1
|
Liu W, Liu X, Li L, Tai Z, Li G, Liu JX. EPC1/2 regulate hematopoietic stem and progenitor cell proliferation by modulating H3 acetylation and DLST. iScience 2024; 27:109263. [PMID: 38439957 PMCID: PMC10910311 DOI: 10.1016/j.isci.2024.109263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/21/2023] [Accepted: 02/14/2024] [Indexed: 03/06/2024] Open
Abstract
Enhancers of polycomb 1 (EPC1) and 2 (EPC2) are involved in multiple biological processes as components of histone acetyltransferases/deacetylase complexes and transcriptional cofactors, and their dysfunction was associated with developmental defects and diseases. However, it remains unknown how their dysfunction induces hematopoietic stem and progenitor cell (HSPC) defects. Here, we show that depletion of EPC1/2 significantly reduced the number of hematopoietic stem and progenitor cells (HSPCs) in the aorta-gonad mesonephros and caudal hematopoietic tissue regions by impairing HSPC proliferation, and consistently downregulated the expression of HSPC genes in K562 cells. This study demonstrates the functions of EPC1/2 in regulating histone H3 acetylation, and in regulating DLST (dihydrolipoamide S-succinyltransferase) via H3 acetylation and cooperating with transcription factors serum response factor and FOXR2 together, and in the subsequent HSPC emergence and proliferation. Our results demonstrate the essential roles of EPC1/2 in regulating H3 acetylation, and DLST as a linkage between EPC1 and EPC2 with mitochondria metabolism, in HSPC emergence and proliferation.
Collapse
Affiliation(s)
- WenYe Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - LingYa Li
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - ZhiPeng Tai
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - GuoLiang Li
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Yedigaryan L, Gatti M, Marini V, Maraldi T, Sampaolesi M. Shared and Divergent Epigenetic Mechanisms in Cachexia and Sarcopenia. Cells 2022; 11:2293. [PMID: 35892590 PMCID: PMC9332174 DOI: 10.3390/cells11152293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
Significant loss of muscle mass may occur in cachexia and sarcopenia, which are major causes of mortality and disability. Cachexia represents a complex multi-organ syndrome associated with cancer and chronic diseases. It is often characterized by body weight loss, inflammation, and muscle and adipose wasting. Progressive muscle loss is also a hallmark of healthy aging, which is emerging worldwide as a main demographic trend. A great challenge for the health care systems is the age-related decline in functionality which threatens the independence and quality of life of elderly people. This biological decline can also be associated with functional muscle loss, known as sarcopenia. Previous studies have shown that microRNAs (miRNAs) play pivotal roles in the development and progression of muscle wasting in both cachexia and sarcopenia. These small non-coding RNAs, often carried in extracellular vesicles, inhibit translation by targeting messenger RNAs, therefore representing potent epigenetic modulators. The molecular mechanisms behind cachexia and sarcopenia, including the expression of specific miRNAs, share common and distinctive trends. The aim of the present review is to compile recent evidence about shared and divergent epigenetic mechanisms, particularly focusing on miRNAs, between cachexia and sarcopenia to understand a facet in the underlying muscle wasting associated with these morbidities and disclose potential therapeutic interventions.
Collapse
Affiliation(s)
- Laura Yedigaryan
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.Y.); (V.M.)
| | - Martina Gatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (T.M.)
| | - Vittoria Marini
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.Y.); (V.M.)
| | - Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (T.M.)
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.Y.); (V.M.)
- Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
3
|
Song R, Zhao S, Xu Y, Hu J, Ke S, Li F, Tian G, Zheng X, Li J, Gu L, Xu Y. MRTF-A regulates myoblast commitment to differentiation by targeting PAX7 during muscle regeneration. J Cell Mol Med 2021; 25:8645-8661. [PMID: 34347392 PMCID: PMC8435411 DOI: 10.1111/jcmm.16820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
Myocardin-related transcription factor-A/serum response factor (MRTF-A/SRF), a well-known transcriptional programme, has been proposed to play crucial roles in skeletal muscle development and function. However, whether MRTF-A participates in muscle regeneration and the molecular mechanisms are not completely understood. Here, we show that MRTF-A levels are highly correlated with myogenic genes using a RNA-seq assay, which reveal that MRTF-A knockdown in C2C12 cells significantly reduces PAX7 expression. Subsequent in vitro and in vivo data show that MRTF-A and PAX7 present identical expression patterns during myoblast differentiation and CTX-induced muscle injury and repair. Remarkably, MRTF-A overexpression promotes myoblast proliferation, while inhibiting cell differentiation and the expression of MyoD and MyoG. MRTF-A loss of function produces the opposite effect. Moreover, mice with lentivirus (MRTF-A) injection possesses more PAX7+ satellite cells, but less differentiating MyoD+ and MyoG+ cells, leading subsequently to diminished muscle regeneration. Our mechanistic results reveal that MRTF-A contributes to PAX7-mediated myoblast self-renewal, proliferation, and differentiation by binding to its distal CArG box. Overall, we propose that MRTF-A functions as a novel PAX7 regulator upon myoblast commitment to differentiation, which could provide pathways for dictating muscle stem cell fate and open new avenues to explore stem cell-based therapy for muscle degenerative diseases.
