1
|
Chen Y, Lu S, Shan S, Wu W, He X, Farag MA, Chen W, Zhao C. New insights into phytochemicals via protein glycosylation focused on aging and diabetes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156673. [PMID: 40220419 DOI: 10.1016/j.phymed.2025.156673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/29/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Protein glycosylation as a common post-translational modification that has significant impacts on protein folding, enzymatic activity, and interfering with receptor functioning. In recent years, with the rapid development of glycopeptide enrichment and analysis technology and the deepening of glycosylation research, glycosylation has gradually become a sign of disease occurrence and development. Multiple investigations suggest that protein glycosylation affect the advances of diabetes and aging. PURPOSE AND METHODS This review was focused on the action mechanisms of glycosylated proteins production, permanent abnormalities in extracellular matrix component function, inflammatory and reactive oxygen species production, as well as the glycosylated characterizations of diabetes and aging. Further, advances in glycosylation analysis and detection methods are presented for the first time, highlighting for needed future developments. All literatures were gathered from PubMed and Google Scholar. RESULTS Herein, we review how protein glycosylation impacts the progression of diabetes and aging. Specifically, we focus on various types of glycosylation, including N-linked glycosylation, O-linked glycosylation, C-glycosylation, S-glycosylation, and glycophosphatidylinositol (GPI) anchors. N-linked glycosylation and O-linked glycosylation are commonly observed glycosylation forms, wherein O-GlcNAcylation plays a significant role in diabetes, while N-glycan could serve as biomarkers for identifying inflammation and aging. CONCLUSIONS Protein glycosylation produces a vastly larger number of core glycan structures through utilizing at least 173 glycosyltransferases and repeated common scaffolds. Single protein may contain multiple glycosylation sites, and the structure and occupancy of glycan at each site may be different, resulting in the macro heterogeneity of protein glycosylation. This review will contribute to how protein glycosylation impacts the life progress of cells and its association with diseases.
Collapse
Affiliation(s)
- Yihan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Suyue Lu
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuo Shan
- University of Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain
| | - Weihao Wu
- College of Food Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000, China
| | - Xinxin He
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Weichao Chen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Panwar A, Malik SO, Adib M, Lopaschuk GD. Cardiac energy metabolism in diabetes: emerging therapeutic targets and clinical implications. Am J Physiol Heart Circ Physiol 2025; 328:H1089-H1112. [PMID: 40192025 DOI: 10.1152/ajpheart.00615.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/15/2024] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
Patients with diabetes are at an increased risk for developing diabetic cardiomyopathy and other cardiovascular complications. Alterations in cardiac energy metabolism in patients with diabetes, including an increase in mitochondrial fatty acid oxidation and a decrease in glucose oxidation, are important contributing factors to this increase in cardiovascular disease. A switch from glucose oxidation to fatty acid oxidation not only decreases cardiac efficiency due to increased oxygen consumption but it can also increase reactive oxygen species production, increase lipotoxicity, and redirect glucose into other metabolic pathways that, combined, can lead to heart dysfunction. Currently, there is a lack of therapeutics available to treat diabetes-induced heart failure that specifically target cardiac energy metabolism. However, it is becoming apparent that part of the benefit of existing agents such as GLP-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors may be related to their effects on cardiac energy metabolism. In addition, direct approaches aimed at inhibiting cardiac fatty acid oxidation or increasing glucose oxidation hold future promise as potential therapeutic approaches to treat diabetes-induced cardiovascular disease.
Collapse
Affiliation(s)
- Archee Panwar
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Sufyan O Malik
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Muhtasim Adib
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Garcia AM, Pietra AE, Turner ME, Da Silva JP, Baybayon-Grandgeorge AN, Sparagna GC, Jeffrey DA, Stauffer BL, Sucharov CC, Miyamoto SD. Impact of Serum Circulating Factors and PDE5 Inhibitor Therapy on Cardiomyocyte Metabolism in Single Ventricle Heart Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646497. [PMID: 40235974 PMCID: PMC11996461 DOI: 10.1101/2025.03.31.646497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Background While operative and perioperative care continues to improve for single ventricle congenital heart disease (SV), long-term morbidities and mortality remain high. Importantly, phosphodiesterase-5 inhibitor therapies (PDE5i) are increasingly used, however, little is known regarding the direct myocardial effects of PDE5i therapy in the SV population. Objectives Our group has previously demonstrated that the failing SV myocardium is characterized by increased PDE5 activity and impaired mitochondrial bioenergetics. Here we sought to determine whether serum circulating factors contribute to pathological metabolic remodeling in SV, and whether PDE5i therapy abrogates these changes. Methods Using an established in vitro model whereby primary cardiomyocytes are treated with patient sera +/- PDE5i, we assessed the impact of circulating factors on cardiomyocyte metabolism. Mass spectrometry-based lipidomics and metabolomics were performed to identify phospholipid and metabolite changes. Mitochondrial bioenergetics were assessed using the Seahorse Bioanalyzer and a stable isotope based mitochondrial enzyme activity assay. Relative mitochondrial copy number was quantified using RT-qPCR. Results Our data suggest that serum circulating factors contribute to fundamental changes in cardiomyocyte bioenergetics, including impaired mitochondrial function associated with decreased cardiolipin and other phospholipid species, increased reactive oxygen species (ROS) generation, and altered metabolite milieu. Treatment with PDE5i therapy was sufficient to abrogate a number of these metabolic changes, including a rescue of phosphatidylglycerol levels, a reduction in ROS, improved energy production, and normalization of several key metabolic intermediates. Conclusions Together, these data suggest PDE5i therapy has direct cardiomyocyte effects and contributes to beneficial cardiomyocyte metabolic remodeling in SV failure.
Collapse
|
4
|
Tashkandi AJ, Gorman A, McGoldrick Mathers E, Carney G, Yacoub A, Setyaningsih WAW, Kuburas R, Margariti A. Metabolic and Mitochondrial Dysregulations in Diabetic Cardiac Complications. Int J Mol Sci 2025; 26:3016. [PMID: 40243689 PMCID: PMC11988959 DOI: 10.3390/ijms26073016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/16/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
The growing prevalence of diabetes highlights the urgent need to study diabetic cardiovascular complications, specifically diabetic cardiomyopathy, which is a diabetes-induced myocardial dysfunction independent of hypertension or coronary artery disease. This review examines the role of mitochondrial dysfunction in promoting diabetic cardiac dysfunction and highlights metabolic mechanisms such as hyperglycaemia-induced oxidative stress. Chronic hyperglycaemia and insulin resistance can activate harmful pathways, including advanced glycation end-products (AGEs), protein kinase C (PKC) and hexosamine signalling, uncontrolled reactive oxygen species (ROS) production and mishandling of Ca2+ transient. These processes lead to cardiomyocyte apoptosis, fibrosis and contractile dysfunction. Moreover, endoplasmic reticulum (ER) stress and dysregulated RNA-binding proteins (RBPs) and extracellular vesicles (EVs) contribute to tissue damage, which drives cardiac function towards heart failure (HF). Advanced patient-derived induced pluripotent stem cell (iPSC) cardiac organoids (iPS-COs) are transformative tools for modelling diabetic cardiomyopathy and capturing human disease's genetic, epigenetic and metabolic hallmarks. iPS-COs may facilitate the precise examination of molecular pathways and therapeutic interventions. Future research directions encourage the integration of advanced models with mechanistic techniques to promote novel therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Refik Kuburas
- Wellcome Wolfson Institute of Experimental Medicine, Queens University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (A.J.T.); (A.G.); (E.M.M.); (G.C.); (A.Y.); (W.A.W.S.)
| | - Andriana Margariti
- Wellcome Wolfson Institute of Experimental Medicine, Queens University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (A.J.T.); (A.G.); (E.M.M.); (G.C.); (A.Y.); (W.A.W.S.)
| |
Collapse
|
5
|
Sreedevi K, James A, Do S, Yedla S, Arowa S, Oka SI, Wende AR, Zaitsev AV, Warren JS. PERM1 regulates mitochondrial energetics through O-GlcNAcylation in the heart. J Mol Cell Cardiol 2025; 198:1-12. [PMID: 39581161 DOI: 10.1016/j.yjmcc.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
PERM1 was initially identified as a new downstream target of PGC-1α and ERRs that regulates mitochondrial bioenergetics in skeletal muscle. Subsequently, we and other groups demonstrated that PERM1 is also a positive regulator of mitochondrial bioenergetics in the heart. However, the exact mechanisms of regulatory functions of PERM1 remain poorly understood. O-GlcNAcylation is a post-translational modification of proteins that are regulated by two enzymes: O-GlcNAc transferase (OGT) that adds O-GlcNAc to proteins; O-GlcNAcase (OGA) that removes O-GlcNAc from proteins. O-GlcNAcylation is a powerful signaling mechanism mediating cellular responses to stressors and nutrient availability, which, among other targets, may influence cardiac metabolism. We hypothesized that PERM1 regulates mitochondrial energetics in cardiomyocytes through modulation of O-GlcNAcylation. We found that overexpression of PERM1 decreased the total levels of O-GlcNAcylated proteins, concomitant with decreased OGT and increased OGA expression levels. Luciferase gene reporter assay showed that PERM1 significantly decreases the promoter activity of Ogt without changing the promoter activity of Oga. The downregulation of OGT by PERM1 overexpression was mediated through its interaction with E2F1, a known transcription repressor of Ogt. A deliberate increase of O-GlcNAcylation through Oga silencing in cardiomyocytes decreased the basal and maximal mitochondrial respiration and ATP production rates, all of which were completely restored by PERM1 overexpression. Furthermore, excessive O-GlcNAcylation caused by the loss of PERM1 led to the increase of O-GlcNAcylated PGC-1α, a master regulator of mitochondrial bioenergetics, concurrent with the dissociation of PGC-1α from PPARα, a well-known transcription factor that regulates fatty acid β-oxidation. We conclude that PERM1 positively regulates mitochondrial energetics, in part, via suppressing O-GlcNAcylation in cardiac myocytes.
Collapse
Affiliation(s)
- Karthi Sreedevi
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, USA
| | - Amina James
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, USA
| | - Sara Do
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, USA
| | - Shreya Yedla
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, USA
| | - Sumaita Arowa
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, USA
| | - Shin-Ichi Oka
- Departiment of Cell and Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexey V Zaitsev
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, USA
| | - Junco S Warren
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, USA; Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, USA; Department of Human Nutrition, Food and Exercise, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
6
|
Chatham JC, Wende AR. The role of protein O-GlcNAcylation in diabetic cardiomyopathy. Biochem Soc Trans 2024; 52:2343-2358. [PMID: 39601777 DOI: 10.1042/bst20240262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
It is well established that diabetes markedly increases the risk of multiple types of heart disease including heart failure. However, despite substantial improvements in the treatment of heart failure in recent decades the relative increased risk associated with diabetes remains unchanged. There is increasing appreciation of the importance of the post translational modification by O-linked-N-acetylglucosamine (O-GlcNAc) of serine and threonine residues on proteins in regulating cardiomyocyte function and mediating stress responses. In response to diabetes there is a sustained increase in cardiac O-GlcNAc levels, which has been attributed to many of the adverse effects of diabetes on the heart. Here we provide an overview of potential mechanisms by which increased cardiac O-GlcNAcylation contributes to the adverse effects on the heart and highlight some of the key gaps in our knowledge.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| |
Collapse
|
7
|
Miura T, Kouzu H, Tanno M, Tatekoshi Y, Kuno A. Role of AMP deaminase in diabetic cardiomyopathy. Mol Cell Biochem 2024; 479:3195-3211. [PMID: 38386218 DOI: 10.1007/s11010-024-04951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
Diabetes mellitus is one of the major causes of ischemic and nonischemic heart failure. While hypertension and coronary artery disease are frequent comorbidities in patients with diabetes, cardiac contractile dysfunction and remodeling occur in diabetic patients even without comorbidities, which is referred to as diabetic cardiomyopathy. Investigations in recent decades have demonstrated that the production of reactive oxygen species (ROS), impaired handling of intracellular Ca2+, and alterations in energy metabolism are involved in the development of diabetic cardiomyopathy. AMP deaminase (AMPD) directly regulates adenine nucleotide metabolism and energy transfer by adenylate kinase and indirectly modulates xanthine oxidoreductase-mediated pathways and AMP-activated protein kinase-mediated signaling. Upregulation of AMPD in diabetic hearts was first reported more than 30 years ago, and subsequent studies showed similar upregulation in the liver and skeletal muscle. Evidence for the roles of AMPD in diabetes-induced fatty liver, sarcopenia, and heart failure has been accumulating. A series of our recent studies showed that AMPD localizes in the mitochondria-associated endoplasmic reticulum membrane as well as the sarcoplasmic reticulum and cytosol and participates in the regulation of mitochondrial Ca2+ and suggested that upregulated AMPD contributes to contractile dysfunction in diabetic cardiomyopathy via increased generation of ROS, adenine nucleotide depletion, and impaired mitochondrial respiration. The detrimental effects of AMPD were manifested at times of increased cardiac workload by pressure loading. In this review, we briefly summarize the expression and functions of AMPD in the heart and discuss the roles of AMPD in diabetic cardiomyopathy, mainly focusing on contractile dysfunction caused by this disorder.
