essential for PRL only, but LL is essential for both PRL and GH production. Transcriptome-wide RNA sequencing (RNA-Seq) analysis indicates that they differentially control groups of hormone or hormone-related genes involved in hormone production/regulation at total transcript and alternative exon levels. Interestingly, hnRNP L also specifically binds and prevents the aberrant usage of a nonconserved CA-rich intron piece of Prl pre-mRNA transcripts, and many others involved in endocrine functions, to prevent mostly cryptic last exons and mRNA truncation. Essential for the full hnRNP L effect on specific exons is a proline-rich region that emerged during evolution in vertebrate hnRNP L only but not LL. Together, our data demonstrate that the hnRNP L and its paralog, LL, differentially control hormone gene expression programs at multiple levels, and hnRNP L in particular is critical for protecting the transcriptome from aberrant usage of intronic sequences. The multilevel differential control by hnRNPs likely tailors the transcriptome to help refine and safeguard the different gene expression programs for different hormones.
Collapse
|
7
|
Liu C, Wang J, Yuan X, Qian W, Zhang B, Shi M, Xie J, Shen B, Xu H, Hou Z, Chen H. Long noncoding RNA uc.345 promotes tumorigenesis of pancreatic cancer by upregulation of hnRNPL expression. Oncotarget 2018; 7:71556-71566. [PMID: 27689400 PMCID: PMC5342101 DOI: 10.18632/oncotarget.12253] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 09/20/2016] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence points to an important functional or regulatory role of long noncoding RNA in cellular processes as well as cancer diseases resulted from the aberrant lncRNA expression. LncRNA could participate in the cancer progression and develop a significant role through the interaction with proteins. In the present study, we report a lncRNA termed uc.345 that is up-regulated in tumor tissues, compared to the corresponding noncancerous tissues. We found that a higher uc.345 expression level was more frequently observed in tissues with increased depth of invasion and advanced TNM tumor node metastasis T stage. Moreover, uc.345 could be used as an independent risk factor for the overall survival (OS) of the pancreatic cancer patients. By employing soft agar assays and tumor xenograft models, we showed that uc.345 could accelerate tumor growth. Further, we discovered that uc.345 could upregulate the hnRNPL expression and that inhibition of (hnRNPL) dampens the tumorigenesis capability of uc.345. Collectively, these results demonstrate that uc.345 functions as an oncogenic lncRNA that promotes tumor progression and serves as a poor predictor for pancreatic cancer patients' overall survival.
Collapse
Affiliation(s)
- Chao Liu
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiamin Wang
- Hongqiao Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoyuan Yuan
- Hongqiao Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenli Qian
- Hongqiao Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bosen Zhang
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Minmin Shi
- Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Junjie Xie
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Baiyong Shen
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong Xu
- Hongqiao Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhaoyuan Hou
- Hongqiao Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Chen
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Signaling Pathways Driving Aberrant Splicing in Cancer Cells. Genes (Basel) 2017; 9:genes9010009. [PMID: 29286307 PMCID: PMC5793162 DOI: 10.3390/genes9010009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/07/2017] [Accepted: 12/18/2017] [Indexed: 12/17/2022] Open
Abstract
Aberrant profiles of pre-mRNA splicing are frequently observed in cancer. At the molecular level, an altered profile results from a complex interplay between chromatin modifications, the transcriptional elongation rate of RNA polymerase, and effective binding of the spliceosome to the generated transcripts. Key players in this interplay are regulatory splicing factors (SFs) that bind to gene-specific splice-regulatory sequence elements. Although mutations in genes of some SFs were described, a major driver of aberrant splicing profiles is oncogenic signal transduction pathways. Signaling can affect either the transcriptional expression levels of SFs or the post-translational modification of SF proteins, and both modulate the ratio of nuclear versus cytoplasmic SFs in a given cell. Here, we will review currently known mechanisms by which cancer cell signaling, including the mitogen-activated protein kinases (MAPK), phosphatidylinositol 3 (PI3)-kinase pathway (PI3K) and wingless (Wnt) pathways but also signals from the tumor microenvironment, modulate the activity or subcellular localization of the Ser/Arg rich (SR) proteins and heterogeneous nuclear ribonucleoproteins (hnRNPs) families of SFs.
Collapse
|
9
|
Chen X, Sun Y, Huang H, Liu W, Hu P, Huang X, Zou F, Liu J. Uncovering the proteome response of murine neuroblastoma cells against low-dose exposure to saxitoxin. Toxicol Mech Methods 2017; 28:335-344. [DOI: 10.1080/15376516.2017.1411413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiao Chen
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ye Sun
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Haiyan Huang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Wei Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Panpan Hu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xinfeng Huang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
10
|
Implications of the thyroid hormone on neuronal development with special emphasis on the calmodulin-kinase IV pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:877-882. [PMID: 27939430 DOI: 10.1016/j.bbamcr.2016.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/29/2016] [Accepted: 12/02/2016] [Indexed: 12/16/2022]
Abstract
Thyroid hormones influence brain development through regulation of gene expression. This is especially true for Ca2+-dependent regulation since a major pathway is controlled by the Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) which in turn is induced by the thyroid hormone T3. In addition, CaMKIV is involved in regulation of alternative splicing of a number of protein isoforms, among them PMCA1a, the neuronal specific isoform of the plasma membrane calcium pump. On the other hand, hypothyroidism or CaMKIV deficiency can have a severe influence on brain development. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
|
11
|
Sharma A, Nguyen H, Cai L, Lou H. Histone hyperacetylation and exon skipping: a calcium-mediated dynamic regulation in cardiomyocytes. Nucleus 2016; 6:273-8. [PMID: 26325491 DOI: 10.1080/19491034.2015.1081324] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In contrast to cell type-specific pre-mRNA alternative splicing, mechanisms controlling activity-dependent alternative splicing is under-studied and not well understood. In a recent study, we conducted a comprehensive analysis of calcium-mediated mechanism that regulates alternative exon skipping in mouse cardiomyocytes. Our results reveal a strong link between histone hyperacetylation and skipping of cassette exons, and provide support to the kinetic coupling model of the epigenetic regulation of alternative splicing at the chromatin level.
Collapse
Affiliation(s)
- Alok Sharma
- a Department of Genetics and Genome Sciences ; Case Western Reserve University ; Cleveland , OH USA
| | | | | | | |
Collapse
|
12
|
Cutaneous tissue damage induces long-lasting nociceptive sensitization and regulation of cellular stress- and nerve injury-associated genes in sensory neurons. Exp Neurol 2016; 283:413-27. [PMID: 27264359 DOI: 10.1016/j.expneurol.2016.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/10/2016] [Accepted: 06/01/2016] [Indexed: 12/15/2022]
Abstract
Tissue damage is one of the major etiological factors in the emergence of chronic/persistent pain, although mechanisms remain enigmatic. Using incision of the back skin of adult rats as a model for tissue damage, we observed sensitization in a nociceptive reflex enduring to 28days post-incision (DPI). To determine if the enduring behavioral changes corresponded with a long-term impact of tissue damage on sensory neurons, we examined the temporal expression profile of injury-regulated genes and the electrophysiological properties of traced dorsal root ganglion (DRG) sensory neurons. The mRNA for the injury/stress-hub gene Activating Transcription Factor 3 (ATF3) was upregulated and peaked within 4 DPI, after which levels declined but remained significantly elevated out to 28 DPI, a time when the initial incision appears healed and tissue-inflammation largely resolved. Accordingly, stereological image analysis indicated that some neurons expressed ATF3 only transiently (mostly medium-large neurons), while in others it was sustained (mostly small neurons), suggesting cell-type-specific responses. In retrogradely-traced ATF3-expressing neurons, Calcium/calmodulin-dependent protein kinase type IV (CAMK4) protein levels and isolectin-B4 (IB4)-binding were suppressed whereas Growth Associated Protein-43 (GAP-43) and Neuropeptide Y (NPY) protein levels were enhanced. Electrophysiological recordings from DiI-traced sensory neurons 28 DPI showed a significant sensitization limited to ATF3-expressing neurons. Thus, ATF3 expression is revealed as a strong predictor of single cells displaying enduring pain-related electrophysiological properties. The cellular injury/stress response induced in sensory neurons by tissue damage and indicated by ATF3 expression is positioned to contribute to pain which can occur after tissue damage.
Collapse
|
13
|
Sohail M, Xie J. Diverse regulation of 3' splice site usage. Cell Mol Life Sci 2015; 72:4771-93. [PMID: 26370726 PMCID: PMC11113787 DOI: 10.1007/s00018-015-2037-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/12/2015] [Accepted: 09/03/2015] [Indexed: 01/13/2023]
Abstract
The regulation of splice site (SS) usage is important for alternative pre-mRNA splicing and thus proper expression of protein isoforms in cells; its disruption causes diseases. In recent years, an increasing number of novel regulatory elements have been found within or nearby the 3'SS in mammalian genes. The diverse elements recruit a repertoire of trans-acting factors or form secondary structures to regulate 3'SS usage, mostly at the early steps of spliceosome assembly. Their mechanisms of action mainly include: (1) competition between the factors for RNA elements, (2) steric hindrance between the factors, (3) direct interaction between the factors, (4) competition between two splice sites, or (5) local RNA secondary structures or longer range loops, according to the mode of protein/RNA interactions. Beyond the 3'SS, chromatin remodeling/transcription, posttranslational modifications of trans-acting factors and upstream signaling provide further layers of regulation. Evolutionarily, some of the 3'SS elements seem to have emerged in mammalian ancestors. Moreover, other possibilities of regulation such as that by non-coding RNA remain to be explored. It is thus likely that there are more diverse elements/factors and mechanisms that influence the choice of an intron end. The diverse regulation likely contributes to a more complex but refined transcriptome and proteome in mammals.
