1
|
Bontonou G, Saint-Leandre B, Kafle T, Baticle T, Hassan A, Sánchez-Alcañiz JA, Arguello JR. Evolution of chemosensory tissues and cells across ecologically diverse Drosophilids. Nat Commun 2024; 15:1047. [PMID: 38316749 PMCID: PMC10844241 DOI: 10.1038/s41467-023-44558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024] Open
Abstract
Chemosensory tissues exhibit significant between-species variability, yet the evolution of gene expression and cell types underlying this diversity remain poorly understood. To address these questions, we conducted transcriptomic analyses of five chemosensory tissues from six Drosophila species and integrated the findings with single-cell datasets. While stabilizing selection predominantly shapes chemosensory transcriptomes, thousands of genes in each tissue have evolved expression differences. Genes that have changed expression in one tissue have often changed in multiple other tissues but at different past epochs and are more likely to be cell type-specific than unchanged genes. Notably, chemosensory-related genes have undergone widespread expression changes, with numerous species-specific gains/losses including novel chemoreceptors expression patterns. Sex differences are also pervasive, including a D. melanogaster-specific excess of male-biased expression in sensory and muscle cells in its forelegs. Together, our analyses provide new insights for understanding evolutionary changes in chemosensory tissues at both global and individual gene levels.
Collapse
Affiliation(s)
- Gwénaëlle Bontonou
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Bastien Saint-Leandre
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Tane Kafle
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tess Baticle
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Afrah Hassan
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | - J Roman Arguello
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
2
|
King BH, Gunathunga PB. Gustation in insects: taste qualities and types of evidence used to show taste function of specific body parts. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:11. [PMID: 37014302 PMCID: PMC10072106 DOI: 10.1093/jisesa/iead018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/03/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
The insect equivalent of taste buds are gustatory sensilla, which have been found on mouthparts, pharynxes, antennae, legs, wings, and ovipositors. Most gustatory sensilla are uniporous, but not all apparently uniporous sensilla are gustatory. Among sensilla containing more than one neuron, a tubular body on one dendrite is also indicative of a taste sensillum, with the tubular body adding tactile function. But not all taste sensilla are also tactile. Additional morphological criteria are often used to recognize if a sensillum is gustatory. Further confirmation of such criteria by electrophysiological or behavioral evidence is needed. The five canonical taste qualities to which insects respond are sweet, bitter, sour, salty, and umami. But not all tastants that insects respond to easily fit in these taste qualities. Categories of insect tastants can be based not only on human taste perception, but also on whether the response is deterrent or appetitive and on chemical structure. Other compounds that at least some insects taste include, but are not limited to: water, fatty acids, metals, carbonation, RNA, ATP, pungent tastes as in horseradish, bacterial lipopolysaccharides, and contact pheromones. We propose that, for insects, taste be defined not only as a response to nonvolatiles but also be restricted to responses that are, or are thought to be, mediated by a sensillum. This restriction is useful because some of the receptor proteins in gustatory sensilla are also found elsewhere.
Collapse
Affiliation(s)
- B H King
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | | |
Collapse
|
3
|
Shang J, Tang G, Yang J, Lu M, Wang CZ, Wang C. Sensing of a spore surface protein by a Drosophila chemosensory protein induces behavioral defense against fungal parasitic infections. Curr Biol 2023; 33:276-286.e5. [PMID: 36423638 DOI: 10.1016/j.cub.2022.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/12/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022]
Abstract
In addition to innate immunity in a physiological context, insects have evolved behavioral defenses against parasite attacks. Here, we report that Drosophila can sense the CFEM (common in fungal extracellular membrane) protein Mcdc9, which acts as a negative virulence factor of the entomopathogenic fungus Metarhizium robertsii. The individual deletions of 18 CFEM genes in Metarhizium followed by fly infection identified three null mutants that could kill the flies more quickly than the wild-type strain, among which Mcdc9 can coat fungal spores and interact with the fly chemosensory protein CheA75a. The deletion of Mcdc9 in the fungus or the knockdown of CheA75a in flies had a similar effect, in which a greater number of fungal spores were left on flies than on the respective controls after topical infection. Thus, similar to the accelerated death of the wild-type flies treated with ΔMcdc9, the CheA75aRNAi flies succumbed more quickly than the control insects topically challenged with the wild-type strain. The CheA75a gene is highly transcribed in fly legs and wings, and positive electrophysiological responses were evidenced in tarsal sensilla after stimulation with the Mcdc9 protein. The results imply that this CFEM protein could be sensed as a contact elicitor inducing the hygienic behavior of flies against fungal parasitic infection, which reveals a previously unsuspected mechanism of fungus-insect interactions.
Collapse
Affiliation(s)
- Junmei Shang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guirong Tang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengting Lu
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen-Zhu Wang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
4
|
Guo X, Xuan N, Liu G, Xie H, Lou Q, Arnaud P, Offmann B, Picimbon JF. An Expanded Survey of the Moth PBP/GOBP Clade in Bombyx mori: New Insight into Expression and Functional Roles. Front Physiol 2021; 12:712593. [PMID: 34776998 PMCID: PMC8582636 DOI: 10.3389/fphys.2021.712593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/13/2021] [Indexed: 02/01/2023] Open
Abstract
We studied the expression profile and ontogeny (from the egg stage through the larval stages and pupal stages, to the elderly adult age) of four OBPs from the silkworm moth Bombyx mori. We first showed that male responsiveness to female sex pheromone in the silkworm moth B. mori does not depend on age variation; whereas the expression of BmorPBP1, BmorPBP2, BmorGOBP1, and BmorGOBP2 varies with age. The expression profile analysis revealed that the studied OBPs are expressed in non-olfactory tissues at different developmental stages. In addition, we tested the effect of insecticide exposure on the expression of the four OBPs studied. Exposure to a toxic macrolide insecticide endectocide molecule (abamectin) led to the modulated expression of all four genes in different tissues. The higher expression of OBPs was detected in metabolic tissues, such as the thorax, gut, and fat body. All these data strongly suggest some alternative functions for these proteins other than olfaction. Finally, we carried out ligand docking studies and reported that PBP1 and GOBP2 have the capacity of binding vitamin K1 and multiple different vitamins.
Collapse
Affiliation(s)
- Xia Guo
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ning Xuan
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Guoxia Liu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hongyan Xie
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Qinian Lou
- Shandong Silkworm Institute, Shandong Academy of Agricultural Sciences, Yantai, China
| | - Philippe Arnaud
- Protein Engineering and Functionality Unit, UMR CNRS 6286, University of Nantes, Nantes, France
| | - Bernard Offmann
- Protein Engineering and Functionality Unit, UMR CNRS 6286, University of Nantes, Nantes, France
| | - Jean-François Picimbon
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China.,School of Bioengineering, QILU University of Technology, Jinan, China
| |
Collapse
|
5
|
Ahn SJ, Oh HW, Corcoran J, Kim JA, Park KC, Park CG, Choi MY. Sex-biased gene expression in antennae of Drosophila suzukii. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21660. [PMID: 31994766 DOI: 10.1002/arch.21660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 06/10/2023]
Abstract
Drosophila suzukii differs from other members of the genus Drosophila in its host preference and oviposition behavior. The flies are attracted to ripening fruits, and females have a serrated ovipositor enabling eggs to be laid inside the fruit. In addition to its huge economic impact, its unique chemoecological, morphological, and physiological characteristics have garnered considerable research interests. In this study, we analyzed D. suzukii antennal transcriptomes to identify sex-biased genes by comparison of differential gene expressions between male antennae (MA) and female antennae (FA). Among 13,583 total genes of the fly genome, 11,787 genes were expressed in either MA or FA. There are only 132 genes (9 in MA, 7 in FA, and 116 in both, FPKM >1) were expressed in antennae exclusively, and 2,570 genes (9 in MA, 0 in FA, and 2,561 in both) were enriched in antennae containing 185 and 113 sex-biased genes in MA and FA, respectively. Interestingly, many immune-related genes were highly expressed in MA, whereas several chemosensory genes were at high rank in FA. We identified 27 sex-biased chemosensory genes including odorant and gustatory receptors, odorant-binding proteins, chemosensory proteins, ionotropic receptors, and cytochrome P450s, and validated the gene expressions using quantitative real-time PCR. The highly expressed sex-biased genes in antennae are likely involved in the fly specific mating, host-finding behaviors, or sex-specific functions. The molecular results demonstrated here will facilitate to find the unique chemoreception of D. suzukii, as well as on the development of new management strategies for this pest.