Collapse
Affiliation(s)
- Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1, Maeda-7, Teine-Ku, Sapporo, 006-8585, Japan.
| | - Hidemichi Kouzu
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaya Tanno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Nursing, Sapporo Medical University School of Health Sciences, Sapporo, Japan
| | - Yuki Tatekoshi
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Kuno
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
8
|
Vanni E, Beauloye C, Horman S, Bertrand L. AMPK and O-GlcNAcylation: interplay in cardiac pathologies and heart failure. Essays Biochem 2024; 68:363-377. [PMID: 39319471 DOI: 10.1042/ebc20240003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
Heart failure (HF) represents a multifaceted clinical syndrome characterized by the heart's inability to pump blood efficiently to meet the body's metabolic demands. Despite advances in medical management, HF remains a major cause of morbidity and mortality worldwide. In recent years, considerable attention has been directed toward understanding the molecular mechanisms underlying HF pathogenesis, with a particular focus on the role of AMP-activated protein kinase (AMPK) and protein O-GlcNAcylation. This review comprehensively examines the current understanding of AMPK and O-GlcNAcylation signalling pathways in HF, emphasizing their interplay and dysregulation. We delve into the intricate molecular mechanisms by which AMPK and O-GlcNAcylation contribute to cardiac energetics, metabolism, and remodelling, highlighting recent preclinical and clinical studies that have explored novel therapeutic interventions targeting these pathways.
Collapse
Affiliation(s)
- Ettore Vanni
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Christophe Beauloye
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
- Division of Cardiology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Sandrine Horman
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Luc Bertrand
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| |
Collapse
|
9
|
Chatham JC, Patel RP. Protein glycosylation in cardiovascular health and disease. Nat Rev Cardiol 2024; 21:525-544. [PMID: 38499867 DOI: 10.1038/s41569-024-00998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Protein glycosylation, which involves the attachment of carbohydrates to proteins, is one of the most abundant protein co-translational and post-translational modifications. Advances in technology have substantially increased our knowledge of the biosynthetic pathways involved in protein glycosylation, as well as how changes in glycosylation can affect cell function. In addition, our understanding of the role of protein glycosylation in disease processes is growing, particularly in the context of immune system function, infectious diseases, neurodegeneration and cancer. Several decades ago, cell surface glycoproteins were found to have an important role in regulating ion transport across the cardiac sarcolemma. However, with very few exceptions, our understanding of how changes in protein glycosylation influence cardiovascular (patho)physiology remains remarkably limited. Therefore, in this Review, we aim to provide an overview of N-linked and O-linked protein glycosylation, including intracellular O-linked N-acetylglucosamine protein modification. We discuss our current understanding of how all forms of protein glycosylation contribute to normal cardiovascular function and their roles in cardiovascular disease. Finally, we highlight potential gaps in our knowledge about the effects of protein glycosylation on the heart and vascular system, highlighting areas for future research.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Rakesh P Patel
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
10
|
Gregolin CS, do Nascimento M, de Souza SLB, Mota GAF, Luvizotto RDAM, Sugizaki MM, Bazan SGZ, de Campos DHS, Camacho CRC, Cicogna AC, do Nascimento AF. Cardiac dysfunction in sucrose-fed rats is associated with alterations of phospholamban phosphorylation and TNF-α levels. Mol Cell Endocrinol 2024; 589:112236. [PMID: 38608803 DOI: 10.1016/j.mce.2024.112236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
INTRODUCTION High sucrose intake is linked to cardiovascular disease, a major global cause of mortality worldwide. Calcium mishandling and inflammation play crucial roles in cardiac disease pathophysiology. OBJECTIVE Evaluate if sucrose-induced obesity is related to deterioration of myocardial function due to alterations in the calcium-handling proteins in association with proinflammatory cytokines. METHODS Wistar rats were divided into control and sucrose groups. Over eight weeks, Sucrose group received 30% sucrose water. Cardiac function was determined in vivo using echocardiography and in vitro using papillary muscle assay. Western blotting was used to detect calcium handling protein; ELISA assay was used to assess TNF-α and IL-6 levels. RESULTS Sucrose led to cardiac dysfunction. RYR2, SERCA2, NCX, pPBL Ser16 and L-type calcium channels were unchanged. However, pPBL-Thr17, and TNF-α levels were elevated in the S group. CONCLUSION Sucrose induced cardiac dysfunction and decreased myocardial contractility in association with altered pPBL-Thr17 and elevated cardiac pro-inflammatory TNF-α.
Collapse
Affiliation(s)
- Cristina Schmitt Gregolin
- Department of Pathology, Medical School (FMB) of São Paulo State University (Unesp), Botucatu Campus, São Paulo, Brazil
| | - Milena do Nascimento
- Institute of Health Sciences, Federal University of Mato Grosso (UFMT), Sinop, Mato Grosso, Brazil
| | | | - Gustavo Augusto Ferreira Mota
- Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | - Mário Mateus Sugizaki
- Institute of Health Sciences, Federal University of Mato Grosso (UFMT), Sinop, Mato Grosso, Brazil
| | - Silméia Garcia Zanati Bazan
- Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Dijon Henrique Salomé de Campos
- Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Camila Renata Corrêa Camacho
- Department of Pathology, Medical School (FMB) of São Paulo State University (Unesp), Botucatu Campus, São Paulo, Brazil
| | - Antonio Carlos Cicogna
- Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | |
Collapse
|
11
|
Peng M, Mathew ND, Anderson VE, Falk MJ, Nakamaru-Ogiso E. N-Glycosylation of MRS2 balances aerobic and anaerobic energy production by reducing rapid mitochondrial Mg 2+ influx in conditions of high glucose or impaired respiratory chain function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602756. [PMID: 39026824 PMCID: PMC11257584 DOI: 10.1101/2024.07.09.602756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
N-linked glycoproteins function in numerous biological processes, modulating enzyme activities as well as protein folding, stability, oligomerization, and trafficking. While N-glycosylation of mitochondrial proteins has been detected by untargeted MS-analyses, the physiological existence and roles of mitochondrial protein N-linked glycosylation remain under debate. Here, we report that MRS2, a mitochondrial inner membrane protein that functions as the high flux magnesium transporter, is N-glycosylated to various extents depending on cellular bioenergetic status. Both N-glycosylated and unglycosylated isoforms were consistently detected in mitochondria isolated from mouse liver, rat and mouse liver fibroblast cells (BRL 3A and AFT024, respectively) as well as human skin fibroblast cells. Immunoblotting of MRS2 showed it was bound to, and required stringent elution conditions to remove from, lectin affinity columns with covalently bound concanavalin A or Lens culinaris agglutinin. Following peptide:N-glycosidase F (PNGase F) digestion of the stringently eluted proteins, the higher Mr MRS2 bands gel-shifted to lower Mr and loss of lectin affinity was seen. BRL 3A cells treated with two different N-linked glycosylation inhibitors, tunicamycin or 6-diazo-5-oxo-l-norleucine, resulted in decreased intensity or loss of the higher Mr MRS2 isoform. To investigate the possible functional role of MRS2 N- glycosylation, we measured rapid Mg2+ influx capacity in intact mitochondria isolated from BRL 3A cells in control media or following treatment with tunicamycin or 6-diazo-5-oxo-l-norleucine. Interestingly, rapid Mg2+ influx capacity increased in mitochondria isolated from BRL 3A cells treated with either N-glycosylation inhibitor. Forcing reliance on mitochondrial respiration by treatment with either galactose media or the glycolytic inhibitor 2-deoxyglucose or by minimizing glucose concentration similarly reduced the N-glycosylated isoform of MRS2, with a correlated concomitant increase in rapid Mg2+ influx capacity. Conversely, inhibiting mitochondrial energy production in BRL 3A cells with either rotenone or oligomycin resulted in an increased fraction of N-glycosylated MRS2, with decreased rapid Mg2+ influx capacity. Collectively, these data provide strong evidence that MRS2 N-glycosylation is directly involved in the regulation of mitochondrial matrix Mg2+, dynamically communicating relative cellular nutrient status and bioenergetic capacity by serving as a physiologic brake on the influx of mitochondrial matrix Mg2+ under conditions of glucose excess or mitochondrial bioenergetic impairment.
Collapse
Affiliation(s)
- Min Peng
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Neal D. Mathew
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Vernon E. Anderson
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Marni J. Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Eiko Nakamaru-Ogiso
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
12
|
Umapathi P, Aggarwal A, Zahra F, Narayanan B, Zachara NE. The multifaceted role of intracellular glycosylation in cytoprotection and heart disease. J Biol Chem 2024; 300:107296. [PMID: 38641064 PMCID: PMC11126959 DOI: 10.1016/j.jbc.2024.107296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024] Open
Abstract
The modification of nuclear, cytoplasmic, and mitochondrial proteins by O-linked β-N-actylglucosamine (O-GlcNAc) is an essential posttranslational modification that is common in metozoans. O-GlcNAc is cycled on and off proteins in response to environmental and physiological stimuli impacting protein function, which, in turn, tunes pathways that include transcription, translation, proteostasis, signal transduction, and metabolism. One class of stimulus that induces rapid and dynamic changes to O-GlcNAc is cellular injury, resulting from environmental stress (for instance, heat shock), hypoxia/reoxygenation injury, ischemia reperfusion injury (heart attack, stroke, trauma hemorrhage), and sepsis. Acute elevation of O-GlcNAc before or after injury reduces apoptosis and necrosis, suggesting that injury-induced changes in O-GlcNAcylation regulate cell fate decisions. However, prolonged elevation or reduction in O-GlcNAc leads to a maladaptive response and is associated with pathologies such as hypertrophy and heart failure. In this review, we discuss the impact of O-GlcNAc in both acute and prolonged models of injury with a focus on the heart and biological mechanisms that underpin cell survival.
