1
|
Stijlemans B, De Baetselier P, Van Molle I, Lecordier L, Hendrickx E, Romão E, Vincke C, Baetens W, Schoonooghe S, Hassanzadeh-Ghassabeh G, Korf H, Wallays M, Pinto Torres JE, Perez-Morga D, Brys L, Campetella O, Leguizamón MS, Claes M, Hendrickx S, Mabille D, Caljon G, Remaut H, Roelants K, Magez S, Van Ginderachter JA, De Trez C. Q586B2 is a crucial virulence factor during the early stages of Trypanosoma brucei infection that is conserved amongst trypanosomatids. Nat Commun 2024; 15:1779. [PMID: 38413606 PMCID: PMC10899635 DOI: 10.1038/s41467-024-46067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 02/09/2024] [Indexed: 02/29/2024] Open
Abstract
Human African trypanosomiasis or sleeping sickness, caused by the protozoan parasite Trypanosoma brucei, is characterized by the manipulation of the host's immune response to ensure parasite invasion and persistence. Uncovering key molecules that support parasite establishment is a prerequisite to interfere with this process. We identified Q586B2 as a T. brucei protein that induces IL-10 in myeloid cells, which promotes parasite infection invasiveness. Q586B2 is expressed during all T. brucei life stages and is conserved in all Trypanosomatidae. Deleting the Q586B2-encoding Tb927.6.4140 gene in T. brucei results in a decreased peak parasitemia and prolonged survival, without affecting parasite fitness in vitro, yet promoting short stumpy differentiation in vivo. Accordingly, neutralization of Q586B2 with newly generated nanobodies could hamper myeloid-derived IL-10 production and reduce parasitemia. In addition, immunization with Q586B2 delays mortality upon a challenge with various trypanosomes, including Trypanosoma cruzi. Collectively, we uncovered a conserved protein playing an important regulatory role in Trypanosomatid infection establishment.
Collapse
Affiliation(s)
- Benoit Stijlemans
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium.
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium.
| | - Patrick De Baetselier
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Inge Van Molle
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Laurence Lecordier
- Biology of Membrane Transport Laboratory, Université Libre de Bruxelles, Gosselies, Belgium
| | - Erika Hendrickx
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Ema Romão
- VIB Nanobody Core, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cécile Vincke
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Wendy Baetens
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | | | | | - Hannelie Korf
- Laboratory of Hepatology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Marie Wallays
- Laboratory of Hepatology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Joar E Pinto Torres
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - David Perez-Morga
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, Gosselies, Belgium
| | - Lea Brys
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Oscar Campetella
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
| | - María S Leguizamón
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
| | - Mathieu Claes
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Dorien Mabille
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Kim Roelants
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Magez
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Jo A Van Ginderachter
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Carl De Trez
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
2
|
Sáez Conde J, Dean S. Structure, function and druggability of the African trypanosome flagellum. J Cell Physiol 2022; 237:2654-2667. [PMID: 35616248 PMCID: PMC9323424 DOI: 10.1002/jcp.30778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Abstract
African trypanosomes are early branching protists that cause human and animal diseases, termed trypanosomiases. They have been under intensive study for more than 100 years and have contributed significantly to our understanding of eukaryotic biology. The combination of conserved and parasite-specific features mean that their flagellum has gained particular attention. Here, we discuss the different structural features of the flagellum and their role in transmission and virulence. We highlight the possibilities of targeting flagellar function to cure trypanosome infections and help in the fight to eliminate trypanosomiases.
Collapse
Affiliation(s)
- Julia Sáez Conde
- Division of Biomedical Sciences, Warwick Medical SchoolUniversity of WarwickCoventryUK
| | - Samuel Dean
- Division of Biomedical Sciences, Warwick Medical SchoolUniversity of WarwickCoventryUK
| |
Collapse
|
3
|
Saenz-Garcia JL, Borges BS, Souza-Melo N, Machado LV, Miranda JS, Pacheco-Lugo LA, Moretti NS, Wheleer R, Soares Medeiros LC, DaRocha WD. Trypanin Disruption Affects the Motility and Infectivity of the Protozoan Trypanosoma cruzi. Front Cell Infect Microbiol 2022; 11:807236. [PMID: 35071054 PMCID: PMC8777028 DOI: 10.3389/fcimb.2021.807236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
The flagellum of Trypanosomatids is an organelle that contributes to multiple functions, including motility, cell division, and host–pathogen interaction. Trypanin was first described in Trypanosoma brucei and is part of the dynein regulatory complex. TbTrypanin knockdown parasites showed motility defects in procyclic forms; however, silencing in bloodstream forms was lethal. Since TbTrypanin mutants show drastic phenotypic changes in mammalian stages, we decided to evaluate if the Trypanosoma cruzi ortholog plays a similar role by using the CRISPR-Cas9 system to generate null mutants. A ribonucleoprotein complex of SaCas9 and sgRNA plus donor oligonucleotide were used to edit both alleles of TcTrypanin without any selectable marker. TcTrypanin −/− epimastigotes showed a lower growth rate, partially detached flagella, normal numbers of nuclei and kinetoplasts, and motility defects such as reduced displacement and speed and increased tumbling propensity. The epimastigote mutant also showed decreased efficiency of in-vitro metacyclogenesis. Mutant parasites were able to complete the entire life cycle in vitro; however, they showed a reduction in their infection capacity compared with WT and addback cultures. Our data show that T. cruzi life cycle stages have differing sensitivities to TcTrypanin deletion. In conclusion, additional work is needed to dissect the motility components of T. cruzi and to identify essential molecules for mammalian stages.