Collapse
Affiliation(s)
- Ruhui Song
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Shengnan Zhao
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Yue Xu
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Jian Hu
- Animal Disease Control and Prevention Centre of Chongqing City, Chongqing, 401120, China
| | - Shuangao Ke
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Fan Li
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Gaohui Tian
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Xiao Zheng
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Jiajun Li
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Lixing Gu
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Yao Xu
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| |
Collapse
|
4
|
SRF is a nonhistone methylation target of KDM2B and SET7 in the regulation of skeletal muscle differentiation. Exp Mol Med 2021; 53:250-263. [PMID: 33564100 PMCID: PMC8080764 DOI: 10.1038/s12276-021-00564-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
The demethylation of histone lysine residues, one of the most important modifications in transcriptional regulation, is associated with various physiological states. KDM2B is a demethylase of histones H3K4, H3K36, and H3K79 and is associated with the repression of transcription. Here, we present a novel mechanism by which KDM2B demethylates serum response factor (SRF) K165 to negatively regulate muscle differentiation, which is counteracted by the histone methyltransferase SET7. We show that KDM2B inhibited skeletal muscle differentiation by inhibiting the transcription of SRF-dependent genes. Both KDM2B and SET7 regulated the balance of SRF K165 methylation. SRF K165 methylation was required for the transcriptional activation of SRF and for the promoter occupancy of SRF-dependent genes. SET7 inhibitors blocked muscle cell differentiation. Taken together, these data indicate that SRF is a nonhistone target of KDM2B and that the methylation balance of SRF as maintained by KDM2B and SET7 plays an important role in muscle cell differentiation. The balance between the opposing actions of two enzymes that, respectively, inhibit or activate the same gene-regulating protein plays a key role in the differentiation of skeletal muscle cells. A South Korean team led by Hyun Koon at Chonnam National University, Hwasun, and Sang-Beom Seo at Chung-Ang University, Seoul, studied the effect of the enzymes on cultured human muscle-forming cells. One enzyme, KDM2B, inhibits the differentiation of the cells by removing methyl groups (CH3) from a protein called serum response factor (SRF). A second enzyme, SET7, activates differentiation by adding methyl groups to SRF. The SRF protein controls the activity of many genes required for cell differentiation. This work reveals SRF as a previously unidentified target for KDM2B, and provides new insights into skeletal muscle development in health and disease.
Collapse
|
5
|
Fink D, Yau T, Nabbi A, Wagner B, Wagner C, Hu SM, Lang V, Handschuh S, Riabowol K, Rülicke T. Loss of Ing3 Expression Results in Growth Retardation and Embryonic Death. Cancers (Basel) 2019; 12:cancers12010080. [PMID: 31905726 PMCID: PMC7017303 DOI: 10.3390/cancers12010080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 12/29/2022] Open
Abstract
The ING3 candidate tumour suppressor belongs to a family of histone modifying proteins involved in regulating cell proliferation, senescence, apoptosis, chromatin remodeling, and DNA repair. It is a stoichiometric member of the minimal NuA4 histone acetyl transferase (HAT) complex consisting of EAF6, EPC1, ING3, and TIP60. This complex is responsible for the transcription of an essential cascade of genes involved in embryonic development and in tumour suppression. ING3 has been linked to head and neck and hepatocellular cancers, although its status as a tumour suppressor has not been well established. Recent studies suggest a pro-metastasis role in prostate cancer progression. Here, we describe a transgenic mouse strain with insertional mutation of an UbC-mCherry expression cassette into the endogenous Ing3 locus, resulting in the disruption of ING3 protein expression. Homozygous mutants are embryonically lethal, display growth retardation, and severe developmental disorders. At embryonic day (E) 10.5, the last time point viable homozygous embryos were found, they were approximately half the size of heterozygous mice that develop normally. µCT analysis revealed a developmental defect in neural tube closure, resulting in the failure of formation of closed primary brain vesicles in homozygous mid-gestation embryos. This is consistent with high ING3 expression levels in the embryonic brains of heterozygous and wild type mice and its lack in homozygous mutant embryos that show a lack of ectodermal differentiation. Our data provide direct evidence that ING3 is an essential factor for normal embryonic development and that it plays a fundamental role in prenatal brain formation.
Collapse
Affiliation(s)
- Dieter Fink
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (T.Y.); (B.W.); (S.M.H.); (V.L.); (T.R.)
- Correspondence: ; Tel.: +43-(0)-1-25077-2820
| | - Tienyin Yau
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (T.Y.); (B.W.); (S.M.H.); (V.L.); (T.R.)
| | - Arash Nabbi
- Departments of Biochemistry & Molecular Biology and Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (A.N.); (K.R.)
| | - Bettina Wagner
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (T.Y.); (B.W.); (S.M.H.); (V.L.); (T.R.)
| | - Christine Wagner
- Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Shiting Misaki Hu
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (T.Y.); (B.W.); (S.M.H.); (V.L.); (T.R.)
| | - Viktor Lang
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (T.Y.); (B.W.); (S.M.H.); (V.L.); (T.R.)
| | - Stephan Handschuh
- VetImaging, VetCore Facility for Research, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Karl Riabowol
- Departments of Biochemistry & Molecular Biology and Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (A.N.); (K.R.)
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (T.Y.); (B.W.); (S.M.H.); (V.L.); (T.R.)
| |
Collapse
|
6
|
Sumoylation of histone deacetylase 1 regulates MyoD signaling during myogenesis. Exp Mol Med 2018; 50:e427. [PMID: 29328071 PMCID: PMC5799798 DOI: 10.1038/emm.2017.236] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 02/07/2023] Open
Abstract
Sumoylation, the conjugation of a small ubiquitin-like modifier (SUMO) protein to a target, has diverse cellular effects. However, the functional roles of the SUMO modification during myogenesis have not been fully elucidated. Here, we report that basal sumoylation of histone deacetylase 1 (HDAC1) enhances the deacetylation of MyoD in undifferentiated myoblasts, whereas further sumoylation of HDAC1 contributes to switching its binding partners from MyoD to Rb to induce myocyte differentiation. Differentiation in C2C12 skeletal myoblasts induced new immunoblot bands above HDAC1 that were gradually enhanced during differentiation. Using SUMO inhibitors and sumoylation assays, we showed that the upper band was caused by sumoylation of HDAC1 during differentiation. Basal deacetylase activity was not altered in the SUMO modification-resistant mutant HDAC1 K444/476R (HDAC1 2R). Either differentiation or transfection of SUMO1 increased HDAC1 activity that was attenuated in HDAC1 2R. Furthermore, HDAC1 2R failed to deacetylate MyoD. Binding of HDAC1 to MyoD was attenuated by K444/476R. Binding of HDAC1 to MyoD was gradually reduced after 2 days of differentiation. Transfection of SUMO1 induced dissociation of HDAC1 from MyoD but potentiated its binding to Rb. SUMO1 transfection further attenuated HDAC1-induced inhibition of muscle creatine kinase luciferase activity that was reversed in HDAC1 2R. HDAC1 2R failed to inhibit myogenesis and muscle gene expression. In conclusion, HDAC1 sumoylation plays a dual role in MyoD signaling: enhancement of HDAC1 deacetylation of MyoD in the basally sumoylated state of undifferentiated myoblasts and dissociation of HDAC1 from MyoD during myogenesis.