Collapse
Affiliation(s)
- Muhammad Sohail
- Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Jiuyong Xie
- Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.
- Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
14
|
Feng D, Cheng Y, Meng Y, Zou L, Huang S, Xie J. Multiple effects of curcumin on promoting expression of the exon 7-containing SMN2 transcript. GENES AND NUTRITION 2015; 10:40. [PMID: 26386842 DOI: 10.1007/s12263-015-0486-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/14/2015] [Indexed: 01/18/2023]
Abstract
Survival of motor neuron 2 (SMN2) is a modifier gene for spinal muscular atrophy (SMA), a neurodegenerative disease caused by insufficient SMN protein mostly due to SMN1 defect. SMN2 is nearly identical to SMN1 but unfortunately only able to produce a small amount of SMN protein due to exon 7 skipping. The exon 7-containing SMN2 transcript (SMN2_E7+) can be increased by a dietary compound, curcumin, but the involved molecular changes are not clear. Here we have found that in fibroblast cells of a SMA type II patient, curcumin enhanced the inclusion of SMN2 exon 7. Examination of the potential splicing factors showed that curcumin specifically increased the protein and transcript levels of SRSF1. The increased SRSF1 protein was mainly nuclear and hyperphosphorylated. Interestingly, the curcumin effects on the SMN2 and SRSF1 transcripts were inhibited by a protein deacetylase inhibitor, trichostatin A. Moreover, in support of its role in the SMN2 splicing, knocking down SRSF1 reduced the inclusion of SMN2 exon 7. Thus, curcumin appears to have multiple effects on the SMN2 transcript and its splicing regulators, including the change of alternative splicing and transcript/protein level as well as phosphorylation. Protein deacetylases and phosphatases are likely involved in these effects. Interestingly, the effects all seem to favor production of the SMN2_E7+ transcript in SMA patient cells.
Collapse
Affiliation(s)
- Dairong Feng
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.,Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.,Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Yi Cheng
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.,Department of Diagnostic Ultrasound, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yan Meng
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.,Department of Pediatrics, Chinese PLA General Hospital, Beijing, 100853, China
| | - Liping Zou
- Department of Pediatrics, Chinese PLA General Hospital, Beijing, 100853, China
| | - Shangzhi Huang
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jiuyong Xie
- Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada. .,Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
15
|
Sohail M, Zhang M, Litchfield D, Wang L, Kung S, Xie J. Differential expression, distinct localization and opposite effect on Golgi structure and cell differentiation by a novel splice variant of human PRMT5. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2444-52. [PMID: 26151339 DOI: 10.1016/j.bbamcr.2015.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/20/2015] [Accepted: 07/03/2015] [Indexed: 01/20/2023]
Abstract
Alternative splicing contributes greatly to the proteomic diversity of metazoans. Protein arginine methyltransferase 5 (PRMT5) methylates arginines of Golgi components and other factors exerting diverse effects on cell growth/differentiation, but the underlying molecular basis for its subcellular distribution and diverse roles has not been fully understood. Here we show the detailed properties of an evolutionarily emerged splice variant of human PRMT5 (PRMT5S) that is distinct from the original isoform (PRMT5L). The isoforms are differentially expressed among mammalian cells and tissues. The PRMT5S is distributed all over the cell but PRMT5L mainly colocalizes with Giantin, a Golgi marker. PRMT5 knockdown led to an enlarged Giantin pattern, which was prevented by the expression of either isoform. Rescuing PRMT5S also increased the percentage of cells with an interphase Giantin pattern compacted at one end of the nucleus, consistent with its cell cycle-arresting effect, while rescuing PRMT5L increased that of the mitotic Giantin patterns of dynamically fragmented structures. Moreover, the isoforms are differentially expressed during neuronal or dendritic cell differentiation, and their ectopic expression showed an opposite effect on dendritic cell differentiation. Furthermore, besides their differential regulation of gene expression, both isoforms also similarly regulate over a thousand genes particularly those involved in apoptosis and differentiation. Taking these properties together, we propose that their differential expression and subcellular localization contribute to spatial and temporal regulation of arginine methylation and gene expression to exert different effects. The novel PRMT5S likely contributes to the observed diverse effects of PRMT5 in cells.
Collapse
Affiliation(s)
- Muhammad Sohail
- Department of Physiology & Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Manli Zhang
- Department of Immunology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - David Litchfield
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Canada
| | - Sam Kung
- Department of Immunology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Jiuyong Xie
- Department of Physiology & Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; Department of Biochemistry & Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
16
|
Loh TJ, Cho S, Moon H, Jang HN, Williams DR, Jung DW, Kim IC, Ghigna C, Biamonti G, Zheng X, Shen H. hnRNP L inhibits CD44 V10 exon splicing through interacting with its upstream intron. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:743-50. [DOI: 10.1016/j.bbagrm.2015.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 12/27/2022]
|
17
|
Koumbadinga GA, Mahmood N, Lei L, Kan Y, Cao W, Lobo VG, Yao X, Zhang S, Xie J. Increased stability of heterogeneous ribonucleoproteins by a deacetylase inhibitor. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1095-103. [PMID: 25959059 DOI: 10.1016/j.bbagrm.2015.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 04/27/2015] [Accepted: 05/01/2015] [Indexed: 11/15/2022]
Abstract
Splicing factors are often influenced by various signaling pathways, contributing to the dynamic changes of protein isoforms in cells. Heterogeneous ribonucleoproteins (hnRNPs) regulate many steps of RNA metabolism including pre-mRNA splicing but their control by cell signaling particularly through acetylation and ubiquitination pathways remains largely unknown. Here we show that TSA, a deacetylase inhibitor, reduced the ratio of Bcl-x splice variants Bcl-xL/xS in MDA-MB-231 breast cancer cells. This TSA effect was independent of TGFβ1; however, only in the presence of TGFβ1 was TSA able to change the splicing regulators hnRNP F/H by slightly reducing their mRNA transcripts but strongly preventing protein degradation. The latter was also efficiently prevented by lactacystin, a proteasome inhibitor, suggesting their protein stability control by both acetylation and ubiquitination pathways. Three lysines K87, K98 and K224 of hnRNP F are potential targets of the mutually exclusive acetylation or ubiquitination (K(Ac/Ub)) in the protein modification database PhosphoSitePlus. Mutating each of them but not a control non-K(Ac/Ub) (K68) specifically abolished the TSA enhancement of protein stability. Moreover, mutating K98 (K98R) and K224 (K224R) also abolished the TSA regulation of alternative splicing of a Bcl-x mini-gene. Furthermore, about 86% (30 of 35) of the multi-functional hnRNP proteins in the database contain lysines that are potential sites for acetylation/ubiquitination. We demonstrate that the degradation of three of them (A1, I and L) are also prevented by TSA. Thus, the deacetylase inhibitor TSA enhances hnRNP F stability through the K(Ac/Ub) lysines, with some of them essential for its regulation of alternative splicing. Such a regulation of protein stability is perhaps common for a group of hnRNPs and RNA metabolism.
Collapse
Affiliation(s)
- Geremy A Koumbadinga
- Department of Physiology & Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Niaz Mahmood
- Biochemistry & Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Lei Lei
- Department of Physiology & Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Yunchao Kan
- Department of Physiology & Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; Nanyang Normal University, Nanyang, Henan, PR China
| | - Wenguang Cao
- Department of Physiology & Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Vincent G Lobo
- Department of Physiology & Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Xiaojian Yao
- Department of Medical Microbiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Shetuan Zhang
- Department of Biomedical and Molecular Sciences, Queens University, Kingston, ON, Canada
| | - Jiuyong Xie
- Department of Physiology & Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; Biochemistry & Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
18
|
Feng D, Su RC, Zou L, Triggs-Raine B, Huang S, Xie J. Increase of a group of PTC(+) transcripts by curcumin through inhibition of the NMD pathway. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1104-15. [PMID: 25934542 DOI: 10.1016/j.bbagrm.2015.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/07/2015] [Accepted: 04/22/2015] [Indexed: 12/11/2022]
Abstract
Nonsense-mediated mRNA decay (NMD), an mRNA surveillance mechanism, eliminates premature termination codon-containing (PTC⁺) transcripts. For instance, it maintains the homeostasis of splicing factors and degrades aberrant transcripts of human genetic disease genes. Here we examine the inhibitory effect on the NMD pathway and consequent increase of PTC+ transcripts by the dietary compound curcumin. We have found that several PTC⁺ transcripts including that of serine/arginine-rich splicing factor 1 (SRSF1) were specifically increased in cells by curcumin. We also observed a similar curcumin effect on the PTC⁺ mutant transcript from a Tay-Sachs-causing HEXA allele or from a beta-globin reporter gene. The curcumin effect was accompanied by significantly reduced expression of the NMD factors UPF1, 2, 3A and 3B. Consistently, in chromatin immunoprecipitation assays, curcumin specifically reduced the occupancy of acetyl-histone H3 and RNA polymerase II at the promoter region (-376 to -247nt) of human UPF1, in a time- and dosage-dependent way. Importantly, knocking down UPF1 abolished or substantially reduced the difference of PTC(+) transcript levels between control and curcumin-treated cells. The disrupted curcumin effect was efficiently rescued by expression of exogenous Myc-UPF1 in the knockdown cells. Together, our data demonstrate that a group of PTC⁺ transcripts are stabilized by a dietary compound curcumin through the inhibition of UPF factor expression and the NMD pathway.