Collapse
Affiliation(s)
- Jose L Saenz-Garcia
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Curitiba, Brazil
| | - Beatriz S Borges
- Laboratório de Biologia Celular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Normanda Souza-Melo
- Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.,Laboratório de Ultraestrutura Hertha Mayer, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Luiz V Machado
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Curitiba, Brazil
| | - Juliana S Miranda
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Curitiba, Brazil
| | | | - Nilmar S Moretti
- Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Richard Wheleer
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lia C Soares Medeiros
- Laboratório de Biologia Celular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Wanderson D DaRocha
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Curitiba, Brazil
| |
Collapse
|
4
|
Structure of the trypanosome paraflagellar rod and insights into non-planar motility of eukaryotic cells. Cell Discov 2021; 7:51. [PMID: 34257277 PMCID: PMC8277818 DOI: 10.1038/s41421-021-00281-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic flagella (synonymous with cilia) rely on a microtubule-based axoneme, together with accessory filaments to carryout motility and signaling functions. While axoneme structures are well characterized, 3D ultrastructure of accessory filaments and their axoneme interface are mostly unknown, presenting a critical gap in understanding structural foundations of eukaryotic flagella. In the flagellum of the protozoan parasite Trypanosoma brucei (T. brucei), the axoneme is accompanied by a paraflagellar rod (PFR) that supports non-planar motility and signaling necessary for disease transmission and pathogenesis. Here, we employed cryogenic electron tomography (cryoET) with sub-tomographic averaging, to obtain structures of the PFR, PFR-axoneme connectors (PACs), and the axonemal central pair complex (CPC). The structures resolve how the 8 nm repeat of the axonemal tubulin dimer interfaces with the 54 nm repeat of the PFR, which consist of proximal, intermediate, and distal zones. In the distal zone, stacked "density scissors" connect with one another to form a "scissors stack network (SSN)" plane oriented 45° to the axoneme axis; and ~370 parallel SSN planes are connected by helix-rich wires into a paracrystalline array with ~90% empty space. Connections from these wires to the intermediate zone, then to overlapping layers of the proximal zone and to the PACs, and ultimately to the CPC, point to a contiguous pathway for signal transmission. Together, our findings provide insights into flagellum-driven, non-planar helical motility of T. brucei and have broad implications ranging from cell motility and tensegrity in biology, to engineering principles in bionics.
Collapse
|
5
|
Dean S. Basic Biology of Trypanosoma brucei with Reference to the Development of Chemotherapies. Curr Pharm Des 2021; 27:1650-1670. [PMID: 33463458 DOI: 10.2174/1381612827666210119105008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
Abstract
Trypanosoma brucei are protozoan parasites that cause the lethal human disease African sleeping sickness and the economically devastating disease of cattle, Nagana. African sleeping sickness, also known as Human African Trypanosomiasis (HAT), threatens 65 million people and animal trypanosomiasis makes large areas of farmland unusable. There is no vaccine and licensed therapies against the most severe, late-stage disease are toxic, impractical and ineffective. Trypanosomes are transmitted by tsetse flies, and HAT is therefore predominantly confined to the tsetse fly belt in sub-Saharan Africa. They are exclusively extracellular and they differentiate between at least seven developmental forms that are highly adapted to host and vector niches. In the mammalian (human) host they inhabit the blood, cerebrospinal fluid (late-stage disease), skin, and adipose fat. In the tsetse fly vector they travel from the tsetse midgut to the salivary glands via the ectoperitrophic space and proventriculus. Trypanosomes are evolutionarily divergent compared with most branches of eukaryotic life. Perhaps most famous for their extraordinary mechanisms of monoallelic gene expression and antigenic variation, they have also been investigated because much of their biology is either highly unconventional or extreme. Moreover, in addition to their importance as pathogens, many researchers have been attracted to the field because trypanosomes have some of the most advanced molecular genetic tools and database resources of any model system. The following will cover just some aspects of trypanosome biology and how its divergent biochemistry has been leveraged to develop drugs to treat African sleeping sickness. This is by no means intended to be a comprehensive survey of trypanosome features. Rather, I hope to present trypanosomes as one of the most fascinating and tractable systems to do discovery biology.