Collapse
|
7
|
Searle NE, Pillus L. Critical genomic regulation mediated by Enhancer of Polycomb. Curr Genet 2017; 64:147-154. [PMID: 28884217 DOI: 10.1007/s00294-017-0742-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 01/28/2023]
Abstract
Enhancer of Polycomb (EPC) was first identified for its contributions to development in Drosophila and was soon-thereafter purified as a subunit of the NuA4/TIP60 acetyltransferase complex. Since then, EPC has often been left in the shadows as an essential, yet non-catalytic subunit of NuA4/TIP60; however, its deep conservation and disease association make clear that it warrants additional attention. In fact, recent studies in yeast demonstrated that its Enhancer of Polycomb, Epl1, was just as important for gene expression and acetylation as is the catalytic subunit of NuA4. Despite its conservation, studies of EPC have often remained siloed between organisms. Here, our goal is to provide a cohesive view of the current state of the EPC literature as it stands among the major model organisms in which it has been studied. EPC is involved in multiple processes, beginning with its cardinal role in regulating global and targeted histone acetylation. EPC also frequently serves as an important interaction partner in these basic cellular functions, as well as in multicellular development, such as in hematopoiesis and skeletal muscle differentiation, and in human disease. Taken together, a unifying theme from these studies highlights EPC as a critical genomic regulator.
Collapse
Affiliation(s)
- Naomi E Searle
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, UC San Diego Moores Cancer Center, 9500 Gilman Drive, La Jolla, CA, 92093-0347, USA.,UC San Diego Biomedical Sciences, La Jolla, CA, 92093-0685, USA
| | - Lorraine Pillus
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, UC San Diego Moores Cancer Center, 9500 Gilman Drive, La Jolla, CA, 92093-0347, USA.
| |
Collapse
|
8
|
Functions of the Tumor Suppressors p53 and Rb in Actin Cytoskeleton Remodeling. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9231057. [PMID: 28078303 PMCID: PMC5203884 DOI: 10.1155/2016/9231057] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/21/2016] [Indexed: 01/27/2023]
Abstract
Mechanical microenvironments, such as extracellular matrix stiffness and strain, have crucial roles in cancer progression. Cells sense their microenvironments with mechanosensing biomolecules, which is accompanied by the modulation of actin cytoskeleton structures, and the signals are subsequently transduced downstream as biochemical signals. The tumor suppressors p53 and retinoblastoma protein (Rb) are known to prevent cancer progression. The p53 and Rb signaling pathways are disrupted in many types of cancers. Here, we review recent findings about the roles of these tumor suppressors in the regulation of mechanosensing biomolecules and the actin cytoskeleton. We further discuss how dysfunction in the p53- and/or Rb-mediated mechanosignaling pathways is potentially involved in cancer progression. These pathways might provide good targets for developing anticancer therapies.
Collapse
|
9
|
Judes G, Rifaï K, Ngollo M, Daures M, Bignon YJ, Penault-Llorca F, Bernard-Gallon D. A bivalent role of TIP60 histone acetyl transferase in human cancer. Epigenomics 2015; 7:1351-63. [PMID: 26638912 DOI: 10.2217/epi.15.76] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Acetylation is a major modification that is required for gene regulation, genome maintenance and metabolism. A dysfunctional acetylation plays an important role in several diseases, including cancer. A group of enzymes-lysine acetyltransferases are responsible for this modification and act in regulation of transcription as cofactors and by acetylation of histones and other proteins. Tip60, a member of MYST family, is expressed ubiquitously and is the acetyltransferase catalytic subunit of human NuA4 complex. This HAT has a well-characterized involvement in many processes, such as cellular signaling, DNA damage repair, transcriptional and cellular cycle. Aberrant lysine acetyltransferase functions promote or suppress tumorigenesis in different cancers such as colon, breast and prostate tumors. Therefore, Tip60 might be a potential and important therapeutic target in the cancer treatment; new histone acetyl transferase inhibitors were identified and are more selective inhibitors of Tip60.
Collapse
Affiliation(s)
- Gaëlle Judes
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| | - Khaldoun Rifaï
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| | - Marjolaine Ngollo
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| | - Marine Daures
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| | - Yves-Jean Bignon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| | - Frédérique Penault-Llorca
- EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France.,Centre Jean Perrin, Laboratory of Biopathology, 63011 Clermont-Ferrand, France
| | - Dominique Bernard-Gallon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| |
Collapse
|
10
|
Wang Y, Alla V, Goody D, Gupta SK, Spitschak A, Wolkenhauer O, Pützer BM, Engelmann D. Epigenetic factor EPC1 is a master regulator of DNA damage response by interacting with E2F1 to silence death and activate metastasis-related gene signatures. Nucleic Acids Res 2015; 44:117-33. [PMID: 26350215 PMCID: PMC4705687 DOI: 10.1093/nar/gkv885] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/24/2015] [Indexed: 12/31/2022] Open
Abstract
Transcription factor E2F1 is a key regulator of cell proliferation and apoptosis. Recently, it has been shown that aberrant E2F1 expression often detectable in advanced cancers contributes essentially to cancer cell propagation and characterizes the aggressive potential of a tumor. Conceptually, this requires a subset of malignant cells capable of evading apoptotic death through anticancer drugs. The molecular mechanism by which the pro-apoptotic activity of E2F1 is antagonized is widely unclear. Here we report a novel function for EPC1 (enhancer of polycomb homolog 1) in DNA damage protection. Depletion of EPC1 potentiates E2F1-mediated apoptosis in response to genotoxic treatment and abolishes tumor cell motility. We found that E2F1 directly binds to the EPC1 promoter and EPC1 vice versa physically interacts with bifunctional E2F1 to modulate its transcriptional activity in a target gene-specific manner. Remarkably, nuclear-colocalized EPC1 activates E2F1 to upregulate the expression of anti-apoptotic survival genes such as BCL-2 or Survivin/BIRC5 and inhibits death-inducing targets. The uncovered cooperativity between EPC1 and E2F1 triggers a metastasis-related gene signature in advanced cancers that predicts poor patient survival. These findings unveil a novel oncogenic function of EPC1 for inducing the switch into tumor progression-relevant gene expression that may help to set novel therapies.
