1
|
Henderson SH, Sorrell FJ, Bennett JM, Fedorov O, Hanley MT, Godoi PH, Ruela de Sousa R, Robinson S, Navratilova IH, Elkins JM, Ward SE. Imidazo[1,2-b]pyridazines as inhibitors of DYRK kinases. Eur J Med Chem 2024; 269:116292. [PMID: 38479168 DOI: 10.1016/j.ejmech.2024.116292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/07/2024]
Abstract
Selective inhibitors of DYRK1A are of interest for the treatment of cancer, Type 2 diabetes and neurological disorders. Optimization of imidazo [1,2-b]pyridazine fragment 1 through structure-activity relationship exploration and in silico drug design efforts led to the discovery of compound 17 as a potent cellular inhibitor of DYRK1A with selectivity over much of the kinome. The binding mode of compound 17 was elucidated with X-ray crystallography, facilitating the rational design of compound 29, an imidazo [1,2-b]pyridazine with improved kinase selectivity with respect to closely related CLK kinases.
Collapse
Affiliation(s)
- Scott H Henderson
- Sussex Drug Discovery Centre, University of Sussex, Brighton, BN1 9RH, UK.
| | - Fiona J Sorrell
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - James M Bennett
- Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ, UK
| | - Oleg Fedorov
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Marcus T Hanley
- Medicines Discovery Institute, Cardiff University, CF10 3AT, UK
| | - Paulo H Godoi
- Structural Genomics Consortium, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Av. Dr. André Tosello, 550, Barão Geraldo, Campinas, SP, 13083-886, Brazil
| | - Roberta Ruela de Sousa
- Structural Genomics Consortium, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Av. Dr. André Tosello, 550, Barão Geraldo, Campinas, SP, 13083-886, Brazil
| | - Sean Robinson
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford, OX4 4GE, UK
| | - Iva Hopkins Navratilova
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford, OX4 4GE, UK; University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Jonathan M Elkins
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK; Structural Genomics Consortium, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Av. Dr. André Tosello, 550, Barão Geraldo, Campinas, SP, 13083-886, Brazil.
| | - Simon E Ward
- Medicines Discovery Institute, Cardiff University, CF10 3AT, UK.
| |
Collapse
|
2
|
Hogg EKJ, Findlay GM. Functions of SRPK, CLK and DYRK kinases in stem cells, development, and human developmental disorders. FEBS Lett 2023; 597:2375-2415. [PMID: 37607329 PMCID: PMC10952393 DOI: 10.1002/1873-3468.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Human developmental disorders encompass a wide range of debilitating physical conditions and intellectual disabilities. Perturbation of protein kinase signalling underlies the development of some of these disorders. For example, disrupted SRPK signalling is associated with intellectual disabilities, and the gene dosage of DYRKs can dictate the pathology of disorders including Down's syndrome. Here, we review the emerging roles of the CMGC kinase families SRPK, CLK, DYRK, and sub-family HIPK during embryonic development and in developmental disorders. In particular, SRPK, CLK, and DYRK kinase families have key roles in developmental signalling and stem cell regulation, and can co-ordinate neuronal development and function. Genetic studies in model organisms reveal critical phenotypes including embryonic lethality, sterility, musculoskeletal errors, and most notably, altered neurological behaviours arising from defects of the neuroectoderm and altered neuronal signalling. Further unpicking the mechanisms of specific kinases using human stem cell models of neuronal differentiation and function will improve our understanding of human developmental disorders and may provide avenues for therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth K. J. Hogg
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| | - Greg M. Findlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| |
Collapse
|
3
|
Lindberg MF, Deau E, Arfwedson J, George N, George P, Alfonso P, Corrionero A, Meijer L. Comparative Efficacy and Selectivity of Pharmacological Inhibitors of DYRK and CLK Protein Kinases. J Med Chem 2023; 66:4106-4130. [PMID: 36876904 DOI: 10.1021/acs.jmedchem.2c02068] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Dual-specificity, tyrosine phosphorylation-regulated kinases (DYRKs) and cdc2-like kinases (CLKs) play a large variety of cellular functions and are involved in several diseases (cognitive disorders, diabetes, cancers, etc.). There is, thus, growing interest in pharmacological inhibitors as chemical probes and potential drug candidates. This study presents an unbiased evaluation of the kinase inhibitory activity of a library of 56 reported DYRK/CLK inhibitors on the basis of comparative, side-by-side, catalytic activity assays on a panel of 12 recombinant human kinases, enzyme kinetics (residence time and Kd), in-cell inhibition of Thr-212-Tau phosphorylation, and cytotoxicity. The 26 most active inhibitors were modeled in the crystal structure of DYRK1A. The results show a rather large diversity of potencies and selectivities among the reported inhibitors and emphasize the difficulties to avoid "off-targets" in this area of the kinome. The use of a panel of DYRKs/CLKs inhibitors is suggested to analyze the functions of these kinases in cellular processes.