Collapse
Affiliation(s)
- Priya Umapathi
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Akanksha Aggarwal
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fiddia Zahra
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bhargavi Narayanan
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Natasha E Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
13
|
Deng W, Chen Y, Zhang J, Ling J, Xu Z, Zhu Z, Tang X, Liu X, Zhang D, Zhu H, Lang H, Zhang L, Hua F, Yu S, Qian K, Yu P. Mild therapeutic hypothermia upregulates the O-GlcNAcylation level of COX10 to alleviate mitochondrial damage induced by myocardial ischemia-reperfusion injury. J Transl Med 2024; 22:489. [PMID: 38778315 PMCID: PMC11112789 DOI: 10.1186/s12967-024-05264-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVE Mild therapeutic hypothermia (MTH) is an important method for perioperative prevention and treatment of myocardial ischemia-reperfusion injury (MIRI). Modifying mitochondrial proteins after protein translation to regulate mitochondrial function is one of the mechanisms for improving myocardial ischemia-reperfusion injury. This study investigated the relationship between shallow hypothermia treatment improving myocardial ischemia-reperfusion injury and the O-GlcNAcylation level of COX10. METHODS We used in vivo Langendorff model and in vitro hypoxia/reoxygenation (H/R) cell model to investigate the effects of MTH on myocardial ischemia-reperfusion injury. Histological changes, myocardial enzymes, oxidative stress, and mitochondrial structure/function were assessed. Mechanistic studies involved various molecular biology methods such as ELISA, immunoprecipitation (IP), WB, and immunofluorescence. RESULTS Our research results indicate that MTH upregulates the O-GlcNACylation level of COX10, improves mitochondrial function, and inhibits the expression of ROS to improve myocardial ischemia-reperfusion injury. In vivo, MTH effectively alleviates ischemia-reperfusion induced cardiac dysfunction, myocardial injury, mitochondrial damage, and redox imbalance. In vitro, the OGT inhibitor ALX inhibits the OGT mediated O-GlcNA acylation signaling pathway, downregulates the O-Glc acylation level of COX10, promotes ROS release, and counteracts the protective effect of MTH. On the contrary, the OGA inhibitor ThG showed opposite effects to ALX, further confirming that MTH activated the OGT mediated O-GlcNAcylation signaling pathway to exert cardioprotective effects. CONCLUSIONS In summary, MTH activates OGT mediated O-glycosylation modified COX10 to regulate mitochondrial function and improve myocardial ischemia-reperfusion injury, which provides important theoretical basis for the clinical application of MTH.
Collapse
Affiliation(s)
- Wei Deng
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Jitao Ling
- Department of Endocrinology an Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Zhou Xu
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi province, 330006, China
| | - Zicheng Zhu
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Xiaoyi Tang
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Xiao Liu
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Yanjiang Road, Guangzhou, Guangdong Province, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hong Zhu
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi province, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi province, China
| | - Haili Lang
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Shuchun Yu
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China.
| | - Kejian Qian
- Department of Intensive Care Unit, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi province, China.
| | - Peng Yu
- Department of Endocrinology an Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China.
| |
Collapse
|
14
|
Qiu Z, Cui J, Huang Q, Qi B, Xia Z. Roles of O-GlcNAcylation in Mitochondrial Homeostasis and Cardiovascular Diseases. Antioxidants (Basel) 2024; 13:571. [PMID: 38790676 PMCID: PMC11117601 DOI: 10.3390/antiox13050571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/28/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Protein posttranslational modifications are important factors that mediate the fine regulation of signaling molecules. O-linked β-N-acetylglucosamine-modification (O-GlcNAcylation) is a monosaccharide modification on N-acetylglucosamine linked to the hydroxyl terminus of serine and threonine of proteins. O-GlcNAcylation is responsive to cellular stress as a reversible and posttranslational modification of nuclear, mitochondrial and cytoplasmic proteins. Mitochondrial proteins are the main targets of O-GlcNAcylation and O-GlcNAcylation is a key regulator of mitochondrial homeostasis by directly regulating the mitochondrial proteome or protein activity and function. Disruption of O-GlcNAcylation is closely related to mitochondrial dysfunction. More importantly, the O-GlcNAcylation of cardiac proteins has been proven to be protective or harmful to cardiac function. Mitochondrial homeostasis is crucial for cardiac contractile function and myocardial cell metabolism, and the imbalance of mitochondrial homeostasis plays a crucial role in the pathogenesis of cardiovascular diseases (CVDs). In this review, we will focus on the interactions between protein O-GlcNAcylation and mitochondrial homeostasis and provide insights on the role of mitochondrial protein O-GlcNAcylation in CVDs.
Collapse
Affiliation(s)
- Zhen Qiu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.Q.); (J.C.); (Q.H.)
| | - Jiahui Cui
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.Q.); (J.C.); (Q.H.)
| | - Qin Huang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.Q.); (J.C.); (Q.H.)
| | - Biao Qi
- Department of Anesthesiology, Hubei 672 Orthopaedics Hospital of Integrated Chinese and Western Medicine, Wuhan Orthopaedics Hospital of Intergrated Traditional Medicine Chinese and Western Medicine, The Affiliated Hospital of Wuhan Sports University, Wuhan 430070, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.Q.); (J.C.); (Q.H.)
| |
Collapse
|
15
|
Ichegiri A, Kodolikar K, Bagade V, Selukar M, Dey T. Mitochondria: A source of potential biomarkers for non-communicable diseases. Adv Clin Chem 2024; 121:334-365. [PMID: 38797544 DOI: 10.1016/bs.acc.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Mitochondria, as an endosymbiont of eukaryotic cells, controls multiple cellular activities, including respiration, reactive oxygen species production, fatty acid synthesis, and death. Though the majority of functional mitochondrial proteins are translated through a nucleus-controlled process, very few of them (∼10%) are translated within mitochondria through their own machinery. Germline and somatic mutations in mitochondrial and nuclear DNA significantly impact mitochondrial homeostasis and function. Such modifications disturbing mitochondrial biogenesis, metabolism, or mitophagy eventually resulted in cellular pathophysiology. In this chapter, we discussed the impact of mitochondria and its dysfunction on several non-communicable diseases like cancer, diabetes, neurodegenerative, and cardiovascular problems. Mitochondrial dysfunction and its outcome could be screened by currently available omics-based techniques, flow cytometry, and high-resolution imaging. Such characterization could be evaluated as potential biomarkers to assess the disease burden and prognosis.
Collapse
Affiliation(s)
- Amulya Ichegiri
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Kshitij Kodolikar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Vaibhavi Bagade
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Mrunal Selukar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Tuli Dey
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India.
| |
Collapse
|
16
|
Glatz JFC, Heather LC, Luiken JJFP. CD36 as a gatekeeper of myocardial lipid metabolism and therapeutic target for metabolic disease. Physiol Rev 2024; 104:727-764. [PMID: 37882731 DOI: 10.1152/physrev.00011.2023] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023] Open
Abstract
The multifunctional membrane glycoprotein CD36 is expressed in different types of cells and plays a key regulatory role in cellular lipid metabolism, especially in cardiac muscle. CD36 facilitates the cellular uptake of long-chain fatty acids, mediates lipid signaling, and regulates storage and oxidation of lipids in various tissues with active lipid metabolism. CD36 deficiency leads to marked impairments in peripheral lipid metabolism, which consequently impact on the cellular utilization of multiple different fuels because of the integrated nature of metabolism. The functional presence of CD36 at the plasma membrane is regulated by its reversible subcellular recycling from and to endosomes and is under the control of mechanical, hormonal, and nutritional factors. Aberrations in this dynamic role of CD36 are causally associated with various metabolic diseases, in particular insulin resistance, diabetic cardiomyopathy, and cardiac hypertrophy. Recent research in cardiac muscle has disclosed the endosomal proton pump vacuolar-type H+-ATPase (v-ATPase) as a key enzyme regulating subcellular CD36 recycling and being the site of interaction between various substrates to determine cellular substrate preference. In addition, evidence is accumulating that interventions targeting CD36 directly or modulating its subcellular recycling are effective for the treatment of metabolic diseases. In conclusion, subcellular CD36 localization is the major adaptive regulator of cellular uptake and metabolism of long-chain fatty acids and appears a suitable target for metabolic modulation therapy to mend failing hearts.
Collapse
Affiliation(s)
- Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lisa C Heather
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
17
|
Xue Q, Ji S, Xu H, Yu S. O-GlcNAcylation: a pro-survival response to acute stress in the cardiovascular and central nervous systems. Eur J Med Res 2024; 29:174. [PMID: 38491477 PMCID: PMC10943874 DOI: 10.1186/s40001-024-01773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
O-GlcNAcylation is a unique monosaccharide modification that is ubiquitously present in numerous nucleoplasmic and mitochondrial proteins. The hexosamine biosynthesis pathway (HBP), which is a key branch of glycolysis, provides the unique sugar donor UDP-GlcNAc for the O-GlcNAc modification. Thus, HBP/O-GlcNAcylation can act as a nutrient sensor to perceive changes in nutrient levels and trigger O-GlcNAc modifications of functional proteins in cellular (patho-)physiology, thereby regulating diverse metabolic processes. An imbalance in O-GlcNAcylation has been shown to be a pathogenic contributor to dysfunction in metabolic diseases, including type 2 diabetes, cancer, and neurodegeneration. However, under acute stress conditions, protein O-GlcNAc modification exhibits rapid and transient upregulation, which is strongly correlated with stress tolerance and cell survival. In this context, we discuss the metabolic, pharmacological and genetic modulation of HBP/O-GlcNAc modification in the biological system, the beneficial role of O-GlcNAcylation in regulating stress tolerance for cardioprotection, and neuroprotection, which is a novel and rapidly growing field. Current evidence suggests that transient activation of the O-GlcNAc modification represents a potent pro-survival signalling pathway and may provide a promising strategy for stress-related disorder therapy.
Collapse
Affiliation(s)
- Qiu Xue
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, 226001, China
- Department of General Surgery, Nantong Tumor Hospital, Nantong Fifth People's Hospital, Affiliated Tumor Hospital of Nantong University, 30 Tongyang North Road, Nantong, 226361, China
| | - Shengtao Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, 226001, China
- Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Hui Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, 226001, China
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, 399 Century Avenue, Nantong, 226001, China
| | - Shu Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, 226001, China.
| |
Collapse
|
18
|
Chen YH, Cheng WH. Hexosamine biosynthesis and related pathways, protein N-glycosylation and O-GlcNAcylation: their interconnection and role in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1349064. [PMID: 38510444 PMCID: PMC10951099 DOI: 10.3389/fpls.2024.1349064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/05/2024] [Indexed: 03/22/2024]
Abstract
N-Acetylglucosamine (GlcNAc), a fundamental amino sugar moiety, is essential for protein glycosylation, glycolipid, GPI-anchor protein, and cell wall components. Uridine diphosphate-GlcNAc (UDP-GlcNAc), an active form of GlcNAc, is synthesized through the hexosamine biosynthesis pathway (HBP). Although HBP is highly conserved across organisms, the enzymes involved perform subtly distinct functions among microbes, mammals, and plants. A complete block of HBP normally causes lethality in any life form, reflecting the pivotal role of HBP in the normal growth and development of organisms. Although HBP is mainly composed of four biochemical reactions, HBP is exquisitely regulated to maintain the homeostasis of UDP-GlcNAc content. As HBP utilizes substrates including fructose-6-P, glutamine, acetyl-CoA, and UTP, endogenous nutrient/energy metabolites may be integrated to better suit internal growth and development, and external environmental stimuli. Although the genes encoding HBP enzymes are well characterized in microbes and mammals, they were less understood in higher plants in the past. As the HBP-related genes/enzymes have largely been characterized in higher plants in recent years, in this review we update the latest advances in the functions of the HBP-related genes in higher plants. In addition, HBP's salvage pathway and GlcNAc-mediated two major co- or post-translational modifications, N-glycosylation and O-GlcNAcylation, are also included in this review. Further knowledge on the function of HBP and its product conjugates, and the mechanisms underlying their response to deleterious environments might provide an alternative strategy for agricultural biofortification in the future.
Collapse
Affiliation(s)
| | - Wan-Hsing Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
19
|
Jóźwiak P, Oracz J, Dziedzic A, Szelenberger R, Żyżelewicz D, Bijak M, Krześlak A. Increased O-GlcNAcylation by Upregulation of Mitochondrial O-GlcNAc Transferase (mOGT) Inhibits the Activity of Respiratory Chain Complexes and Controls Cellular Bioenergetics. Cancers (Basel) 2024; 16:1048. [PMID: 38473405 DOI: 10.3390/cancers16051048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) is a reversible post-translational modification involved in the regulation of cytosolic, nuclear, and mitochondrial proteins. The interplay between O-GlcNAcylation and phosphorylation is critical to control signaling pathways and maintain cellular homeostasis. The addition of O-GlcNAc moieties to target proteins is catalyzed by O-linked N-acetylglucosamine transferase (OGT). Of the three splice variants of OGT described, one is destined for the mitochondria (mOGT). Although the effects of O-GlcNAcylation on the biology of normal and cancer cells are well documented, the role of mOGT remains poorly understood. In this manuscript, the effects of mOGT on mitochondrial protein phosphorylation, electron transport chain (ETC) complex activity, and the expression of VDAC porins were investigated. We performed studies using normal and breast cancer cells with upregulated mOGT or its catalytically inactive mutant. Proteomic approaches included the isolation of O-GlcNAc-modified proteins of the electron transport chain, followed by their analysis using mass spectrometry. We found that mitochondrial OGT regulates the activity of complexes I-V of the respiratory chain and identified a group of 19 ETC components as mOGT substrates in mammary cells. Furthermore, we observed that the upregulation of mOGT inhibited the interaction of VDAC1 with hexokinase II. Our results suggest that the deregulation of mOGT reprograms cellular energy metabolism via interaction with and O-GlcNAcylation of proteins involved in ATP production in mitochondria and its exchange between mitochondria and the cytosol.