Collapse
Affiliation(s)
- Yajie Wang
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Vijay Alla
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Deborah Goody
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Shailendra K Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Alf Spitschak
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - David Engelmann
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
11
|
Characterization of porcine skeletal α-actin gene promoter: expression specificity and regulatory elements. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Choi SY, Ryu Y, Kee HJ, Cho SN, Kim GR, Cho JY, Kim HS, Kim IK, Jeong MH. Tubastatin A suppresses renal fibrosis via regulation of epigenetic histone modification and Smad3-dependent fibrotic genes. Vascul Pharmacol 2015; 72:130-40. [PMID: 25921924 DOI: 10.1016/j.vph.2015.04.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/02/2015] [Accepted: 04/20/2015] [Indexed: 11/29/2022]
Abstract
Inflammation and fibrosis are implicated in the pathogenesis of hypertensive kidney damage. We previously demonstrated that a nonspecific histone deacetylase (HDAC) inhibitor attenuates cardiac fibrosis in deoxycorticosterone acetate-salt hypertensive rats, which induces HDAC6 protein and enzymatic activity. However, the HDAC inhibitor's effect and mechanism have not yet been demonstrated. We sought to determine whether an HDAC6-selective inhibitor could treat hypertension and kidney damage in angiotensin II-infused mice. Hypertension was induced by infusion of ANG in mice. Tubastatin A, an HDAC6 selective inhibitor, did not regulate blood pressure. Hypertensive stimuli enhanced the expression of HDAC6 in vivo and in vitro. We showed that the inhibition of HDAC6 prevents fibrosis and inflammation as determined by quantitative real-time PCR, western blot, and immunohistochemistry. Small interfering RNA (siRNA) against HDAC6 or Smad3 attenuated hypertensive stimuli-induced fibrosis and inflammation, whereas Smad2 siRNA failed to inhibit fibrosis. Interestingly, the combination of the HDAC6 inhibitor and Smad3 knockdown synergistically blocked transforming growth factor β (TGF-β) or ANG-induced fibrosis. We also demonstrated for the first time, to our knowledge, that acetylation of collagen type I can be regulated by HDAC6/p300 acetyltransferase. The chromatin immunoprecipitation assay revealed that the HDAC6 inhibitor suppressed TGF-β-induced acetylated histone H4 or phospho-Smad2/3 to Smad3 binding elements in the fibrosis-associated gene promoters including collagen type I. These results suggest that HDAC6 may be a valuable therapeutic target for the treatment of hypertension-induced kidney fibrosis and inflammation.
Collapse
Affiliation(s)
- Sin Young Choi
- Heart Research Center of Chonnam National University Hospital, Gwangju 501-757, Republic of Korea
| | - Yuhee Ryu
- Heart Research Center of Chonnam National University Hospital, Gwangju 501-757, Republic of Korea
| | - Hae Jin Kee
- Heart Research Center of Chonnam National University Hospital, Gwangju 501-757, Republic of Korea.
| | - Soo-Na Cho
- Heart Research Center of Chonnam National University Hospital, Gwangju 501-757, Republic of Korea
| | - Gwi Ran Kim
- Heart Research Center of Chonnam National University Hospital, Gwangju 501-757, Republic of Korea
| | - Jae Yeong Cho
- Heart Research Center of Chonnam National University Hospital, Gwangju 501-757, Republic of Korea
| | - Hyung-Seok Kim
- Department of Anatomy, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - In-Kyeom Kim
- Department of Pharmacology, Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Myung Ho Jeong
- Heart Research Center of Chonnam National University Hospital, Gwangju 501-757, Republic of Korea.
| |
Collapse
|
13
|
Choe N, Kwon JS, Kim YS, Eom GH, Ahn YK, Baik YH, Park HY, Kook H. The microRNA miR-34c inhibits vascular smooth muscle cell proliferation and neointimal hyperplasia by targeting stem cell factor. Cell Signal 2015; 27:1056-65. [PMID: 25683915 DOI: 10.1016/j.cellsig.2014.12.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/09/2014] [Accepted: 12/26/2014] [Indexed: 10/24/2022]
Abstract
The fine balance between proliferation and differentiation of vascular smooth muscle cells (VSMCs) is indispensable for the maintenance of healthy blood vessels, whereas an increase in proliferation participates in pathologic cardiovascular events such as atherosclerosis and restenosis. Here we report that microRNA-34c (miR-34c) targets stem cell factor (SCF) to inhibit VSMC proliferation and neointimal hyperplasia. In an animal model, miR-34c was significantly increased in the rat carotid artery after catheter injury. Transient transfection of miR-34c to either VSMCs or A10 cells inhibited cell survival by inducing apoptosis, which was accompanied by an increase in expression of p21, p27, and Bax. Transfection of miR-34c also attenuated VSMC migration. Bioinformatics showed that SCF is a target candidate of miR-34c. miR-34c down-regulated luciferase activity driven by a vector containing the 3'-untranslated region of SCF in a sequence-specific manner. Forced expression of SCF in A10 cells induced proliferation and migration, whereas knocking-down of SCF reduced cell survival and migration. miR-34c antagomir-induced VSMC proliferation was blocked by SCF siRNA. Delivery of miR-34c to rat carotid artery attenuated the expression of SCF and blocked neointimal hyperplasia. These results suggest that miR-34c is a new modulator of VSMC proliferation and that it inhibits neointima formation by regulating SCF.