Collapse
Affiliation(s)
| | - Emmanuel Deau
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| | - Jonas Arfwedson
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| | - Nicolas George
- Oncodesign, 25-27 avenue du Québec, 91140 Villebon-sur-Yvette, France
| | - Pascal George
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| | - Patricia Alfonso
- Enzymlogic, Qube Technology Park, C/Santiago Grisolía, 2, 28760 Madrid, Spain
| | - Ana Corrionero
- Enzymlogic, Qube Technology Park, C/Santiago Grisolía, 2, 28760 Madrid, Spain
| | - Laurent Meijer
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| |
Collapse
|
4
|
Modepalli S, Martinez-Morilla S, Venkatesan S, Fasano J, Paulsen K, Görlich D, Hattangadi S, Kupfer GM. An In Vivo Model for Elucidating the Role of an Erythroid-Specific Isoform of Nuclear Export Protein Exportin 7 (Xpo7) in Murine Erythropoiesis. Exp Hematol 2022; 114:22-32. [PMID: 35973480 PMCID: PMC10165728 DOI: 10.1016/j.exphem.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/04/2022]
Abstract
Erythroid nuclear condensation is a complex process in which compaction to one-tenth its original size occurs in an active nucleus simultaneously undergoing transcription and cell division. We previously found that the nuclear exportin Exportin7 (Xpo7), which is erythroid- specific and highly induced during terminal erythropoiesis, facilitates nuclear condensation. We also identified a previously unannotated, erythroid-specific isoform of Xpo7 (Xpo7B) containing a novel first exon Xpo7-1b expressed only in late Ter119+ erythroblasts. To better understand the functional difference between the erythroid Xpo7B isoform and the ubiquitous isoform (Xpo7A) containing the original first exon Xpo7-1a, we created gene-targeted mouse models lacking either exon Xpo7-1a or Xpo7-1b, or both exons 4 and 5, which are completely null for Xpo7 expression. We found that deficiency in Xpo7A does not affect steady-state nor stress erythropoiesis. In contrast, mice lacking the erythroid isoform, Xpo7B, exhibit a mild anemia as well as altered stress erythropoiesis. Complete Xpo7 deficiency resulted in partially penetrant embryonic lethality at the stage when definitive erythropoiesis is prominent in the fetal liver. Inducible complete knockdown of Xpo7 confirms that both steady-state erythropoiesis and stress erythropoiesis are affected. We also observe that Xpo7 deficiency downregulates the expression of important stress response factors, such as Gdf15 and Smad3. We conclude that the erythroid-specific isoform of Xpo7 is important for both steady-state and stress erythropoiesis in mice.
Collapse
Affiliation(s)
- Susree Modepalli
- Department of Molecular Oncology, Georgetown University, Washington DC
| | | | - Srividhya Venkatesan
- Department of Pediatric Hematology-Oncology, Yale School of Medicine, New Haven, CT
| | - James Fasano
- Department of Pediatric Hematology-Oncology, Yale School of Medicine, New Haven, CT
| | - Katerina Paulsen
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Shilpa Hattangadi
- Division of Kidney, Urologic, and Hematologic Diseases, National Institutes of Health, Bethesda, MD.
| | - Gary M Kupfer
- Department of Molecular Oncology, Georgetown University, Washington DC.
| |
Collapse
|
5
|
Santos-Durán GN, Barreiro-Iglesias A. Roles of dual specificity tyrosine-phosphorylation-regulated kinase 2 in nervous system development and disease. Front Neurosci 2022; 16:994256. [PMID: 36161154 PMCID: PMC9492948 DOI: 10.3389/fnins.2022.994256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Dual specificity tyrosine-phosphorylation-regulated kinases (DYRKs) are a group of conserved eukaryotic kinases phosphorylating tyrosine, serine, and threonine residues. The human DYRK family comprises 5 members (DYRK1A, DYRK1B, DYRK2, DYRK3, and DYRK4). The different DYRKs have been implicated in neurological diseases, cancer, and virus infection. Specifically, DYRK2 has been mainly implicated in cancer progression. However, its role in healthy and pathological nervous system function has been overlooked. In this context, we review current available data on DYRK2 in the nervous system, where the available studies indicate that it has key roles in neuronal development and function. DYRK2 regulates neuronal morphogenesis (e.g., axon growth and branching) by phosphorylating cytoskeletal elements (e.g., doublecortin). Comparative data reveals that it is involved in the development of olfactory and visual systems, the spinal cord and possibly the cortex. DYRK2 also participates in processes such as olfaction, vision and, learning. However, DYRK2 could be involved in other brain functions since available expression data shows that it is expressed across the whole brain. High DYRK2 protein levels have been detected in basal ganglia and cerebellum. In adult nervous system, DYRK2 mRNA expression is highest in the cortex, hippocampus, and retina. Regarding nervous system disease, DYRK2 has been implicated in neuroblastoma, glioma, epilepsy, neuroinflammation, Alzheimer's disease, Parkinson's disease, spinal cord injury and virus infection. DYRK2 upregulation usually has a negative impact in cancer-related conditions and a positive impact in non-malignant conditions. Its role in axon growth makes DYRK2 as a promising target for spinal cord or brain injury and regeneration.
Collapse
Affiliation(s)
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, Faculty of Biology, CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
6
|
New insights into the roles for DYRK family in mammalian development and congenital diseases. Genes Dis 2022. [DOI: 10.1016/j.gendis.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
7
|
Signaling Pathways That Regulate Normal and Aberrant Red Blood Cell Development. Genes (Basel) 2021; 12:genes12101646. [PMID: 34681039 PMCID: PMC8536016 DOI: 10.3390/genes12101646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 01/19/2023] Open
Abstract
Blood cell development is regulated through intrinsic gene regulation and local factors including the microenvironment and cytokines. The differentiation of hematopoietic stem and progenitor cells (HSPCs) into mature erythrocytes is dependent on these cytokines binding to and stimulating their cognate receptors and the signaling cascades they initiate. Many of these pathways include kinases that can diversify signals by phosphorylating multiple substrates and amplify signals by phosphorylating multiple copies of each substrate. Indeed, synthesis of many of these cytokines is regulated by a number of signaling pathways including phosphoinositide 3-kinase (PI3K)-, extracellular signal related kinases (ERK)-, and p38 kinase-dependent pathways. Therefore, kinases act both upstream and downstream of the erythropoiesis-regulating cytokines. While many of the cytokines are well characterized, the nuanced members of the network of kinases responsible for appropriate induction of, and response to, these cytokines remains poorly defined. Here, we will examine the kinase signaling cascades required for erythropoiesis and emphasize the importance, complexity, enormous amount remaining to be characterized, and therapeutic potential that will accompany our comprehensive understanding of the erythroid kinome in both healthy and diseased states.
