1
|
Morita T, Hayashi K. Actin-related protein 5 suppresses the cooperative activation of cardiac gene transcription by myocardin and MEF2. FEBS Open Bio 2023; 13:363-379. [PMID: 36610028 PMCID: PMC9900090 DOI: 10.1002/2211-5463.13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/15/2022] [Accepted: 01/05/2023] [Indexed: 01/08/2023] Open
Abstract
MYOCD is a transcription factor important for cardiac and smooth muscle development. We previously identified that actin-related protein 5 (ARP5) binds to the N-terminus of MYOCD. Here, we demonstrate that ARP5 inhibits the cooperative action of the cardiac-specific isoform of MYOCD with MEF2. ARP5 overexpression in murine hearts induced cardiac hypertrophy and fibrosis, whereas ARP5 knockdown in P19CL6 cells significantly increased cardiac gene expression. ARP5 was found to bind to a MEF2-binding motif of cardiac MYOCD and inhibit MEF2-mediated transactivation by MYOCD. RNA-seq analysis revealed 849 genes that are upregulated by MYOCD-MEF2 and 650 genes that are repressed by ARP5. ARP5 expression increased with cardiomyopathy and was negatively correlated with the expression of Tnnt2 and Ttn, which were regulated by cardiac MYOCD-MEF2. Overall, our data suggest that ARP5 is a potential suppressor of cardiac MYOCD during physiological and pathological processes.
Collapse
Affiliation(s)
| | - Ken'ichiro Hayashi
- Department of OphthalmologyYamaguchi University Graduate School of MedicineJapan,Department of RNA Biology and NeuroscienceOsaka University Graduate School of MedicineJapan
| |
Collapse
|
2
|
Deshpande A, Shetty PMV, Frey N, Rangrez AY. SRF: a seriously responsible factor in cardiac development and disease. J Biomed Sci 2022; 29:38. [PMID: 35681202 PMCID: PMC9185982 DOI: 10.1186/s12929-022-00820-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
The molecular mechanisms that regulate embryogenesis and cardiac development are calibrated by multiple signal transduction pathways within or between different cell lineages via autocrine or paracrine mechanisms of action. The heart is the first functional organ to form during development, which highlights the importance of this organ in later stages of growth. Knowledge of the regulatory mechanisms underlying cardiac development and adult cardiac homeostasis paves the way for discovering therapeutic possibilities for cardiac disease treatment. Serum response factor (SRF) is a major transcription factor that controls both embryonic and adult cardiac development. SRF expression is needed through the duration of development, from the first mesodermal cell in a developing embryo to the last cell damaged by infarction in the myocardium. Precise regulation of SRF expression is critical for mesoderm formation and cardiac crescent formation in the embryo, and altered SRF levels lead to cardiomyopathies in the adult heart, suggesting the vital role played by SRF in cardiac development and disease. This review provides a detailed overview of SRF and its partners in their various functions and discusses the future scope and possible therapeutic potential of SRF in the cardiovascular system.