Collapse
Affiliation(s)
- Dairong Feng
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100005, China; Department of Physiology and Pathophysiology, Faculty of Medicine, University of Manitoba, Winnipeg MB R3E 0J9, Canada
| | - Ruey-Chyi Su
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg MB R3E 0J9, Canada
| | - Liping Zou
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, China
| | - Barbara Triggs-Raine
- Department of Biochemistry & Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg MB R3E 0J9, Canada
| | - Shangzhi Huang
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100005, China.
| | - Jiuyong Xie
- Department of Physiology and Pathophysiology, Faculty of Medicine, University of Manitoba, Winnipeg MB R3E 0J9, Canada.
| |
Collapse
|
19
|
Evolutionary emergence of a novel splice variant with an opposite effect on the cell cycle. Mol Cell Biol 2015; 35:2203-14. [PMID: 25870105 DOI: 10.1128/mcb.00190-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/06/2015] [Indexed: 11/20/2022] Open
Abstract
Alternative splicing contributes greatly to the diversification of mammalian proteomes, but the molecular basis for the evolutionary emergence of splice variants remains poorly understood. We have recently found a novel class of splicing regulatory elements between the polypyrimidine tract (Py) and 3' AG (REPA) at intron ends in many human genes, including the multifunctional PRMT5 (for protein arginine methyltransferase 5) gene. The PRMT5 element is comprised of two G tracts that arise in most mammals and accompany significant exon skipping in human transcripts. The G tracts inhibit splicing by recruiting heterogeneous nuclear ribonucleoprotein (hnRNP) H and F (H/F) to reduce U2AF65 binding to the Py, causing exon skipping. The resulting novel shorter variant PRMT5S exhibits a histone H4R3 methylation effect similar to that seen with the original longer PRMT5L isoform but exhibits a distinct localization and preferential control of critical genes for cell cycle arrest at interphase in comparison to PRMT5L. This report thus provides a molecular mechanism for the evolutionary emergence of a novel splice variant with an opposite function in a fundamental cell process. The presence of REPA elements in a large group of genes implies their wider impact on different cellular processes for increased protein diversity in humans.
Collapse
|
20
|
Mahmood N, Xie J. An endogenous 'non-specific' protein detected by a His-tag antibody is human transcription regulator YY1. Data Brief 2014. [PMID: 26217706 PMCID: PMC4459774 DOI: 10.1016/j.dib.2014.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Histidine-tags have been used for a wide variety of experiments including protein purification, Western blots, immunoprecipitation and immunohistochemistry. In our previous studies, we have repeatedly detected a ‘non-specific’ endogenous protein of about 60 kD in Western blots of protein lysates from HEK293T or HeLa cells using the anti-His-tag antibody (His-probe (H3), catalogue #, SC-8036, Santa Cruz Biotech. Co.) (Yu et al., J. Biol. Chem. 284 (2009) 1505–1513). Here we have immunoprecipitated the protein from HeLa nuclear extracts using the anti-His-tag antibody, excised the 60 kD band and subjected it to LC–MS/MS (Fig. 1). The deduced sequences of two peptides of the protein match the human transcriptional regulator YY1 (Yin and Yang 1, UniProt ID, P25490, Fig. 2), which contains 11 histidine residues in a stretch (from amino acid 70 to 80) at its NH2-terminal region without known functions (Lee et al., Nucleic Acids Res. 23 (1995) 925–931; Bushmeyer et al., J. Biol. Chem. 270 (1995) 30213–30220). Since genes encoding other Histidine-repeat proteins also exist in the genome (Salichs et al., PLoS Genet. 5 (2009) e1000397), it is possible that YY1 might not be the only endogenous protein that could be expressed and recognized by the antibody in different sources of samples in future experiments. The presence of various endogenous histidine-repeat proteins suggests that data from experiments particularly immunostaining using His-tag antibodies need to be interpreted with caution. This might also be useful to the broader scientific community by providing an example for the interpretation of ‘non-specific’ bands in Western blots.
Collapse
Affiliation(s)
- Niaz Mahmood
- Department of Biochemistry & Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada R3E 0J9
| | - Jiuyong Xie
- Department of Biochemistry & Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada R3E 0J9 ; Physiology & Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada R3E 0J9
| |
Collapse
|
21
|
Krebs J. The plethora of PMCA isoforms: Alternative splicing and differential expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:2018-24. [PMID: 25535949 DOI: 10.1016/j.bbamcr.2014.12.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/08/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022]
Abstract
In this review the four different genes of the mammalian plasma membrane calcium ATPase (PMCA) and their spliced isoforms are discussed with respect to their tissue distribution, their differences during development and their importance for regulating Ca²⁺ homeostasis under different conditions. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Collapse
Affiliation(s)
- Joachim Krebs
- NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
22
|
Sohail M, Cao W, Mahmood N, Myschyshyn M, Hong SP, Xie J. Evolutionarily emerged G tracts between the polypyrimidine tract and 3' AG are splicing silencers enriched in genes involved in cancer. BMC Genomics 2014; 15:1143. [PMID: 25523808 PMCID: PMC4320613 DOI: 10.1186/1471-2164-15-1143] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 12/10/2014] [Indexed: 12/23/2022] Open
Abstract
Background The 3′ splice site (SS) at the end of pre-mRNA introns has a consensus sequence (Y)nNYAG for constitutive splicing of mammalian genes. Deviation from this consensus could change or interrupt the usage of the splice site leading to alternative or aberrant splicing, which could affect normal cell function or even the development of diseases. We have shown that the position “N” can be replaced by a CA-rich RNA element called CaRRE1 to regulate the alternative splicing of a group of genes. Results Taking it a step further, we searched the human genome for purine-rich elements between the -3 and -10 positions of the 3′ splice sites of annotated introns. This identified several thousand such 3′SS; more than a thousand of them contain at least one copy of G tract. These sites deviate significantly from the consensus of constitutive splice sites and are highly associated with alterative splicing events, particularly alternative 3′ splice and intron retention. We show by mutagenesis analysis and RNA interference that the G tracts are splicing silencers and a group of the associated exons are controlled by the G tract binding proteins hnRNP H/F. Species comparison of a group of the 3′SS among vertebrates suggests that most (~87%) of the G tracts emerged in ancestors of mammals during evolution. Moreover, the host genes are most significantly associated with cancer. Conclusion We call these elements together with CaRRE1 regulatory RNA elements between the Py and 3′AG (REPA). The emergence of REPA in this highly constrained region indicates that this location has been remarkably permissive for the emergence of de novo regulatory RNA elements, even purine-rich motifs, in a large group of mammalian genes during evolution. This evolutionary change controls alternative splicing, likely to diversify proteomes for particular cellular functions. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1143) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiuyong Xie
- Department of Physiology, University of Manitoba, 440 BMSB, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
23
|
Wang Y, Liu J, Huang BO, Xu YM, Li J, Huang LF, Lin J, Zhang J, Min QH, Yang WM, Wang XZ. Mechanism of alternative splicing and its regulation. Biomed Rep 2014; 3:152-158. [PMID: 25798239 DOI: 10.3892/br.2014.407] [Citation(s) in RCA: 265] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/10/2014] [Indexed: 12/11/2022] Open
Abstract
Alternative splicing of precursor mRNA is an essential mechanism to increase the complexity of gene expression, and it plays an important role in cellular differentiation and organism development. Regulation of alternative splicing is a complicated process in which numerous interacting components are at work, including cis-acting elements and trans-acting factors, and is further guided by the functional coupling between transcription and splicing. Additional molecular features, such as chromatin structure, RNA structure and alternative transcription initiation or alternative transcription termination, collaborate with these basic components to generate the protein diversity due to alternative splicing. All these factors contributing to this one fundamental biological process add up to a mechanism that is critical to the proper functioning of cells. Any corruption of the process may lead to disruption of normal cellular function and the eventuality of disease. Cancer is one of those diseases, where alternative splicing may be the basis for the identification of novel diagnostic and prognostic biomarkers, as well as new strategies for therapy. Thus, an in-depth understanding of alternative splicing regulation has the potential not only to elucidate fundamental biological principles, but to provide solutions for various diseases.