Collapse
Affiliation(s)
- Samuel Dean
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
6
|
APEX2 Proximity Proteomics Resolves Flagellum Subdomains and Identifies Flagellum Tip-Specific Proteins in Trypanosoma brucei. mSphere 2021; 6:6/1/e01090-20. [PMID: 33568455 PMCID: PMC8141408 DOI: 10.1128/msphere.01090-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Sleeping sickness is a neglected tropical disease caused by the protozoan parasite Trypanosoma brucei. The disease disrupts the sleep-wake cycle, leading to coma and death if left untreated. T. brucei motility, transmission, and virulence depend on its flagellum (cilium), which consists of several different specialized subdomains. Trypanosoma brucei is the protozoan parasite responsible for sleeping sickness, a lethal vector-borne disease. T. brucei has a single flagellum (cilium) that plays critical roles in transmission and pathogenesis. An emerging concept is that the flagellum is organized into subdomains, each having specialized composition and function. The overall flagellum proteome has been well studied, but a critical knowledge gap is the protein composition of individual subdomains. We have tested whether APEX-based proximity proteomics could be used to examine the protein composition of T. brucei flagellum subdomains. As APEX-based labeling has not previously been described in T. brucei, we first fused APEX2 to the DRC1 subunit of the nexin-dynein regulatory complex, a well-characterized axonemal complex. We found that DRC1-APEX2 directs flagellum-specific biotinylation, and purification of biotinylated proteins yields a DRC1 “proximity proteome” having good overlap with published proteomes obtained from purified axonemes. Having validated the use of APEX2 in T. brucei, we next attempted to distinguish flagellar subdomains by fusing APEX2 to a flagellar membrane protein that is restricted to the flagellum tip, AC1, and another one that is excluded from the tip, FS179. Fluorescence microscopy demonstrated subdomain-specific biotinylation, and principal-component analysis showed distinct profiles between AC1-APEX2 and FS179-APEX2. Comparing these two profiles allowed us to identify an AC1 proximity proteome that is enriched for tip proteins, including proteins involved in signaling. Our results demonstrate that APEX2-based proximity proteomics is effective in T. brucei and can be used to resolve the proteome composition of flagellum subdomains that cannot themselves be readily purified. IMPORTANCE Sleeping sickness is a neglected tropical disease caused by the protozoan parasite Trypanosoma brucei. The disease disrupts the sleep-wake cycle, leading to coma and death if left untreated. T. brucei motility, transmission, and virulence depend on its flagellum (cilium), which consists of several different specialized subdomains. Given the essential and multifunctional role of the T. brucei flagellum, there is need for approaches that enable proteomic analysis of individual subdomains. Our work establishes that APEX2 proximity labeling can, indeed, be implemented in the biochemical environment of T. brucei and has allowed identification of proximity proteomes for different flagellar subdomains that cannot be purified. This capacity opens the possibility to study the composition and function of other compartments. We expect this approach may be extended to other eukaryotic pathogens and will enhance the utility of T. brucei as a model organism to study ciliopathies, heritable human diseases in which cilium function is impaired.
Collapse
|
7
|
Wang Z, Beneke T, Gluenz E, Wheeler RJ. The single flagellum of Leishmania has a fixed polarisation of its asymmetric beat. J Cell Sci 2020; 133:133/20/jcs246637. [PMID: 33093230 PMCID: PMC7595685 DOI: 10.1242/jcs.246637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022] Open
Abstract
Eukaryotic flagella undertake different beat types as necessary for different functions; for example, the Leishmania parasite flagellum undergoes a symmetric tip-to-base beat for forward swimming and an asymmetric base-to-tip beat to rotate the cell. In multi-ciliated tissues or organisms, the asymmetric beats are coordinated, leading to movement of the cell, organism or surrounding fluid. This coordination involves a polarisation of power stroke direction. Here, we asked whether the asymmetric beat of the single Leishmania flagellum also has a fixed polarisation. We developed high frame rate dual-colour fluorescence microscopy to visualise flagellar-associated structures in live swimming cells. This showed that the asymmetric Leishmania beat is polarised, with power strokes only occurring in one direction relative to the asymmetric flagellar machinery. Polarisation of bending was retained in deletion mutants whose flagella cannot beat but have a static bend. Furthermore, deletion mutants for proteins required for asymmetric extra-axonemal and rootlet-like flagellum-associated structures also retained normal polarisation. Leishmania beat polarisation therefore likely arises from either the nine-fold rotational symmetry of the axoneme structure or is due to differences between the outer doublet decorations. Highlighted Article: By using high speed, high-resolution fluorescence microscopy of swimming Leishmania cells, we showed that the asymmetric flagellar beat always wafts in the same direction and investigate which structures are involved.