Collapse
Affiliation(s)
- Seung-Joon Ahn
- Horticultural Crops Research Laboratory, USDA-ARS, Corvallis, Oregon
- Department of Biochemistry, Mississippi State University, Mississippi
| | - Hyun-Woo Oh
- Core Facility Management Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jacob Corcoran
- Horticultural Crops Research Laboratory, USDA-ARS, Corvallis, Oregon
| | - Ji-Ae Kim
- Core Facility Management Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Kye-Chung Park
- Bioprotection/Biosecurity, The New Zealand Institute for Plant and Food Research, Christchurch, New Zealand
| | - Chung Gyoo Park
- Department of Plant Medicine/Institute of Agriculture and Life Science (BK21+ Program), Gyeongsang National University, Jinju, Korea
| | - Man-Yeon Choi
- Horticultural Crops Research Laboratory, USDA-ARS, Corvallis, Oregon
| |
Collapse
|
6
|
Diop F, Alout H, Diagne CT, Bengue M, Baronti C, Hamel R, Talignani L, Liegeois F, Pompon J, Morales Vargas RE, Nougairède A, Missé D. Differential Susceptibility and Innate Immune Response of Aedes aegypti and Aedes albopictus to the Haitian Strain of the Mayaro Virus. Viruses 2019; 11:v11100924. [PMID: 31601017 PMCID: PMC6832402 DOI: 10.3390/v11100924] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 12/17/2022] Open
Abstract
Mayaro (MAYV) is an emerging arthropod-borne virus belonging to the Alphavirus genus of the Togaviridae family. Although forest-dwelling Haemagogus mosquitoes have been considered as its main vector, the virus has also been detected in circulating Aedes ssp mosquitoes. Here we assess the susceptibility of Aedes aegypti and Aedes albopictus to infection with MAYV and their innate immune response at an early stage of infection. Aedes albopictus was more susceptible to infection with MAYV than Ae. aegypti. Analysis of transcript levels of twenty immunity-related genes by real-time PCR in the midgut of both mosquitoes infected with MAYV revealed increased expression of several immune genes, including CLIP-domain serine proteases, the anti-microbial peptides defensin A, E, cecropin E, and the virus inducible gene. The regulation of certain genes appeared to be Aedes species-dependent. Infection of Ae. aegypti with MAYV resulted in increased levels of myeloid differentiation2-related lipid recognition protein (ML26A) transcripts, as compared to Ae. albopictus. Increased expression levels of thio-ester-containing protein 22 (TEP22) and Niemann–Pick type C1 (NPC1) gene transcripts were observed in infected Ae. albopictus, but not Ae. aegypti. The differences in these gene expression levels during MAYV infection could explain the variation in susceptibility observed in both mosquito species.
Collapse
Affiliation(s)
- Fodé Diop
- MIVEGEC-IRD, Univ. Montpellier, CNRS, 34394 Montpellier, France.
| | - Haoues Alout
- ASTRE, INRA CIRAD (UMR117), 34394 Montpellier, France.
| | | | - Michèle Bengue
- MIVEGEC-IRD, Univ. Montpellier, CNRS, 34394 Montpellier, France.
| | - Cécile Baronti
- Unité des virus émergents, Aix Marseille Univ-IRD 190, Inserm 1207-IHU Méditerranée Infection, 13385 Marseille, France.
| | - Rodolphe Hamel
- MIVEGEC-IRD, Univ. Montpellier, CNRS, 34394 Montpellier, France.
| | - Loïc Talignani
- MIVEGEC-IRD, Univ. Montpellier, CNRS, 34394 Montpellier, France.
| | - Florian Liegeois
- MIVEGEC-IRD, Univ. Montpellier, CNRS, 34394 Montpellier, France.
| | - Julien Pompon
- MIVEGEC-IRD, Univ. Montpellier, CNRS, 34394 Montpellier, France.
| | - Ronald E Morales Vargas
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Antoine Nougairède
- Unité des virus émergents, Aix Marseille Univ-IRD 190, Inserm 1207-IHU Méditerranée Infection, 13385 Marseille, France.
| | - Dorothée Missé
- MIVEGEC-IRD, Univ. Montpellier, CNRS, 34394 Montpellier, France.
| |
Collapse
|
7
|
Attardo GM, Abd-Alla AMM, Acosta-Serrano A, Allen JE, Bateta R, Benoit JB, Bourtzis K, Caers J, Caljon G, Christensen MB, Farrow DW, Friedrich M, Hua-Van A, Jennings EC, Larkin DM, Lawson D, Lehane MJ, Lenis VP, Lowy-Gallego E, Macharia RW, Malacrida AR, Marco HG, Masiga D, Maslen GL, Matetovici I, Meisel RP, Meki I, Michalkova V, Miller WJ, Minx P, Mireji PO, Ometto L, Parker AG, Rio R, Rose C, Rosendale AJ, Rota-Stabelli O, Savini G, Schoofs L, Scolari F, Swain MT, Takáč P, Tomlinson C, Tsiamis G, Van Den Abbeele J, Vigneron A, Wang J, Warren WC, Waterhouse RM, Weirauch MT, Weiss BL, Wilson RK, Zhao X, Aksoy S. Comparative genomic analysis of six Glossina genomes, vectors of African trypanosomes. Genome Biol 2019; 20:187. [PMID: 31477173 PMCID: PMC6721284 DOI: 10.1186/s13059-019-1768-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Tsetse flies (Glossina sp.) are the vectors of human and animal trypanosomiasis throughout sub-Saharan Africa. Tsetse flies are distinguished from other Diptera by unique adaptations, including lactation and the birthing of live young (obligate viviparity), a vertebrate blood-specific diet by both sexes, and obligate bacterial symbiosis. This work describes the comparative analysis of six Glossina genomes representing three sub-genera: Morsitans (G. morsitans morsitans, G. pallidipes, G. austeni), Palpalis (G. palpalis, G. fuscipes), and Fusca (G. brevipalpis) which represent different habitats, host preferences, and vectorial capacity. RESULTS Genomic analyses validate established evolutionary relationships and sub-genera. Syntenic analysis of Glossina relative to Drosophila melanogaster shows reduced structural conservation across the sex-linked X chromosome. Sex-linked scaffolds show increased rates of female-specific gene expression and lower evolutionary rates relative to autosome associated genes. Tsetse-specific genes are enriched in protease, odorant-binding, and helicase activities. Lactation-associated genes are conserved across all Glossina species while male seminal proteins are rapidly evolving. Olfactory and gustatory genes are reduced across the genus relative to other insects. Vision-associated Rhodopsin genes show conservation of motion detection/tracking functions and variance in the Rhodopsin detecting colors in the blue wavelength ranges. CONCLUSIONS Expanded genomic discoveries reveal the genetics underlying Glossina biology and provide a rich body of knowledge for basic science and disease control. They also provide insight into the evolutionary biology underlying novel adaptations and are relevant to applied aspects of vector control such as trap design and discovery of novel pest and disease control strategies.
Collapse
Affiliation(s)
- Geoffrey M Attardo
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, USA.
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Alvaro Acosta-Serrano
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - James E Allen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Rosemary Bateta
- Department of Biochemistry, Biotechnology Research Institute - Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Jelle Caers
- Department of Biology - Functional Genomics and Proteomics Group, KU Leuven, Leuven, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Mikkel B Christensen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - David W Farrow
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Aurélie Hua-Van
- Laboratoire Evolution, Genomes, Comportement, Ecologie, CNRS, IRD, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Denis M Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Daniel Lawson
- Department of Life Sciences, Imperial College London, London, UK
| | - Michael J Lehane
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - Vasileios P Lenis
- Schools of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - Ernesto Lowy-Gallego
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Rosaline W Macharia
- Molecular Biology and Bioinformatics Unit, International Center for Insect Physiology and Ecology, Nairobi, Kenya.,Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya
| | - Anna R Malacrida
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Heather G Marco
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Daniel Masiga
- Molecular Biology and Bioinformatics Unit, International Center for Insect Physiology and Ecology, Nairobi, Kenya
| | - Gareth L Maslen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Irina Matetovici
- Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Irene Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Veronika Michalkova
- Department of Biological Sciences, Florida International University, Miami, Florida, USA.,Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Wolfgang J Miller
- Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Patrick Minx
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul O Mireji
- Department of Biochemistry, Biotechnology Research Institute - Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya.,Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Lino Ometto
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy.,Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Rita Rio
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Clair Rose
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - Andrew J Rosendale
- Department of Biology, Mount St. Joseph University, Cincinnati, OH, USA.,Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Omar Rota-Stabelli
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | - Grazia Savini
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Liliane Schoofs
- Department of Biology - Functional Genomics and Proteomics Group, KU Leuven, Leuven, Belgium
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Martin T Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, UK
| | - Peter Takáč
- Department of Animal Systematics, Ústav zoológie SAV; Scientica, Ltd, Bratislava, Slovakia
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - George Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Etoloakarnania, Greece
| | | | - Aurelien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Jingwen Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Robert M Waterhouse
- Department of Ecology & Evolution, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology and Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Richard K Wilson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Xin Zhao
- CAS Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
8
|
Attardo GM, Abd-Alla AMM, Acosta-Serrano A, Allen JE, Bateta R, Benoit JB, Bourtzis K, Caers J, Caljon G, Christensen MB, Farrow DW, Friedrich M, Hua-Van A, Jennings EC, Larkin DM, Lawson D, Lehane MJ, Lenis VP, Lowy-Gallego E, Macharia RW, Malacrida AR, Marco HG, Masiga D, Maslen GL, Matetovici I, Meisel RP, Meki I, Michalkova V, Miller WJ, Minx P, Mireji PO, Ometto L, Parker AG, Rio R, Rose C, Rosendale AJ, Rota-Stabelli O, Savini G, Schoofs L, Scolari F, Swain MT, Takáč P, Tomlinson C, Tsiamis G, Van Den Abbeele J, Vigneron A, Wang J, Warren WC, Waterhouse RM, Weirauch MT, Weiss BL, Wilson RK, Zhao X, Aksoy S. Comparative genomic analysis of six Glossina genomes, vectors of African trypanosomes. Genome Biol 2019; 20:187. [PMID: 31477173 DOI: 10.1101/531749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/22/2019] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Tsetse flies (Glossina sp.) are the vectors of human and animal trypanosomiasis throughout sub-Saharan Africa. Tsetse flies are distinguished from other Diptera by unique adaptations, including lactation and the birthing of live young (obligate viviparity), a vertebrate blood-specific diet by both sexes, and obligate bacterial symbiosis. This work describes the comparative analysis of six Glossina genomes representing three sub-genera: Morsitans (G. morsitans morsitans, G. pallidipes, G. austeni), Palpalis (G. palpalis, G. fuscipes), and Fusca (G. brevipalpis) which represent different habitats, host preferences, and vectorial capacity. RESULTS Genomic analyses validate established evolutionary relationships and sub-genera. Syntenic analysis of Glossina relative to Drosophila melanogaster shows reduced structural conservation across the sex-linked X chromosome. Sex-linked scaffolds show increased rates of female-specific gene expression and lower evolutionary rates relative to autosome associated genes. Tsetse-specific genes are enriched in protease, odorant-binding, and helicase activities. Lactation-associated genes are conserved across all Glossina species while male seminal proteins are rapidly evolving. Olfactory and gustatory genes are reduced across the genus relative to other insects. Vision-associated Rhodopsin genes show conservation of motion detection/tracking functions and variance in the Rhodopsin detecting colors in the blue wavelength ranges. CONCLUSIONS Expanded genomic discoveries reveal the genetics underlying Glossina biology and provide a rich body of knowledge for basic science and disease control. They also provide insight into the evolutionary biology underlying novel adaptations and are relevant to applied aspects of vector control such as trap design and discovery of novel pest and disease control strategies.