Collapse
Affiliation(s)
- Nakwon Choe
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Jin-Sook Kwon
- Division of Cardiovascular and Rare Disease, Korea National Institute of Health, Osong, Cheongju, Chungbuk 363-951, Republic of Korea
| | - Yong Sook Kim
- Department of Cardiology, Chonnam National University Hospital, Gwangju 501-757, Republic of Korea
| | - Gwang Hyeon Eom
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Young Keun Ahn
- Department of Cardiology, Chonnam National University Hospital, Gwangju 501-757, Republic of Korea
| | - Yung Hong Baik
- Department of Pharmacology, College of Medicine, Seonam University, Namwon 590-711, Republic of Korea
| | - Hyun-Young Park
- Division of Cardiovascular and Rare Disease, Korea National Institute of Health, Osong, Cheongju, Chungbuk 363-951, Republic of Korea
| | - Hyun Kook
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea.
| |
Collapse
|
14
|
Che C, Zhang L, Huo J, Zhang Y. RNA interference targeting enhancer of polycomb1 exerts anti-tumor effects in lung cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:361-367. [PMID: 25755723 PMCID: PMC4348836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/09/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND AND AIM Lung cancer is one of leading malignant tumor worldwide with a high mortality rate. A new therapy target, enhancer of polycomb1 (EPC1) knocked down by short hairpin RNA (shRNA) interference technology, for lung cancer was established to investigate its effects on lung cancer in present study. METHODS RNA interference technology was applied to down-regulate the expression of EPC1 by specific-shRNA with lentivirus vector in neoplastic human alveolar basal epithelial cells (A549 cells). The survival rate and apoptosis were respectively measured by MTT and Flow Cytometry to evaluate the effects of shRNA EPC1 on cells. Mice xenografts of HCT116 cells with shRNA EPC1 were also established to assess the effect on tumor growth. The levels of AKT and p65 were detected by western blotting. RESULTS The down-regulation of EPC1 by specific-shRNA with lentivirus vector was significantly decreased the survival rate and apoptosis of A549 cells, and the tumors in EPC1 shRNA transfection group had a significant lower size and weight compared with the ones with control shRNA. The protein expression of p-AKT and p65 was reduced by EPC1 shRNA in both in vitro and in vivo experiments. CONCLUSION Silencing EPC1 by shRNA technology had the inhibition effects on cell proliferation and tumor growth in lung cancer, which provided a new potential target for treatment of cancers.
Collapse
Affiliation(s)
- Chunli Che
- Department of Respiratory Medicine, First Clinical Medical College Affiliated to Harbin Medical University Harbin 150001, China
| | - Lijuan Zhang
- Department of Respiratory Medicine, First Clinical Medical College Affiliated to Harbin Medical University Harbin 150001, China
| | - Jianmin Huo
- Department of Respiratory Medicine, First Clinical Medical College Affiliated to Harbin Medical University Harbin 150001, China
| | - Yimei Zhang
- Department of Respiratory Medicine, First Clinical Medical College Affiliated to Harbin Medical University Harbin 150001, China
| |
Collapse
|
15
|
Segalés J, Perdiguero E, Muñoz-Cánoves P. Epigenetic control of adult skeletal muscle stem cell functions. FEBS J 2014; 282:1571-88. [PMID: 25251895 DOI: 10.1111/febs.13065] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 12/12/2022]
Abstract
Skeletal muscle regeneration in the adult (de novo myogenesis) depends on a resident population of muscle stem cells (satellite cells) that are normally quiescent. In response to injury or stress, satellite cells are activated and expand as myoblast cells that differentiate and fuse to form new muscle fibers or return to quiescence to maintain the stem cell pool (self-renewal). Satellite cell-dependent myogenesis is a well-characterized multi-step process orchestrated by muscle-specific transcription factors, such as Pax3/Pax7 and members of the MyoD family of muscle regulatory factors, and epigenetically controlled by mechanisms such as DNA methylation, covalent modification of histones and non-coding RNAs. Recent results from next-generation genome-wide sequencing have increased our understanding about the highly intricate layers of epigenetic regulation involved in satellite cell maintenance, activation, differentiation and self-renewal, and their cross-talk with the muscle-specific transcriptional machinery.
Collapse
Affiliation(s)
- Jessica Segalés
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University, Center for Networked Biomedical Research on Neurodegenerative Diseases, Barcelona, Spain
| | | | | |
Collapse
|
16
|
Joung H, Eom GH, Choe N, Lee HM, Ko JH, Kwon DH, Nam YS, Min H, Shin S, Kook J, Cho YK, Kim JC, Seo SB, Baik YH, Nam KI, Kook H. Ret finger protein mediates Pax7-induced ubiquitination of MyoD in skeletal muscle atrophy. Cell Signal 2014; 26:2240-8. [PMID: 25025573 DOI: 10.1016/j.cellsig.2014.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/09/2014] [Indexed: 01/07/2023]
Abstract
Skeletal muscle atrophy results from the net loss of muscular proteins and organelles and is caused by pathologic conditions such as nerve injury, immobilization, cancer, and other metabolic diseases. Recently, ubiquitination-mediated degradation of skeletal-muscle-specific transcription factors was shown to be involved in muscle atrophy, although the mechanisms have yet to be defined. Here we report that ret finger protein (RFP), also known as TRIM27, works as an E3 ligase in Pax7-induced degradation of MyoD. Muscle injury induced by sciatic nerve transection up-regulated RFP and RFP physically interacted with both Pax7 and MyoD. RFP and Pax7 synergistically reduced the protein amounts of MyoD but not the mRNA. RFP-induced reduction of MyoD protein was blocked by proteasome inhibitors. The Pax7-induced reduction MyoD was attenuated by RFP siRNA and by MG132, a proteasome inhibitor. RFPΔR, an RFP construct that lacks the RING domain, failed to reduce MyoD amounts. RFP ubiquitinated MyoD, but RFPΔR failed to do so. Forced expression of RFP, but not RFPΔR, enhanced Pax7-induced ubiquitination of MyoD, whereas RFP siRNA blocked the ubiquitination. Sciatic nerve injury-induced muscle atrophy as well the reduction in MyoD was attenuated in RFP knockout mice. Taken together, our results show that RFP works as a novel E3 ligase in the Pax7-mediated degradation of MyoD in response to skeletal muscle atrophy.