Collapse
Affiliation(s)
- Anushka Deshpande
- Department of Internal Medicine III, Cardiology and Angiology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Prithviraj Manohar Vijaya Shetty
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
3
|
Wang Z, Qiao XH, Xu YJ, Liu XY, Huang RT, Xue S, Qiu HY, Yang YQ. SMAD1 Loss-of-Function Variant Responsible for Congenital Heart Disease. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9916325. [PMID: 35281600 PMCID: PMC8913148 DOI: 10.1155/2022/9916325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/16/2022] [Indexed: 12/22/2022]
Abstract
As the most common form of developmental malformation affecting the heart and endothoracic great vessels, congenital heart disease (CHD) confers substantial morbidity and mortality as well as socioeconomic burden on humans globally. Aggregating convincing evidence highlights the genetic origin of CHD, and damaging variations in over 100 genes have been implicated with CHD. Nevertheless, the genetic basis underpinning CHD remains largely elusive. In this study, via whole-exosome sequencing analysis of a four-generation family inflicted with autosomal-dominant CHD, a heterozygous SMAD1 variation, NM_005900.3: c.264C > A; p.(Tyr88∗), was detected and validated by Sanger sequencing analysis to be in cosegregation with CHD in the whole family. The truncating variation was not observed in 362 unrelated healthy volunteers employed as control persons. Dual-luciferase reporter gene assay in cultured COS7 cells demonstrated that Tyr88∗-mutant SMAD1 failed to transactivate the genes TBX20 and NKX2.5, two already well-established CHD-causative genes. Additionally, the variation nullified the synergistic transcriptional activation between SMAD1 and MYOCD, another recognized CHD-causative gene. These data indicate SMAD1 as a new gene responsible for CHD, which provides new insight into the genetic mechanism underlying CHD, suggesting certain significance for genetic risk assessment and precise antenatal prevention of the family members inflicted with CHD.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Pediatric Internal Medicine, Ningbo Women & Children's Hospital, Ningbo 315031, China
| | - Xiao-Hui Qiao
- Department of Pediatric Internal Medicine, Ningbo Women & Children's Hospital, Ningbo 315031, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hai-Yan Qiu
- Department of Pediatric Internal Medicine, Ningbo Women & Children's Hospital, Ningbo 315031, China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
- Department of Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
- Department of Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| |
Collapse
|
4
|
Abstract
Myocardin (MYOCD) is a potent transcriptional coactivator that functions primarily in cardiac muscle and smooth muscle through direct contacts with serum response factor (SRF) over cis elements known as CArG boxes found near a number of genes encoding for contractile, ion channel, cytoskeletal, and calcium handling proteins. Since its discovery more than 10 years ago, new insights have been obtained regarding the diverse isoforms of MYOCD expressed in cells as well as the regulation of MYOCD expression and activity through transcriptional, post-transcriptional, and post-translational processes. Curiously, there are a number of functions associated with MYOCD that appear to be independent of contractile gene expression and the CArG-SRF nucleoprotein complex. Further, perturbations in MYOCD gene expression are associated with an increasing number of diseases including heart failure, cancer, acute vessel disease, and diabetes. This review summarizes the various biological and pathological processes associated with MYOCD and offers perspectives to several challenges and future directions for further study of this formidable transcriptional coactivator.
Collapse
Affiliation(s)
- Joseph M Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
5
|
NF-κB (p65) negatively regulates myocardin-induced cardiomyocyte hypertrophy through multiple mechanisms. Cell Signal 2014; 26:2738-48. [PMID: 25152367 DOI: 10.1016/j.cellsig.2014.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/14/2014] [Indexed: 01/07/2023]
Abstract
Myocardin is well known to play a key role in the development of cardiomyocyte hypertrophy. But the exact molecular mechanism regulating myocardin stability and transactivity to affect cardiomyocyte hypertrophy has not been studied clearly. We now report that NF-κB (p65) can inhibit myocardin-induced cardiomyocyte hypertrophy. Then we explore the molecular mechanism of this response. First, we show that p65 can functionally repress myocardin transcriptional activity and also reduce the protein expression of myocardin. Second, the function of myocardin can be regulated by epigenetic modifications. Myocardin sumoylation is known to transactivate cardiac genes, but whether p65 can inhibit SUMO modification of myocardin is still not clear. Our data show that p65 weakens myocardin transcriptional activity through attenuating SUMO modification of myocardin by SUMO1/PIAS1, thereby impairing myocardin-mediated cardiomyocyte hypertrophy. Furthermore, the expression of myocardin can be regulated by several microRNAs, which play important roles in the development and function of the heart and muscle. We next investigated potential role of miR-1 in cardiac hypotrophy. Our results show that p65 can upregulate the level of miR-1 and miR-1 can decrease protein expression of myocardin in cardiac myocytes. Notably, miR-1 expression is also controlled by myocardin, leading to a feedback loop. These data thus provide important and novel insights into the function that p65 inhibits myocardin-mediated cardiomyocyte hypertrophy by downregulating the expression and SUMO modification of myocardin and enhancing the expression of miR-1.