Collapse
Affiliation(s)
- Yan Wang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Jing Liu
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - B O Huang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Yan-Mei Xu
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Jing Li
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Lin-Feng Huang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Jin Lin
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Jing Zhang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Qing-Hua Min
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Wei-Ming Yang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Xiao-Zhong Wang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| |
Collapse
|
24
|
Xie J. Differential evolution of signal-responsive RNA elements and upstream factors that control alternative splicing. Cell Mol Life Sci 2014; 71:4347-60. [PMID: 25064062 PMCID: PMC11113106 DOI: 10.1007/s00018-014-1688-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/13/2014] [Accepted: 07/17/2014] [Indexed: 12/17/2022]
Abstract
Cell signal-regulated alternative splicing occurs for many genes but the evolutionary origin of the regulatory components and their relationship remain unclear. This review focuses on the alternative splicing components of several systems based on the available bioinformatics data. Eight mammalian RNA elements for signal-regulated splicing were aligned among corresponding sequences from dozens of representative vertebrate species to allow for assessment of the trends in evolutionary changes. Four distinct trends were observed. Four of the elements are highly conserved in bird, reptile and fish species examined (i); two elements can be found in fish but the sequences have been changing till in marsupials or higher mammals (ii); one element is almost exclusively found in mammals with mostly the same sequence (iii); and one element can be found in birds or lower vertebrates but expanded abruptly to have variable numbers of copies in mammals (iv). All examined prototype trans-acting factors and protein kinases emerged earlier than the RNA elements but additional (paralog) factors emerged in the same or later species. Thus, after their emergence mainly in fish or mammals with pre-existing prototype trans-acting factors/kinases, half of the elements have been highly conserved from fish to humans but the other half have evolved differentially with additional trans-acting factors. Their differential evolution likely contributes to the exon- and species/class-specific control of alternative splicing and its regulation by cell signals. The evolvement of a group of mammal-specific components would help relay signals from extracellular stimuli to the splicing machinery and thus contribute to higher proteomic diversity.
Collapse
Affiliation(s)
- Jiuyong Xie
- Departments of Physiology, Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada,
| |
Collapse
|
25
|
Abstract
Sequence-specific RNA-binding proteins (RBPs) bind to pre-mRNA to control alternative splicing, but it is not yet possible to read the 'splicing code' that dictates splicing regulation on the basis of genome sequence. Each alternative splicing event is controlled by multiple RBPs, the combined action of which creates a distribution of alternatively spliced products in a given cell type. As each cell type expresses a distinct array of RBPs, the interpretation of regulatory information on a given RNA target is exceedingly dependent on the cell type. RBPs also control each other's functions at many levels, including by mutual modulation of their binding activities on specific regulatory RNA elements. In this Review, we describe some of the emerging rules that govern the highly context-dependent and combinatorial nature of alternative splicing regulation.
Collapse
Affiliation(s)
- Xiang-Dong Fu
- Department of Cellular and Molecular Medicine and Institute for Genomic, Medicine, University of California San Diego, La Jolla, California 92093–0651, USA
| | - Manuel Ares
- Center for Molecular Biology of RNA, and Department of Molecular, Cell, and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
26
|
Abstract
Evolution has exploited the chemical properties of Ca(2+), which facilitate its reversible binding to the sites of irregular geometry offered by biological macromolecules, to select it as a carrier of cellular signals. A number of proteins bind Ca(2+) to specific sites: those intrinsic to membranes play the most important role in the spatial and temporal regulation of the concentration and movements of Ca(2+) inside cells. Those which are soluble, or organized in non-membranous structures, also decode the Ca(2+) message to be then transmitted to the targets of its regulation. Since Ca(2+) controls the most important processes in the life of cells, it must be very carefully controlled within the cytoplasm, where most of the targets of its signaling function reside. Membrane channels (in the plasma membrane and in the organelles) mediate the entrance of Ca(2+) into the cytoplasm, ATPases, exchangers, and the mitochondrial Ca(2+) uptake system remove Ca(2+) from it. The concentration of Ca(2+) in the external spaces, which is controlled essentially by its dynamic exchanges in the bone system, is much higher than inside cells, and can, under conditions of pathology, generate a situation of dangerous internal Ca(2+) overload. When massive and persistent, the Ca(2+) overload culminates in the death of the cell. Subtle conditions of cellular Ca(2+) dyshomeostasis that affect individual systems that control Ca(2+), generate cell disease phenotypes that are particularly severe in tissues in which the signaling function of Ca(2+) has special importance, e.g., the nervous system.
Collapse
Affiliation(s)
- Marisa Brini
- Department of Biology, University of Padova, Via U. Bassi 58/B, I-35131, Padova, Italy,
| | | | | | | |
Collapse
|
27
|
Refinement of the spectra of exon usage by combined effects of extracellular stimulus and intracellular factors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:537-45. [PMID: 24844182 DOI: 10.1016/j.bbagrm.2014.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/29/2014] [Accepted: 05/12/2014] [Indexed: 11/23/2022]
Abstract
Finely tuned differential expression of alternative splice variants contributes to important physiological processes such as the fine-tuning of electrical firing or hearing frequencies; yet the underlying molecular basis for the expression control is not clear. The inclusion levels of four depolarization-regulated alternative exons were measured by RT-PCR in GH3 pituitary cells under different conditions of stimulation and/or RNA interference of splicing factors. The usage of the exons was reduced by membrane depolarization to various extents and was differentially modulated by the knock-down of splicing factors hnRNP L, L-like, I (PTBP1) or K or their combinations. A spectrum of each exon's level was produced under six knock-down conditions and was significantly shifted by depolarization. When all these conditions were considered together, a more refined or expanded spectrum of exon usage was obtained for each of the four exons. As a proof of principle for the molecular basis of the fine-tuning of exon usage, we show in the cases of hnRNP L and LL that their differential effects through the same element or different combinations of RNA sequences by the same factor hnRNP L are critical. The results thus demonstrate that the combined effect of varying extracellular stimuli and intracellular factors/RNA sequences refines or expands the spectra of endogenous exon usage, likely contributing to the fine-tuning of cellular properties.
Collapse
|
28
|
Rossbach O, Hung LH, Khrameeva E, Schreiner S, König J, Curk T, Zupan B, Ule J, Gelfand MS, Bindereif A. Crosslinking-immunoprecipitation (iCLIP) analysis reveals global regulatory roles of hnRNP L. RNA Biol 2014; 11:146-55. [PMID: 24526010 DOI: 10.4161/rna.27991] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein L (hnRNP L) is a multifunctional RNA-binding protein that is involved in many different processes, such as regulation of transcription, translation, and RNA stability. We have previously characterized hnRNP L as a global regulator of alternative splicing, binding to CA-repeat, and CA-rich RNA elements. Interestingly, hnRNP L can both activate and repress splicing of alternative exons, but the precise mechanism of hnRNP L-mediated splicing regulation remained unclear. To analyze activities of hnRNP L on a genome-wide level, we performed individual-nucleotide resolution crosslinking-immunoprecipitation in combination with deep-sequencing (iCLIP-Seq). Sequence analysis of the iCLIP crosslink sites showed significant enrichment of C/A motifs, which perfectly agrees with the in vitro binding consensus obtained earlier by a SELEX approach, indicating that in vivo hnRNP L binding targets are mainly determined by the RNA-binding activity of the protein. Genome-wide mapping of hnRNP L binding revealed that the protein preferably binds to introns and 3' UTR. Additionally, position-dependent splicing regulation by hnRNP L was demonstrated: The protein represses splicing when bound to intronic regions upstream of alternative exons, and in contrast, activates splicing when bound to the downstream intron. These findings shed light on the longstanding question of differential hnRNP L-mediated splicing regulation. Finally, regarding 3' UTR binding, hnRNP L binding preferentially overlaps with predicted microRNA target sites, indicating global competition between hnRNP L and microRNA binding. Translational regulation by hnRNP L was validated for a subset of predicted target 3'UTRs.