Collapse
Affiliation(s)
- Geoffrey M Attardo
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, USA.
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Alvaro Acosta-Serrano
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - James E Allen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Rosemary Bateta
- Department of Biochemistry, Biotechnology Research Institute - Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Jelle Caers
- Department of Biology - Functional Genomics and Proteomics Group, KU Leuven, Leuven, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Mikkel B Christensen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - David W Farrow
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Aurélie Hua-Van
- Laboratoire Evolution, Genomes, Comportement, Ecologie, CNRS, IRD, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Denis M Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Daniel Lawson
- Department of Life Sciences, Imperial College London, London, UK
| | - Michael J Lehane
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - Vasileios P Lenis
- Schools of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - Ernesto Lowy-Gallego
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Rosaline W Macharia
- Molecular Biology and Bioinformatics Unit, International Center for Insect Physiology and Ecology, Nairobi, Kenya
- Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya
| | - Anna R Malacrida
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Heather G Marco
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Daniel Masiga
- Molecular Biology and Bioinformatics Unit, International Center for Insect Physiology and Ecology, Nairobi, Kenya
| | - Gareth L Maslen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Irina Matetovici
- Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Irene Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Veronika Michalkova
- Department of Biological Sciences, Florida International University, Miami, Florida, USA
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Wolfgang J Miller
- Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Patrick Minx
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul O Mireji
- Department of Biochemistry, Biotechnology Research Institute - Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
- Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Lino Ometto
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Rita Rio
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Clair Rose
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - Andrew J Rosendale
- Department of Biology, Mount St. Joseph University, Cincinnati, OH, USA
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Omar Rota-Stabelli
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | - Grazia Savini
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Liliane Schoofs
- Department of Biology - Functional Genomics and Proteomics Group, KU Leuven, Leuven, Belgium
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Martin T Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, UK
| | - Peter Takáč
- Department of Animal Systematics, Ústav zoológie SAV; Scientica, Ltd, Bratislava, Slovakia
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - George Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Etoloakarnania, Greece
| | | | - Aurelien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Jingwen Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Robert M Waterhouse
- Department of Ecology & Evolution, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology and Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Richard K Wilson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Xin Zhao
- CAS Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
9
|
Wu Z, Kang C, Qu M, Chen J, Chen M, Bin S, Lin J. Candidates for chemosensory genes identified in the Chinese citrus fly, Bactrocera minax, through a transcriptomic analysis. BMC Genomics 2019; 20:646. [PMID: 31412763 PMCID: PMC6693287 DOI: 10.1186/s12864-019-6022-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/09/2019] [Indexed: 11/10/2022] Open
Abstract
Background The males of many Bactrocera species (Diptera: Tephritidae) respond strongly to plant-derived chemicals (male lures) and can be divided into cue lure/raspberry ketone (CL/RK) responders, methyl eugenol (ME) responders and non-responders. Representing a non-responders, Bactrocera minax display unique olfactory sensory characteristics compared with other Bactrocera species. The chemical senses of insects mediate behaviors that are associated with survival and reproduction. Here, we report the generation of transcriptomes from antennae and the rectal glands of both male and female adults of B. minax using Illumina sequencing technology, and annotated gene families potentially responsible for chemosensory. Results We developed four transcriptomes from different tissues of B. minax and identified a set of candidate genes potentially responsible for chemosensory by analyzing the transcriptomic data. The candidates included 40 unigenes coding for odorant receptors (ORs), 30 for ionotropic receptors (IRs), 17 for gustatory receptors (GRs), three for sensory neuron membrane proteins (SNMPs), 33 for odorant-binding proteins (OBPs), four for chemosensory proteins (CSPs). Sex- and tissue-specific expression profiles for candidate chemosensory genes were analyzed via transcriptomic data analyses, and expression profiles of all ORs and antennal IRs were investigated by real-time quantitative PCR (RT-qPCR). Phylogenetic analyses were also conducted on gene families and paralogs from other insect species together. Conclusions A large number of chemosensory genes were identified from transcriptomic data. Identification of these candidate genes and their expression profiles in various tissues provide useful information for future studies towards revealing their function in B. minax. Electronic supplementary material The online version of this article (10.1186/s12864-019-6022-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhongzhen Wu
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Cong Kang
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Mengqiu Qu
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Junlong Chen
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Mingshun Chen
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - Shuying Bin
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Jintian Lin
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China.
| |
Collapse
|
10
|
Pei J, Kinch LN, Grishin NV. FlyXCDB—A Resource for Drosophila Cell Surface and Secreted Proteins and Their Extracellular Domains. J Mol Biol 2018; 430:3353-3411. [DOI: 10.1016/j.jmb.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 02/06/2023]
|
11
|
Agnel S, da Rocha M, Robichon A. Transcriptome Profiling of Neurosensory Perception Genes in Wing Tissue of Two Evolutionary Distant Insect Orders: Diptera (Drosophila melanogaster) and Hemiptera (Acyrthosiphon pisum). J Mol Evol 2017; 85:234-245. [PMID: 29075833 DOI: 10.1007/s00239-017-9814-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/19/2017] [Indexed: 01/15/2023]
Abstract
The neurogenesis and neuronal functions in insect wing have been understudied mainly due to technical hindrances that have prevented electrophysiology studies for decades. The reason is that the nano-architecture of the wing chemosensory bristles hampers the receptors accessibility of odorants/tastants to receptors in fixed setup, whereas in nature, the wing flapping mixes these molecules in bristle lymph. In this report, we analyzed the transcriptome of the wing tissue of two species phylogenetically strongly divergent: Drosophila melanogaster a generic model for diptera order (complete metamorphosis) and the aphid acyrthosiphon pisum, representative of hemiptera order (incomplete metamorphosis) for which a conditional winged/wingless polyphenism is under control of population density and resources. The transcriptome shows that extensive gene networks involved in chemosensory perception are active in adult wing for both species. Surprisingly, the specific transcripts of genes that are commonly found in eye were present in Drosophila wing but not in aphid. The analysis reveals that in the aphid conditional wing, expressed genes show strong similarities with those in the gut epithelia. This suggests that the epithelial cell layer between the cuticle sheets is persistent at least in young aphid adult, whereas it disappears after emergence in Drosophila. Despite marked differences between the two transcriptomes, the results highlight the probable universalism of wing chemosensory function in the holometabolous and hemimetabolous orders of winged insects.