Collapse
Affiliation(s)
- Hosouk Joung
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; BK21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Gwang Hyeon Eom
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; BK21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Nakwon Choe
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Hye Mi Lee
- Department of Anatomy, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Jeong-Hyeon Ko
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Duk-Hwa Kwon
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; BK21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Yoon Seok Nam
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; BK21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Hyunki Min
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; BK21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Sera Shin
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Jeewon Kook
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; BK21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Young Kuk Cho
- Department of Pediatrics, Chonnam National University Hospital, Gwangju 501-746, Republic of Korea
| | - Jeong Chul Kim
- Department of Surgery, Chonnam National University Hospital, Gwangju 501-746, Republic of Korea
| | - Sang Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Yung Hong Baik
- Department of Pharmacology, College of Medicine, Seonam University, Namwon, Republic of Korea
| | - Kwang-Il Nam
- Department of Anatomy, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; BK21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Hyun Kook
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; BK21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea.
| |
Collapse
|
17
|
Nam YS, Kim Y, Joung H, Kwon DH, Choe N, Min HK, Kim YS, Kim HS, Kim DK, Cho YK, Kim YH, Nam KI, Choi HC, Park DH, Suk K, Lee IK, Ahn Y, Lee CH, Choi HS, Eom GH, Kook H. Small heterodimer partner blocks cardiac hypertrophy by interfering with GATA6 signaling. Circ Res 2014; 115:493-503. [PMID: 25015078 DOI: 10.1161/circresaha.115.304388] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Small heterodimer partner (SHP; NR0B2) is an atypical orphan nuclear receptor that lacks a conventional DNA-binding domain. Through interactions with other transcription factors, SHP regulates diverse biological events, including glucose metabolism in liver. However, the role of SHP in adult heart diseases has not yet been demonstrated. OBJECTIVE We aimed to investigate the role of SHP in adult heart in association with cardiac hypertrophy. METHODS AND RESULTS The roles of SHP in cardiac hypertrophy were tested in primary cultured cardiomyocytes and in animal models. SHP-null mice showed a hypertrophic phenotype. Hypertrophic stresses repressed the expression of SHP, whereas forced expression of SHP blocked the development of hypertrophy in cardiomyocytes. SHP reduced the protein amount of Gata6 and, by direct physical interaction with Gata6, interfered with the binding of Gata6 to GATA-binding elements in the promoter regions of natriuretic peptide precursor type A. Metformin, an antidiabetic agent, induced SHP and suppressed cardiac hypertrophy. The metformin-induced antihypertrophic effect was attenuated either by SHP small interfering RNA in cardiomyocytes or in SHP-null mice. CONCLUSIONS These results establish SHP as a novel antihypertrophic regulator that acts by interfering with GATA6 signaling. SHP may participate in the metformin-induced antihypertrophic response.
Collapse
Affiliation(s)
- Yoon Seok Nam
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Yoojung Kim
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Hosouk Joung
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Duk-Hwa Kwon
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Nakwon Choe
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Hyun-Ki Min
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Yong Sook Kim
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Hyung-Seok Kim
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Don-Kyu Kim
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Young Kuk Cho
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Yong-Hoon Kim
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Kwang-Il Nam
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Hyoung Chul Choi
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Dong Ho Park
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Kyoungho Suk
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - In-Kyu Lee
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Youngkeun Ahn
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Chul-Ho Lee
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Hueng-Sik Choi
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Gwang Hyeon Eom
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Hyun Kook
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.).
| |
Collapse
|
18
|
Huang X, Spencer GJ, Lynch JT, Ciceri F, Somerville TDD, Somervaille TCP. Enhancers of Polycomb EPC1 and EPC2 sustain the oncogenic potential of MLL leukemia stem cells. Leukemia 2014; 28:1081-91. [PMID: 24166297 PMCID: PMC3998875 DOI: 10.1038/leu.2013.316] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/30/2013] [Accepted: 10/22/2013] [Indexed: 01/21/2023]
Abstract
Through a targeted knockdown (KD) screen of chromatin regulatory genes, we identified the EP400 complex components EPC1 and EPC2 as critical oncogenic cofactors in acute myeloid leukemia (AML). EPC1 and EPC2 were required for the clonogenic potential of human AML cells of multiple molecular subtypes. Focusing on MLL-mutated AML as an exemplar, Epc1 or Epc2 KD-induced apoptosis of murine MLL-AF9 AML cells and abolished leukemia stem cell potential. By contrast, normal hematopoietic stem and progenitor cells (HSPC) were spared. Similar selectivity was observed for human primary AML cells versus normal CD34(+) HSPC. In keeping with these distinct functional consequences, Epc1 or Epc2 KD-induced divergent transcriptional consequences in murine MLL-AF9 granulocyte-macrophage progenitor-like (GMP) cells versus normal GMP, with a signature of increased MYC activity in leukemic but not normal cells. This was caused by accumulation of MYC protein and was also observed following KD of other EP400 complex genes. Pharmacological inhibition of MYC:MAX dimerization, or concomitant MYC KD, reduced apoptosis following EPC1 KD, linking the accumulation of MYC to cell death. Therefore, EPC1 and EPC2 are components of a complex that directly or indirectly serves to prevent MYC accumulation and AML cell apoptosis, thus sustaining oncogenic potential.
Collapse
Affiliation(s)
- Xu Huang
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4BX, United Kingdom
| | - Gary J Spencer
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4BX, United Kingdom
| | - James T Lynch
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4BX, United Kingdom
| | - Filippo Ciceri
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4BX, United Kingdom
| | - Tim D D Somerville
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4BX, United Kingdom
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4BX, United Kingdom
| |
Collapse
|
19
|
Kee HJ, Park S, Kang W, Lim KS, Kim JH, Ahn Y, Jeong MH. Piceatannol attenuates cardiac hypertrophy in an animal model through regulation of the expression and binding of the transcription factor GATA binding factor 6. FEBS Lett 2014; 588:1529-36. [PMID: 24662306 DOI: 10.1016/j.febslet.2014.03.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/07/2014] [Indexed: 12/01/2022]
Abstract
Piceatannol is found in grapes, passion fruit, and Japanese knotweed. Piceatannol pretreatment suppresses cardiac hypertrophy induced by isoproterenol as assessed by heart weight/body weight ratio, cross-sectional area, and expression of hypertrophic markers. The anti-hypertrophic effect of piceatannol in rat neonatal cardiomyocytes is the same as that in vivo. Piceatannol inhibits lentiviral-GATA6-induced cardiomyocyte hypertrophy. Furthermore, piceatannol reduces the interaction between GATA4 and GATA6 as well as the DNA-binding activity of endogenous GATA6 in the ANP promoter. Our results suggest that piceatannol may be a novel therapeutic agent for the prevention of cardiac hypertrophy.