Collapse
Affiliation(s)
- Oliver Rossbach
- Institute of Biochemistry; University of Giessen; Giessen, Germany
| | - Lee-Hsueh Hung
- Institute of Biochemistry; University of Giessen; Giessen, Germany
| | - Ekaterina Khrameeva
- Kharkevich Institute for Information Transmission Problems; Russian Academy of Sciences; Moscow, Russia; Department of Bioengineering and Bioinformatics; Lomonosov Moscow State University; Moscow, Russia
| | - Silke Schreiner
- Institute of Biochemistry; University of Giessen; Giessen, Germany
| | - Julian König
- Institute of Molecular Biology (IMB); Mainz, Germany; Institute of Neurology; University College London; London, United Kingdom
| | - Tomaž Curk
- Faculty of Computer and Information Science; University of Ljubljana; Ljubljana, Slovenia
| | - Blaž Zupan
- Faculty of Computer and Information Science; University of Ljubljana; Ljubljana, Slovenia
| | - Jernej Ule
- Institute of Neurology; University College London; London, United Kingdom
| | - Mikhail S Gelfand
- Kharkevich Institute for Information Transmission Problems; Russian Academy of Sciences; Moscow, Russia; Department of Bioengineering and Bioinformatics; Lomonosov Moscow State University; Moscow, Russia
| | | |
Collapse
|
29
|
Harrison BJ, Flight RM, Gomes C, Venkat G, Ellis SR, Sankar U, Twiss JL, Rouchka EC, Petruska JC. IB4-binding sensory neurons in the adult rat express a novel 3' UTR-extended isoform of CaMK4 that is associated with its localization to axons. J Comp Neurol 2014; 522:308-36. [PMID: 23817991 PMCID: PMC3855891 DOI: 10.1002/cne.23398] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 06/13/2013] [Accepted: 06/19/2013] [Indexed: 01/22/2023]
Abstract
Calcium/calmodulin-dependent protein kinase 4 (gene and transcript: CaMK4; protein: CaMKIV) is the nuclear effector of the Ca(2+) /calmodulin kinase (CaMK) pathway where it coordinates transcriptional responses. However, CaMKIV is present in the cytoplasm and axons of subpopulations of neurons, including some sensory neurons of the dorsal root ganglia (DRG), suggesting an extranuclear role for this protein. We observed that CaMKIV was expressed strongly in the cytoplasm and axons of a subpopulation of small-diameter DRG neurons, most likely cutaneous nociceptors by virtue of their binding the isolectin IB4. In IB4+ spinal nerve axons, 20% of CaMKIV was colocalized with the endocytic marker Rab7 in axons that highly expressed CAM-kinase-kinase (CAMKK), an upstream activator of CaMKIV, suggesting a role for CaMKIV in signaling though signaling endosomes. Using fluorescent in situ hybridization (FISH) with riboprobes, we also observed that small-diameter neurons expressed high levels of a novel 3' untranslated region (UTR) variant of CaMK4 mRNA. Using rapid amplification of cDNA ends (RACE), reverse-transcription polymerase chain reaction (RT-PCR) with gene-specific primers, and cDNA sequencing analyses we determined that the novel transcript contains an additional 10 kb beyond the annotated gene terminus to a highly conserved alternate polyadenylation site. Quantitative PCR (qPCR) analyses of fluorescent-activated cell sorted (FACS) DRG neurons confirmed that this 3'-UTR-extended variant was preferentially expressed in IB4-binding neurons. Computational analyses of the 3'-UTR sequence predict that UTR-extension introduces consensus sites for RNA-binding proteins (RBPs) including the embryonic lethal abnormal vision (ELAV)/Hu family proteins. We consider the possible implications of axonal CaMKIV in the context of the unique properties of IB4-binding DRG neurons.
Collapse
Affiliation(s)
- Benjamin J. Harrison
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, 40202, USA
- Kentucky Spinal Cord Injury Research Center (KSCIRC), University of Louisville, Louisville, Kentucky, 40292, USA
| | - Robert M. Flight
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, 40202, USA
| | - Cynthia Gomes
- Department of Biochemistry and Molecular Bi ology, University of Louisville School of Medicine, Kentucky, 40202, USA
| | - Gayathri Venkat
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, 40202, USA
- Kentucky Spinal Cord Injury Research Center (KSCIRC), University of Louisville, Louisville, Kentucky, 40292, USA
| | - Steven R Ellis
- Department of Biochemistry and Molecular Bi ology, University of Louisville School of Medicine, Kentucky, 40202, USA
| | - Uma Sankar
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40292, USA
- Owensboro Cancer Research Program, University of Louisville, Owensboro, KY 42303, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, 40292, USA
| | - Jeffery L. Twiss
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, 19104, USA
| | - Eric C. Rouchka
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, Kentucky, 40292, USA
| | - Jeffrey C. Petruska
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, 40202, USA
- Kentucky Spinal Cord Injury Research Center (KSCIRC), University of Louisville, Louisville, Kentucky, 40292, USA
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, 40202, USA
| |
Collapse
|
30
|
Common variants in genes of the postsynaptic FMRP signalling pathway are risk factors for autism spectrum disorders. Hum Genet 2014; 133:781-92. [PMID: 24442360 DOI: 10.1007/s00439-013-1416-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/25/2013] [Indexed: 10/25/2022]
Abstract
Autism spectrum disorders (ASD) are heterogeneous disorders with a high heritability and complex genetic architecture. Due to the central role of the fragile X mental retardation gene 1 protein (FMRP) pathway in ASD we investigated common functional variants of ASD risk genes regulating FMRP. We genotyped ten SNPs in two German patient sets (N = 192 and N = 254 families, respectively) and report association for rs7170637 (CYFIP1; set 1 and combined sets), rs6923492 (GRM1; combined sets), and rs25925 (CAMK4; combined sets). An additional risk score based on variants with an odds ratio (OR) >1.25 in set 1 and weighted by their respective log transmitted/untransmitted ratio revealed a significant effect (OR 1.30, 95 % CI 1.11-1.53; P = 0.0013) in the combined German sample. A subsequent meta-analysis including the two German samples, the "Strict/European" ASD subsample of the Autism Genome Project (1,466 families) and a French case/control (541/366) cohort showed again association of rs7170637-A (OR 0.85, 95 % CI 0.75-0.96; P = 0.007) and rs25925-G (OR 1.31, 95 % CI 1.04-1.64; P = 0.021) with ASD. Functional analyses revealed that these minor alleles predicted to alter splicing factor binding sites significantly increase levels of an alternative mRNA isoform of the respective gene while keeping the overall expression of the gene constant. These findings underpin the role of ASD candidate genes in postsynaptic FMRP regulation suggesting that an imbalance of specific isoforms of CYFIP1, an FMRP interaction partner, and CAMK4, a transcriptional regulator of the FMRP gene, modulates ASD risk. Both gene products are related to neuronal regulation of synaptic plasticity, a pathomechanism underlying ASD and may thus present future targets for pharmacological therapies in ASD.
Collapse
|
31
|
Razanau A, Xie J. Emerging mechanisms and consequences of calcium regulation of alternative splicing in neurons and endocrine cells. Cell Mol Life Sci 2013; 70:4527-36. [PMID: 23800988 PMCID: PMC11113957 DOI: 10.1007/s00018-013-1390-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/21/2013] [Accepted: 05/27/2013] [Indexed: 12/12/2022]
Abstract
Alternative splicing contributes greatly to proteomic complexity. How it is regulated by external stimuli to sculpt cellular properties, particularly the highly diverse and malleable neuronal properties, is an underdeveloped area of emerging interest. A number of recent studies in neurons and endocrine cells have begun to shed light on its regulation by calcium signals. Some mechanisms include changes in the trans-acting splicing factors by phosphorylation, protein level, alternative pre-mRNA splicing, and nucleocytoplasmic redistribution of proteins to alter protein-RNA or protein-protein interactions, as well as modulation of chromatin states. Importantly, functional analyses of the control of specific exons/splicing factors in the brain point to a crucial role of this regulation in synaptic maturation, maintenance, and transmission. Furthermore, its deregulation has been implicated in the pathogenesis of neurological disorders, particularly epilepsy/seizure. Together, these studies have not only provided mechanistic insights into the regulation of alternative splicing by calcium signaling but also demonstrated its impact on neuron differentiation, function, and disease. This may also help our understanding of similar regulations in other types of cells.
Collapse
Affiliation(s)
- Aleh Razanau
- Department of Physiology, University of Manitoba, 439 BMSB, 745 Bannatyne Ave, Winnipeg, R3E 0J9 Canada
| | - Jiuyong Xie
- Department of Physiology, University of Manitoba, 439 BMSB, 745 Bannatyne Ave, Winnipeg, R3E 0J9 Canada
- Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9 Canada
| |
Collapse
|
32
|
Yap K, Makeyev EV. Regulation of gene expression in mammalian nervous system through alternative pre-mRNA splicing coupled with RNA quality control mechanisms. Mol Cell Neurosci 2013; 56:420-8. [PMID: 23357783 DOI: 10.1016/j.mcn.2013.01.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/15/2013] [Accepted: 01/17/2013] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic gene expression is orchestrated on a genome-wide scale through several post-transcriptional mechanisms. Of these, alternative pre-mRNA splicing expands the proteome diversity and modulates mRNA stability through downstream RNA quality control (QC) pathways including nonsense-mediated decay (NMD) of mRNAs containing premature termination codons and nuclear retention and elimination (NRE) of intron-containing transcripts. Although originally identified as mechanisms for eliminating aberrant transcripts, a growing body of evidence suggests that NMD and NRE coupled with deliberate changes in pre-mRNA splicing patterns are also used in a number of biological contexts for deterministic control of gene expression. Here we review recent studies elucidating molecular mechanisms and biological significance of these gene regulation strategies with a specific focus on their roles in nervous system development and physiology. This article is part of a Special Issue entitled 'RNA and splicing regulation in neurodegeneration'.