Collapse
Affiliation(s)
- Sandra Agnel
- Université Côte d'Azur, INRA, CNRS, ISA, Institut Agrobiotech, 400 route des Chappes, 06903, Sophia Antipolis, France
| | - Martine da Rocha
- Université Côte d'Azur, INRA, CNRS, ISA, Institut Agrobiotech, 400 route des Chappes, 06903, Sophia Antipolis, France
| | - Alain Robichon
- Université Côte d'Azur, INRA, CNRS, ISA, Institut Agrobiotech, 400 route des Chappes, 06903, Sophia Antipolis, France.
| |
Collapse
|
12
|
Hebbar S, Khandelwal A, Jayashree R, Hindle SJ, Chiang YN, Yew JY, Sweeney ST, Schwudke D. Lipid metabolic perturbation is an early-onset phenotype in adult spinster mutants: a Drosophila model for lysosomal storage disorders. Mol Biol Cell 2017; 28:3728-3740. [PMID: 29046397 PMCID: PMC5739291 DOI: 10.1091/mbc.e16-09-0674] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 02/06/2023] Open
Abstract
Intracellular accumulation of lipids and swollen dysfunctional lysosomes are linked to several neurodegenerative diseases, including lysosomal storage disorders (LSD). Detailed characterization of lipid metabolic changes in relation to the onset and progression of neurodegeneration is currently missing. We systematically analyzed lipid perturbations in spinster (spin) mutants, a Drosophila model of LSD-like neurodegeneration. Our results highlight an imbalance in brain ceramide and sphingosine in the early stages of neurodegeneration, preceding the accumulation of endomembranous structures, manifestation of altered behavior, and buildup of lipofuscin. Manipulating levels of ceramidase and altering these lipids in spin mutants allowed us to conclude that ceramide homeostasis is the driving force in disease progression and is integral to spin function in the adult nervous system. We identified 29 novel physical interaction partners of Spin and focused on the lipid carrier protein, Lipophorin (Lpp). A subset of Lpp and Spin colocalize in the brain and within organs specialized for lipid metabolism (fat bodies and oenocytes). Reduced Lpp protein was observed in spin mutant tissues. Finally, increased levels of lipid metabolites produced by oenocytes in spin mutants allude to a functional interaction between Spin and Lpp, underscoring the systemic nature of lipid perturbation in LSD.
Collapse
Affiliation(s)
- Sarita Hebbar
- National Center for Biological Sciences, Tata Institute for Fundamental Research, Bangalore 560065, India
| | - Avinash Khandelwal
- National Center for Biological Sciences, Tata Institute for Fundamental Research, Bangalore 560065, India
| | - R Jayashree
- Centre for Cellular and Molecular Platforms (C-CAMP), Proteomics Facility, Bangalore 560065, India
| | | | | | - Joanne Y Yew
- Pacific Biosciences Research Center, University of Hawai'i at Ma-noa, Honolulu, HI 96822
| | - Sean T Sweeney
- Department of Biology, University of York, York YO10 5DD, UK
| | - Dominik Schwudke
- National Center for Biological Sciences, Tata Institute for Fundamental Research, Bangalore 560065, India
| |
Collapse
|
13
|
Torres-Oliva M, Almeida FC, Sánchez-Gracia A, Rozas J. Comparative Genomics Uncovers Unique Gene Turnover and Evolutionary Rates in a Gene Family Involved in the Detection of Insect Cuticular Pheromones. Genome Biol Evol 2016. [PMCID: PMC4943180 DOI: 10.1093/gbe/evw108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chemoreception is an essential process for the survival and reproduction of animals. Many of the proteins responsible for recognizing and transmitting chemical stimuli in insects are encoded by genes that are members of moderately sized multigene families. The members of the CheB family are specialized in gustatory-mediated detection of long-chain hydrocarbon pheromones in Drosophila melanogaster and play a central role in triggering and modulating mating behavior in this species. Here, we present a comprehensive comparative genomic analysis of the CheB family across 12 species of the Drosophila genus. We have identified a total of 102 new CheB genes in the genomes of these species, including a functionally divergent member previously uncharacterized in D. melanogaster. We found that, despite its relatively small repertory size, the CheB family has undergone multiple gain and loss events and various episodes of diversifying selection during the divergence of the surveyed species. Present estimates of gene turnover and coding sequence substitution rates show that this family is evolving faster than any known Drosophila chemosensory family. To date, only other insect gustatory-related genes among these families had shown evolutionary dynamics close to those observed in CheBs. Our findings reveal the high adaptive potential of molecular components of the gustatory system in insects and anticipate a key role of genes involved in this sensory modality in species adaptation and diversification.
Collapse
Affiliation(s)
- Montserrat Torres-Oliva
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
- Present Address: Georg-August-University Göttingen, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Department of Developmental Biology, Ernst-Caspari-House (GZMB), Justus-von-Liebig-Weg 11, Göttingen, Germany
| | - Francisca C. Almeida
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
- Present Address: Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET-IEGEBA), Universidad de Buenos Aires, Departamento de Ecología, Genética y Evolución, Av. Intendente Güiraldes y Costanera Norte s/n, Pabellón II, Ciudad Universitaria, Capital Federal, Argentina
| | - Alejandro Sánchez-Gracia
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
- *Corresponding author: E-mail: or
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
- *Corresponding author: E-mail: or
| |
Collapse
|
14
|
Gulia-Nuss M, Nuss AB, Meyer JM, Sonenshine DE, Roe RM, Waterhouse RM, Sattelle DB, de la Fuente J, Ribeiro JM, Megy K, Thimmapuram J, Miller JR, Walenz BP, Koren S, Hostetler JB, Thiagarajan M, Joardar VS, Hannick LI, Bidwell S, Hammond MP, Young S, Zeng Q, Abrudan JL, Almeida FC, Ayllón N, Bhide K, Bissinger BW, Bonzon-Kulichenko E, Buckingham SD, Caffrey DR, Caimano MJ, Croset V, Driscoll T, Gilbert D, Gillespie JJ, Giraldo-Calderón GI, Grabowski JM, Jiang D, Khalil SMS, Kim D, Kocan KM, Koči J, Kuhn RJ, Kurtti TJ, Lees K, Lang EG, Kennedy RC, Kwon H, Perera R, Qi Y, Radolf JD, Sakamoto JM, Sánchez-Gracia A, Severo MS, Silverman N, Šimo L, Tojo M, Tornador C, Van Zee JP, Vázquez J, Vieira FG, Villar M, Wespiser AR, Yang Y, Zhu J, Arensburger P, Pietrantonio PV, Barker SC, Shao R, Zdobnov EM, Hauser F, Grimmelikhuijzen CJP, Park Y, Rozas J, Benton R, Pedra JHF, Nelson DR, Unger MF, Tubio JMC, Tu Z, Robertson HM, Shumway M, Sutton G, Wortman JR, Lawson D, Wikel SK, Nene VM, Fraser CM, Collins FH, Birren B, Nelson KE, Caler E, Hill CA. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat Commun 2016; 7:10507. [PMID: 26856261 PMCID: PMC4748124 DOI: 10.1038/ncomms10507] [Citation(s) in RCA: 350] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 12/12/2015] [Indexed: 01/06/2023] Open
Abstract
Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retro-transposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing ∼57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick-host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host 'questing', prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent.