Collapse
Affiliation(s)
- Paweł Jóźwiak
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Joanna Oracz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Lodz, Poland
| | - Angela Dziedzic
- Department of General Biochemistry, Institute of Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Rafał Szelenberger
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Dorota Żyżelewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Lodz, Poland
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Anna Krześlak
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
20
|
Baker ZN, Forny P, Pagliarini DJ. Mitochondrial proteome research: the road ahead. Nat Rev Mol Cell Biol 2024; 25:65-82. [PMID: 37773518 PMCID: PMC11378943 DOI: 10.1038/s41580-023-00650-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 10/01/2023]
Abstract
Mitochondria are multifaceted organelles with key roles in anabolic and catabolic metabolism, bioenergetics, cellular signalling and nutrient sensing, and programmed cell death processes. Their diverse functions are enabled by a sophisticated set of protein components encoded by the nuclear and mitochondrial genomes. The extent and complexity of the mitochondrial proteome remained unclear for decades. This began to change 20 years ago when, driven by the emergence of mass spectrometry-based proteomics, the first draft mitochondrial proteomes were established. In the ensuing decades, further technological and computational advances helped to refine these 'maps', with current estimates of the core mammalian mitochondrial proteome ranging from 1,000 to 1,500 proteins. The creation of these compendia provided a systemic view of an organelle previously studied primarily in a reductionist fashion and has accelerated both basic scientific discovery and the diagnosis and treatment of human disease. Yet numerous challenges remain in understanding mitochondrial biology and translating this knowledge into the medical context. In this Roadmap, we propose a path forward for refining the mitochondrial protein map to enhance its discovery and therapeutic potential. We discuss how emerging technologies can assist the detection of new mitochondrial proteins, reveal their patterns of expression across diverse tissues and cell types, and provide key information on proteoforms. We highlight the power of an enhanced map for systematically defining the functions of its members. Finally, we examine the utility of an expanded, functionally annotated mitochondrial proteome in a translational setting for aiding both diagnosis of mitochondrial disease and targeting of mitochondria for treatment.
Collapse
Affiliation(s)
- Zakery N Baker
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Patrick Forny
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - David J Pagliarini
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
21
|
Zhang M, Luo X, Zhang B, Luo D, Huang L, Long Q. Unveiling OSCP as the potential therapeutic target for mitochondrial dysfunction-related diseases. Life Sci 2024; 336:122293. [PMID: 38030056 DOI: 10.1016/j.lfs.2023.122293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Mitochondria are important organelles in cells responsible for energy production and regulation. Mitochondrial dysfunction has been implicated in the pathogenesis of many diseases. Oligomycin sensitivity-conferring protein (OSCP), a component of the inner mitochondrial membrane, has been studied for a long time. OSCP is a component of the F1Fo-ATP synthase in mitochondria and is closely related to the regulation of the mitochondrial permeability transition pore (mPTP). Studies have shown that OSCP plays an important role in cardiovascular disease, neurological disorders, and tumor development. This review summarizes the localization, structure, function, and regulatory mechanisms of OSCP and outlines its role in cardiovascular disease, neurological disease, and tumor development. In addition, this article reviews the research on the interaction between OSCP and mPTP. Finally, the article suggests future research directions, including further exploration of the mechanism of action of OSCP, the interaction between OSCP and other proteins and signaling pathways, and the development of new treatment strategies for mitochondrial dysfunction. In conclusion, in-depth research on OSCP will help to elucidate its importance in cell function and disease and provide new ideas for the treatment and prevention of related diseases.
Collapse
Affiliation(s)
- Mingyue Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xia Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Binzhi Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Duosheng Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Lizhen Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qinqiang Long
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
22
|
Carvalho RA. The glycolytic pathway to heart failure. GLYCOLYSIS 2024:235-266. [DOI: 10.1016/b978-0-323-91704-9.00010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Ha C, Bakshi S, Brahma MK, Potter LA, Chang SF, Sun Z, Benavides GA, He L, Umbarkar P, Zou L, Curfman S, Sunny S, Paterson AJ, Rajasekaran N, Barnes JW, Zhang J, Lal H, Xie M, Darley‐Usmar VM, Chatham JC, Wende AR. Sustained Increases in Cardiomyocyte Protein O-Linked β-N-Acetylglucosamine Levels Lead to Cardiac Hypertrophy and Reduced Mitochondrial Function Without Systolic Contractile Impairment. J Am Heart Assoc 2023; 12:e029898. [PMID: 37750556 PMCID: PMC10727241 DOI: 10.1161/jaha.123.029898] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/03/2023] [Indexed: 09/27/2023]
Abstract
Background Lifestyle and metabolic diseases influence the severity and pathogenesis of cardiovascular disease through numerous mechanisms, including regulation via posttranslational modifications. A specific posttranslational modification, the addition of O-linked β-N acetylglucosamine (O-GlcNAcylation), has been implicated in molecular mechanisms of both physiological and pathologic adaptations. The current study aimed to test the hypothesis that in cardiomyocytes, sustained protein O-GlcNAcylation contributes to cardiac adaptations, and its progression to pathophysiology. Methods and Results Using a naturally occurring dominant-negative O-GlcNAcase (dnOGA) inducible cardiomyocyte-specific overexpression transgenic mouse model, we induced dnOGA in 8- to 10-week-old mouse hearts. We examined the effects of 2-week and 24-week dnOGA overexpression, which progressed to a 1.8-fold increase in protein O-GlcNAcylation. Two-week increases in protein O-GlcNAc levels did not alter heart weight or function; however, 24-week increases in protein O-GlcNAcylation led to cardiac hypertrophy, mitochondrial dysfunction, fibrosis, and diastolic dysfunction. Interestingly, systolic function was maintained in 24-week dnOGA overexpression, despite several changes in gene expression associated with cardiovascular disease. Specifically, mRNA-sequencing analysis revealed several gene signatures, including reduction of mitochondrial oxidative phosphorylation, fatty acid, and glucose metabolism pathways, and antioxidant response pathways after 24-week dnOGA overexpression. Conclusions This study indicates that moderate increases in cardiomyocyte protein O-GlcNAcylation leads to a differential response with an initial reduction of metabolic pathways (2-week), which leads to cardiac remodeling (24-week). Moreover, the mouse model showed evidence of diastolic dysfunction consistent with a heart failure with preserved ejection fraction. These findings provide insight into the adaptive versus maladaptive responses to increased O-GlcNAcylation in heart.
Collapse
Affiliation(s)
- Chae‐Myeong Ha
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Sayan Bakshi
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Manoja K. Brahma
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Luke A. Potter
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Samuel F. Chang
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Zhihuan Sun
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Gloria A. Benavides
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Lihao He
- Division of Cardiovascular Disease, Department of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | - Prachi Umbarkar
- Division of Cardiovascular Disease, Department of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | - Luyun Zou
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Samuel Curfman
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Sini Sunny
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Andrew J. Paterson
- Division of Endocrinology, Diabetes, and Metabolism, Department of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | | | - Jarrod W. Barnes
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | - Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Hind Lal
- Division of Cardiovascular Disease, Department of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | - Min Xie
- Division of Cardiovascular Disease, Department of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | - Victor M. Darley‐Usmar
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - John C. Chatham
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Adam R. Wende
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| |
Collapse
|
24
|
Muñoz JP, Basei FL, Rojas ML, Galvis D, Zorzano A. Mechanisms of Modulation of Mitochondrial Architecture. Biomolecules 2023; 13:1225. [PMID: 37627290 PMCID: PMC10452872 DOI: 10.3390/biom13081225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial network architecture plays a critical role in cellular physiology. Indeed, alterations in the shape of mitochondria upon exposure to cellular stress can cause the dysfunction of these organelles. In this scenario, mitochondrial dynamics proteins and the phospholipid composition of the mitochondrial membrane are key for fine-tuning the modulation of mitochondrial architecture. In addition, several factors including post-translational modifications such as the phosphorylation, acetylation, SUMOylation, and o-GlcNAcylation of mitochondrial dynamics proteins contribute to shaping the plasticity of this architecture. In this regard, several studies have evidenced that, upon metabolic stress, mitochondrial dynamics proteins are post-translationally modified, leading to the alteration of mitochondrial architecture. Interestingly, several proteins that sustain the mitochondrial lipid composition also modulate mitochondrial morphology and organelle communication. In this context, pharmacological studies have revealed that the modulation of mitochondrial shape and function emerges as a potential therapeutic strategy for metabolic diseases. Here, we review the factors that modulate mitochondrial architecture.
Collapse
Affiliation(s)
- Juan Pablo Muñoz
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
| | - Fernanda Luisa Basei
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, 13083-871 Campinas, SP, Brazil
| | - María Laura Rojas
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - David Galvis
- Programa de Química Farmacéutica, Universidad CES, Medellín 050031, Colombia
| | - Antonio Zorzano
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
25
|
Packer M. Foetal recapitulation of nutrient surplus signalling by O-GlcNAcylation and the failing heart. Eur J Heart Fail 2023; 25:1199-1212. [PMID: 37434410 DOI: 10.1002/ejhf.2972] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/02/2023] [Accepted: 07/09/2023] [Indexed: 07/13/2023] Open
Abstract
The development of the foetal heart is driven by increased glucose uptake and activation of mammalian target of rapamycin (mTOR) and hypoxia-inducible factor-1α (HIF-1α), which drives glycolysis. In contrast, the healthy adult heart is governed by sirtuin-1 (SIRT1) and adenosine monophosphate-activated protein kinase (AMPK), which promote fatty-acid oxidation and the substantial mitochondrial ATP production required for survival in a high-workload normoxic environment. During cardiac injury, the heart recapitulates the foetal signalling programme, which (although adaptive in the short term) is highly deleterious if sustained for long periods of time. Prolonged increases in glucose uptake in cardiomyocytes under stress leads to increased flux through the hexosamine biosynthesis pathway; its endproduct - uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) - functions as a critical nutrient surplus sensor. UDP-GlcNAc drives the post-translational protein modification known as O-GlcNAcylation, which rapidly and reversibly modifies thousands of intracellular proteins. Both O-GlcNAcylation and phosphorylation act at serine/threonine residues, but whereas phosphorylation is regulated by hundreds of specific kinases and phosphatases, O-GlcNAcylation is regulated by only two enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which adds or removes GlcNAc (N-acetylglucosamine), respectively, from target proteins. Recapitulation of foetal programming in heart failure (regardless of diabetes) is accompanied by marked increases in O-GlcNAcylation, both experimentally and clinically. Heightened O-GlcNAcylation in the heart leads to impaired calcium kinetics and contractile derangements, arrhythmias related to activation of voltage-gated sodium channels and Ca2+ /calmodulin-dependent protein kinase II, mitochondrial dysfunction, and maladaptive hypertrophy, microvascular dysfunction, fibrosis and cardiomyopathy. These deleterious effects can be prevented by suppression of O-GlcNAcylation, which can be achieved experimentally by upregulation of AMPK and SIRT1 or by pharmacological inhibition of OGT or stimulation of OGA. The effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors on the heart are accompanied by reduced O-GlcNAcylation, and their cytoprotective effects are reportedly abrogated if their action to suppress O-GlcNAcylation is blocked. Such an action may represent one of the many mechanisms by which enhanced AMPK and SIRT1 signalling following SGLT2 inhibition leads to cardiovascular benefits. These observations, taken collectively, suggest that UDP-GlcNAc functions as a critical nutrient surplus sensor (which acting in concert with mTOR and HIF-1α) can promote the development of cardiomyopathy.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, TX, USA
- Imperial College, London, UK
| |
Collapse
|
26
|
Belosludtsev KN, Serov DA, Ilzorkina AI, Starinets VS, Dubinin MV, Talanov EY, Karagyaur MN, Primak AL, Belosludtseva NV. Pharmacological and Genetic Suppression of VDAC1 Alleviates the Development of Mitochondrial Dysfunction in Endothelial and Fibroblast Cell Cultures upon Hyperglycemic Conditions. Antioxidants (Basel) 2023; 12:1459. [PMID: 37507997 PMCID: PMC10376467 DOI: 10.3390/antiox12071459] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Prolonged hyperglycemia related to diabetes and its complications leads to multiple cellular disorders, the central one being the dysfunction of mitochondria. Voltage-dependent anion channels (VDAC) of the outer mitochondrial membrane control the metabolic, ionic, and energy cross-talk between mitochondria and the rest of the cell and serve as the master regulators of mitochondrial functions. Here, we have investigated the effect of pharmacological suppression of VDAC1 by the newly developed inhibitor of its oligomerization, VBIT-4, in the primary culture of mouse lung endotheliocytes and downregulated expression of VDAC1 in human skin fibroblasts on the progression of mitochondrial dysfunction upon hyperglycemic stress. The cells were grown in high-glucose media (30 mM) for 36 h. In response to hyperglycemia, the mRNA level of VDAC1 increased in endotheliocytes and decreased in human skin fibroblasts. Hyperglycemia induced overproduction of mitochondrial ROS, an increase in the susceptibility of the organelles to mitochondrial permeability transition (MPT) pore opening and a drop in mitochondrial membrane potential, which was accompanied by a decrease in cell viability in both cultures. Treatment of endotheliocytes with 5 µM VBIT-4 abolished the hyperglycemia-induced increase in susceptibility to spontaneous opening of the MPT pore and ROS generation in mitochondria. Silencing of VDAC1 expression in human skin fibroblasts exposed to high glucose led to a less pronounced manifestation of all the signs of damage to mitochondria. Our data identify a mitochondria-related response to pharmacological and genetic suppression of VDAC activity in vascular cells in hyperglycemia and suggest the potential therapeutic value of targeting these channels for the treatment of diabetic vasculopathies.