Collapse
|
6
|
Zheng XL. Myocardin and smooth muscle differentiation. Arch Biochem Biophys 2014; 543:48-56. [DOI: 10.1016/j.abb.2013.12.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/15/2013] [Accepted: 12/18/2013] [Indexed: 01/08/2023]
|
7
|
Hayashi K, Morita T. Importance of dimer formation of myocardin family members in the regulation of their nuclear export. Cell Struct Funct 2013; 38:123-34. [PMID: 23594864 DOI: 10.1247/csf.13001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Myocardin (Mycd) family members function as a transcriptional cofactor for serum response factor (SRF). Dimer formation is necessary to exhibit their function, and the coiled-coil domain (CC) plays a critical role in their dimerization. We have recently revealed a detailed molecular mechanism for their Crm1 (exportin1)-mediated nuclear export. Here, we found other unique significances of the dimerization of Mycd family members. Introduction of mutations in the CC of myocardin-related transcription factor A (MRTF-A) and truncated Mycd resulted in significant decreases in their cytoplasmic localization and increases in their nuclear localization. In accordance with such subcellular localization changes, their binding to Crm1 were reduced. These results indicate that the dimerization of Mycd family members is necessary for their Crm1-mediated nuclear export. We have recently found that the N-terminal region of Mycd consisting of 128 amino acids (Mycd N128) self-associates to Mycd via the central basic domain (CB), resulting in masking the Crm1-binding site. Such self-association of MRTF-A would be unlikely. In this study, we also revealed that the dimerization of Mycd was also necessary for this self-association. Wild-type Mycd activated SRF-mediated transcription more potently than Mycd lacking the Mycd N128 (Mycd ΔN128) did. These results suggest two possible functions of the Mycd N128: 1) stabilization of Mycd dimer to enhance SRF-mediated transcription and 2) positive regulation of the transactivation ability of Mycd. These findings provide a new insight into the functional regulation of Mycd family members.
Collapse
Affiliation(s)
- Ken'ichiro Hayashi
- Department of Neuroscience, Osaka University Graduate School of Medicine, Japan.
| | | |
Collapse
|
8
|
Hayashi K, Morita T. Differences in the nuclear export mechanism between myocardin and myocardin-related transcription factor A. J Biol Chem 2013; 288:5743-55. [PMID: 23283978 PMCID: PMC3581383 DOI: 10.1074/jbc.m112.408120] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 12/09/2012] [Indexed: 02/05/2023] Open
Abstract
Myocardin (Mycd), a key factor in smooth muscle cell differentiation, is constitutively located in the nucleus, whereas myocardin-related transcription factors A and B (MRTF-A/B) reside mostly in the cytoplasm and translocate to the nucleus in a Rho-dependent manner. Here, we investigated the nuclear export of Mycd family members. They possess two leucine-rich sequences: L1 in the N terminus and L2 in the Gln-rich domain. Although L2 (but not L1) served as a CRM1-binding site for Mycd, CRM1-mediated nuclear export did not affect its subcellular localization. Serum response factor (SRF) competitively inhibited Mycd/CRM1 interaction. Furthermore, such interaction was autonomously inhibited. The N terminus of Mycd bound intramolecularly to Mycd, resulting in masking L2. In contrast, the CRM1-binding affinity of MRTF-A was much higher than that of Mycd because both L1 and L2 of MRTF-A served as functional CRM1-binding sites, and the autoinhibition observed in the Mycd/CRM1 interaction was absent in the MRTF-A/CRM1 interaction. Additionally, because the SRF-binding affinity of MRTF-A was lower than that of Mycd, the inhibitory effect of SRF on the MRTF-A/CRM1 interaction was weak. Thus, MRTF-A is much more likely to be exported from the nucleus. These differences could be the reason for the distinct subcellular localization of Mycd and MRTF-A.
Collapse
Affiliation(s)
- Ken'ichiro Hayashi
- Department of Neuroscience (D13), Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
9
|
Abstract
Congenital heart disease is a major cause of morbidity and mortality throughout life. Mutations in numerous transcription factors have been identified in patients and families with some of the most common forms of cardiac malformations and arrhythmias. This review discusses transcription factor pathways known to be important for normal heart development and how abnormalities in these pathways have been linked to morphological and functional forms of congenital heart defects. A comprehensive, current list of known transcription factor mutations associated with congenital heart disease is provided, but the review focuses primarily on three key transcription factors, Nkx2-5, GATA4, and Tbx5, and their known biochemical and genetic partners. By understanding the interaction partners, transcriptional targets, and upstream activators of these core cardiac transcription factors, additional information about normal heart formation and further insight into genes and pathways affected in congenital heart disease should result.