Collapse
Affiliation(s)
- Monika Gulia-Nuss
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Andrew B. Nuss
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jason M. Meyer
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Daniel E. Sonenshine
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginina 23529, USA
| | - R. Michael Roe
- Department of Entomology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Robert M. Waterhouse
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland
- Swiss Institute of Bioinformatics, Geneva 1211, Switzerland
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - David B. Sattelle
- Centre for Respiratory Biology, UCL Respiratory Department, Division of Medicine, University College London, Rayne Building, 5 University Street, London WC1E 6JF, UK
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ronda de Toledo sn, Ciudad Real 13005, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, 250 McElroy Hall, Stillwater, Oklahama 74078, USA
| | - Jose M. Ribeiro
- Laboratory of Malaria and Vector Research, NIAID, Rockville, Maryland 20852, USA
| | - Karine Megy
- VectorBase/EMBL-EBI, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Jyothi Thimmapuram
- Bioinformatics Core, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | - Sergey Koren
- J. Craig Venter Institute, Rockville, Maryland 20850, USA
| | | | | | | | | | - Shelby Bidwell
- J. Craig Venter Institute, Rockville, Maryland 20850, USA
| | - Martin P. Hammond
- VectorBase/EMBL-EBI, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Sarah Young
- Genome Sequencing and Analysis Program, Broad Institute, Cambridge, Massachusetts 02142, USA
| | - Qiandong Zeng
- Genome Sequencing and Analysis Program, Broad Institute, Cambridge, Massachusetts 02142, USA
| | - Jenica L. Abrudan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Francisca C. Almeida
- Departament de Genètica & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona E-08028, Spain
| | - Nieves Ayllón
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ronda de Toledo sn, Ciudad Real 13005, Spain
| | - Ketaki Bhide
- Bioinformatics Core, Purdue University, West Lafayette, Indiana 47907, USA
| | - Brooke W. Bissinger
- Department of Entomology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Elena Bonzon-Kulichenko
- Vascular Physiopathology, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain
| | - Steven D. Buckingham
- Centre for Respiratory Biology, UCL Respiratory Department, Division of Medicine, University College London, Rayne Building, 5 University Street, London WC1E 6JF, UK
| | - Daniel R. Caffrey
- Department of Medicine, Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Melissa J. Caimano
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Vincent Croset
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Timothy Driscoll
- Genetics, Bioinformatics, and Computational Biology Program, Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Don Gilbert
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Joseph J. Gillespie
- Genetics, Bioinformatics, and Computational Biology Program, Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Gloria I. Giraldo-Calderón
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Jeffrey M. Grabowski
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907, USA
- Department Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, Indiana 47907, USA
| | - David Jiang
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Sayed M. S. Khalil
- Department of Microbial Molecular Biology, Agricultural Genetic Engineering Research Institute, Giza 12619, Egypt
| | - Donghun Kim
- Department of Entomology, Texas A&M University, College Station, Texas 77843, USA
| | - Katherine M. Kocan
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, 250 McElroy Hall, Stillwater, Oklahama 74078, USA
| | - Juraj Koči
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Richard J. Kuhn
- Department Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Timothy J. Kurtti
- Department of Entomology, University of Minnesota, St Paul, Minnesota 55108, USA
| | - Kristin Lees
- Department of Neurosystems, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Emma G. Lang
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Ryan C. Kennedy
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94143, USA
| | - Hyeogsun Kwon
- Department of Entomology, Texas A&M University, College Station, Texas 77843, USA
| | - Rushika Perera
- Department Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Yumin Qi
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Justin D. Radolf
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Joyce M. Sakamoto
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Alejandro Sánchez-Gracia
- Departament de Genètica & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona E-08028, Spain
| | - Maiara S. Severo
- Department of Entomology, Center for Disease Vector Research, University of California, Riverside, California 92506, USA
| | - Neal Silverman
- Department of Medicine, Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Ladislav Šimo
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Marta Tojo
- Department of Pathology, Cambridge Genomic Services, University of Cambridge, Cambridge CB2 1QP, UK
- Department of Physiology, School of Medicine-CIMUS-Instituto de Investigaciones Sanitarias, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Cristian Tornador
- Department of Experimental and Health Sciences, Universidad Pompeu Fabra, Barcelona 08003, Spain
| | - Janice P. Van Zee
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jesús Vázquez
- Vascular Physiopathology, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain
| | - Filipe G. Vieira
- Departament de Genètica & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona E-08028, Spain
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ronda de Toledo sn, Ciudad Real 13005, Spain
| | - Adam R. Wespiser
- Department of Medicine, Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Yunlong Yang
- Department of Entomology, Texas A&M University, College Station, Texas 77843, USA
| | - Jiwei Zhu
- Department of Entomology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Peter Arensburger
- Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768, USA
| | | | - Stephen C. Barker
- Parasitology Section, School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Renfu Shao
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4556, Australia
| | - Evgeny M. Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland
- Swiss Institute of Bioinformatics, Geneva 1211, Switzerland
| | - Frank Hauser
- Department of Biology, Center for Functional and Comparative Insect Genomics, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Cornelis J. P. Grimmelikhuijzen
- Department of Biology, Center for Functional and Comparative Insect Genomics, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Julio Rozas
- Departament de Genètica & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona E-08028, Spain
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Joao H. F. Pedra
- Department of Entomology, Center for Disease Vector Research, University of California, Riverside, California 92506, USA
| | - David R. Nelson
- Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Maria F. Unger
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Jose M. C. Tubio
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo 36310, Spain
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Hugh M. Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Martin Shumway
- J. Craig Venter Institute, Rockville, Maryland 20850, USA
| | - Granger Sutton
- J. Craig Venter Institute, Rockville, Maryland 20850, USA
| | | | - Daniel Lawson
- VectorBase/EMBL-EBI, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Stephen K. Wikel
- Department of Medical Sciences, Frank H. Netter MD School of Medicine at Quinnipiac University, Hamden, Connecticut 06518, USA
| | | | - Claire M. Fraser
- Institute for Genome Sciences, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Frank H. Collins
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Bruce Birren
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | | | - Elisabet Caler
- J. Craig Venter Institute, Rockville, Maryland 20850, USA
| | - Catherine A. Hill
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
15
|
French A, Ali Agha M, Mitra A, Yanagawa A, Sellier MJ, Marion-Poll F. Drosophila Bitter Taste(s). Front Integr Neurosci 2015; 9:58. [PMID: 26635553 PMCID: PMC4658422 DOI: 10.3389/fnint.2015.00058] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 10/30/2015] [Indexed: 11/13/2022] Open
Abstract
Most animals possess taste receptors neurons detecting potentially noxious compounds. In humans, the ligands which activate these neurons define a sensory space called “bitter”. By extension, this term has been used in animals and insects to define molecules which induce aversive responses. In this review, based on our observations carried out in Drosophila, we examine how bitter compounds are detected and if bitter-sensitive neurons respond only to molecules bitter to humans. Like most animals, flies detect bitter chemicals through a specific population of taste neurons, distinct from those responding to sugars or to other modalities. Activating bitter-sensitive taste neurons induces aversive reactions and inhibits feeding. Bitter molecules also contribute to the suppression of sugar-neuron responses and can lead to a complete inhibition of the responses to sugar at the periphery. Since some bitter molecules activate bitter-sensitive neurons and some inhibit sugar detection, bitter molecules are represented by two sensory spaces which are only partially congruent. In addition to molecules which impact feeding, we recently discovered that the activation of bitter-sensitive neurons also induces grooming. Bitter-sensitive neurons of the wings and of the legs can sense chemicals from the gram negative bacteria, Escherichia coli, thus adding another biological function to these receptors. Bitter-sensitive neurons of the proboscis also respond to the inhibitory pheromone, 7-tricosene. Activating these neurons by bitter molecules in the context of sexual encounter inhibits courting and sexual reproduction, while activating these neurons with 7-tricosene in a feeding context will inhibit feeding. The picture that emerges from these observations is that the taste system is composed of detectors which monitor different “categories” of ligands, which facilitate or inhibit behaviors depending on the context (feeding, sexual reproduction, hygienic behavior), thus considerably extending the initial definition of “bitter” tasting.
Collapse
Affiliation(s)
- Alice French
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette, France
| | - Moutaz Ali Agha
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette, France
| | - Aniruddha Mitra
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette, France
| | - Aya Yanagawa
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette, France ; Research Institute for Sustainable Humanosphere, Kyoto University Uji City, Japan
| | - Marie-Jeanne Sellier
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette, France
| | - Frédéric Marion-Poll
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette, France ; AgroParisTech Paris, France
| |
Collapse
|
16
|
Wang Y, O’Bryant Z, Wang H, Huang Y. Regulating Factors in Acid-Sensing Ion Channel 1a Function. Neurochem Res 2015; 41:631-45. [DOI: 10.1007/s11064-015-1768-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/04/2015] [Accepted: 11/08/2015] [Indexed: 12/11/2022]
|
17
|
Shiao MS, Chang JM, Fan WL, Lu MYJ, Notredame C, Fang S, Kondo R, Li WH. Expression Divergence of Chemosensory Genes between Drosophila sechellia and Its Sibling Species and Its Implications for Host Shift. Genome Biol Evol 2015; 7:2843-58. [PMID: 26430061 PMCID: PMC4684695 DOI: 10.1093/gbe/evv183] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Drosophila sechellia relies exclusively on the fruits of Morinda citrifolia, which are toxic to most insects, including its sibling species Drosophila melanogaster and Drosophila simulans. Although several odorant binding protein (Obp) genes and olfactory receptor (Or) genes have been suggested to be associated with the D. sechellia host shift, a broad view of how chemosensory genes have contributed to this shift is still lacking. We therefore studied the transcriptomes of antennae, the main organ responsible for detecting food resource and oviposition, of D. sechellia and its two sibling species. We wanted to know whether gene expression, particularly chemosensory genes, has diverged between D. sechellia and its two sibling species. Using a very stringent definition of differential gene expression, we found a higher percentage of chemosensory genes differentially expressed in the D. sechellia lineage (7.8%) than in the D. simulans lineage (5.4%); for upregulated chemosensory genes, the percentages were 8.8% in D. sechellia and 5.2% in D. simulans. Interestingly, Obp50a exhibited the highest upregulation, an approximately 100-fold increase, and Or85c--previously reported to be a larva-specific gene--showed approximately 20-fold upregulation in D. sechellia. Furthermore, Ir84a (ionotropic receptor 84a), which has been proposed to be associated with male courtship behavior, was significantly upregulated in D. sechellia. We also found expression divergence in most of the chemosensory gene families between D. sechellia and the two sibling species. Our observations suggest that the host shift of D. sechellia was associated with the enrichment of differentially expressed, particularly upregulated, chemosensory genes.