Collapse
|
8
|
DYRK3 contributes to differentiation and hypoxic control in neuroblastoma. Biochem Biophys Res Commun 2021; 567:215-221. [PMID: 34171798 DOI: 10.1016/j.bbrc.2021.06.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Neuroblastoma (NB), a pediatric cancer of the peripheral sympathetic nervous system, represents the most frequent solid malignancy in infants. Treatment of high-risk patients is still challenging and, depending on the genetic make-up and involved risk factors, the 5-year survival rate can drop to only 30%. Here, we found that the expression of the Dual Specificity Tyrosine Phosphorylation Regulated Kinase 3 (DYRK3) is increased in NB and is associated with decreased survival in NB patients. We further identified DYRK3 as a cytoplasmic kinase in NB cells and found that its levels are increased by hypoxic conditions. Further mechanistic studies revealed that DYRK3 acts as a negative regulator of HIF-driven transcriptional responses, suggesting that it functions in a negative feedback loop controlling the hypoxic response. Moreover, DYRK3 negatively impacted on NB cell differentiation, proposing an oncogenic role of this kinase in the etiology of NB. In summary, we describe novel functions of the DYRK3 kinase in NB, which will help to further improve the understanding of this disease eventually leading to the design of improved therapeutic concepts.
Collapse
|
9
|
Wang H, Liu D, Song P, Jiang F, Chi X, Zhang T. Exposure to hypoxia causes stress erythropoiesis and downregulates immune response genes in spleen of mice. BMC Genomics 2021; 22:413. [PMID: 34090336 PMCID: PMC8178839 DOI: 10.1186/s12864-021-07731-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/21/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The spleen is the largest secondary lymphoid organ and the main site where stress erythropoiesis occurs. It is known that hypoxia triggers the expansion of erythroid progenitors; however, its effects on splenic gene expression are still unclear. Here, we examined splenic global gene expression patterns by time-series RNA-seq after exposing mice to hypoxia for 0, 1, 3, 5, 7 and 13 days. RESULTS Morphological analysis showed that on the 3rd day there was a significant increase in the spleen index and in the proliferation of erythroid progenitors. RNA-sequencing analysis revealed that the overall expression of genes decreased with increased hypoxic exposure. Compared with the control group, 1380, 3430, 4396, 3026, and 1636 genes were differentially expressed on days 1, 3, 5, 7 and 13, respectively. Clustering analysis of the intersection of differentially expressed genes pointed to 739 genes, 628 of which were upregulated, and GO analysis revealed a significant enrichment for cell proliferation. Enriched GO terms of downregulated genes were associated with immune cell activation. Expression of Gata1, Tal1 and Klf1 was significantly altered during stress erythropoiesis. Furthermore, expression of genes involved in the immune response was inhibited, and NK cells decreased. CONCLUSIONS The spleen of mice conquer hypoxia exposure in two ways. Stress erythropoiesis regulated by three transcription factors and genes in immune response were downregulated. These findings expand our knowledge of splenic transcriptional changes during hypoxia.
Collapse
Affiliation(s)
- Haijing Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China
- Medical College of Qinghai University, Xining, 810016, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daoxin Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengfei Song
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Jiang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangwen Chi
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China.
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China.
| |
Collapse
|
10
|
Lindberg MF, Meijer L. Dual-Specificity, Tyrosine Phosphorylation-Regulated Kinases (DYRKs) and cdc2-Like Kinases (CLKs) in Human Disease, an Overview. Int J Mol Sci 2021; 22:6047. [PMID: 34205123 PMCID: PMC8199962 DOI: 10.3390/ijms22116047] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/09/2023] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinases (DYRK1A, 1B, 2-4) and cdc2-like kinases (CLK1-4) belong to the CMGC group of serine/threonine kinases. These protein kinases are involved in multiple cellular functions, including intracellular signaling, mRNA splicing, chromatin transcription, DNA damage repair, cell survival, cell cycle control, differentiation, homocysteine/methionine/folate regulation, body temperature regulation, endocytosis, neuronal development, synaptic plasticity, etc. Abnormal expression and/or activity of some of these kinases, DYRK1A in particular, is seen in many human nervous system diseases, such as cognitive deficits associated with Down syndrome, Alzheimer's disease and related diseases, tauopathies, dementia, Pick's disease, Parkinson's disease and other neurodegenerative diseases, Phelan-McDermid syndrome, autism, and CDKL5 deficiency disorder. DYRKs and CLKs are also involved in diabetes, abnormal folate/methionine metabolism, osteoarthritis, several solid cancers (glioblastoma, breast, and pancreatic cancers) and leukemias (acute lymphoblastic leukemia, acute megakaryoblastic leukemia), viral infections (influenza, HIV-1, HCMV, HCV, CMV, HPV), as well as infections caused by unicellular parasites (Leishmania, Trypanosoma, Plasmodium). This variety of pathological implications calls for (1) a better understanding of the regulations and substrates of DYRKs and CLKs and (2) the development of potent and selective inhibitors of these kinases and their evaluation as therapeutic drugs. This article briefly reviews the current knowledge about DYRK/CLK kinases and their implications in human disease.