Collapse
Affiliation(s)
- Ziyin Wang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Eva Gluenz
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Richard John Wheeler
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
D'Andréa ÉD, Roske Y, Oliveira GAD, Cremer N, Diehl A, Schmieder P, Heinemann U, Oschkinat H, Pires JR. Crystal structure of Q4D6Q6, a conserved kinetoplastid-specific protein from Trypanosoma cruzi. J Struct Biol 2020; 211:107536. [DOI: 10.1016/j.jsb.2020.107536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 10/24/2022]
|
9
|
Alves AA, Gabriel HB, Bezerra MJR, de Souza W, Vaughan S, Cunha-E-Silva NL, Sunter JD. Control of assembly of extra-axonemal structures: the paraflagellar rod of trypanosomes. J Cell Sci 2020; 133:jcs242271. [PMID: 32295845 PMCID: PMC7272336 DOI: 10.1242/jcs.242271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic flagella are complex microtubule-based organelles that, in many organisms, contain extra-axonemal structures, such as the outer dense fibres of mammalian sperm and the paraflagellar rod (PFR) of trypanosomes. Flagellum assembly is a complex process occurring across three main compartments, the cytoplasm, the transition zone and the flagellum itself. The process begins with the translation of protein components followed by their sorting and trafficking into the flagellum, transport to the assembly site and incorporation. Flagella are formed from over 500 proteins and the principles governing assembly of the axonemal components are relatively clear. However, the coordination and location of assembly of extra-axonemal structures are less clear. We have discovered two cytoplasmic proteins in Trypanosoma brucei that are required for PFR formation, PFR assembly factors 1 and 2 (PFR-AF1 and PFR-AF2, respectively). Deletion of either PFR-AF1 or PFR-AF2 dramatically disrupted PFR formation and caused a reduction in the amount of major PFR proteins. The existence of cytoplasmic factors required for PFR formation aligns with the concept that processes facilitating axoneme assembly occur across multiple compartments, and this is likely a common theme for extra-axonemal structure assembly.
Collapse
Affiliation(s)
- Aline A Alves
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Heloisa B Gabriel
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Maria J R Bezerra
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Wanderley de Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Narcisa L Cunha-E-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Jack D Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
10
|
Beneke T, Demay F, Hookway E, Ashman N, Jeffery H, Smith J, Valli J, Becvar T, Myskova J, Lestinova T, Shafiq S, Sadlova J, Volf P, Wheeler RJ, Gluenz E. Genetic dissection of a Leishmania flagellar proteome demonstrates requirement for directional motility in sand fly infections. PLoS Pathog 2019; 15:e1007828. [PMID: 31242261 PMCID: PMC6615630 DOI: 10.1371/journal.ppat.1007828] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 07/09/2019] [Accepted: 05/08/2019] [Indexed: 11/29/2022] Open
Abstract
The protozoan parasite Leishmania possesses a single flagellum, which is remodelled during the parasite’s life cycle from a long motile flagellum in promastigote forms in the sand fly to a short immotile flagellum in amastigotes residing in mammalian phagocytes. This study examined the protein composition and in vivo function of the promastigote flagellum. Protein mass spectrometry and label free protein enrichment testing of isolated flagella and deflagellated cell bodies defined a flagellar proteome for L. mexicana promastigote forms (available via ProteomeXchange with identifier PXD011057). This information was used to generate a CRISPR-Cas9 knockout library of 100 mutants to screen for flagellar defects. This first large-scale knockout screen in a Leishmania sp. identified 56 mutants with altered swimming speed (52 reduced and 4 increased) and defined distinct mutant categories (faster swimmers, slower swimmers, slow uncoordinated swimmers and paralysed cells, including aflagellate promastigotes and cells with curled flagella and disruptions of the paraflagellar rod). Each mutant was tagged with a unique 17-nt barcode, providing a simple barcode sequencing (bar-seq) method for measuring the relative fitness of L. mexicana mutants in vivo. In mixed infections of the permissive sand fly vector Lutzomyia longipalpis, paralysed promastigotes and uncoordinated swimmers were severely diminished in the fly after defecation of the bloodmeal. Subsequent examination of flies infected with a single paralysed mutant lacking the central pair protein PF16 or an uncoordinated swimmer lacking the axonemal protein MBO2 showed that these promastigotes did not reach anterior regions of the fly alimentary tract. These data show that L. mexicana need directional motility for successful colonisation of sand flies. Leishmania are protozoan parasites, transmitted between mammals by the bite of phlebotomine sand flies. Promastigote forms in the sand fly have a long flagellum, which is motile and used for anchoring the parasites to prevent clearance with the digested blood meal remnants. To dissect flagellar functions and their importance in life cycle progression, we generated here a comprehensive list of >300 flagellar proteins and produced a CRISPR-Cas9 gene knockout library of 100 mutant Leishmania. We studied their behaviour in vitro before examining their fate in the sand fly Lutzomyia longipalpis. Measuring mutant swimming speeds showed that about half behaved differently compared to the wild type: a few swam faster, many slower and some were completely paralysed. We also found a group of uncoordinated swimmers. To test whether flagellar motility is required for parasite migration from the fly midgut to the foregut from where they reach the next host, we infected sand flies with a mixed mutant population. Each mutant carried a unique tag and tracking these tags up to nine days after infection showed that paralysed and uncoordinated Leishmania were rapidly lost from flies. These data indicate that directional swimming is important for successful colonisation of sand flies.