Collapse
Affiliation(s)
- Meng-Shin Shiao
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Jia-Ming Chang
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain Institute of Human Genetics (IGH), UPR 1142, CNRS, Montpellier, France
| | - Wen-Lang Fan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Cedric Notredame
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Shu Fang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Rumi Kondo
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan Department of Ecology and Evolution, University of Chicago
| |
Collapse
|
18
|
Kenny NJ, Shen X, Chan TTH, Wong NWY, Chan TF, Chu KH, Lam HM, Hui JHL. Genome of the Rusty Millipede, Trigoniulus corallinus, Illuminates Diplopod, Myriapod, and Arthropod Evolution. Genome Biol Evol 2015; 7:1280-95. [PMID: 25900922 PMCID: PMC4453065 DOI: 10.1093/gbe/evv070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2015] [Indexed: 12/21/2022] Open
Abstract
The increasing availability of genomic information from the Arthropoda continues to revolutionize our understanding of the biology of this most diverse animal phylum. However, our sampling of arthropod diversity remains uneven, and key clade such as the Myriapoda are severely underrepresented. Here we present the genome of the cosmopolitanly distributed Rusty Millipede Trigoniulus corallinus, which represents the first diplopod genome to be published, and the second example from the Myriapoda as a whole. This genomic resource contains the majority of core eukaryotic genes (94.3%), and key transcription factor classes that were thought to be lost in the Ecdysozoa. Mitochondrial genome and gene family (transcription factor, Dscam, circadian clock-driving protein, odorant receptor cassette, bioactive compound, and cuticular protein) analyses were also carried out to shed light on their states in the Diplopoda and Myriapoda. The ready availability of T. corallinus recommends it as a new model for evolutionary developmental biology, and the data set described here will be of widespread utility in investigating myriapod and arthropod genomics and evolution.
Collapse
Affiliation(s)
- Nathan J Kenny
- Simon F.S. Li Marine Science Laboratory of School of Life Sciences and Center of Soybean Research of State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xin Shen
- Center of Soybean Research of State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Thomas T H Chan
- Simon F.S. Li Marine Science Laboratory of School of Life Sciences and Center of Soybean Research of State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Nicola W Y Wong
- Simon F.S. Li Marine Science Laboratory of School of Life Sciences and Center of Soybean Research of State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ting Fung Chan
- Center of Soybean Research of State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ka Hou Chu
- Simon F.S. Li Marine Science Laboratory of School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hon-Ming Lam
- Center of Soybean Research of State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jerome H L Hui
- Simon F.S. Li Marine Science Laboratory of School of Life Sciences and Center of Soybean Research of State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
19
|
Chipman AD, Ferrier DEK, Brena C, Qu J, Hughes DST, Schröder R, Torres-Oliva M, Znassi N, Jiang H, Almeida FC, Alonso CR, Apostolou Z, Aqrawi P, Arthur W, Barna JCJ, Blankenburg KP, Brites D, Capella-Gutiérrez S, Coyle M, Dearden PK, Du Pasquier L, Duncan EJ, Ebert D, Eibner C, Erikson G, Evans PD, Extavour CG, Francisco L, Gabaldón T, Gillis WJ, Goodwin-Horn EA, Green JE, Griffiths-Jones S, Grimmelikhuijzen CJP, Gubbala S, Guigó R, Han Y, Hauser F, Havlak P, Hayden L, Helbing S, Holder M, Hui JHL, Hunn JP, Hunnekuhl VS, Jackson L, Javaid M, Jhangiani SN, Jiggins FM, Jones TE, Kaiser TS, Kalra D, Kenny NJ, Korchina V, Kovar CL, Kraus FB, Lapraz F, Lee SL, Lv J, Mandapat C, Manning G, Mariotti M, Mata R, Mathew T, Neumann T, Newsham I, Ngo DN, Ninova M, Okwuonu G, Ongeri F, Palmer WJ, Patil S, Patraquim P, Pham C, Pu LL, Putman NH, Rabouille C, Ramos OM, Rhodes AC, Robertson HE, Robertson HM, Ronshaugen M, Rozas J, Saada N, Sánchez-Gracia A, Scherer SE, Schurko AM, Siggens KW, Simmons D, Stief A, Stolle E, Telford MJ, Tessmar-Raible K, Thornton R, van der Zee M, von Haeseler A, Williams JM, Willis JH, Wu Y, Zou X, et alChipman AD, Ferrier DEK, Brena C, Qu J, Hughes DST, Schröder R, Torres-Oliva M, Znassi N, Jiang H, Almeida FC, Alonso CR, Apostolou Z, Aqrawi P, Arthur W, Barna JCJ, Blankenburg KP, Brites D, Capella-Gutiérrez S, Coyle M, Dearden PK, Du Pasquier L, Duncan EJ, Ebert D, Eibner C, Erikson G, Evans PD, Extavour CG, Francisco L, Gabaldón T, Gillis WJ, Goodwin-Horn EA, Green JE, Griffiths-Jones S, Grimmelikhuijzen CJP, Gubbala S, Guigó R, Han Y, Hauser F, Havlak P, Hayden L, Helbing S, Holder M, Hui JHL, Hunn JP, Hunnekuhl VS, Jackson L, Javaid M, Jhangiani SN, Jiggins FM, Jones TE, Kaiser TS, Kalra D, Kenny NJ, Korchina V, Kovar CL, Kraus FB, Lapraz F, Lee SL, Lv J, Mandapat C, Manning G, Mariotti M, Mata R, Mathew T, Neumann T, Newsham I, Ngo DN, Ninova M, Okwuonu G, Ongeri F, Palmer WJ, Patil S, Patraquim P, Pham C, Pu LL, Putman NH, Rabouille C, Ramos OM, Rhodes AC, Robertson HE, Robertson HM, Ronshaugen M, Rozas J, Saada N, Sánchez-Gracia A, Scherer SE, Schurko AM, Siggens KW, Simmons D, Stief A, Stolle E, Telford MJ, Tessmar-Raible K, Thornton R, van der Zee M, von Haeseler A, Williams JM, Willis JH, Wu Y, Zou X, Lawson D, Muzny DM, Worley KC, Gibbs RA, Akam M, Richards S. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima. PLoS Biol 2014; 12:e1002005. [PMID: 25423365 PMCID: PMC4244043 DOI: 10.1371/journal.pbio.1002005] [Show More Authors] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 10/15/2014] [Indexed: 12/14/2022] Open
Abstract
Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific life history. Arthropods are the most abundant animals on earth. Among them, insects clearly dominate on land, whereas crustaceans hold the title for the most diverse invertebrates in the oceans. Much is known about the biology of these groups, not least because of genomic studies of the fruit fly Drosophila, the water flea Daphnia, and other species used in research. Here we report the first genome sequence from a species belonging to a lineage that has previously received very little attention—the myriapods. Myriapods were among the first arthropods to invade the land over 400 million years ago, and survive today as the herbivorous millipedes and venomous centipedes, one of which—Strigamia maritima—we have sequenced here. We find that the genome of this centipede retains more characteristics of the presumed arthropod ancestor than other sequenced insect genomes. The genome provides access to many aspects of myriapod biology that have not been studied before, suggesting, for example, that they have diversified receptors for smell that are quite different from those used by insects. In addition, it shows specific consequences of the largely subterranean life of this particular species, which seems to have lost the genes for all known light-sensing molecules, even though it still avoids light.