Collapse
Affiliation(s)
- Karen Yap
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | |
Collapse
|
33
|
Abstract
The neurexin genes (NRXN1, NRXN2, and NRXN3) encode polymorphic presynaptic proteins that are implicated in synaptic plasticity and memory processing. In rat brain neurons grown in culture, depolarization induces reversible, calcium-dependent, repression of NRXN2α exon 11 (E11) splicing. Using Neuro2a cells as a model, we explored E11 cis elements and trans-acting factors involved in alternative splicing of NRXN2α E11 pre-mRNA under basal and depolarization conditions. E11 mutation studies revealed two motifs, CTGCCTG (enhancer) and GCACCCA (suppressor) regulating NRXN2α E11 alternative splicing. Subsequent E11 RNA affinity pull-down experiments demonstrated heterogeneous nuclear ribonucleoprotein (hnRNP) K and hnRNP L binding to this exon. Under depolarization, the amount of E11-bound hnRNP L (but not of hnRNP K) increased, in parallel to NRXN2α E11 splicing repression. Depletion of hnRNP K or hnRNP L in the Neuro2a cells by specific siRNAs enhanced NRXN2α E11 splicing and ablated the depolarization-induced repression of this exon. In addition, depolarization suppressed whereas hnRNP K depletion enhanced NRXN2α expression. These results indicate a role for hnRNP K in regulation of NRXN2α expression and of hnRNP L in the activity-dependent alternative splicing of neurexins which may potentially govern trans-synaptic signaling required for memory processing.
Collapse
|
34
|
Huang L, Jolly LA, Willis-Owen S, Gardner A, Kumar R, Douglas E, Shoubridge C, Wieczorek D, Tzschach A, Cohen M, Hackett A, Field M, Froyen G, Hu H, Haas SA, Ropers HH, Kalscheuer VM, Corbett MA, Gecz J. A noncoding, regulatory mutation implicates HCFC1 in nonsyndromic intellectual disability. Am J Hum Genet 2012; 91:694-702. [PMID: 23000143 DOI: 10.1016/j.ajhg.2012.08.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/26/2012] [Accepted: 08/13/2012] [Indexed: 11/28/2022] Open
Abstract
The discovery of mutations causing human disease has so far been biased toward protein-coding regions. Having excluded all annotated coding regions, we performed targeted massively parallel resequencing of the nonrepetitive genomic linkage interval at Xq28 of family MRX3. We identified in the binding site of transcription factor YY1 a regulatory mutation that leads to overexpression of the chromatin-associated transcriptional regulator HCFC1. When tested on embryonic murine neural stem cells and embryonic hippocampal neurons, HCFC1 overexpression led to a significant increase of the production of astrocytes and a considerable reduction in neurite growth. Two other nonsynonymous, potentially deleterious changes have been identified by X-exome sequencing in individuals with intellectual disability, implicating HCFC1 in normal brain function.
Collapse
Affiliation(s)
- Lingli Huang
- Genetics and Molecular Pathology, SA Pathology, North Adelaide, SA 5006, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Norris AD, Calarco JA. Emerging Roles of Alternative Pre-mRNA Splicing Regulation in Neuronal Development and Function. Front Neurosci 2012; 6:122. [PMID: 22936897 PMCID: PMC3424503 DOI: 10.3389/fnins.2012.00122] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/02/2012] [Indexed: 12/21/2022] Open
Abstract
Alternative pre-mRNA splicing has the potential to greatly diversify the repertoire of transcripts in multicellular organisms. Increasing evidence suggests that this expansive layer of gene regulation plays a particularly important role in the development and function of the nervous system, one of the most complex organ systems found in nature. In this review, we highlight recent studies that continue to emphasize the influence and contribution of alternative splicing regulation to various aspects of neuronal development in addition to its role in the mature nervous system.
Collapse
Affiliation(s)
- Adam D Norris
- FAS Center for Systems Biology, Harvard University Cambridge, MA, USA
| | | |
Collapse
|
36
|
Cao W, Razanau A, Feng D, Lobo VG, Xie J. Control of alternative splicing by forskolin through hnRNP K during neuronal differentiation. Nucleic Acids Res 2012; 40:8059-71. [PMID: 22684629 PMCID: PMC3439897 DOI: 10.1093/nar/gks504] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The molecular basis of cell signal-regulated alternative splicing at the 3′ splice site remains largely unknown. We isolated a protein kinase A-responsive ribonucleic acid (RNA) element from a 3′ splice site of the synaptosomal-associated protein 25 (Snap25) gene for forskolin-inhibited splicing during neuronal differentiation of rat pheochromocytoma PC12 cells. The element binds specifically to heterogeneous nuclear ribonucleo protein (hnRNP) K in a phosphatase-sensitive way, which directly competes with the U2 auxiliary factor U2AF65, an essential component of early spliceosomes. Transcripts with similarly localized hnRNP K target motifs upstream of alternative exons are enriched in genes often associated with neurological diseases. We show that such motifs upstream of the Runx1 exon 6 also bind hnRNP K, and importantly, hnRNP K is required for forskolin-induced repression of the exon. Interestingly, this exon encodes the peptide domain that determines the switch of the transcriptional repressor/activator activity of Runx1, a change known to be critical in specifying neuron lineages. Consistent with an important role of the target genes in neurons, knocking down hnRNP K severely disrupts forskolin-induced neurite growth. Thus, through hnRNP K, the neuronal differentiation stimulus forskolin targets a critical 3′ splice site component of the splicing machinery to control alternative splicing of crucial genes. This also provides a regulated direct competitor of U2AF65 for cell signal control of 3′ splice site usage.
Collapse
Affiliation(s)
- Wenguang Cao
- Department of Physiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | | | | | | | | |
Collapse
|
37
|
Liu G, Razanau A, Hai Y, Yu J, Sohail M, Lobo VG, Chu J, Kung SKP, Xie J. A conserved serine of heterogeneous nuclear ribonucleoprotein L (hnRNP L) mediates depolarization-regulated alternative splicing of potassium channels. J Biol Chem 2012; 287:22709-16. [PMID: 22570490 DOI: 10.1074/jbc.m112.357343] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular mechanisms of gene regulation underlying the activity-dependent long term changes of cellular electrical properties, such as those during memory, are largely unknown. We have shown that alternative splicing can be dynamically regulated in response to membrane depolarization and Ca(2+)/calmodulin-dependent protein kinase IV (CaMKIV) activation, through special CaM kinase responsive RNA elements. However, proteins that mediate this regulation and how they are affected by CaMKIV are not known. Here we show that the regulation of the stress axis-regulated exon of the Slo1 potassium channel transcripts by membrane depolarization requires a highly conserved CaMKIV target serine (Ser-513) of the heterogeneous ribonucleoprotein L. Ser-513 phosphorylation within the RNA recognition motif 4 enhanced heterogeneous ribonucleoprotein L interaction with the CaMKIV-responsive RNA element 1 of stress axis-regulated exon and inhibited binding of the large subunit of the U2 auxiliary factor U2AF65. Both of these activities were abolished by a S513A mutation. Thus, through Ser-513, membrane depolarization/calcium signaling controls a critical spliceosomal assembly step to regulate the variant subunit composition of potassium channels.
Collapse
Affiliation(s)
- Guodong Liu
- Department of Physiology, Faculty of Medicine, University of Manitoba, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Dhar S, Thota A, Rao MRS. Insights into role of bromodomain, testis-specific (Brdt) in acetylated histone H4-dependent chromatin remodeling in mammalian spermiogenesis. J Biol Chem 2012; 287:6387-405. [PMID: 22215678 DOI: 10.1074/jbc.m111.288167] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mammalian spermiogenesis is of considerable biological interest especially due to the unique chromatin remodeling events that take place during spermatid maturation. Here, we have studied the expression of chromatin remodeling factors in different spermatogenic stages and narrowed it down to bromodomain, testis-specific (Brdt) as a key molecule participating in chromatin remodeling during rat spermiogenesis. Our immunocytochemistry experiments reveal that Brdt colocalizes with acetylated H4 in elongating spermatids. Remodeling assays showed an acetylation-dependent but ATP-independent chromatin reorganization property of Brdt in haploid round spermatids. Furthermore, Brdt interacts with Smarce1, a member of the SWI/SNF family. We have studied the genomic organization of smarce1 and identified that it has two splice variants expressed during spermatogenesis. The N terminus of Brdt is involved in the recognition of Smarce1 as well as in the reorganization of hyperacetylated round spermatid chromatin. Interestingly, the interaction between Smarce1 and Brdt increases dramatically upon histone hyperacetylation both in vitro and in vivo. Thus, our results indicate this interaction to be a vital step in the chromatin remodeling process during mammalian spermiogenesis.