Collapse
Affiliation(s)
- Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - François Demay
- University of Lille 1, Cité Scientifique, Villeneuve d’Ascq, France
| | - Edward Hookway
- Research Department of Pathology, University College London, London, United Kingdom
| | - Nicole Ashman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Heather Jeffery
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - James Smith
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Jessica Valli
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Tomas Becvar
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jitka Myskova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tereza Lestinova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Shahaan Shafiq
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, United Kingdom
| | - Jovana Sadlova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Richard John Wheeler
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Zhou F, Chen X, Chen G, Yan J, Xiao Y. Identification of SAA and ACTB as potential biomarker of patients with severe HFMD using iTRAQ quantitative proteomics. Clin Biochem 2019; 67:1-6. [PMID: 30817906 DOI: 10.1016/j.clinbiochem.2019.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 02/01/2019] [Accepted: 02/24/2019] [Indexed: 12/19/2022]
Abstract
Hand, foot and mouth disease (HFMD) is an infectious disease caused by a variety of enterovirus infections, and the most common types of virus infections are the newenterovirus71 (EV71) and coxsackievirus A group 16 (CoxA16). A small fraction of HFMD will cause further severe HFMD. A rapid and accurate diagnosis biomarker of severe HFMD is important for the timely treatment. In the study, we conducted a clinical biomarker discovery study using iTRAQ combined with MS. Serum proteome alterations in severe HFMD group (n = 32) and health control group (n = 32) were analyzed. 47 proteins were upregulated (fold change > 1.5) between the severe HFMD group and HC group. The identified proteins were classified into different groups according to the molecular function, biology processes, cellular component. During the up-regulated proteins, serum amyloid A (SAA) and human β-actin (ACTB), were confirmed in the serum of the severe HFMD and HC by ELISA assay. SAA and ACTB levels were significantly higher in the sever HFMD patients (P < .01), consistent with iTRAQ-LC-MS/MS analysis. In summary, Our results showed that SAA and human β-actin (ACTB) may be served as a potential biomarker of the clinical diagnosis of severe HFMD.
Collapse
Affiliation(s)
- Fangye Zhou
- Fujian Medical University Teaching Hospital, First Hospital of Putian, China
| | - Xianqian Chen
- Fujian Medical University Teaching Hospital, First Hospital of Putian, China.
| | - Guoxian Chen
- Fujian Medical University Teaching Hospital, First Hospital of Putian, China
| | - Junhua Yan
- Fujian Medical University Teaching Hospital, First Hospital of Putian, China
| | - Yupeng Xiao
- Fujian Medical University Teaching Hospital, First Hospital of Putian, China
| |
Collapse
|
12
|
Halliday C, Billington K, Wang Z, Madden R, Dean S, Sunter JD, Wheeler RJ. Cellular landmarks of Trypanosoma brucei and Leishmania mexicana. Mol Biochem Parasitol 2018; 230:24-36. [PMID: 30550896 PMCID: PMC6529878 DOI: 10.1016/j.molbiopara.2018.12.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 11/29/2022]
Abstract
Trypanosoma and Leishmania are single cell eukaryotic parasites. The cell organisation of these human pathogens is complex and highly structured. This describes an inventory of reliable reference markers for 32 cell structures. These light microscopy landmarks are a valuable resource for researchers.