Collapse
Affiliation(s)
- Konstantin N. Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia;
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (A.I.I.); (V.S.S.); (E.Y.T.); (N.V.B.)
| | - Dmitriy A. Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov St. 38, 119991 Moscow, Russia;
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institutskaya 3, 142290 Pushchino, Russia
| | - Anna I. Ilzorkina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (A.I.I.); (V.S.S.); (E.Y.T.); (N.V.B.)
| | - Vlada S. Starinets
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (A.I.I.); (V.S.S.); (E.Y.T.); (N.V.B.)
| | - Mikhail V. Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia;
| | - Eugeny Yu. Talanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (A.I.I.); (V.S.S.); (E.Y.T.); (N.V.B.)
| | - Maxim N. Karagyaur
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia;
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia;
| | - Alexandra L. Primak
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia;
| | - Natalia V. Belosludtseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (A.I.I.); (V.S.S.); (E.Y.T.); (N.V.B.)
| |
Collapse
|
27
|
Huang K, Luo X, Liao B, Li G, Feng J. Insights into SGLT2 inhibitor treatment of diabetic cardiomyopathy: focus on the mechanisms. Cardiovasc Diabetol 2023; 22:86. [PMID: 37055837 PMCID: PMC10103501 DOI: 10.1186/s12933-023-01816-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/27/2023] [Indexed: 04/15/2023] Open
Abstract
Among the complications of diabetes, cardiovascular events and cardiac insufficiency are considered two of the most important causes of death. Experimental and clinical evidence supports the effectiveness of SGLT2i for improving cardiac dysfunction. SGLT2i treatment benefits metabolism, microcirculation, mitochondrial function, fibrosis, oxidative stress, endoplasmic reticulum stress, programmed cell death, autophagy, and the intestinal flora, which are involved in diabetic cardiomyopathy. This review summarizes the current knowledge of the mechanisms of SGLT2i for the treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Keming Huang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Xianling Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Bin Liao
- Department of Cardiovascular Surgery, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Guang Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
28
|
He X, Wu N, Li R, Zhang H, Zhao Y, Nie Y, Wu J. IDH2, a novel target of OGT, facilitates glucose uptake and cellular bioenergy production via NF-κB signaling to promote colorectal cancer progression. Cell Oncol (Dordr) 2023; 46:145-164. [PMID: 36401762 DOI: 10.1007/s13402-022-00740-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Although isocitrate dehydrogenase 2 (IDH2) mutations have been the hotspots in recent anticancer studies, the impact of wild-type IDH2 on cancer cell growth and metabolic alterations is still elusive. METHODS IDH2 expression in CRC tissues was evaluated by immunohistochemistry, and the correlation between the expression level and the patient's survival rate was analyzed. Cell functional assays included CCK8 and colony formation for cell proliferation in vitro and ectopic xenograft as in vivo experimental model for tumor progression. A targeted metabolomic procedure was performed by liquid chromatography/tandem mass spectrometry to profile the metabolites from glycolysis and tricarboxylic acid (TCA) cycle. Mitochondrial function was assessed by measuring cellular oxygen consumption (OCR) and mitochondrial membrane potential (ΔΨ). Confocal microscope analysis and Western blotting were applied to detect the expression of GLUT1 and NF-κB signaling. O-GlcNAcylation and the interaction of IDH2 with OGT were confirmed by co-immunoprecipitation, followed by Western blotting analysis. RESULTS IDH2 protein was highly expressed in CRC tissues, and correlated with poor survival of CRC patients. Wild-type IDH2 promoted CRC cell growth in vitro and tumor progression in xenograft mice. Overexpression of wild-type IDH2 significantly increased glycolysis and TCA cycle metabolites, the ratios of NADH/NAD+ and ATP/ADP, OCR and mitochondrial membrane potential (ΔΨ) in CRC cells. Furthermore, α-KG activated NF-κB signaling to promote glucose uptake by upregulating GLUT1. Interesting, O-GlcNAcylation enhanced the protein half-time of IDH2 by inhibiting ubiquitin-mediated proteasome degradation. The O-GlcNAc transferase (OGT)-IDH2 axis promoted CRC progression. CONCLUSION Wild-type IDH2 reprogrammed glucose metabolism and bioenergetic production via the NF-κB signaling pathway to promote CRC development and progression. O-GlcNAcylation of IDH2 elevated the stability of IDH2 protein. And the axis of OGT-IDH2 played an essential promotive role in tumor progression, suggesting a novel potential therapeutic strategy in CRC treatment.
Collapse
Affiliation(s)
- Xiaoli He
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, 710049, Shaanxi, China
| | - Nan Wu
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, 710069, Shaanxi, China
| | - Renlong Li
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Haohao Zhang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Yu Zhao
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, 710069, Shaanxi, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China.
| | - Jing Wu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, 710049, Shaanxi, China.
| |
Collapse
|
29
|
Werbner B, Tavakoli-Rouzbehani OM, Fatahian AN, Boudina S. The dynamic interplay between cardiac mitochondrial health and myocardial structural remodeling in metabolic heart disease, aging, and heart failure. THE JOURNAL OF CARDIOVASCULAR AGING 2023; 3:9. [PMID: 36742465 PMCID: PMC9894375 DOI: 10.20517/jca.2022.42] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This review provides a holistic perspective on the bi-directional relationship between cardiac mitochondrial dysfunction and myocardial structural remodeling in the context of metabolic heart disease, natural cardiac aging, and heart failure. First, a review of the physiologic and molecular drivers of cardiac mitochondrial dysfunction across a range of increasingly prevalent conditions such as metabolic syndrome and cardiac aging is presented, followed by a general review of the mechanisms of mitochondrial quality control (QC) in the heart. Several important mechanisms by which cardiac mitochondrial dysfunction triggers or contributes to structural remodeling of the heart are discussed: accumulated metabolic byproducts, oxidative damage, impaired mitochondrial QC, and mitochondrial-mediated cell death identified as substantial mechanistic contributors to cardiac structural remodeling such as hypertrophy and myocardial fibrosis. Subsequently, the less studied but nevertheless important reverse relationship is explored: the mechanisms by which cardiac structural remodeling feeds back to further alter mitochondrial bioenergetic function. We then provide a condensed pathogenesis of several increasingly important clinical conditions in which these relationships are central: diabetic cardiomyopathy, age-associated declines in cardiac function, and the progression to heart failure, with or without preserved ejection fraction. Finally, we identify promising therapeutic opportunities targeting mitochondrial function in these conditions.
Collapse
Affiliation(s)
- Benjamin Werbner
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Amir Nima Fatahian
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sihem Boudina
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
30
|
Lu Q, Zhang X, Liang T, Bai X. O-GlcNAcylation: an important post-translational modification and a potential therapeutic target for cancer therapy. Mol Med 2022; 28:115. [PMID: 36104770 PMCID: PMC9476278 DOI: 10.1186/s10020-022-00544-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023] Open
Abstract
O-linked β-d-N-acetylglucosamine (O-GlcNAc) is an important post-translational modification of serine or threonine residues on thousands of proteins in the nucleus and cytoplasm of all animals and plants. In eukaryotes, only two conserved enzymes are involved in this process. O-GlcNAc transferase is responsible for adding O-GlcNAc to proteins, while O-GlcNAcase is responsible for removing it. Aberrant O-GlcNAcylation is associated with a variety of human diseases, such as diabetes, cancer, neurodegenerative diseases, and cardiovascular diseases. Numerous studies have confirmed that O-GlcNAcylation is involved in the occurrence and progression of cancers in multiple systems throughout the body. It is also involved in regulating multiple cancer hallmarks, such as metabolic reprogramming, proliferation, invasion, metastasis, and angiogenesis. In this review, we first describe the process of O-GlcNAcylation and the structure and function of O-GlcNAc cycling enzymes. In addition, we detail the occurrence of O-GlcNAc in various cancers and the role it plays. Finally, we discuss the potential of O-GlcNAc as a promising biomarker and novel therapeutic target for cancer diagnosis, treatment, and prognosis.
Collapse
|
31
|
Cao Y, Zhang M, Li Y, Lu J, Zhou W, Li X, Shi H, Xu B, Li S. O-GlcNAcylation of SIRT1 Protects against Cold Stress-Induced Skeletal Muscle Damage via Amelioration of Mitochondrial Homeostasis. Int J Mol Sci 2022; 23:ijms232314520. [PMID: 36498847 PMCID: PMC9737900 DOI: 10.3390/ijms232314520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Cold stress disturbs cellular metabolic and energy homeostasis, which is one of the causes of stress-induced illnesses. O-GlcNAcylation is a nutrient-sensing pathway involved in a myriad of cellular processes. It plays a key role in metabolic homeostasis. Nevertheless, a specific sensing mechanism linking skeletal muscle to O-GlcNAcylation in cold stress is unknown. In this study, O-GlcNAcylation of SIRT1 was targeted to explore the mechanism of skeletal muscle adaptation to cold stress. Ogt mKO aggravated skeletal muscle fibrosis induced by cold stress. At the same time, Ogt gene deletion accelerated the homeostasis imbalance and oxidative stress of skeletal muscle mitochondria induced by cold stress. In vitro results showed that inhibition of SIRT1's O-GlcNAcylation accelerated mild hypothermia induced mitochondrial homeostasis in mouse myogenic cells (C2C12 cells). However, overexpression of SIRT1's O-GlcNAcylation improved the above phenomena. Thus, these results reveal a protective role of OGT-SIRT1 in skeletal muscle's adaptation to cold stress, and our findings will provide new avenues to combat stress-induced diseases.