Collapse
Affiliation(s)
- Surbhi Dhar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | | | | |
Collapse
|
39
|
Sharma A, Lou H. Depolarization-mediated regulation of alternative splicing. Front Neurosci 2011; 5:141. [PMID: 22207834 PMCID: PMC3246316 DOI: 10.3389/fnins.2011.00141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 12/06/2011] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing in eukaryotes plays an important role in regulating gene expression by selectively including alternative exons. A wealth of information has been accumulated that explains how alternative exons are selected in a developmental stage- or tissue-specific fashion. However, our knowledge of how cells respond to environmental changes to alter alternative splicing is very limited. For example, although a number of alternative exons have been shown to be regulated by calcium level alterations, the underlying mechanisms are not well understood. As calcium signaling in neurons plays a crucial role in essential neuronal functions such as learning and memory formation, it is important to understand how this process is regulated at every level in gene expression. The significance of the dynamic control of alternative splicing in response to changes of calcium levels has been largely unappreciated. In this communication, we will summarize the recent advances in calcium signaling-mediated alternative splicing that have provided some insights into the important regulatory mechanisms. In addition to describing the cis-acting RNA elements on the pre-mRNA molecules that respond to changes of intracellular calcium levels, we will summarize how splicing regulators change and affect alternative splicing in this process. We will also discuss a novel mode of calcium-mediated splicing regulation at the level of chromatin structure and transcription.
Collapse
Affiliation(s)
- Alok Sharma
- Department of Genetics, School of Medicine, Case Western Reserve UniversityCleveland, OH, USA
| | - Hua Lou
- Department of Genetics, School of Medicine, Case Western Reserve UniversityCleveland, OH, USA
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve UniversityCleveland, OH, USA
- Center for RNA Molecular Biology, School of Medicine, Case Western Reserve UniversityCleveland, OH, USA
| |
Collapse
|
40
|
Cao W, Sohail M, Liu G, Koumbadinga GA, Lobo VG, Xie J. Differential effects of PKA-controlled CaMKK2 variants on neuronal differentiation. RNA Biol 2011; 8:1061-72. [PMID: 21957496 DOI: 10.4161/rna.8.6.16691] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Regulation between protein kinases is critical for the establishment of signaling pathways/networks to 'orchestrate' cellular processes. Besides posttranslational phosphorylation, alternative pre-mRNA splicing is another way to control kinase properties, but splicing regulation between two kinases and the effect of resulting variants on cells has barely been explored. Here we examined the effect of the protein kinase A (PKA) pathway on the alternative splicing and variant properties of the Ca²⁺/calmodulin-dependent protein kinase kinase 2 (CaMKK2) gene in B35 neuroblastoma cells. Inclusion of the exon 16 of CaMKK2 was significantly reduced by H89, a PKA selective inhibitor. Consistently, overexpressed PKA strongly promoted the exon inclusion in a CaMKK2 sequence-dependent way in splicing reporter assays. In vitro, purified CaMKKβ1 variant proteins were found to be kinase-active. In cells, they were differentially phosphorylated by PKA. In RNA interference assays, CaMKKβ1 was found to be essential for forskolin-induced neurite growth. Interestingly, overexpression of the variant without exon 16 (-E16) promoted neurite elongation while the other one (+E16) promoted neurite branching; in contrast, reduction of the latter one enhanced neurite elongation. Moreover, the variants are differentially expressed and the exon 16-containing transcripts highly enriched in the brain, particularly the cerebellum and hippocampus. Thus, PKA regulates the alternative splicing of CaMKK2 to produce variants that differentially modulate neuronal differentiation. Taken together with the many distinct variants of kinases, alternative splicing regulation likely adds another layer of modulation between protein kinases in cellular signaling networks.
Collapse
Affiliation(s)
- Wenguang Cao
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Genome-wide analyses of metazoan transcriptomes have revealed an unexpected level of mRNA diversity that is generated by alternative splicing. Recently, regulatory networks have been identified through which splicing promotes dynamic remodelling of the transcriptome to promote physiological changes, which involve robust and coordinated alternative splicing transitions. The regulation of splicing in yeast, worms, flies and vertebrates affects a variety of biological processes. The functional classes of genes that are regulated by alternative splicing include both those with widespread homeostatic activities and those with cell-type-specific functions. Alternative splicing can drive determinative physiological change or can have a permissive role by providing mRNA variability that is used by other regulatory mechanisms.
Collapse
|
42
|
Heyd F, Lynch KW. Degrade, move, regroup: signaling control of splicing proteins. Trends Biochem Sci 2011; 36:397-404. [PMID: 21596569 PMCID: PMC3155649 DOI: 10.1016/j.tibs.2011.04.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 11/23/2022]
Abstract
With recent advances in microarrays and sequencing it is now relatively straightforward to compare pre-mRNA splicing patterns in different cellular conditions on a genome-wide scale. Such studies have revealed extensive changes in cellular splicing programs in response to stimuli such as neuronal depolarization, DNA damage, immune signaling and cellular metabolic changes. However, for many years our understanding of the signaling pathways responsible for such splicing changes was greatly lacking. Excitingly, over the past few years this gap has begun to close. Recent studies now suggest notable trends in the mechanisms that link cellular stimuli to downstream alternative splicing events. These include regulated synthesis or degradation of splicing factors, differential protein-protein interactions, altered nuclear translocation and changes in transcription elongation.
Collapse
Affiliation(s)
- Florian Heyd
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA
| | | |
Collapse
|
43
|
Ca2+-signaling, alternative splicing and endoplasmic reticulum stress responses. Neurochem Res 2011; 36:1198-211. [PMID: 21365449 DOI: 10.1007/s11064-011-0431-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2011] [Indexed: 01/01/2023]
Abstract
Ca(2+)-signaling, alternative splicing, and stress responses by the endoplasmic reticulum are three important cellular activities which can be strongly interconnected to alter the expression of protein isoforms in a tissue dependent manner or during development depending on the environmental conditions. This integrated network of signaling pathways permits a high degree of versatility and adaptation to metabolic, developmental and stress processes. Defects in its regulation may lead to cellular malfunction.
Collapse
|
44
|
Goehe RW, Shultz JC, Murudkar C, Usanovic S, Lamour NF, Massey DH, Zhang L, Camidge DR, Shay JW, Minna JD, Chalfant CE. hnRNP L regulates the tumorigenic capacity of lung cancer xenografts in mice via caspase-9 pre-mRNA processing. J Clin Invest 2010; 120:3923-39. [PMID: 20972334 PMCID: PMC2964989 DOI: 10.1172/jci43552] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 08/18/2010] [Indexed: 02/03/2023] Open
Abstract
Caspase-9 is involved in the intrinsic apoptotic pathway and suggested to play a role as a tumor suppressor. Little is known about the mechanisms governing caspase-9 expression, but post-transcriptional pre-mRNA processing generates 2 splice variants from the caspase-9 gene, pro-apoptotic caspase-9a and anti-apoptotic caspase-9b. Here we demonstrate that the ratio of caspase-9 splice variants is dysregulated in non-small cell lung cancer (NSCLC) tumors. Mechanistic analysis revealed that an exonic splicing silencer (ESS) regulated caspase-9 pre-mRNA processing in NSCLC cells. Heterogeneous nuclear ribonucleoprotein L (hnRNP L) interacted with this ESS, and downregulation of hnRNP L expression induced an increase in the caspase-9a/9b ratio. Although expression of hnRNP L lowered the caspase-9a/9b ratio in NSCLC cells, expression of hnRNP L produced the opposite effect in non-transformed cells, suggesting a post-translational modification specific for NSCLC cells. Indeed, Ser52 was identified as a critical modification regulating the caspase-9a/9b ratio. Importantly, in a mouse xenograft model, downregulation of hnRNP L in NSCLC cells induced a complete loss of tumorigenic capacity that was due to the changes in caspase-9 pre-mRNA processing. This study therefore identifies a cancer-specific mechanism of hnRNP L phosphorylation and subsequent lowering of the caspase-9a/9b ratio, which is required for the tumorigenic capacity of NSCLC cells.
Collapse
Affiliation(s)
- Rachel Wilson Goehe
- Department of Biochemistry and Molecular Biology,
Department of Physiology, and
Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
Thoracic Oncology and Developmental Therapeutics Programs, University of Colorado Cancer Center, Aurora, Colorado, USA.
Department of Cell Biology and
Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, Virginia, USA.
Massey Cancer Center, Richmond, Virginia, USA
| | - Jacqueline C. Shultz
- Department of Biochemistry and Molecular Biology,
Department of Physiology, and
Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
Thoracic Oncology and Developmental Therapeutics Programs, University of Colorado Cancer Center, Aurora, Colorado, USA.
Department of Cell Biology and
Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, Virginia, USA.
Massey Cancer Center, Richmond, Virginia, USA
| | - Charuta Murudkar
- Department of Biochemistry and Molecular Biology,
Department of Physiology, and
Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
Thoracic Oncology and Developmental Therapeutics Programs, University of Colorado Cancer Center, Aurora, Colorado, USA.
Department of Cell Biology and
Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, Virginia, USA.
Massey Cancer Center, Richmond, Virginia, USA
| | - Sanja Usanovic
- Department of Biochemistry and Molecular Biology,
Department of Physiology, and
Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
Thoracic Oncology and Developmental Therapeutics Programs, University of Colorado Cancer Center, Aurora, Colorado, USA.
Department of Cell Biology and
Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, Virginia, USA.