Collapse
Affiliation(s)
| | - Laurent Meijer
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France;
| |
Collapse
|
11
|
Siva K, Ek F, Chen J, Ghani Alattar A, Sigmundsson K, Olsson R, Wlodarski M, Lundbäck T, Flygare J. A Phenotypic Screening Assay Identifies Modulators of Diamond Blackfan Anemia. SLAS DISCOVERY 2020; 24:304-313. [PMID: 30784369 DOI: 10.1177/2472555218823531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diamond-Blackfan anemia (DBA) is a bone marrow failure syndrome caused by mutations in ribosomal protein genes. Pathogenic mechanisms are poorly understood but involve severely reduced proliferation of erythroid precursors. Because current DBA therapies are ineffective and associated with severe side effects, disease-specific therapies are urgently needed. We hypothesized that druggable molecular pathways underlying the defect can be revealed through phenotypic small-molecule screens. Accordingly, a screening assay was developed using c-kit+ fetal liver erythroid progenitors from a doxycycline-inducible DBA mouse model. The addition of doxycycline to the culture medium induces the phenotype and reduces proliferation to <10% of normal, such that rescue of proliferation can be used as a simple readout for screening. Here, we describe the assay rationale and efforts toward validation of a microtiter plate-compatible assay and its application in a pilot screen of 3871 annotated compounds. Ten hits demonstrated concentration-dependent activity, and we report a brief follow-up of one of these compounds. In conclusion, we established a robust scalable assay for screening molecules that rescue erythropoiesis in DBA.
Collapse
Affiliation(s)
- Kavitha Siva
- 1 Department of Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund University, Lund, Sweden
| | - Fredrik Ek
- 2 Chemical Biology and Therapeutics group, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jun Chen
- 1 Department of Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund University, Lund, Sweden
| | - Abdul Ghani Alattar
- 1 Department of Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund University, Lund, Sweden
| | - Kristmundur Sigmundsson
- 3 Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Department for Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Solna, Sweden
| | - Roger Olsson
- 2 Chemical Biology and Therapeutics group, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Marcin Wlodarski
- 4 Division of Pediatric Hematology and Oncology, Faculty of Medicine University Hospital Freiburg, Germany
| | - Thomas Lundbäck
- 3 Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Department for Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Solna, Sweden.,5 Mechanistic Biology & Profiling, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Johan Flygare
- 1 Department of Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Darwish SS, Abdel-Halim M, Salah M, Abadi AH, Becker W, Engel M. Development of novel 2,4-bispyridyl thiophene-based compounds as highly potent and selective Dyrk1A inhibitors. Part I: Benzamide and benzylamide derivatives. Eur J Med Chem 2018; 157:1031-1050. [PMID: 30193214 DOI: 10.1016/j.ejmech.2018.07.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022]
Abstract
The protein kinase Dyrk1A modulates several processes relevant to the development or progression of Alzheimer's disease (AD), e. g. through phosphorylation of tau protein, amyloid precursor protein (APP) as well as proteins involved in the regulation of alternative splicing of tau pre-mRNA. Therefore, Dyrk1A has been proposed as a potential target for the treatment of AD. However, the co-inhibition of other closely related kinases of the same family of protein kinases (e.g. Dyrk1B and Dyrk2) or kinases from other families such as Clk1 limits the use of Dyrk1A inhibitors, as this may cause unpredictable side effects especially over long treatment periods. Herein, we describe the design and synthesis of a series of amide functionalized 2,4-bispyridyl thiophene compounds, of which the 4-fluorobenzyl amide derivative (31b) displayed the highest potency against Dyrk1A and remarkable selectivity over closely related kinases (IC50: Dyrk1A = 14.3 nM; Dyrk1B = 383 nM, Clk1 > 2 μM). This degree of selectivity over the frequently hit off-targets has rarely been achieved to date. Additionally, 31b inhibited Dyrk1A in intact cells with high efficacy (IC50 = 79 nM). Furthermore, 31b displayed a high metabolic stability in vitro with a half-life of 2 h. Altogether, the benzamide and benzylamide extension at the 2,4-bispyridyl thiophene core improved several key properties, giving access to compound suitable for future in vivo studies.
Collapse
Affiliation(s)
- Sarah S Darwish
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Mohamed Salah
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Walter Becker
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany.
| |
Collapse
|
13
|
Rozen EJ, Roewenstrunk J, Barallobre MJ, Di Vona C, Jung C, Figueiredo AF, Luna J, Fillat C, Arbonés ML, Graupera M, Valverde MA, de la Luna S. DYRK1A Kinase Positively Regulates Angiogenic Responses in Endothelial Cells. Cell Rep 2018; 23:1867-1878. [PMID: 29742440 DOI: 10.1016/j.celrep.2018.04.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/18/2017] [Accepted: 03/31/2018] [Indexed: 11/23/2022] Open
Abstract
Angiogenesis is a highly regulated process essential for organ development and maintenance, and its deregulation contributes to inflammation, cardiac disorders, and cancer. The Ca2+/nuclear factor of activated T cells (NFAT) signaling pathway is central to endothelial cell angiogenic responses, and it is activated by stimuli like vascular endothelial growth factor (VEGF) A. NFAT phosphorylation by dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) is thought to be an inactivating event. Contrary to expectations, we show that the DYRK family member DYRK1A positively regulates VEGF-dependent NFAT transcriptional responses in primary endothelial cells. DYRK1A silencing reduces intracellular Ca2+ influx in response to VEGF, which dampens NFAT activation. The effect is exerted at the level of VEGFR2 accumulation leading to impairment in PLCγ1 activation. Notably, Dyrk1a heterozygous mice show defects in developmental retinal vascularization. Our data establish a regulatory circuit, DYRK1A/ Ca2+/NFAT, to fine-tune endothelial cell proliferation and angiogenesis.