Collapse
Affiliation(s)
- Ariel D. Chipman
- The Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - David E. K. Ferrier
- The Scottish Oceans Institute, Gatty Marine Laboratory, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Carlo Brena
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Daniel S. T. Hughes
- EMBL - European Bioinformatics Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Reinhard Schröder
- Institut für Biowissenschaften, Universität Rostock, Abt. Genetik, Rostock, Germany
| | | | - Nadia Znassi
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Huaiyang Jiang
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Francisca C. Almeida
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Tucumán, Facultad de Ciencias Naturales e Instituto Miguel Lillo, San Miguel de Tucumán, Argentina
| | - Claudio R. Alonso
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Zivkos Apostolou
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology - Hellas, Heraklion, Crete, Greece
| | - Peshtewani Aqrawi
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Wallace Arthur
- Department of Zoology, National University of Ireland, Galway, Ireland
| | | | - Kerstin P. Blankenburg
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Daniela Brites
- Evolutionsbiologie, Zoologisches Institut, Universität Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | - Marcus Coyle
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Peter K. Dearden
- Gravida and Genetics Otago, Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Louis Du Pasquier
- Evolutionsbiologie, Zoologisches Institut, Universität Basel, Basel, Switzerland
| | - Elizabeth J. Duncan
- Gravida and Genetics Otago, Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Dieter Ebert
- Evolutionsbiologie, Zoologisches Institut, Universität Basel, Basel, Switzerland
| | - Cornelius Eibner
- Department of Zoology, National University of Ireland, Galway, Ireland
| | - Galina Erikson
- Razavi Newman Center for Bioinformatics, Salk Institute, La Jolla, California, United States of America
- Scripps Translational Science Institute, La Jolla, California, United States of America
| | | | - Cassandra G. Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Liezl Francisco
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Toni Gabaldón
- Centre for Genomic Regulation, Barcelona, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - William J. Gillis
- Department of Biochemistry and Cell Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, New York, United States of America
| | | | - Jack E. Green
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Sam Griffiths-Jones
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Sai Gubbala
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Roderic Guigó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Center for Genomic Regulation, Barcelona, Spain
| | - Yi Han
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Frank Hauser
- Center for Functional and Comparative Insect Genomics, University of Copenhagen, Copenhagen, Denmark
| | - Paul Havlak
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas, United States of America
| | - Luke Hayden
- Department of Zoology, National University of Ireland, Galway, Ireland
| | - Sophie Helbing
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Michael Holder
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jerome H. L. Hui
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Julia P. Hunn
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Vera S. Hunnekuhl
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - LaRonda Jackson
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mehwish Javaid
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shalini N. Jhangiani
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Francis M. Jiggins
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Tamsin E. Jones
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Tobias S. Kaiser
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Divya Kalra
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nathan J. Kenny
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Viktoriya Korchina
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Christie L. Kovar
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - F. Bernhard Kraus
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
- Department of Laboratory Medicine, University Hospital Halle (Saale), Halle (Saale), Germany
| | - François Lapraz
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Sandra L. Lee
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jie Lv
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas, United States of America
| | - Christigale Mandapat
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Gerard Manning
- Razavi Newman Center for Bioinformatics, Salk Institute, La Jolla, California, United States of America
| | - Marco Mariotti
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Center for Genomic Regulation, Barcelona, Spain
| | - Robert Mata
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tittu Mathew
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tobias Neumann
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Irene Newsham
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dinh N. Ngo
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maria Ninova
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Geoffrey Okwuonu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Fiona Ongeri
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - William J. Palmer
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Shobha Patil
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Pedro Patraquim
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Christopher Pham
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ling-Ling Pu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nicholas H. Putman
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas, United States of America
| | - Catherine Rabouille
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| | - Olivia Mendivil Ramos
- The Scottish Oceans Institute, Gatty Marine Laboratory, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Adelaide C. Rhodes
- Harte Research Institute, Texas A&M University Corpus Christi, Corpus Christi, Texas, United States of America
| | - Helen E. Robertson
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Hugh M. Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Matthew Ronshaugen
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Julio Rozas
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Nehad Saada
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alejandro Sánchez-Gracia
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Steven E. Scherer
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Andrew M. Schurko
- Department of Biology, Hendrix College, Conway, Arkansas, United States of America
| | - Kenneth W. Siggens
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - DeNard Simmons
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anna Stief
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Institute for Biochemistry and Biology, University Potsdam, Potsdam-Golm, Germany
| | - Eckart Stolle
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Maximilian J. Telford
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Kristin Tessmar-Raible
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform “Marine Rhythms of Life”, Vienna, Austria
| | - Rebecca Thornton
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | | | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - James M. Williams
- Department of Biology, Hendrix College, Conway, Arkansas, United States of America
| | - Judith H. Willis
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Yuanqing Wu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xiaoyan Zou
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Daniel Lawson
- EMBL - European Bioinformatics Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Donna M. Muzny
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kim C. Worley
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael Akam
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
20
|
Mosquito immunity against arboviruses. Viruses 2014; 6:4479-504. [PMID: 25415198 PMCID: PMC4246235 DOI: 10.3390/v6114479] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 10/30/2014] [Accepted: 11/11/2014] [Indexed: 01/03/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) pose a significant threat to global health, causing human disease with increasing geographic range and severity. The recent availability of the genome sequences of medically important mosquito species has kick-started investigations into the molecular basis of how mosquito vectors control arbovirus infection. Here, we discuss recent findings concerning the role of the mosquito immune system in antiviral defense, interactions between arboviruses and fundamental cellular processes such as apoptosis and autophagy, and arboviral suppression of mosquito defense mechanisms. This knowledge provides insights into co-evolutionary processes between vector and virus and also lays the groundwork for the development of novel arbovirus control strategies that target the mosquito vector.
Collapse
|
21
|
Younus F, Chertemps T, Pearce SL, Pandey G, Bozzolan F, Coppin CW, Russell RJ, Maïbèche-Coisne M, Oakeshott JG. Identification of candidate odorant degrading gene/enzyme systems in the antennal transcriptome of Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 53:30-43. [PMID: 25038463 DOI: 10.1016/j.ibmb.2014.07.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 06/03/2023]
Abstract
The metabolism of volatile signal molecules by odorant degrading enzymes (ODEs) is crucial to the ongoing sensitivity and specificity of chemoreception in various insects, and a few specific esterases, cytochrome P450s, glutathione S-transferases (GSTs) and UDP-glycosyltransferases (UGTs) have previously been implicated in this process. Significant progress has been made in characterizing ODEs in Lepidoptera but very little is known about them in Diptera, including in Drosophila melanogaster, a major insect model. We have therefore carried out a transcriptomic analysis of the antennae of D. melanogaster in order to identify candidate ODEs. Virgin male and female and mated female antennal transcriptomes were determined by RNAseq. As with the Lepidoptera, we found that many esterases, cytochrome P450 enzymes, GSTs and UGTs are expressed in D. melanogaster antennae. As olfactory genes generally show selective expression in the antennae, a comparison to previously published transcriptomes for other tissues has been performed, showing preferential expression in the antennae for one esterase, JHEdup, one cytochrome P450, CYP308a1, and one GST, GSTE4. These largely uncharacterized enzymes are now prime candidates for ODE functions. JHEdup was expressed heterologously and found to have high catalytic activity against a chemically diverse group of known ester odorants for this species. This is a finding consistent with an ODE although it might suggest a general role in clearing several odorants rather than a specific role in clearing a particular odorant. Our findings do not preclude the possibility of odorant degrading functions for other antennally expressed esterases, P450s, GSTs and UGTs but, if so, they suggest that these enzymes also have additional functions in other tissues.
Collapse
Affiliation(s)
- Faisal Younus
- CSIRO Ecosystems Sciences, Black Mountain, Clunies Ross Street, Canberra, ACT 0200, Australia; Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Thomas Chertemps
- Université Pierre et Marie Curie, Institut d'Ecologie et des Sciences de l'Environnement de Paris, F-75252 Paris, France
| | - Stephen L Pearce
- CSIRO Ecosystems Sciences, Black Mountain, Clunies Ross Street, Canberra, ACT 0200, Australia; Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Gunjan Pandey
- CSIRO Ecosystems Sciences, Black Mountain, Clunies Ross Street, Canberra, ACT 0200, Australia
| | - Françoise Bozzolan
- Université Pierre et Marie Curie, Institut d'Ecologie et des Sciences de l'Environnement de Paris, F-75252 Paris, France
| | - Christopher W Coppin
- CSIRO Ecosystems Sciences, Black Mountain, Clunies Ross Street, Canberra, ACT 0200, Australia
| | - Robyn J Russell
- CSIRO Ecosystems Sciences, Black Mountain, Clunies Ross Street, Canberra, ACT 0200, Australia
| | - Martine Maïbèche-Coisne
- Université Pierre et Marie Curie, Institut d'Ecologie et des Sciences de l'Environnement de Paris, F-75252 Paris, France
| | - John G Oakeshott
- CSIRO Ecosystems Sciences, Black Mountain, Clunies Ross Street, Canberra, ACT 0200, Australia.
| |
Collapse
|
22
|
Jupatanakul N, Sim S, Dimopoulos G. Aedes aegypti ML and Niemann-Pick type C family members are agonists of dengue virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:1-9. [PMID: 24135719 PMCID: PMC3935818 DOI: 10.1016/j.dci.2013.10.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/02/2013] [Accepted: 10/03/2013] [Indexed: 05/07/2023]
Abstract
Upon exposure to dengue virus, the Aedes aegypti mosquito vector mounts an anti-viral immune defense by activating the Toll, JAK/STAT, and RNAi pathways, thereby limiting infection. While these pathways and several other factors have been identified as dengue virus antagonists, our knowledge of factors that facilitate dengue virus infection is limited. Previous dengue virus infection-responsive transcriptome analyses have revealed an increased mRNA abundance of members of the myeloid differentiation 2-related lipid recognition protein (ML) and the Niemann Pick-type C1 (NPC1) families upon dengue virus infection. These genes encode lipid-binding proteins that have been shown to play a role in host-pathogen interactions in other organisms. RNAi-mediated gene silencing of a ML and a NPC1 gene family member in both laboratory strain and field-derived Ae. aegypti mosquitoes resulted in significantly elevated resistance to dengue virus in mosquito midguts, suggesting that these genes play roles as dengue virus agonists. In addition to their possible roles in virus cell entry and replication, gene expression analyses suggested that ML and NPC1 family members also facilitate viral infection by modulating the mosquito's immune competence. Our study suggests that the dengue virus influences the expression of these genes to facilitate its infection of the mosquito host.
Collapse
Affiliation(s)
- Natapong Jupatanakul
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Shuzhen Sim
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA.
| |
Collapse
|
23
|
Kolter T. Ganglioside biochemistry. ISRN BIOCHEMISTRY 2012; 2012:506160. [PMID: 25969757 PMCID: PMC4393008 DOI: 10.5402/2012/506160] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/09/2012] [Indexed: 01/21/2023]
Abstract
Gangliosides are sialic acid-containing glycosphingolipids. They occur especially on the cellular surfaces of neuronal cells, where they form a complex pattern, but are also found in many other cell types. The paper provides a general overview on their structures, occurrence, and metabolism. Key functional, biochemical, and pathobiochemical aspects are summarized.