The kinetoplastids Trypanosoma brucei and Leishmania mexicana are eukaryotes with a highly structured cellular organisation that is reproduced with great fidelity in each generation. The pattern of signal from a fluorescently tagged protein can define the specific structure/organelle that this protein localises to, and can be extremely informative in phenotype analysis in experimental perturbations, life cycle tracking, post-genomic assays and functional analysis of organelles. Using the vast coverage of protein subcellular localisations provided by the TrypTag project, an ongoing project to determine the localisation of every protein encoded in the T. brucei genome, we have generated an inventory of reliable reference organelle markers for both parasites that combines epifluorescence images with a detailed description of the key features of each localisation. We believe this will be a useful comparative resource that will enable researchers to quickly and accurately pinpoint the localisation of their proteins of interest and will provide cellular markers for many types of cell biology studies. We see this as another important step in the post-genomic era analyses of these parasites, in which ever expanding datasets generate numerous candidates to analyse. Adoption of these reference proteins by the community is likely to enhance research studies and enable better comparison of data.
Collapse
Affiliation(s)
- Clare Halliday
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK; Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Karen Billington
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Ziyin Wang
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Ross Madden
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Samuel Dean
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Jack Daniel Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| | - Richard John Wheeler
- The Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford, OX1 3SY, UK.
| |
Collapse
|
13
|
Ramakrishnan S, Docampo R. Membrane Proteins in Trypanosomatids Involved in Ca 2+ Homeostasis and Signaling. Genes (Basel) 2018; 9:E304. [PMID: 29921754 PMCID: PMC6027440 DOI: 10.3390/genes9060304] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 01/10/2023] Open
Abstract
Calcium ion (Ca2+) serves as a second messenger for a variety of cell functions in trypanosomes. Several proteins in the plasma membrane, acidocalcisomes, endoplasmic reticulum, and mitochondria are involved in its homeostasis and in cell signaling roles. The plasma membrane has a Ca2+ channel for its uptake and a plasma membrane-type Ca2+-ATPase (PMCA) for its efflux. A similar PMCA is also located in acidocalcisomes, acidic organelles that are the primary Ca2+ store and that possess an inositol 1,4,5-trisphosphate receptor (IP₃R) for Ca2+ efflux. Their mitochondria possess a mitochondrial calcium uniporter complex (MCUC) for Ca2+ uptake and a Ca2+/H⁺ exchanger for Ca2+ release. The endoplasmic reticulum has a sarcoplasmic-endoplasmic reticulum-type Ca2+-ATPase (SERCA) for Ca2+ uptake but no Ca2+ release mechanism has been identified. Additionally, the trypanosomatid genomes contain other membrane proteins that could potentially bind calcium and await further characterization.
Collapse
Affiliation(s)
- Srinivasan Ramakrishnan
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA.
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA.
- Department of Cellular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
14
|
Bower R, Tritschler D, Mills KV, Heuser T, Nicastro D, Porter ME. DRC2/CCDC65 is a central hub for assembly of the nexin-dynein regulatory complex and other regulators of ciliary and flagellar motility. Mol Biol Cell 2017; 29:137-153. [PMID: 29167384 PMCID: PMC5909927 DOI: 10.1091/mbc.e17-08-0510] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 02/01/2023] Open
Abstract
DRC2 is a subunit of the nexin–dynein regulatory complex linked to primary ciliary dyskinesia. Little is known about the impact of drc2 mutations on axoneme composition and structure. We used proteomic and structural approaches to reveal that DRC2 coassembles with DRC1 to attach the N-DRC to the A-tubule and mediate interactions with other regulatory structures. The nexin–dynein regulatory complex (N-DRC) plays a central role in the regulation of ciliary and flagellar motility. In most species, the N-DRC contains at least 11 subunits, but the specific function of each subunit is unknown. Mutations in three subunits (DRC1, DRC2/CCDC65, DRC4/GAS8) have been linked to defects in ciliary motility in humans and lead to a ciliopathy known as primary ciliary dyskinesia (PCD). Here we characterize the biochemical, structural, and motility phenotypes of two mutations in the DRC2 gene of Chlamydomonas. Using high-resolution proteomic and structural approaches, we find that the C-terminal region of DRC2 is critical for the coassembly of DRC2 and DRC1 to form the base plate of N-DRC and its attachment to the outer doublet microtubule. Loss of DRC2 in drc2 mutants disrupts the assembly of several other N-DRC subunits and also destabilizes the assembly of several closely associated structures such as the inner dynein arms, the radial spokes, and the calmodulin- and spoke-associated complex. Our study provides new insights into the range of ciliary defects that can lead to PCD.