Collapse
Affiliation(s)
- Esteban J Rozen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain
| | - Julia Roewenstrunk
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain
| | - María José Barallobre
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain; Institut de Biologia Molecular de Barcelona (IBMB), 08028 Barcelona, Spain
| | - Chiara Di Vona
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain
| | - Carole Jung
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Ana F Figueiredo
- Vascular Signaling Laboratory, ProCURE and Oncobell Programs, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jeroni Luna
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain; Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Cristina Fillat
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain; Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Facultat de Medicina i Ciències de la Salut. Universitat de Barcelona (UB), 08036 Barcelona, Spain
| | - Maria L Arbonés
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain; Institut de Biologia Molecular de Barcelona (IBMB), 08028 Barcelona, Spain
| | - Mariona Graupera
- Vascular Signaling Laboratory, ProCURE and Oncobell Programs, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Spain
| | - Miguel A Valverde
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Susana de la Luna
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
14
|
Kim K, Cha JS, Cho YS, Kim H, Chang N, Kim HJ, Cho HS. Crystal Structure of Human Dual-Specificity Tyrosine-Regulated Kinase 3 Reveals New Structural Features and Insights into its Auto-phosphorylation. J Mol Biol 2018; 430:1521-1530. [PMID: 29634919 DOI: 10.1016/j.jmb.2018.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 11/15/2022]
Abstract
Dual-specificity tyrosine-regulated kinases (DYRKs) auto-phosphorylate a critical tyrosine residue in their activation loop and phosphorylate their substrate on serine and threonine residues. The auto-phosphorylation occurs intramolecularly and is a one-off event. DYRK3 is selectively expressed at a high level in hematopoietic cells and attenuates erythroblast development, leading to anemia. In the present study, we determined the crystal structure of the mature form of human DYRK3 in complex with harmine, an ATP competitive inhibitor. The crystal structure revealed a phosphorylation site, residue S350, whose phosphorylation increases the stability of DYRK3 and enhances its kinase activity. In addition, our structural and biochemical assays suggest that the N-terminal auto-phosphorylation accessory domain stabilizes the DYRK3 protein, followed by auto-phosphorylation of the tyrosine of the activation loop, which is important for kinase activity. Finally, our docking analysis provides information for the design of novel and potent therapeutics to treat anemia.
Collapse
Affiliation(s)
- Kuglae Kim
- Department of Systems Biology and Division of Life Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jeong Seok Cha
- Department of Systems Biology and Division of Life Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yong-Soon Cho
- Department of Clinical Pharmacology and Therapeutics, Asan Medical Center, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Hoyoung Kim
- Department of Systems Biology and Division of Life Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Nienping Chang
- Department of Systems Biology and Division of Life Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hye-Jung Kim
- New Drug Development Center, KBIO Osong Medical Innovation Foundation, Cheongju 28160, Republic of Korea
| | - Hyun-Soo Cho
- Department of Systems Biology and Division of Life Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
15
|
Abstract
The role of NFAT family transcription factors in erythropoiesis is so far unknown, although their involvement has been suggested previously. We have shown recently that Il2-/- mice develop severe anemia due to defects in KLF1 activity during BM erythropoiesis. Although, KLF1 activity is indispensable for erythropoiesis, the molecular details of Klf1 expression have not yet been elucidated. Here we show that an enhanced NFATc1 activity induced by increased integrin-cAMP signaling plays a critical role in the dysregulation of Klf1 expression and thereby cause anemia in Il2-/- mice. Interestingly, enhanced NFATc1 activity augmented apoptosis of immature erythrocytes in Il2-/- mice. On the other hand, ablation of NFATc1 activity enhanced differentiation of Ter119+ cells in BM. Restoring IL-2 signaling in Il2-/- mice reversed the increase in cAMP-NFAT signaling and facilitated normal erythropoiesis. Altogether, our study identified an NFAT-mediated negative signaling axis, manipulation of which could facilitate erythropoiesis and prevent anemia development.
Collapse
|
16
|
Singh R, Lauth M. Emerging Roles of DYRK Kinases in Embryogenesis and Hedgehog Pathway Control. J Dev Biol 2017; 5:E13. [PMID: 29615569 PMCID: PMC5831797 DOI: 10.3390/jdb5040013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 12/19/2022] Open
Abstract
Hedgehog (Hh)/GLI signaling is an important instructive cue in various processes during embryonic development, such as tissue patterning, stem cell maintenance, and cell differentiation. It also plays crucial roles in the development of many pediatric and adult malignancies. Understanding the molecular mechanisms of pathway regulation is therefore of high interest. Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) comprise a group of protein kinases which are emerging modulators of signal transduction, cell proliferation, survival, and cell differentiation. Work from the last years has identified a close regulatory connection between DYRKs and the Hh signaling system. In this manuscript, we outline the mechanistic influence of DYRK kinases on Hh signaling with a focus on the mammalian situation. We furthermore aim to bring together what is known about the functional consequences of a DYRK-Hh cross-talk and how this might affect cellular processes in development, physiology, and pathology.