Collapse
Affiliation(s)
- Thomas Kolter
- Program Unit Membrane Biology & Lipid Biochemistry, LiMES, University of Bonn, Gerhard-Domagk Straße 1, 53121 Bonn, Germany
| |
Collapse
|
24
|
A Drosophila DEG/ENaC subunit functions specifically in gustatory neurons required for male courtship behavior. J Neurosci 2012; 32:4665-74. [PMID: 22457513 DOI: 10.1523/jneurosci.6178-11.2012] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Detection of specific female pheromones stimulates courtship behavior in Drosophila melanogaster males, but the chemosensory molecules, cells, and mechanisms involved remain poorly understood. Here we show that ppk25, a DEG/ENaC ion channel subunit required for normal male response to females, is expressed at highest levels in a single sexually dimorphic gustatory neuron of most taste hairs on legs and wings, but not in neurons that detect courtship-inhibiting pheromones or food. Synaptic inactivation of ppk25-expressing neurons, or knockdown of ppk25 expression in all gustatory neurons, significantly impairs male response to females, whereas gustatory expression of ppk25 rescues the courtship behavior of ppk25 mutant males. Remarkably, the only other detectable albeit significantly weaker expression of ppk25 occurs in olfactory neurons implicated in modulation of courtship behavior. However, expression of ppk25 in olfactory neurons is not required for male courtship under our experimental conditions. These data show that ppk25 functions specifically in peripheral taste neurons involved in activation of courtship behavior, an unexpected function for this type of channel. Furthermore, our work identifies a small subset of gustatory neurons with an essential role in activation of male courtship behavior, most likely in response to female pheromones.
Collapse
|
25
|
Horáčková J, Rudenko N, Golovchenko M, Havlíková S, Grubhoffer L. IrML - a gene encoding a new member of the ML protein family from the hard tick, Ixodes ricinus. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2010; 35:410-418. [PMID: 21175949 DOI: 10.1111/j.1948-7134.2010.00100.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Blood intake causes significant changes in ticks, triggering vital physiological processes including differential gene expression. A gene encoding Ixodes ricinus ML-domain containing protein (IrML) is one of the set of the genes that are strongly induced by blood meals. IrML belongs to the ML protein family that commonly occurs in diverse organisms and is involved in lipid binding and transport, pathogen recognition or in immune response. An IrML gene was amplified from cDNA of engorged I. ricinus females using the gene-specific primers designed on a basis of partial sequences of related genes for ML domain protein. IrML was shown to be expressed mainly in the gut, but also in salivary glands and hemolymph of all tick developmental stages. Using in situ hybridization, IrML transcripts were detected in type II and III salivary glands acini. Analysis of the predicted structure of I. ricinus ML-domain containing protein and its localization in the tick body could suggest that IrML is a secreted protein and is possibly involved in tick innate immunity.
Collapse
Affiliation(s)
- Jana Horáčková
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| | | | | | | | | |
Collapse
|
26
|
Chatterjee A, Hardin PE. Time to taste: circadian clock function in the Drosophila gustatory system. Fly (Austin) 2010; 4:283-7. [PMID: 20798595 DOI: 10.4161/fly.4.4.13010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Circadian clocks keep time in the digestive, circulatory, reproductive, excretory and nervous systems even in absence of external cues. Central oscillators in the brain control locomotor activity of organisms ranging from fruit flies to man, but the functions of the clocks in peripheral nervous system are not well understood. The presence of autonomous peripheral oscillators in the major taste organ of Drosophila, the proboscis, prompted us to test whether gustatory responses are under control of the circadian clock. We find that synchronous rhythms in physiological and behavioral responses to attractive and aversive tastants are driven by oscillators in gustatory receptor neurons (GRNs); primary sensory neurons that carry taste information from the proboscis to the brain. During the middle of the night, high levels of G protein-coupled receptor kinase 2 (GPRK2) in the GRNs suppresses tastant-evoked responses. Flies with disrupted gustatory clocks are hyperphagic and hyperactive, recapitulating behaviors typically seen under the stress of starvation. Temporal plasticity in innate behaviors should offer adaptive advantages to flies. In this Extra View article we discuss how oscillators inside GRNs regulate responsiveness to tastants and influence feeding, metabolism and general activity.
Collapse
Affiliation(s)
- Abhishek Chatterjee
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
27
|
Everaerts C, Farine JP, Cobb M, Ferveur JF. Drosophila cuticular hydrocarbons revisited: mating status alters cuticular profiles. PLoS One 2010; 5:e9607. [PMID: 20231905 PMCID: PMC2834761 DOI: 10.1371/journal.pone.0009607] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 02/17/2010] [Indexed: 11/21/2022] Open
Abstract
Most living organisms use pheromones for inter-individual communication. In Drosophila melanogaster flies, several pheromones perceived either by contact/at a short distance (cuticular hydrocarbons, CHs), or at a longer distance (cis-vaccenyl acetate, cVA), affect courtship and mating behaviours. However, it has not previously been possible to precisely identify all potential pheromonal compounds and simultaneously monitor their variation on a time scale. To overcome this limitation, we combined Solid Phase Micro-Extraction with gas-chromatography coupled with mass-spectrometry. This allowed us (i) to identify 59 cuticular compounds, including 17 new CHs; (ii) to precisely quantify the amount of each compound that could be detected by another fly, and (iii) to measure the variation of these substances as a function of aging and mating. Sex-specific variation appeared with age, while mating affected cuticular compounds in both sexes with three possible patterns: variation was (i) reciprocal in the two sexes, suggesting a passive mechanical transfer during mating, (ii) parallel in both sexes, such as for cVA which strikingly appeared during mating, or (iii) unilateral, presumably as a result of sexual interaction. We provide a complete reassessment of all Drosophila CHs and suggest that the chemical conversation between male and female flies is far more complex than is generally accepted. We conclude that focusing on individual compounds will not provide a satisfactory understanding of the evolution and function of chemical communication in Drosophila.
Collapse
Affiliation(s)
- Claude Everaerts
- Centre des Sciences du Goût et de l'Alimentation, UMR-6265 CNRS, UMR-1324 INRA, Université de Bourgogne, Agrosup, Dijon, France.
| | | | | | | |
Collapse
|
28
|
Ben-Shahar Y, Lu B, Collier DM, Snyder PM, Schnizler M, Welsh MJ. The Drosophila gene CheB42a is a novel modifier of Deg/ENaC channel function. PLoS One 2010; 5:e9395. [PMID: 20195381 PMCID: PMC2827562 DOI: 10.1371/journal.pone.0009395] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 02/04/2010] [Indexed: 11/18/2022] Open
Abstract
Degenerin/epithelial Na+ channels (DEG/ENaC) represent a diverse family of voltage-insensitive cation channels whose functions include Na+ transport across epithelia, mechanosensation, nociception, salt sensing, modification of neurotransmission, and detecting the neurotransmitter FMRFamide. We previously showed that the Drosophila melanogaster Deg/ENaC gene lounge lizard (llz) is co-transcribed in an operon-like locus with another gene of unknown function, CheB42a. Because operons often encode proteins in the same biochemical or physiological pathway, we hypothesized that CHEB42A and LLZ might function together. Consistent with this hypothesis, we found both genes expressed in cells previously implicated in sensory functions during male courtship. Furthermore, when coexpressed, LLZ coprecipitated with CHEB42A, suggesting that the two proteins form a complex. Although LLZ expressed either alone or with CHEB42A did not generate ion channel currents, CHEB42A increased current amplitude of another DEG/ENaC protein whose ligand (protons) is known, acid-sensing ion channel 1a (ASIC1a). We also found that CHEB42A was cleaved to generate a secreted protein, suggesting that CHEB42A may play an important role in the extracellular space. These data suggest that CHEB42A is a modulatory subunit for sensory-related Deg/ENaC signaling. These results are consistent with operon-like transcription of CheB42a and llz and explain the similar contributions of these genes to courtship behavior.
Collapse
Affiliation(s)
- Yehuda Ben-Shahar
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Beika Lu
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Daniel M. Collier
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Peter M. Snyder
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Mikael Schnizler
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Michael J. Welsh
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
29
|
Pikielny CW. Drosophila CheB proteins Involved in Gustatory Detection of Pheromones Are Related to a Human Neurodegeneration Factor. VITAMINS AND HORMONES 2010; 83:273-87. [DOI: 10.1016/s0083-6729(10)83011-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
30
|
Kolter T, Sandhoff K. Lysosomal degradation of membrane lipids. FEBS Lett 2009; 584:1700-12. [PMID: 19836391 DOI: 10.1016/j.febslet.2009.10.021] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 10/09/2009] [Indexed: 01/05/2023]
Abstract
The constitutive degradation of membrane components takes place in the acidic compartments of a cell, the endosomes and lysosomes. Sites of lipid degradation are intralysosomal membranes that are formed in endosomes, where the lipid composition is adjusted for degradation. Cholesterol is sorted out of the inner membranes, their content in bis(monoacylglycero)phosphate increases, and, most likely, sphingomyelin is degraded to ceramide. Together with endosomal and lysosomal lipid-binding proteins, the Niemann-Pick disease, type C2-protein, the GM2-activator, and the saposins sap-A, -B, -C, and -D, a suitable membrane lipid composition is required for degradation of complex lipids by hydrolytic enzymes.
Collapse
Affiliation(s)
- Thomas Kolter
- LiMES - Life and Medical Sciences Institute, Membrane Biology and Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, University of Bonn, Bonn, Germany
| | | |
Collapse
|