Collapse
Affiliation(s)
- David J McCulley
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | | |
Collapse
|
10
|
Ilagan RM, Genheimer CW, Quinlan SF, Guthrie KI, Sangha N, Ramachandrannair S, Kelley RW, Presnell SC, Basu J, Ludlow JW. Smooth muscle phenotypic diversity is mediated through alterations in Myocardin gene splicing. J Cell Physiol 2011; 226:2702-11. [DOI: 10.1002/jcp.22622] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Liao XH, Wang N, Liu QX, Qin T, Cao B, Cao DS, Zhang TC. Myocardin-related transcription factor-A induces cardiomyocyte hypertrophy. IUBMB Life 2011; 63:54-61. [PMID: 21280178 DOI: 10.1002/iub.415] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myocardin is a remarkably potent transcriptional coactivator expressed specifically in cardiac muscle lineages and smooth muscle cells during postnatal development. Myocardin shares homology with myocardin-related transcription factor-A (MRTF-A), which are expressed in a broad range of embryonic and adult tissues. Our previous results show that myocardin induces cardiac hypertrophy. However, the effects of MRTF-A in cardiac hypertrophy remain poorly understood. Our present work further demonstrates that myocardin plays an important role in inducing hypertrophy. At the same time, we find that overexpression of MRTF-A in neonatal rat cardiomyocytes might induce cardiomyocyte hypertrophy. Furthermore, MRTF-A expression is induced in phenylephrine, angiotensin-II, and transforming growth factor-β-stimulated cardiac hypertrophy, whereas a dominant-negative form of MRTF-A or MRTF-A siRNA strongly inhibited upregulation of hypertrophy genes in response to hypertrophic agonists in neonatal rat cardiomyocytes. Our studies indicate that besides myocardin, MRTF-A might play an important role in cardiac hypertrophy. Our findings provide novel evidence for the future studies to explore the roles of MRTFs in cardiac hypertrophy.
Collapse
Affiliation(s)
- Xing-Hua Liao
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin, Tianjin, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Imamura M, Long X, Nanda V, Miano JM. Expression and functional activity of four myocardin isoforms. Gene 2010; 464:1-10. [DOI: 10.1016/j.gene.2010.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 03/11/2010] [Accepted: 03/22/2010] [Indexed: 11/16/2022]
|
13
|
Abstract
Sumoylation is a posttranslational modification process in which SUMO proteins are covalently and reversibly conjugated to their targets via enzymatic cascade reactions. Since the discovery of SUMO-1 in 1996, the SUMO pathway has garnered increased attention due to its role in a number of important biological activities such as cell cycle progression, epigenetic modulation, signal transduction, and DNA replication/repair, as well as its potential implication in human pathogenesis such as in cancer development and metastasis, neurodegenerative disorders and craniofacial defects. The role of the SUMO pathway in regulating cardiogenic gene activity, development and/or disorders is just emerging. Our review is based on recent advances that highlight the regulation of cardiac gene activity in cardiac development and disease by the SUMO conjugation pathway.
Collapse
Affiliation(s)
- Jun Wang
- Center for Stem Cell Engineering, Department of Basic Research Laboratories, Texas Heart Institute, Houston, TX 77030
| | - Robert J Schwartz
- Center for Stem Cell Engineering, Department of Basic Research Laboratories, Texas Heart Institute, Houston, TX 77030
- Department of Biology and Biochemistry, University of Houston, Houston, TX
| |
Collapse
|
14
|
Abstract
The genetic defect in most patients with non-syndromic congenital heart malformations (CHM) is unknown, although more than 40 different genes have already been implicated. Only a minority of CHM seems to be due to monogenetic mutations, and the majority occurs sporadically. The multifactorial inheritance hypothesis of common diseases suggesting that the cumulative effect of multiple genetic and environmental risk factors leads to disease, might also apply for CHM. We review here the monogenic disease genes with high-penetrance mutations, susceptibility genes with reduced-penetrance mutations, and somatic mutations implicated in non-syndromic CHM.
Collapse
Affiliation(s)
- M W Wessels
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | |
Collapse
|