Collapse
Affiliation(s)
- Rajeev Singh
- Philipps University Marburg, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor and Immune Biology (ZTI), Hans-Meerwein-Str. 3, 35043 Marburg, Germany.
| | - Matthias Lauth
- Philipps University Marburg, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor and Immune Biology (ZTI), Hans-Meerwein-Str. 3, 35043 Marburg, Germany.
| |
Collapse
|
17
|
KLF1-null neonates display hydrops fetalis and a deranged erythroid transcriptome. Blood 2015; 125:2405-17. [PMID: 25724378 DOI: 10.1182/blood-2014-08-590968] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 02/21/2015] [Indexed: 12/14/2022] Open
Abstract
We describe a case of severe neonatal anemia with kernicterus caused by compound heterozygosity for null mutations in KLF1, each inherited from asymptomatic parents. One of the mutations is novel. This is the first described case of a KLF1-null human. The phenotype of severe nonspherocytic hemolytic anemia, jaundice, hepatosplenomegaly, and marked erythroblastosis is more severe than that present in congenital dyserythropoietic anemia type IV as a result of dominant mutations in the second zinc-finger of KLF1. There was a very high level of HbF expression into childhood (>70%), consistent with a key role for KLF1 in human hemoglobin switching. We performed RNA-seq on circulating erythroblasts and found that human KLF1 acts like mouse Klf1 to coordinate expression of many genes required to build a red cell including those encoding globins, cytoskeletal components, AHSP, heme synthesis enzymes, cell-cycle regulators, and blood group antigens. We identify novel KLF1 target genes including KIF23 and KIF11 which are required for proper cytokinesis. We also identify new roles for KLF1 in autophagy, global transcriptional control, and RNA splicing. We suggest loss of KLF1 should be considered in otherwise unexplained cases of severe neonatal NSHA or hydrops fetalis.
Collapse
|
18
|
Krishnamurthy S, Moorthy BS, Xin Xiang L, Xin Shan L, Bharatham K, Tulsian NK, Mihalek I, Anand GS. Active site coupling in PDE:PKA complexes promotes resetting of mammalian cAMP signaling. Biophys J 2015; 107:1426-40. [PMID: 25229150 DOI: 10.1016/j.bpj.2014.07.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/03/2014] [Accepted: 07/15/2014] [Indexed: 11/25/2022] Open
Abstract
Cyclic 3'5' adenosine monophosphate (cAMP)-dependent-protein kinase (PKA) signaling is a fundamental regulatory pathway for mediating cellular responses to hormonal stimuli. The pathway is activated by high-affinity association of cAMP with the regulatory subunit of PKA and signal termination is achieved upon cAMP dissociation from PKA. Although steps in the activation phase are well understood, little is known on how signal termination/resetting occurs. Due to the high affinity of cAMP to PKA (KD ∼ low nM), bound cAMP does not readily dissociate from PKA, thus begging the question of how tightly bound cAMP is released from PKA to reset its signaling state to respond to subsequent stimuli. It has been recently shown that phosphodiesterases (PDEs) can catalyze dissociation of bound cAMP and thereby play an active role in cAMP signal desensitization/termination. This is achieved through direct interactions with the regulatory subunit of PKA, thereby facilitating cAMP dissociation and hydrolysis. In this study, we have mapped direct interactions between a specific cyclic nucleotide phosphodiesterase (PDE8A) and a PKA regulatory subunit (RIα isoform) in mammalian cAMP signaling, by a combination of amide hydrogen/deuterium exchange mass spectrometry, peptide array, and computational docking. The interaction interface of the PDE8A:RIα complex, probed by peptide array and hydrogen/deuterium exchange mass spectrometry, brings together regions spanning the phosphodiesterase active site and cAMP-binding sites of RIα. Computational docking combined with amide hydrogen/deuterium exchange mass spectrometry provided a model for parallel dissociation of bound cAMP from the two tandem cAMP-binding domains of RIα. Active site coupling suggests a role for substrate channeling in the PDE-dependent dissociation and hydrolysis of cAMP bound to PKA. This is the first instance, to our knowledge, of PDEs directly interacting with a cAMP-receptor protein in a mammalian system, and highlights an entirely new class of binding partners for RIα. This study also highlights applications of structural mass spectrometry combined with computational docking for mapping dynamics in transient signaling protein complexes. Together, these results present a novel and critical role for phosphodiesterases in moderating local concentrations of cAMP in microdomains and signal resetting.
Collapse
Affiliation(s)
- Srinath Krishnamurthy
- Department of Biological Sciences, National University of Singapore, Singapore; Mechanobiology Institute, National University of Singapore, Singapore
| | | | - Lim Xin Xiang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Lim Xin Shan
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, Singapore; Mechanobiology Institute, National University of Singapore, Singapore.