Collapse
Affiliation(s)
- Raqual Bower
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Douglas Tritschler
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Kristyn VanderWaal Mills
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Thomas Heuser
- Biology Department and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454.,Vienna Biocenter Core Facilities, 1030 Vienna, Austria
| | - Daniela Nicastro
- Biology Department and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454.,Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Mary E Porter
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455
| |
Collapse
|
15
|
Novel Effects of Lapatinib Revealed in the African Trypanosome by Using Hypothesis-Generating Proteomics and Chemical Biology Strategies. Antimicrob Agents Chemother 2017; 61:AAC.01865-16. [PMID: 27872081 DOI: 10.1128/aac.01865-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/18/2016] [Indexed: 01/07/2023] Open
Abstract
Human African trypanosomiasis is a neglected tropical disease caused by the protozoan parasite Trypanosoma brucei Lapatinib, a human epidermal growth factor receptor (EGFR) inhibitor, can cure 25% of trypanosome-infected mice, although the parasite lacks EGFR-like tyrosine kinases. Four trypanosome protein kinases associate with lapatinib, suggesting that the drug may be a multitargeted inhibitor of phosphoprotein signaling in the bloodstream trypanosome. Phosphoprotein signaling pathways in T. brucei have diverged significantly from those in humans. As a first step in the evaluation of the polypharmacology of lapatinib in T. brucei, we performed a proteome-wide phosphopeptide analysis before and after drug addition to cells. Lapatinib caused dephosphorylation of Ser/Thr sites on proteins predicted to be involved in scaffolding, gene expression, and intracellular vesicle trafficking. To explore the perturbation of phosphotyrosine (pTyr)-dependent signaling by lapatinib, proteins in lapatinib-susceptible pTyr complexes were identified by affinity chromatography; they included BILBO-1, MORN, and paraflagellar rod (PFR) proteins PFR1 and PFR2. These data led us to hypothesize that lapatinib disrupts PFR functions and/or endocytosis in the trypanosome. In direct chemical biology tests of these speculations, lapatinib-treated trypanosomes (i) lost segments of the PFR inside the flagellum, (ii) were inhibited in the endocytosis of transferrin, and (iii) changed morphology from long and slender to rounded. Thus, our hypothesis-generating phosphoproteomics strategy predicted novel physiological pathways perturbed by lapatinib, which were verified experimentally. General implications of this workflow for identifying signaling pathways perturbed by drug hits discovered in phenotypic screens are discussed.
Collapse
|
16
|
Two flagellar BAR domain proteins in Trypanosoma brucei with stage-specific regulation. Sci Rep 2016; 6:35826. [PMID: 27779220 PMCID: PMC5078803 DOI: 10.1038/srep35826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/03/2016] [Indexed: 01/08/2023] Open
Abstract
Trypanosomes are masters of adaptation to different host environments during their complex life cycle. Large-scale proteomic approaches provide information on changes at the cellular level, and in a systematic way. However, detailed work on single components is necessary to understand the adaptation mechanisms on a molecular level. Here, we have performed a detailed characterization of a bloodstream form (BSF) stage-specific putative flagellar host adaptation factor Tb927.11.2400, identified previously in a SILAC-based comparative proteome study. Tb927.11.2400 shares 38% amino acid identity with TbFlabarin (Tb927.11.2410), a procyclic form (PCF) stage-specific flagellar BAR domain protein. We named Tb927.11.2400 TbFlabarin-like (TbFlabarinL), and demonstrate that it originates from a gene duplication event, which occurred in the African trypanosomes. TbFlabarinL is not essential for the growth of the parasites under cell culture conditions and it is dispensable for developmental differentiation from BSF to the PCF in vitro. We generated TbFlabarinL-specific antibodies, and showed that it localizes in the flagellum. Co-immunoprecipitation experiments together with a biochemical cell fractionation suggest a dual association of TbFlabarinL with the flagellar membrane and the components of the paraflagellar rod.
Collapse
|
17
|
Basal body multipotency and axonemal remodelling are two pathways to a 9+0 flagellum. Nat Commun 2015; 6:8964. [PMID: 26667778 PMCID: PMC4682162 DOI: 10.1038/ncomms9964] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 10/21/2015] [Indexed: 02/07/2023] Open
Abstract
Eukaryotic cilia/flagella exhibit two characteristic ultrastructures reflecting two main functions; a 9+2 axoneme for motility and a 9+0 axoneme for sensation and signalling. Whether, and if so how, they interconvert is unclear. Here we analyse flagellum length, structure and molecular composition changes in the unicellular eukaryotic parasite Leishmania during the transformation of a life cycle stage with a 9+2 axoneme (the promastigote) to one with a 9+0 axoneme (the amastigote). We show 9+0 axonemes can be generated by two pathways: by de novo formation and by restructuring of existing 9+2 axonemes associated with decreased intraflagellar transport. Furthermore, pro-basal bodies formed under conditions conducive for 9+2 axoneme formation can form a 9+0 axoneme de novo. We conclude that pro-centrioles/pro-basal bodies are multipotent and not committed to form either a 9+2 or 9+0 axoneme. In an alternative pathway structures can also be removed from existing 9+2 axonemes to convert them to 9+0. Whether basal bodies are pre-committed to form 9+2 motile or 9+0 sensory axonemes and whether interconversion occurs between the two types of axonemes is not clear. Here, the authors used the unicellular eukaryote Leishmania as a model system to demonstrate that 9+0 axonemes can be formed de novo or by restructuring of 9+2 axonemes.