Collapse
Affiliation(s)
- Yu Cao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Meng Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Ye Li
- Sheep Disease Laboratory, Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161005, China
| | - Jingjing Lu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Wanhui Zhou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xiaoshuang Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Hao Shi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Correspondence: (B.X.); (S.L.)
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Correspondence: (B.X.); (S.L.)
| |
Collapse
|
32
|
Fahie KMM, Papanicolaou KN, Zachara NE. Integration of O-GlcNAc into Stress Response Pathways. Cells 2022; 11:3509. [PMID: 36359905 PMCID: PMC9654274 DOI: 10.3390/cells11213509] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
The modification of nuclear, mitochondrial, and cytosolic proteins by O-linked βN-acetylglucosamine (O-GlcNAc) has emerged as a dynamic and essential post-translational modification of mammalian proteins. O-GlcNAc is cycled on and off over 5000 proteins in response to diverse stimuli impacting protein function and, in turn, epigenetics and transcription, translation and proteostasis, metabolism, cell structure, and signal transduction. Environmental and physiological injury lead to complex changes in O-GlcNAcylation that impact cell and tissue survival in models of heat shock, osmotic stress, oxidative stress, and hypoxia/reoxygenation injury, as well as ischemic reperfusion injury. Numerous mechanisms that appear to underpin O-GlcNAc-mediated survival include changes in chaperone levels, impacts on the unfolded protein response and integrated stress response, improvements in mitochondrial function, and reduced protein aggregation. Here, we discuss the points at which O-GlcNAc is integrated into the cellular stress response, focusing on the roles it plays in the cardiovascular system and in neurodegeneration.
Collapse
Affiliation(s)
- Kamau M. M. Fahie
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kyriakos N. Papanicolaou
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Natasha E. Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
33
|
Liu Y, Hu Y, Li S. Protein O-GlcNAcylation in Metabolic Modulation of Skeletal Muscle: A Bright but Long Way to Go. Metabolites 2022; 12:888. [PMID: 36295790 PMCID: PMC9610910 DOI: 10.3390/metabo12100888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 09/07/2024] Open
Abstract
O-GlcNAcylation is an atypical, dynamic and reversible O-glycosylation that is critical and abundant in metazoan. O-GlcNAcylation coordinates and receives various signaling inputs such as nutrients and stresses, thus spatiotemporally regulating the activity, stability, localization and interaction of target proteins to participate in cellular physiological functions. Our review discusses in depth the involvement of O-GlcNAcylation in the precise regulation of skeletal muscle metabolism, such as glucose homeostasis, insulin sensitivity, tricarboxylic acid cycle and mitochondrial biogenesis. The complex interaction and precise modulation of O-GlcNAcylation in these nutritional pathways of skeletal muscle also provide emerging mechanical information on how nutrients affect health, exercise and disease. Meanwhile, we explored the potential role of O-GlcNAcylation in skeletal muscle pathology and focused on its benefits in maintaining proteostasis under atrophy. In general, these understandings of O-GlcNAcylation are conducive to providing new insights into skeletal muscle (patho) physiology.
Collapse
Affiliation(s)
| | | | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
34
|
Kim S, Backe SJ, Wengert LA, Johnson AE, Isakov RV, Bratslavsky MS, Woodford MR. O-GlcNAcylation suppresses TRAP1 activity and promotes mitochondrial respiration. Cell Stress Chaperones 2022; 27:573-585. [PMID: 35976490 PMCID: PMC9485411 DOI: 10.1007/s12192-022-01293-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/03/2022] Open
Abstract
The molecular chaperone TNF-receptor-associated protein-1 (TRAP1) controls mitochondrial respiration through regulation of Krebs cycle and electron transport chain activity. Post-translational modification (PTM) of TRAP1 regulates its activity, thereby controlling global metabolic flux. O-GlcNAcylation is one PTM that is known to impact mitochondrial metabolism, however the major effectors of this regulatory PTM remain inadequately resolved. Here we demonstrate that TRAP1-O-GlcNAcylation decreases TRAP1 ATPase activity, leading to increased mitochondrial metabolism. O-GlcNAcylation of TRAP1 occurs following mitochondrial import and provides critical regulatory feedback, as the impact of O-GlcNAcylation on mitochondrial metabolism shows TRAP1-dependence. Mechanistically, loss of TRAP1-O-GlcNAcylation decreased TRAP1 binding to ATP, and interaction with its client protein succinate dehydrogenase (SDHB). Taken together, TRAP1-O-GlcNAcylation serves to regulate mitochondrial metabolism by the reversible attenuation of TRAP1 chaperone activity.
Collapse
Affiliation(s)
- Seungchan Kim
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Laura A Wengert
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Anna E Johnson
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Roman V Isakov
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Michael S Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
35
|
Zumbaugh MD, Johnson SE, Shi TH, Gerrard DE. Molecular and biochemical regulation of skeletal muscle metabolism. J Anim Sci 2022; 100:6652332. [PMID: 35908794 PMCID: PMC9339271 DOI: 10.1093/jas/skac035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle hypertrophy is a culmination of catabolic and anabolic processes that are interwoven into major metabolic pathways, and as such modulation of skeletal muscle metabolism may have implications on animal growth efficiency. Muscle is composed of a heterogeneous population of muscle fibers that can be classified by metabolism (oxidative or glycolytic) and contractile speed (slow or fast). Although slow fibers (type I) rely heavily on oxidative metabolism, presumably to fuel long or continuous bouts of work, fast fibers (type IIa, IIx, and IIb) vary in their metabolic capability and can range from having a high oxidative capacity to a high glycolytic capacity. The plasticity of muscle permits continuous adaptations to changing intrinsic and extrinsic stimuli that can shift the classification of muscle fibers, which has implications on fiber size, nutrient utilization, and protein turnover rate. The purpose of this paper is to summarize the major metabolic pathways in skeletal muscle and the associated regulatory pathways.
Collapse
Affiliation(s)
- Morgan D Zumbaugh
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sally E Johnson
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Tim H Shi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - David E Gerrard
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
36
|
Wu J, Liu J, Lapenta K, Desrouleaux R, Li MD, Yang X. Regulation of the urea cycle by CPS1 O-GlcNAcylation in response to dietary restriction and aging. J Mol Cell Biol 2022; 14:mjac016. [PMID: 35285892 PMCID: PMC9254885 DOI: 10.1093/jmcb/mjac016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/20/2022] [Accepted: 03/10/2022] [Indexed: 12/02/2022] Open
Abstract
O-linked N-acetyl-glucosamine glycosylation (O-GlcNAcylation) of intracellular proteins is a dynamic process broadly implicated in age-related disease, yet it remains uncharacterized whether and how O-GlcNAcylation contributes to the natural aging process. O-GlcNAc transferase (OGT) and the opposing enzyme O-GlcNAcase (OGA) control this nutrient-sensing protein modification in cells. Here, we show that global O-GlcNAc levels are increased in multiple tissues of aged mice. In aged liver, carbamoyl phosphate synthetase 1 (CPS1) is among the most heavily O-GlcNAcylated proteins. CPS1 O-GlcNAcylation is reversed by calorie restriction and is sensitive to genetic and pharmacological manipulations of the O-GlcNAc pathway. High glucose stimulates CPS1 O-GlcNAcylation and inhibits CPS1 activity. Liver-specific deletion of OGT potentiates CPS1 activity and renders CPS1 irresponsive to further stimulation by a prolonged fasting. Our results identify CPS1 O-GlcNAcylation as a key nutrient-sensing regulatory step in the urea cycle during aging and dietary restriction, implying a role for mitochondrial O-GlcNAcylation in nutritional regulation of longevity.
Collapse
Affiliation(s)
- Jing Wu
- Department of Comparative Medicine, Department of Cellular and Molecular Physiology, and Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiayu Liu
- Department of Comparative Medicine, Department of Cellular and Molecular Physiology, and Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kalina Lapenta
- Department of Comparative Medicine, Department of Cellular and Molecular Physiology, and Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Reina Desrouleaux
- Department of Comparative Medicine, Department of Cellular and Molecular Physiology, and Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Min-Dian Li
- Department of Comparative Medicine, Department of Cellular and Molecular Physiology, and Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiaoyong Yang
- Department of Comparative Medicine, Department of Cellular and Molecular Physiology, and Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
37
|
The Role of Mitochondria in Metabolic Syndrome–Associated Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9196232. [PMID: 35783195 PMCID: PMC9246605 DOI: 10.1155/2022/9196232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 12/03/2022]
Abstract
With the rapid development of society, the incidence of metabolic syndrome (MS) is increasing rapidly. Evidence indicated that patients diagnosed with MS usually suffered from cardiomyopathy, called metabolic syndrome–associated cardiomyopathy (MSC). The clinical characteristics of MSC included cardiac hypertrophy and diastolic dysfunction, followed by heart failure. Despite many studies on this topic, the detailed mechanisms are not clear yet. As the center of cellular metabolism, mitochondria are crucial for maintaining heart function, while mitochondria dysfunction plays a vital role through mechanisms such as mitochondrial energy deprivation, calcium disorder, and ROS (reactive oxygen species) imbalance during the development of MSC. Accordingly, in this review, we will summarize the characteristics of MSC and especially focus on the mechanisms related to mitochondria. In addition, we will update new therapeutic strategies in this field.
Collapse
|
38
|
Short O-GlcNAcase Is Targeted to the Mitochondria and Regulates Mitochondrial Reactive Oxygen Species Level. Cells 2022; 11:cells11111827. [PMID: 35681522 PMCID: PMC9180253 DOI: 10.3390/cells11111827] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
O-GlcNAcylation is a reversible post-translational modification involved in the regulation of cytosolic, nuclear, and mitochondrial proteins. Only two enzymes, OGT (O-GlcNAc transferase) and OGA (O-GlcNAcase), control the attachment and removal of O-GlcNAc on proteins, respectively. Whereas a variant OGT (mOGT) has been proposed as the main isoform that O-GlcNAcylates proteins in mitochondria, identification of a mitochondrial OGA has not been performed yet. Two splice variants of OGA (short and long isoforms) have been described previously. In this work, using cell fractionation experiments, we show that short-OGA is preferentially recovered in mitochondria-enriched fractions from HEK-293T cells and RAW 264.7 cells, as well as mouse embryonic fibroblasts. Moreover, fluorescent microscopy imaging confirmed that GFP-tagged short-OGA is addressed to mitochondria. In addition, using a Bioluminescence Resonance Energy Transfer (BRET)-based mitochondrial O-GlcNAcylation biosensor, we show that co-transfection of short-OGA markedly reduced O-GlcNAcylation of the biosensor, whereas long-OGA had no significant effect. Finally, using genetically encoded or chemical fluorescent mitochondrial probes, we show that short-OGA overexpression increases mitochondrial ROS levels, whereas long-OGA has no significant effect. Together, our work reveals that the short-OGA isoform is targeted to the mitochondria where it regulates ROS homoeostasis.