Collapse
Affiliation(s)
- Hae Jin Kee
- Heart Research Center of Chonnam National University Hospital, Gwangju 501-757, South Korea.
| | - Sangha Park
- Heart Research Center of Chonnam National University Hospital, Gwangju 501-757, South Korea
| | - Wanseok Kang
- Heart Research Center of Chonnam National University Hospital, Gwangju 501-757, South Korea
| | - Kyung Seob Lim
- Heart Research Center of Chonnam National University Hospital, Gwangju 501-757, South Korea
| | - Jung Ha Kim
- Heart Research Center of Chonnam National University Hospital, Gwangju 501-757, South Korea
| | - Youngkeun Ahn
- Heart Research Center of Chonnam National University Hospital, Gwangju 501-757, South Korea
| | - Myung Ho Jeong
- Heart Research Center of Chonnam National University Hospital, Gwangju 501-757, South Korea.
| |
Collapse
|
20
|
Simic D, Euler C, Thurby C, Peden M, Tannehill-Gregg S, Bunch T, Sanderson T, Van Vleet T. Assessing cell fusion and cytokinesis failure as mechanisms of clone 9 hepatocyte multinucleation in vitro. ACTA ACUST UNITED AC 2013; Chapter 14:Unit 14.9.1-17. [PMID: 22896007 DOI: 10.1002/0471140856.tx1409s53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this in vitro model of hepatocyte multinucleation, separate cultures of rat Clone 9 cells are labeled with either red or green cell tracker dyes (Red Cell Tracker CMPTX or Vybrant CFDA SE Cell Tracer), plated together in mixed-color colonies, and treated with positive or negative control agents for 4 days. The fluorescent dyes become cell-impermeant after entering cells and are not transferred to adjacent cells in a population, but are inherited by daughter cells after fusion. The mixed-color cultures are then evaluated microscopically for multinucleation and analysis of the underlying mechanism (cell fusion/cytokinesis). Multinucleated cells containing only one dye have undergone cytokinesis failure, whereas dual-labeled multinucleated cells have resulted from fusion.
Collapse
Affiliation(s)
- Damir Simic
- Drug Safety Evaluation, Bristol-Myers Squibb Co, Mount Vernon, Indiana, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Actin dynamics are implicated in various cellular processes, not only through the regulation of cytoskeletal organization, but also via the control of gene expression. In the present study we show that the Src family kinase substrate p130Cas (Cas is Crk-associated substrate) influences actin remodelling and concomitant muscle-specific gene expression, thereby regulating myogenic differentiation. In C2C12 myoblasts, silencing of p130Cas expression by RNA interference impaired F-actin (filamentous actin) formation and nuclear localization of the SRF (serum-response factor) co-activator MAL (megakaryocytic acute leukaemia) following the induction of myogenic differentiation. Consequently, formation of multinucleated myotubes was abolished. Re-introduction of wild-type p130Cas, but not its phosphorylation-defective mutant, into p130Cas-knockdown myoblasts restored F-actin assembly, MAL nuclear localization and myotube formation. Depletion of the adhesion molecule integrin β3, a key regulator of myogenic differentiation as well as actin cytoskeletal organization, attenuated p130Cas phosphorylation and MAL nuclear localization during C2C12 differentiation. Moreover, knockdown of p130Cas led to the activation of the F-actin-severing protein cofilin. The introduction of a dominant-negative mutant of cofilin into p130Cas-knockdown myoblasts restored muscle-specific gene expression and myotube formation. The results of the present study suggest that p130Cas phosphorylation, mediated by integrin β3, facilitates cofilin inactivation and promotes myogenic differentiation through modulating actin cytoskeleton remodelling.
Collapse
|
22
|
Burri A, Hysi P, Clop A, Rahman Q, Spector TD. A genome-wide association study of female sexual dysfunction. PLoS One 2012; 7:e35041. [PMID: 22509378 PMCID: PMC3324410 DOI: 10.1371/journal.pone.0035041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/08/2012] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Female sexual dysfunction (FSD) is an important but controversial problem with serious negative impact on women's quality of life. Data from twin studies have shown a genetic contribution to the development and maintenance of FSD. METHODOLOGY/PRINCIPAL FINDINGS We performed a genome-wide association study (GWAS) on 2.5 million single-nucleotide polymorphisms (SNPs) in 1,104 female twins (25-81 years of age) in a population-based register and phenotypic data on lifelong sexual functioning. Although none reached conventional genome-wide level of significance (10 × -8), we found strongly suggestive associations with the phenotypic dimension of arousal (rs13202860, P = 1.2 × 10(-7); rs1876525, P = 1.2 × 10(-7); and rs13209281 P = 8.3 × 10(-7)) on chromosome 6, around 500 kb upstream of the locus HTR1E (5-hydroxytryptamine receptor 1E) locus, related to the serotonin brain pathways. We could not replicate previously reported candidate SNPs associated with FSD in the DRD4, 5HT2A and IL-1B loci. CONCLUSIONS/SIGNIFICANCE We report the first GWAS of FSD symptoms in humans. This has pointed to several "risk alleles" and the implication of the serotonin and GABA pathways. Ultimately, understanding key mechanisms via this research may lead to new FSD treatments and inform clinical practice and developments in psychiatric nosology.