| |
Collapse
|
19
|
Guay JA, Wojchowski DM, Fang J, Oxburgh L. Death associated protein kinase 2 is expressed in cortical interstitial cells of the mouse kidney. BMC Res Notes 2014; 7:345. [PMID: 24906443 PMCID: PMC4059477 DOI: 10.1186/1756-0500-7-345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/27/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND DAPK2 is a pro-apoptotic protein kinase that associates with TGFβ receptors. The homolog DAPK1 has been shown to mediate apoptosis in kidney injury. Expression databases indicate that DAPK2 is expressed in the kidney, and in this work we investigate the localization of renal DAPK2 expression and its role in the kidney. RESULTS Immunostaining demonstrates DAPK2 expression in interstitial cells of the renal cortex including PDGFRβ-positive pericytes and the CD73-positive erythropoietin-expressing fibroblast population. Tubulointerstitial fibrosis in experimental CKD arises directly from resident interstitial cells, and we therefore evaluated the expression of DAPK2 in the expanded interstitium of mice with kidney disease induced by chronic cisplatin administration. Expanded renal interstitium in these animals was negative for DAPK2 expression, but healthy areas of the kidney in which the tubular interstitium had not expanded expressed DAPK2 at levels similar to the uninjured control. Dapk2 null mice were generated to evaluate if DAPK2 is required for formation of the kidney, or its maintenance in the adult. Kidneys of Dapk2 null mice did not show overt malformations or age-related degeneration, but did show a slight increase in the number of interstitial fibroblasts. Differences were seen between Dapk2 null mice and wild type controls in the response to tubulointerstitial fibrosis caused by chronic cisplatin administration. Although mutant and wild type mice displayed comparable levels of alpha smooth muscle actin, interstitial proliferation and SMAD2 signaling, Dapk2 null mice showed reduced interstitial collagen accumulation. CONCLUSIONS In the kidney, DAPK2 is strongly and specifically expressed in interstitial cells of the cortex, providing a useful marker for this important cell population. Dapk2 null mice are phenotypically normal under steady state conditions, but display some resistance to extracellular matrix deposition in experimental renal fibrosis indicating that DAPK2 plays a profibrotic role in kidney injury.
Collapse
Affiliation(s)
| | - Don M Wojchowski
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA.
| | | | | |
Collapse
|
20
|
Chu HC, Lee HY, Huang YS, Tseng WL, Yen CJ, Cheng JC, Tseng CP. Erythroid differentiation is augmented in Reelin-deficient K562 cells and homozygous reeler mice. FEBS Lett 2013; 588:58-64. [PMID: 24239537 DOI: 10.1016/j.febslet.2013.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 10/08/2013] [Accepted: 11/04/2013] [Indexed: 02/06/2023]
Abstract
Reelin is an extracellular glycoprotein that is highly conserved in mammals. In addition to its expression in the nervous system, Reelin is present in erythroid cells but its function there is unknown. We report in this study that Reelin is up-regulated during erythroid differentiation of human erythroleukemic K562 cells and is expressed in the erythroid progenitors of murine bone marrow. Reelin deficiency promotes erythroid differentiation of K562 cells and augments erythroid production in murine bone marrow. In accordance with these findings, Reelin deficiency attenuates AKT phosphorylation of the Ter119(+)CD71(+) erythroid progenitors and alters the cell number and frequency of the progenitors at different erythroid differentiation stages. A regulatory role of Reelin in erythroid differentiation is thus defined.
Collapse
Affiliation(s)
- Hui-Chun Chu
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC
| | - Hsing-Ying Lee
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC
| | - Yen-Shu Huang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC
| | - Wei-Lien Tseng
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC
| | - Ching-Ju Yen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC
| | - Ju-Chien Cheng
- Department of Medical Laboratory Sciences and Biotechnology, China Medical University, Taichung 404, Taiwan, ROC.
| | - Ching-Ping Tseng
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC; Molecular Medicine Research Center, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC.
| |
Collapse
|
21
|
Khandros E, Mollan TL, Yu X, Wang X, Yao Y, D'Souza J, Gell DA, Olson JS, Weiss MJ. Insights into hemoglobin assembly through in vivo mutagenesis of α-hemoglobin stabilizing protein. J Biol Chem 2012; 287:11325-37. [PMID: 22287545 DOI: 10.1074/jbc.m111.313205] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
α-Hemoglobin stabilizing protein (AHSP) is believed to facilitate adult Hemoglobin A assembly and protect against toxic free α-globin subunits. Recombinant AHSP binds multiple forms of free α-globin to stabilize their structures and inhibit precipitation. However, AHSP also stimulates autooxidation of αO(2) subunit and its rapid conversion to a partially unfolded bishistidyl hemichrome structure. To investigate these biochemical properties, we altered the evolutionarily conserved AHSP proline 30 in recombinantly expressed proteins and introduced identical mutations into the endogenous murine Ahsp gene. In vitro, the P30W AHSP variant bound oxygenated α chains with 30-fold increased affinity. Both P30W and P30A mutant proteins also caused decreased rates of αO(2) autooxidation as compared with wild-type AHSP. Despite these abnormalities, mice harboring P30A or P30W Ahsp mutations exhibited no detectable defects in erythropoiesis at steady state or during induced stresses. Further biochemical studies revealed that the AHSP P30A and P30W substitutions had minimal effects on AHSP interactions with ferric α subunits. Together, our findings indicate that the ability of AHSP to stabilize nascent α chain folding intermediates prior to hemin reduction and incorporation into adult Hemoglobin A is physiologically more important than AHSP interactions with ferrous αO(2) subunits.