Collapse
|
39
|
Xue Q, Yan R, Ji S, Yu S. Regulation of mitochondrial network homeostasis by O-GlcNAcylation. Mitochondrion 2022; 65:45-55. [DOI: 10.1016/j.mito.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 12/20/2022]
|
40
|
Dontaine J, Bouali A, Daussin F, Bultot L, Vertommen D, Martin M, Rathagirishnan R, Cuillerier A, Horman S, Beauloye C, Gatto L, Lauzier B, Bertrand L, Burelle Y. The intra-mitochondrial O-GlcNAcylation system rapidly modulates OXPHOS function and ROS release in the heart. Commun Biol 2022; 5:349. [PMID: 35414690 PMCID: PMC9005719 DOI: 10.1038/s42003-022-03282-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 03/16/2022] [Indexed: 12/11/2022] Open
Abstract
Protein O-GlcNAcylation is increasingly recognized as an important cellular regulatory mechanism, in multiple organs including the heart. However, the mechanisms leading to O-GlcNAcylation in mitochondria and the consequences on their function remain poorly understood. In this study, we use an in vitro reconstitution assay to characterize the intra-mitochondrial O-GlcNAc system without potential cytoplasmic confounding effects. We compare the O-GlcNAcylome of isolated cardiac mitochondria with that of mitochondria acutely exposed to NButGT, a specific inhibitor of glycoside hydrolase. Amongst the 409 O-GlcNAcylated mitochondrial proteins identified, 191 display increased O-GlcNAcylation in response to NButGT. This is associated with enhanced Complex I (CI) activity, increased maximal respiration in presence of pyruvate-malate, and a striking reduction of mitochondrial ROS release, which could be related to O-GlcNAcylation of specific subunits of ETC complexes (CI, CIII) and TCA cycle enzymes. In conclusion, our work underlines the existence of a dynamic mitochondrial O-GlcNAcylation system capable of rapidly modifying mitochondrial function. An in vitro assay in isolated heart mitochondria reveals that O-GlcNAcase inhibitor NButGT rapidly increases protein O-GlcNAcylation leading to increased respiratory capacity and complex I activity and decreased ROS release.
Collapse
Affiliation(s)
- Justine Dontaine
- Pole of Cardiovascular Research (CARD), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Asma Bouali
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Frederic Daussin
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France
| | - Laurent Bultot
- Pole of Cardiovascular Research (CARD), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Didier Vertommen
- Pole of Protein phosphorylation (PHOS) and proteomic platform (MASSPROT), de Duve Institute (DDUV), UCLouvain, Brussels, Belgium
| | - Manon Martin
- Pole of Computational biology and bioinformatics (CBIO), de Duve Institute (DDUV), UCLouvain, Brussels, Belgium
| | - Raahulan Rathagirishnan
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Alexanne Cuillerier
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Sandrine Horman
- Pole of Cardiovascular Research (CARD), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Christophe Beauloye
- Pole of Cardiovascular Research (CARD), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium.,Division of Cardiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Laurent Gatto
- Pole of Computational biology and bioinformatics (CBIO), de Duve Institute (DDUV), UCLouvain, Brussels, Belgium
| | - Benjamin Lauzier
- Institute of Thorax, INSERM, CNRS, University of Nantes, Nantes, France
| | - Luc Bertrand
- Pole of Cardiovascular Research (CARD), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium.,WELBIO, Walloon Excellence in Life Sciences and BIOtechnology, Brussels, Belgium
| | - Yan Burelle
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada. .,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
41
|
Huo JY, Jiang WY, Zhang SG, Lyu YT, Geng J, Chen M, Chen YY, Jiang ZX, Shan QJ. Renal denervation ameliorates cardiac metabolic remodeling in diabetic cardiomyopathy rats by suppressing renal SGLT2 expression. J Transl Med 2022; 102:341-351. [PMID: 34775493 DOI: 10.1038/s41374-021-00696-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/16/2021] [Accepted: 10/28/2021] [Indexed: 11/09/2022] Open
Abstract
This study aimed to investigate the effects of renal denervation (RDN) on diabetic cardiomyopathy (DCM) and explore the related mechanisms. Male Sprague-Dawley rats were fed high-fat chow and injected with low-dose streptozotocin to establish a DCM model. Six rats served as controls. The surviving rats were divided into three groups: control group, DCM group and DCM + RDN group. RDN surgery was performed in the fifth week. At the end of the experiment, all rats were subjected to 18F-FDG PET/CT and metabolic cage studies. Cardiac function and structure were evaluated by echocardiography and histology. Myocardial substrate metabolism and mitochondrial function were assessed by multiple methods. In the 13th week, the DCM rats exhibited cardiac hypertrophy and interstitial fibrosis accompanied by diastolic dysfunction. RDN ameliorated DCM-induced cardiac dysfunction (E/A ratio: RDN 1.07 ± 0.18 vs. DCM 0.93 ± 0.12, P < 0.05; E/E' ratio: RDN 10.74 ± 2.48 vs. DCM 13.25 ± 1.99, P < 0.05) and pathological remodeling (collagen volume fraction: RDN 5.05 ± 2.05% vs. DCM 10.62 ± 2.68%, P < 0.05). Abnormal myocardial metabolism in DCM rats was characterized by suppressed glucose metabolism and elevated lipid metabolism. RDN increased myocardial glucose uptake and oxidation while reducing the absorption and utilization of fatty acids. Meanwhile, DCM decreased mitochondrial ATP content, depolarized the membrane potential and inhibited the activity of respiratory chain complexes, but RDN attenuated this mitochondrial damage (ATP: RDN 30.98 ± 7.33 μmol/gprot vs. DCM 22.89 ± 5.90 μmol/gprot, P < 0.05; complexes I, III and IV activity: RDN vs. DCM, P < 0.05). Furthermore, both SGLT2 inhibitor and the combination treatment produced similar effects as RDN alone. Thus, RDN prevented DCM-induced cardiac dysfunction and pathological remodeling, which is related to the improvement of metabolic disorders and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jun-Yu Huo
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wan-Ying Jiang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shi-Geng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi-Ting Lyu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Geng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meng Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan-Yuan Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhi-Xin Jiang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Qi-Jun Shan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
42
|
Abstract
Post-translational modification with O-linked β-N-acetylglucosamine (O-GlcNAc), a process referred to as O-GlcNAcylation, occurs on a vast variety of proteins. Mounting evidence in the past several decades has clearly demonstrated that O-GlcNAcylation is a unique and ubiquitous modification. Reminiscent of a code, protein O-GlcNAcylation functions as a crucial regulator of nearly all cellular processes studied. The primary aim of this review is to summarize the developments in our understanding of myriad protein substrates modified by O-GlcNAcylation from a systems perspective. Specifically, we provide a comprehensive survey of O-GlcNAcylation in multiple species studied, including eukaryotes (e.g., protists, fungi, plants, Caenorhabditis elegans, Drosophila melanogaster, murine, and human), prokaryotes, and some viruses. We evaluate features (e.g., structural properties and sequence motifs) of O-GlcNAc modification on proteins across species. Given that O-GlcNAcylation functions in a species-, tissue-/cell-, protein-, and site-specific manner, we discuss the functional roles of O-GlcNAcylation on human proteins. We focus particularly on several classes of relatively well-characterized human proteins (including transcription factors, protein kinases, protein phosphatases, and E3 ubiquitin-ligases), with representative O-GlcNAc site-specific functions presented. We hope the systems view of the great endeavor in the past 35 years will help demystify the O-GlcNAc code and lead to more fascinating studies in the years to come.
Collapse
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| |
Collapse
|
43
|
Huynh VN, Benavides GA, Johnson MS, Ouyang X, Chacko BK, Osuma E, Mueller T, Chatham J, Darley-Usmar VM, Zhang J. Acute inhibition of OGA sex-dependently alters the networks associated with bioenergetics, autophagy, and neurodegeneration. Mol Brain 2022; 15:22. [PMID: 35248135 PMCID: PMC8898497 DOI: 10.1186/s13041-022-00906-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/11/2022] [Indexed: 11/10/2022] Open
Abstract
The accumulation of neurotoxic proteins characteristic of age-related neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases is associated with the perturbation of metabolism, bioenergetics, and mitochondrial quality control. One approach to exploit these interactions therapeutically is to target the pathways that regulate metabolism. In this respect, the nutrient-sensing hexosamine biosynthesis pathway is of particular interest since it introduces a protein post-translational modification known as O-GlcNAcylation, which modifies different proteins in control versus neurodegenerative disease postmortem brains. A potent inhibitor of the O-GlcNAcase enzyme that removes the modification from proteins, Thiamet G (TG), has been proposed to have potential benefits in Alzheimer's disease. We tested whether key factors in the O-GlcNAcylation are correlated with mitochondrial electron transport and proteins related to the autophagy/lysosomal pathways in the cortex of male and female mice with and without exposure to TG (10 mg/kg i.p.). Mitochondrial complex activities were measured in the protein homogenates, and a panel of metabolic, autophagy/lysosomal proteins and O-GlcNAcylation enzymes were assessed by either enzyme activity assay or by western blot analysis. We found that the networks associated with O-GlcNAcylation enzymes and activities with mitochondrial parameters, autophagy-related proteins as well as neurodegenerative disease-related proteins exhibited sex and TG dependent differences. Taken together, these studies provide a framework of interconnectivity for multiple O-GlcNAc-dependent pathways in mouse brain of relevance to aging and sex/age-dependent neurodegenerative pathogenesis and response to potential therapies.
Collapse
Affiliation(s)
- Van N Huynh
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - Gloria A Benavides
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - Michelle S Johnson
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - Xiaosen Ouyang
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - Balu K Chacko
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - Edie Osuma
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - Toni Mueller
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - John Chatham
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - Victor M Darley-Usmar
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - Jianhua Zhang
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA.
- Birmingham VA Medical Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
44
|
Peng ML, Fu Y, Wu CW, Zhang Y, Ren H, Zhou SS. Signaling Pathways Related to Oxidative Stress in Diabetic Cardiomyopathy. Front Endocrinol (Lausanne) 2022; 13:907757. [PMID: 35784531 PMCID: PMC9240190 DOI: 10.3389/fendo.2022.907757] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 12/19/2022] Open
Abstract
Diabetes is a chronic metabolic disease that is increasing in prevalence and causes many complications. Diabetic cardiomyopathy (DCM) is a complication of diabetes that is associated with high mortality, but it is not well defined. Nevertheless, it is generally accepted that DCM refers to a clinical disease that occurs in patients with diabetes and involves ventricular dysfunction, in the absence of other cardiovascular diseases, such as coronary atherosclerotic heart disease, hypertension, or valvular heart disease. However, it is currently uncertain whether the pathogenesis of DCM is directly attributable to metabolic dysfunction or secondary to diabetic microangiopathy. Oxidative stress (OS) is considered to be a key component of its pathogenesis. The production of reactive oxygen species (ROS) in cardiomyocytes is a vicious circle, resulting in further production of ROS, mitochondrial DNA damage, lipid peroxidation, and the post-translational modification of proteins, as well as inflammation, cardiac hypertrophy and fibrosis, ultimately leading to cell death and cardiac dysfunction. ROS have been shown to affect various signaling pathways involved in the development of DCM. For instance, OS causes metabolic disorders by affecting the regulation of PPARα, AMPK/mTOR, and SIRT3/FOXO3a. Furthermore, OS participates in inflammation mediated by the NF-κB pathway, NLRP3 inflammasome, and the TLR4 pathway. OS also promotes TGF-β-, Rho-ROCK-, and Notch-mediated cardiac remodeling, and is involved in the regulation of calcium homeostasis, which impairs ATP production and causes ROS overproduction. In this review, we summarize the signaling pathways that link OS to DCM, with the intention of identifying appropriate targets and new antioxidant therapies for DCM.
Collapse
Affiliation(s)
- Meng-ling Peng
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Yu Fu
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Chu-wen Wu
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Ying Zhang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Hang Ren
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Shan-shan Zhou
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Shan-shan Zhou,
| |
Collapse
|
45
|
Cairns M, Joseph D, Essop MF. The dual role of the hexosamine biosynthetic pathway in cardiac physiology and pathophysiology. Front Endocrinol (Lausanne) 2022; 13:984342. [PMID: 36353238 PMCID: PMC9637655 DOI: 10.3389/fendo.2022.984342] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2022] [Indexed: 11/20/2022] Open
Abstract
The heart is a highly metabolic organ with extensive energy demands and hence relies on numerous fuel substrates including fatty acids and glucose. However, oxidative stress is a natural by-product of metabolism that, in excess, can contribute towards DNA damage and poly-ADP-ribose polymerase activation. This activation inhibits key glycolytic enzymes, subsequently shunting glycolytic intermediates into non-oxidative glucose pathways such as the hexosamine biosynthetic pathway (HBP). In this review we provide evidence supporting the dual role of the HBP, i.e. playing a unique role in cardiac physiology and pathophysiology where acute upregulation confers cardioprotection while chronic activation contributes to the onset and progression of cardio-metabolic diseases such as diabetes, hypertrophy, ischemic heart disease, and heart failure. Thus although the HBP has emerged as a novel therapeutic target for such conditions, proposed interventions need to be applied in a context- and pathology-specific manner to avoid any potential drawbacks of relatively low cardiac HBP activity.