Massey Cancer Center, Richmond, Virginia, USA
| | - Nadia F. Lamour
- Department of Biochemistry and Molecular Biology,
Department of Physiology, and
Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
Thoracic Oncology and Developmental Therapeutics Programs, University of Colorado Cancer Center, Aurora, Colorado, USA.
Department of Cell Biology and
Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, Virginia, USA.
Massey Cancer Center, Richmond, Virginia, USA
| | - Davis H. Massey
- Department of Biochemistry and Molecular Biology,
Department of Physiology, and
Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
Thoracic Oncology and Developmental Therapeutics Programs, University of Colorado Cancer Center, Aurora, Colorado, USA.
Department of Cell Biology and
Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, Virginia, USA.
Massey Cancer Center, Richmond, Virginia, USA
| | - Lian Zhang
- Department of Biochemistry and Molecular Biology,
Department of Physiology, and
Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
Thoracic Oncology and Developmental Therapeutics Programs, University of Colorado Cancer Center, Aurora, Colorado, USA.
Department of Cell Biology and
Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, Virginia, USA.
Massey Cancer Center, Richmond, Virginia, USA
| | - D. Ross Camidge
- Department of Biochemistry and Molecular Biology,
Department of Physiology, and
Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
Thoracic Oncology and Developmental Therapeutics Programs, University of Colorado Cancer Center, Aurora, Colorado, USA.
Department of Cell Biology and
Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, Virginia, USA.
Massey Cancer Center, Richmond, Virginia, USA
| | - Jerry W. Shay
- Department of Biochemistry and Molecular Biology,
Department of Physiology, and
Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
Thoracic Oncology and Developmental Therapeutics Programs, University of Colorado Cancer Center, Aurora, Colorado, USA.
Department of Cell Biology and
Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, Virginia, USA.
Massey Cancer Center, Richmond, Virginia, USA
| | - John D. Minna
- Department of Biochemistry and Molecular Biology,
Department of Physiology, and
Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
Thoracic Oncology and Developmental Therapeutics Programs, University of Colorado Cancer Center, Aurora, Colorado, USA.
Department of Cell Biology and
Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, Virginia, USA.
Massey Cancer Center, Richmond, Virginia, USA
| | - Charles E. Chalfant
- Department of Biochemistry and Molecular Biology,
Department of Physiology, and
Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
Thoracic Oncology and Developmental Therapeutics Programs, University of Colorado Cancer Center, Aurora, Colorado, USA.
Department of Cell Biology and
Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, Virginia, USA.
Massey Cancer Center, Richmond, Virginia, USA
| |
Collapse
|
45
|
Gasanova VK, Ryadninskaya NV, Gaillard C, Strauss F, Belitsky GA, Yakubovskaya MG. Invasion of complementary oligonucleotides into (CA/TG)31 repetitive region of linear and circular DNA duplexes. Mol Biol 2010. [DOI: 10.1134/s0026893310030155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Rajan P, Dalgliesh C, Bourgeois CF, Heiner M, Emami K, Clark EL, Bindereif A, Stevenin J, Robson CN, Leung HY, Elliott DJ. Proteomic identification of heterogeneous nuclear ribonucleoprotein L as a novel component of SLM/Sam68 Nuclear Bodies. BMC Cell Biol 2009; 10:82. [PMID: 19912651 PMCID: PMC2784748 DOI: 10.1186/1471-2121-10-82] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 11/13/2009] [Indexed: 11/25/2022] Open
Abstract
Background Active pre-mRNA splicing occurs co-transcriptionally, and takes place throughout the nucleoplasm of eukaryotic cells. Splicing decisions are controlled by networks of nuclear RNA-binding proteins and their target sequences, sometimes in response to signalling pathways. Sam68 (Src-associated in mitosis 68 kDa) is the prototypic member of the STAR (Signal Transduction and Activation of RNA) family of RNA-binding proteins, which regulate splicing in response to signalling cascades. Nuclear Sam68 protein is concentrated within subnuclear organelles called SLM/Sam68 Nuclear Bodies (SNBs), which also contain some other splicing regulators, signalling components and nucleic acids. Results We used proteomics to search for the major interacting protein partners of nuclear Sam68. In addition to Sam68 itself and known Sam68-associated proteins (heterogeneous nuclear ribonucleoproteins hnRNP A1, A2/B1 and G), we identified hnRNP L as a novel Sam68-interacting protein partner. hnRNP L protein was predominantly present within small nuclear protein complexes approximating to the expected size of monomers and dimers, and was quantitatively associated with nucleic acids. hnRNP L spatially co-localised with Sam68 as a novel component of SNBs and was also observed within the general nucleoplasm. Localisation within SNBs was highly specific to hnRNP L and was not shared by the closely-related hnRNP LL protein, nor any of the other Sam68-interacting proteins we identified by proteomics. The interaction between Sam68 and hnRNP L proteins was observed in a cell line which exhibits low frequency of SNBs suggesting that this association also takes place outside SNBs. Although ectopic expression of hnRNP L and Sam68 proteins independently affected splicing of CD44 variable exon v5 and TJP1 exon 20 minigenes, these proteins did not, however, co-operate with each other in splicing regulation of these target exons. Conclusion Here we identify hnRNP L as a novel SNB component. We show that, compared with other identified Sam68-associated hnRNP proteins and hnRNP LL, this co-localisation within SNBs is specific to hnRNP L. Our data suggest that the novel Sam68-hnRNP L protein interaction may have a distinct role within SNBs.
Collapse
Affiliation(s)
- Prabhakar Rajan
- Institute of Human Genetics, Newcastle University, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lee JA, Tang ZZ, Black DL. An inducible change in Fox-1/A2BP1 splicing modulates the alternative splicing of downstream neuronal target exons. Genes Dev 2009; 23:2284-93. [PMID: 19762510 DOI: 10.1101/gad.1837009] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neuronal depolarization and CaM kinase IV signaling alter the splicing of multiple exons in transcripts for ion channels, neurotransmitter receptors, and other synaptic proteins. These splicing changes are mediated in part by special CaM kinase-responsive RNA elements, within or adjacent to exons that are repressed in the initial phase of chronic depolarization. The splicing of many neuronal transcripts is also regulated by members of the Fox (Feminizing gene on X) protein family, and these Fox targets are also often proteins affecting synaptic activity. We show that Fox-1/Ataxin 2-Binding Protein 1 (A2BP1), a protein implicated in a variety of neurological diseases, can counteract the effects of chronic depolarization on splicing. We find that exon 19 of Fox-1 is itself repressed by depolarization. Fox-1 transcripts missing exon 19 encode a nuclear isoform of Fox-1 that progressively replaces the cytoplasmic Fox-1 isoform as cells are maintained depolarizing media. The resulting increase in nuclear Fox-1 leads to the reactivation of many Fox-1 target exons, including exon 5 of the NMDA receptor 1, that were initially repressed by the high-KCl medium. These results reveal a novel mechanism for the slow modulation of splicing as cells adapt to chronic stimuli: The subcellular localization of a splicing regulator is controlled through its own alternative splicing.
Collapse
Affiliation(s)
- Ji-Ann Lee
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
48
|
Li H, Liu G, Yu J, Cao W, Lobo VG, Xie J. In vivo selection of kinase-responsive RNA elements controlling alternative splicing. J Biol Chem 2009; 284:16191-16201. [PMID: 19386606 PMCID: PMC2713567 DOI: 10.1074/jbc.m900393200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 03/23/2009] [Indexed: 12/29/2022] Open
Abstract
Alternative pre-mRNA splicing is often controlled by cell signals, for example, those activating the cAMP-dependent protein kinase (PKA) or the Ca2+/calmodulin-dependent protein kinase IV (CaMKIV). We have shown that CaMKIV regulates alternative splicing through short CA repeats and hnRNP L. Here we use a splicing reporter that shows PKA/CaMKIV promotion of exon inclusion to select from exons containing random 13-nt sequences for RNA elements responsive to the kinases in cultured cells. This selection not only identified both PKA- and CaMKIV-responsive elements that are similar to the CaMKIV-responsive RNA element 1 (CaRRE1) or CA repeats, but also A-rich elements not previously known to respond to these kinases. Consistently, hnRNP L is identified as a factor binding the CA-rich elements. Analyses of the motifs in the highly responsive elements indicate that they are indeed critical for the kinase effect and are enriched in alternative exons. Interestingly, a CAAAAAA motif is sufficient for the PKA/CaMKIV-regulated splicing of the exon 16 of the CaMK kinase beta1 (CaMKK2) transcripts, implying a role of this motif in signaling cross-talk or feedback regulation between these kinases through alternative splicing. Therefore, these experiments identified a group of RNA elements responsive to PKA and CaMKIV from in vivo selection. This also provides an approach for selecting RNA elements similarly responsive to other cell signals controlling alternative splicing.
Collapse
Affiliation(s)
- Hongzhao Li
- From the Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Guodong Liu
- From the Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Jiankun Yu
- From the Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Wenguang Cao
- From the Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Vincent G Lobo
- From the Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Jiuyong Xie
- From the Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada.
| |
Collapse
|