Collapse
Affiliation(s)
- Andrea Burri
- Biological and Experimental Psychology Group, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom.
| | | | | | | | | |
Collapse
|
23
|
Joung H, Kwon JS, Kim JR, Shin S, Kang W, Ahn Y, Kook H, Kee HJ. Enhancer of polycomb1 lessens neointima formation by potentiation of myocardin-induced smooth muscle differentiation. Atherosclerosis 2012; 222:84-91. [PMID: 22398275 DOI: 10.1016/j.atherosclerosis.2012.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 02/02/2012] [Accepted: 02/09/2012] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Previously, we reported that enhancer of polycomb1 (Epc1) induces skeletal muscle differentiation through the serum response factor (SRF). Considering that SRF plays a critical role in vascular smooth muscle cell (VSMC) differentiation, we expected that Epc1 also works in VSMCs. Here we examined the effect of Epc1 on neointima formation after arterial balloon injury and the underlying mechanism. METHODS Epc1 expression was examined in carotid artery injury or VSMC models. Interaction with myocardin (Myocd), a master regulator of smooth muscle differentiation, was examined by immunoprecipitation or promoter analysis with smooth muscle (SM) 22α promoter. Finally, we investigated whether local delivery of Epc1 regulated neointimal formation after injury. RESULTS Epc1 expression was down-regulated during proliferation induced by platelet-derived growth factor BB, whereas it was upregulated during differentiation in VSMCs. Forced expression of Epc1 induced VSMC differentiation. Epc1 physically interacted with Myocd to synergistically activate SM22α promoter activity. Transient transfection of Epc1 enhanced the physical interaction between Myocd and SRF, whereas that interaction was reduced when A10 cells were treated with siRNA for Epc1. Local delivery of Epc1 significantly reduced neointima formation induced by balloon injury. CONCLUSIONS Our results indicate that Epc1 induces VSMC differentiation by interacting with Myocd to induce SRF-dependent smooth muscle genes. We propose that Epc1 acts as a novel negative regulator of neointima formation after carotid injury.
Collapse
Affiliation(s)
- Hosouk Joung
- Department of Pharmacology and Medical Research Center for Gene Regulation, Chonnam National University Medical School, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Eom GH, Kim KB, Kim JH, Kim JY, Kim JR, Kee HJ, Kim DW, Choe N, Park HJ, Son HJ, Choi SY, Kook H, Seo SB. Histone methyltransferase SETD3 regulates muscle differentiation. J Biol Chem 2011; 286:34733-42. [PMID: 21832073 DOI: 10.1074/jbc.m110.203307] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone lysine methylation, as one of the most important factors in transcriptional regulation, is associated with a various physiological conditions. Using a bioinformatics search, we identified and subsequently cloned mouse SET domain containing 3 (SETD3) with SET (Su(var)3-9, Enhancer-of-zeste and Trithorax) and Rubis-subs-bind domains. SETD3 is a novel histone H3K4 and H3K36 methyltransferase with transcriptional activation activity. SETD3 is expressed abundantly in muscular tissues and, when overexpressed, activates transcription of muscle-related genes, myogenin, muscle creatine kinase (MCK), and myogenic factor 6 (Myf6), thereby inducing muscle cell differentiation. Conversely, knockdown of SETD3 by shRNA significantly retards muscle cell differentiation. In this study, SETD3 was recruited to the myogenin gene promoter along with MyoD where it activated transcription. Together, these data indicate that SETD3 is a H3K4/K36 methyltransferase and plays an important role in the transcriptional regulation of muscle cell differentiation.
Collapse
Affiliation(s)
- Gwang Hyeon Eom
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kee HJ, Kim JR, Joung H, Choe N, Lee SE, Eom GH, Kim JC, Geyer SH, Jijiwa M, Kato T, Kawai K, Weninger WJ, Seo SB, Nam KI, Jeong MH, Takahashi M, Kook H. Ret finger protein inhibits muscle differentiation by modulating serum response factor and enhancer of polycomb1. Cell Death Differ 2011; 19:121-31. [PMID: 21637294 DOI: 10.1038/cdd.2011.72] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Skeletal myogenesis is precisely regulated by multiple transcription factors. Previously, we demonstrated that enhancer of polycomb 1 (Epc1) induces skeletal muscle differentiation by potentiating serum response factor (SRF)-dependent muscle gene activation. Here, we report that an interacting partner of Epc1, ret finger protein (RFP), blocks skeletal muscle differentiation. Our findings show that RFP was highly expressed in skeletal muscles and was downregulated during myoblast differentiation. Forced expression of RFP delayed myoblast differentiation, whereas knockdown enhanced it. Epc1-induced enhancements of SRF-dependent multinucleation, transactivation of the skeletal α-actin promoter, binding of SRF to the serum response element, and muscle-specific gene induction were blocked by RFP. RFP interfered with the physical interaction between Epc1 and SRF. Muscles from rfp knockout mice (Rfp(-/-)) mice were bigger than those from wild-type mice, and the expression of SRF-dependent muscle-specific genes was upregulated. Myotube formation and myoblast differentiation were enhanced in Rfp(-/-) mice. Taken together, our findings highlight RFP as a novel regulator of muscle differentiation that acts by modulating the expression of SRF-dependent skeletal muscle-specific genes.
Collapse
Affiliation(s)
- H J Kee
- Department of Pharmacology and Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sousa-Victor P, Muñoz-Cánoves P, Perdiguero E. Regulation of skeletal muscle stem cells through epigenetic mechanisms. Toxicol Mech Methods 2011; 21:334-42. [DOI: 10.3109/15376516.2011.557873] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Jumonji domain protein JMJD5 functions in both the plant and human circadian systems. Proc Natl Acad Sci U S A 2010; 107:21623-8. [PMID: 21115819 DOI: 10.1073/pnas.1014204108] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Circadian clocks are near-ubiquitous molecular oscillators that coordinate biochemical, physiological, and behavioral processes with environmental cues, such as dawn and dusk. Circadian timing mechanisms are thought to have arisen multiple times throughout the evolution of eukaryotes but share a similar overall structure consisting of interlocking transcriptional and posttranslational feedback loops. Recent work in both plants and animals has also linked modification of histones to circadian clock function. Now, using data from published microarray experiments, we have identified a histone demethylase, jumonji domain containing 5 (JMJD5), as a previously undescribed participant in both the human and Arabidopsis circadian systems. Arabidopsis JMJD5 is coregulated with evening-phased clock components and positively affects expression of clock genes expressed at dawn. We found that both Arabidopsis jmjd5 mutant seedlings and mammalian cell cultures deficient for the human ortholog of this gene have similar fast-running circadian oscillations compared with WT. Remarkably, both the Arabidopsis and human JMJD5 orthologs retain sufficient commonality to rescue the circadian phenotype of the reciprocal system. Thus, JMJD5 plays an interchangeable role in the timing mechanisms of plants and animals despite their highly divergent evolutionary paths.
Collapse
|