Collapse
Affiliation(s)
- Megan Cairns
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Danzil Joseph
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - M. Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- *Correspondence: M. Faadiel Essop,
| |
Collapse
|
46
|
Suthakaran N, Wiggins J, Giles A, Opperman KJ, Grill B, Dawson-Scully K. O-GlcNAc transferase OGT-1 and the ubiquitin ligase EEL-1 modulate seizure susceptibility in C. elegans. PLoS One 2021; 16:e0260072. [PMID: 34797853 PMCID: PMC8604358 DOI: 10.1371/journal.pone.0260072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Neurodevelopmental disorders such as epilepsy and autism have been linked to an imbalance of excitation and inhibition (E/I) in the central nervous system. The simplicity and tractability of C. elegans allows our electroconvulsive seizure (ES) assay to be used as a behavioral readout of the locomotor circuit and neuronal function. C. elegans possess conserved nervous system features such as gamma-aminobutyric acid (GABA) and GABA receptors in inhibitory neurotransmission, and acetylcholine (Ach) and acetylcholine receptors in excitatory neurotransmission. Our previously published data has shown that decreasing inhibition in the motor circuit, via GABAergic manipulation, will extend the time of locomotor recovery following electroshock. Similarly, mutations in a HECT E3 ubiquitin ligase called EEL-1 leads to impaired GABAergic transmission, E/I imbalance and altered sensitivity to electroshock. Mutations in the human ortholog of EEL-1, called HUWE1, are associated with both syndromic and non-syndromic intellectual disability. Both EEL-1 and its previously established binding protein, OGT-1, are expressed in GABAergic motor neurons, localize to GABAergic presynaptic terminals, and function in parallel to regulate GABA neuron function. In this study, we tested behavioral responses to electroshock in wildtype, ogt-1, eel-1 and ogt-1; eel-1 double mutants. Both ogt-1 and eel-1 null mutants have decreased inhibitory GABAergic neuron function and increased electroshock sensitivity. Consistent with EEL-1 and OGT-1 functioning in parallel pathways, ogt-1; eel-1 double mutants showed enhanced electroshock susceptibility. Expression of OGT-1 in the C. elegans nervous system rescued enhanced electroshock defects in ogt-1; eel-1 double mutants. Application of a GABA agonist, Baclofen, decreased electroshock susceptibility in all animals. Our C. elegans electroconvulsive seizure assay was the first to model a human X-linked Intellectual Disability (XLID) associated with epilepsy and suggests a potential novel role for the OGT-1/EEL-1 complex in seizure susceptibility.
Collapse
Affiliation(s)
- Nirthieca Suthakaran
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, United States of America
| | - Jonathan Wiggins
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, United States of America
| | - Andrew Giles
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Karla J. Opperman
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Ken Dawson-Scully
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, United States of America
- * E-mail:
| |
Collapse
|
47
|
Akinbiyi EO, Abramowitz LK, Bauer BL, Stoll MSK, Hoppel CL, Hsiao CP, Hanover JA, Mears JA. Blocked O-GlcNAc cycling alters mitochondrial morphology, function, and mass. Sci Rep 2021; 11:22106. [PMID: 34764359 PMCID: PMC8586252 DOI: 10.1038/s41598-021-01512-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/18/2021] [Indexed: 12/24/2022] Open
Abstract
O-GlcNAcylation is a prevalent form of glycosylation that regulates proteins within the cytosol, nucleus, and mitochondria. The O-GlcNAc modification can affect protein cellular localization, function, and signaling interactions. The specific impact of O-GlcNAcylation on mitochondrial morphology and function has been elusive. In this manuscript, the role of O-GlcNAcylation on mitochondrial fission, oxidative phosphorylation (Oxphos), and the activity of electron transport chain (ETC) complexes were evaluated. In a cellular environment with hyper O-GlcNAcylation due to the deletion of O-GlcNAcase (OGA), mitochondria showed a dramatic reduction in size and a corresponding increase in number and total mitochondrial mass. Because of the increased mitochondrial content, OGA knockout cells exhibited comparable coupled mitochondrial Oxphos and ATP levels when compared to WT cells. However, we observed reduced protein levels for complex I and II when comparing normalized mitochondrial content and reduced linked activity for complexes I and III when examining individual ETC complex activities. In assessing mitochondrial fission, we observed increased amounts of O-GlcNAcylated dynamin-related protein 1 (Drp1) in cells genetically null for OGA and in glioblastoma cells. Individual regions of Drp1 were evaluated for O-GlcNAc modifications, and we found that this post-translational modification (PTM) was not limited to the previously characterized residues in the variable domain (VD). Additional modification sites are predicted in the GTPase domain, which may influence enzyme activity. Collectively, these results highlight the impact of O-GlcNAcylation on mitochondrial dynamics and ETC function and mimic the changes that may occur during glucose toxicity from hyperglycemia.
Collapse
Affiliation(s)
- Elizabeth O Akinbiyi
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Lara K Abramowitz
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brianna L Bauer
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Maria S K Stoll
- Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Charles L Hoppel
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Chao-Pin Hsiao
- Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - John A Hanover
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jason A Mears
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
48
|
El Hayek MS, Ernande L, Benitah JP, Gomez AM, Pereira L. The role of hyperglycaemia in the development of diabetic cardiomyopathy. Arch Cardiovasc Dis 2021; 114:748-760. [PMID: 34627704 DOI: 10.1016/j.acvd.2021.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 01/08/2023]
Abstract
Diabetes mellitus is a metabolic disorder with a chronic hyperglycaemic state. Cardiovascular diseases are the primary cause of mortality in patients with diabetes. Increasing evidence supports the existence of diabetic cardiomyopathy, a cardiac dysfunction with impaired cardiac contraction and relaxation, independent of coronary and/or valvular complications. Diabetic cardiomyopathy can lead to heart failure. Several preclinical and clinical studies have aimed to decipher the underlying mechanisms of diabetic cardiomyopathy. Among all the co-factors, hyperglycaemia seems to play an important role in this pathology. Hyperglycaemia has been shown to alter cardiac metabolism and function through several deleterious mechanisms, such as oxidative stress, inflammation, accumulation of advanced glycated end-products and upregulation of the hexosamine biosynthesis pathway. These mechanisms are responsible for the activation of hypertrophic pathways, epigenetic modifications, mitochondrial dysfunction, cell apoptosis, fibrosis and calcium mishandling, leading to cardiac stiffness, as well as contractile and relaxation dysfunction. This review aims to describe the hyperglycaemic-induced alterations that participate in diabetic cardiomyopathy, and their correlation with the severity of the disease and patient mortality, and to provide an overview of cardiac outcomes of glucose-lowering therapy.
Collapse
Affiliation(s)
| | - Laura Ernande
- INSERM U955, Université Paris-Est Créteil (UPEC), 94010 Créteil, France; Department of Cardiology, Institut Mondor de Recherche Biomédicale, INSERM U955-Équipe 8, Faculté de Médecine de Créteil, 94010 Créteil, France
| | | | - Ana-Maria Gomez
- Université Paris-Saclay, INSERM, UMR-S 1180, 92296 Châtenay-Malabry, France
| | - Laetitia Pereira
- Université Paris-Saclay, INSERM, UMR-S 1180, 92296 Châtenay-Malabry, France.
| |
Collapse
|
49
|
Guo H, Damerow S, Penha L, Menzies S, Polanco G, Zegzouti H, Ferguson MAJ, Beverley SM. A broadly active fucosyltransferase LmjFUT1 whose mitochondrial localization and activity are essential in parasitic Leishmania. Proc Natl Acad Sci U S A 2021; 118:e2108963118. [PMID: 34385330 PMCID: PMC8379939 DOI: 10.1073/pnas.2108963118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Glycoconjugates play major roles in the infectious cycle of the trypanosomatid parasite Leishmania While GDP-Fucose synthesis is essential, fucosylated glycoconjugates have not been reported in Leishmania major [H. Guo et al., J. Biol. Chem. 292, 10696-10708 (2017)]. Four predicted fucosyltransferases appear conventionally targeted to the secretory pathway; SCA1/2 play a role in side-chain modifications of lipophosphoglycan, while gene deletion studies here showed that FUT2 and SCAL were not essential. Unlike most eukaryotic glycosyltransferases, the predicted α 1-2 fucosyltransferase encoded by FUT1 localized to the mitochondrion. A quantitative "plasmid segregation" assay, expressing FUT1 from the multicopy episomal pXNG vector in a chromosomal null ∆fut1- background, established that FUT1 is essential. Similarly, "plasmid shuffling" confirmed that both enzymatic activity and mitochondrial localization were required for viability, comparing import-blocked or catalytically inactive enzymes, respectively. Enzymatic assays of tagged proteins expressed in vivo or of purified recombinant FUT1 showed it had a broad fucosyltransferase activity including glycan and peptide substrates. Unexpectedly, a single rare ∆fut1- segregant (∆fut1s ) was obtained in rich media, which showed severe growth defects accompanied by mitochondrial dysfunction and loss, all of which were restored upon FUT1 reexpression. Thus, FUT1 along with the similar Trypanosoma brucei enzyme TbFUT1 [G. Bandini et al., bioRxiv, https://www.biorxiv.org/content/10.1101/726117v2 (2021)] joins the eukaryotic O-GlcNAc transferase isoform as one of the few glycosyltransferases acting within the mitochondrion. Trypanosomatid mitochondrial FUT1s may offer a facile system for probing mitochondrial glycosylation in a simple setting, and their essentiality for normal growth and mitochondrial function renders it an attractive target for chemotherapy of these serious human pathogens.
Collapse
Affiliation(s)
- Hongjie Guo
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Sebastian Damerow
- Division of Biological Chemistry and Drug Discovery, Wellcome Trust Biocentre, College of Life Science, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Luciana Penha
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Stefanie Menzies
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Gloria Polanco
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | | | - Michael A J Ferguson
- Division of Biological Chemistry and Drug Discovery, Wellcome Trust Biocentre, College of Life Science, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Stephen M Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110;
| |
Collapse
|
50
|
Mitochondrial O-GlcNAc Transferase Interacts with and Modifies Many Proteins and Its Up-Regulation Affects Mitochondrial Function and Cellular Energy Homeostasis. Cancers (Basel) 2021; 13:cancers13122956. [PMID: 34204801 PMCID: PMC8231590 DOI: 10.3390/cancers13122956] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
O-GlcNAcylation is a cell glucose sensor. The addition of O-GlcNAc moieties to target protein is catalyzed by the O-Linked N-acetylglucosamine transferase (OGT). OGT is encoded by a single gene that yields differentially spliced OGT isoforms. One of them is targeted to mitochondria (mOGT). Although the impact of O-GlcNAcylation on cancer cells biology is well documented, mOGT's role remains poorly investigated. We performed studies using breast cancer cells with up-regulated mOGT or its catalytic inactive mutant to identify proteins specifically modified by mOGT. Proteomic approaches included isolation of mOGT protein partners and O-GlcNAcylated proteins from mitochondria-enriched fraction followed by their analysis by mass spectrometry. Moreover, we analyzed the impact of mOGT dysregulation on mitochondrial activity and cellular metabolism using a variety of biochemical assays. We found that mitochondrial OGT expression is glucose-dependent. Elevated mOGT expression affected the mitochondrial transmembrane potential and increased intramitochondrial ROS generation. Moreover, mOGT up-regulation caused a decrease in cellular ATP level. We identified many mitochondrial proteins as mOGT substrates. Most of these proteins are localized in the mitochondrial matrix and the inner mitochondrial membrane and participate in mitochondrial respiration, fatty acid metabolism, transport, translation, apoptosis, and mtDNA processes. Our findings suggest that mOGT interacts with and modifies many mitochondrial proteins, and its dysregulation affects cellular bioenergetics and mitochondria function.
Collapse
|