Collapse
Affiliation(s)
- Eugene Khandros
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Huang SH, Long M, Wu CH, Kwon-Chung KJ, Chang YC, Chi F, Lee S, Jong A. Invasion of Cryptococcus neoformans into human brain microvascular endothelial cells is mediated through the lipid rafts-endocytic pathway via the dual specificity tyrosine phosphorylation-regulated kinase 3 (DYRK3). J Biol Chem 2011; 286:34761-9. [PMID: 21693704 DOI: 10.1074/jbc.m111.219378] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cryptococcus neoformans is a neurotropic fungal pathogen, which provokes the onset of devastating meningoencephalitis. We used human brain microvascular endothelial cells (HBMEC) as the in vitro model to investigate how C. neoformans traverses across the blood-brain barrier. In this study, we present several lines of evidence indicating that C. neoformans invasion is mediated through the endocytic pathway via lipid rafts. Human CD44 molecules from lipid rafts can directly interact with hyaluronic acid, the C. neoformans ligand. Bikunin, which perturbs CD44 function in the lipid raft, can block C. neoformans adhesion and invasion of HBMEC. The lipid raft marker, ganglioside GM1, co-localizes with CD44 on the plasma membrane, and C. neoformans cells can adhere to the host cell in areas where GM1 is enriched. These findings suggest that C. neoformans entry takes place on the lipid rafts. Upon C. neoformans engagement, GM1 is internalized through vesicular structures to the nuclear membrane. This endocytic redistribution process is abolished by cytochalasin D, nocodazole, or anti-DYRK3 (dual specificity tyrosine-phosphorylation-regulated kinase 3) siRNA. Concomitantly, the knockdown of DYRK3 significantly reduces C. neoformans invasion across the HBMEC monolayer in vitro. Our data demonstrate that the lipid raft-dependent endocytosis process mediates C. neoformans internalization into HBMEC and that the CD44 protein of the hosts, cytoskeleton, and intracellular kinase-DYRK3 are involved in this process.
Collapse
Affiliation(s)
- Sheng-He Huang
- Department of Pediatrics, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California 90027, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Aranda S, Laguna A, de la Luna S. DYRK family of protein kinases: evolutionary relationships, biochemical properties, and functional roles. FASEB J 2011; 25:449-62. [PMID: 21048044 DOI: 10.1096/fj.10-165837] [Citation(s) in RCA: 242] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dual-specificity tyrosine-regulated kinases (DYRKs) comprise a family of protein kinases within the CMGC group of the eukaryotic kinome. Members of the DYRK family are found in 4 (animalia, plantae, fungi, and protista) of the 5 main taxa or kingdoms, and all DYRK proteins studied to date share common structural, biochemical, and functional properties with their ancestors in yeast. Recent work on DYRK proteins indicates that they participate in several signaling pathways critical for developmental processes and cell homeostasis. In this review, we focus on the DYRK family of proteins from an evolutionary, biochemical, and functional point of view and discuss the most recent, relevant, and controversial contributions to the study of these kinases.
Collapse
Affiliation(s)
- Sergi Aranda
- Center for Genomic Regulation, University Pompeu Fabra, Barcelona, Spain
| | | | | |
Collapse
|
24
|
Genome-wide identification of TAL1's functional targets: insights into its mechanisms of action in primary erythroid cells. Genome Res 2010; 20:1064-83. [PMID: 20566737 DOI: 10.1101/gr.104935.110] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Coordination of cellular processes through the establishment of tissue-specific gene expression programs is essential for lineage maturation. The basic helix-loop-helix hemopoietic transcriptional regulator TAL1 (formerly SCL) is required for terminal differentiation of red blood cells. To gain insight into TAL1 function and mechanisms of action in erythropoiesis, we performed ChIP-sequencing and gene expression analyses from primary fetal liver erythroid cells. We show that TAL1 coordinates expression of genes in most known red cell-specific processes. The majority of TAL1's genomic targets require direct DNA-binding activity. However, one-fifth of TAL1's target sequences, mainly among those showing high affinity for TAL1, can recruit the factor independently of its DNA binding activity. An unbiased DNA motif search of sequences bound by TAL1 identified CAGNTG as TAL1-preferred E-box motif in erythroid cells. Novel motifs were also characterized that may help distinguish activated from repressed genes and suggest a new mechanism by which TAL1 may be recruited to DNA. Finally, analysis of recruitment of GATA1, a protein partner of TAL1, to sequences occupied by TAL1 suggests that TAL1's binding is necessary prior or simultaneous to that of GATA1. This work provides the framework to study regulatory networks leading to erythroid terminal maturation and to model mechanisms of action of tissue-specific transcription factors.
Collapse
|
25
|
Abstract
The mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinase 1 (ERK1) and ERK2 are among the main signal transduction molecules, but little is known about their isoform-specific functions in vivo. We have examined the role of ERK1 in adult hematopoiesis with ERK1(-/-) mice. Loss of ERK1 resulted in an enhanced splenic erythropoiesis, characterized by an accumulation of erythroid progenitors in the spleen, without any effect on the other lineages or on bone marrow erythropoiesis. This result suggests that the ablation of ERK1 induces a splenic stress erythropoiesis phenotype. However, the mice display no anemia. Deletion of ERK1 did not affect erythropoietin (EPO) serum levels or EPO/EPO receptor signaling and was not compensated by ERK2. Splenic stress erythropoiesis response has been shown to require bone morphogenetic protein 4 (BMP4)-dependent signaling in vivo and to rely on the expansion of a resident specialized population of erythroid progenitors, termed stress erythroid burst-forming units (BFU-Es). A great expansion of stress BFU-Es and increased levels of BMP4 mRNA were found in ERK1(-/-) spleens. The ERK1(-/-) phenotype can be transferred by bone marrow cells. These findings show that ERK1 controls a BMP4-dependent step, regulating the steady state of splenic erythropoiesis.
Collapse
|