Collapse
|
18
|
Maharana BR, Tewari AK, Singh V. An overview on kinetoplastid paraflagellar rod. J Parasit Dis 2015; 39:589-95. [PMID: 26688619 PMCID: PMC4675581 DOI: 10.1007/s12639-014-0422-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/13/2014] [Indexed: 01/23/2023] Open
Abstract
Kinetoplastids, the evolutionary ancient organisms exhibit a rich and diverse biology which epitomizes many of the fascinating topics of recent interest and study. These organisms possess a multifunctional organelle, the flagellum containing a canonical 9 + 2 axoneme which is involved in vital roles, viz. parasite cell division, morphogenesis, motility and immune evasion. Since Antony Van Leeuwenhoek's innovative explanation of 'little legs' helping the movements of microbes in 1975, this biological nanomachine has captured the thoughts of scientists. The core structure of kinetoplastid flagellum is embroidered with a range of extra-axonemal structures such as paraflagellar rod (PFR), a large lattice like structure which extends alongside the axoneme from the flagellar pocket to the flagellar tip. The coding sequences for significant components of PFR are highly conserved throughout the Kinetoplastida and Euglenida. The high order organization and restricted evolutionary distribution of the PFR components and structure makes the PFR a particularly valuable therapeutic and prophylactic target. This review focuses on the recent developments in identification of ultra structural components of PFR in order to understand the function of this intriguing organelle and devising strategies for therapeutic interventions.
Collapse
Affiliation(s)
- B. R. Maharana
- />Department of Veterinary Parasitology, College of Veterinary Science and Animal Husbandry, Junagadh Agricultural University, Junagadh, 362001 Gujarat India
| | - A. K. Tewari
- />Division of Veterinary Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 Uttar Pradesh India
| | - Veer Singh
- />Department of Veterinary Parasitology, College of Veterinary Science and Animal Husbandry, Sardar Krushinagar Dantiwada Agricultural University, Sardarkrushinagar, 3855006 Gujarat India
| |
Collapse
|
19
|
Lost but not forgotten. Cell Host Microbe 2015; 16:423-5. [PMID: 25299325 DOI: 10.1016/j.chom.2014.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
During its developmental transformation in the mammalian host, Trypanosma cruzi discards it flagellum into the cytoplasm of the host cell. In the current issue of Cell Host & Microbe, Kurup and Tarleton (2014) exploit the antigens made available by this process to develop a more effective vaccine strategy.
Collapse
|
20
|
Zhou Q, Hu H, He CY, Li Z. Assembly and maintenance of the flagellum attachment zone filament in Trypanosoma brucei. J Cell Sci 2015; 128:2361-72. [PMID: 25972344 DOI: 10.1242/jcs.168377] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/06/2015] [Indexed: 11/20/2022] Open
Abstract
Adhesion of motile flagella to the cell body in Trypanosoma brucei requires a filamentous cytoskeletal structure termed the flagellum attachment zone (FAZ). Despite its essentiality, the complete molecular composition of the FAZ filament and its roles in FAZ filament assembly remain poorly understood. By localization-based screening, we here identified a new FAZ protein, which we called FAZ2. Knockdown of FAZ2 disrupted the FAZ filament, destabilized multiple FAZ filament proteins and caused a cytokinesis defect. We also showed that FAZ2 depletion destabilized another new FAZ filament protein and several flagellum and cytoskeleton proteins. Furthermore, we identified CC2D and KMP11 as FAZ2 partners through affinity purification, and showed that they are each required for maintaining a stable complex. Finally, we demonstrated that FAZ filament proteins are incorporated into the FAZ filament from the proximal region, in contrast to the flagellum components, which are incorporated from the distal tip. In summary, we identified three new FAZ filament proteins and a FAZ filament protein complex, and our results suggest that assembly of the FAZ filament occurs at the proximal region and is essential to maintain the stability of FAZ filament proteins.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Huiqing Hu
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Cynthia Y He
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, TX 77030, USA
| |
Collapse
|
21
|
Sunter JD, Varga V, Dean S, Gull K. A dynamic coordination of flagellum and cytoplasmic cytoskeleton assembly specifies cell morphogenesis in trypanosomes. J Cell Sci 2015; 128:1580-94. [PMID: 25736289 PMCID: PMC4406125 DOI: 10.1242/jcs.166447] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/22/2015] [Indexed: 01/26/2023] Open
Abstract
Plasma membrane-to-plasma membrane connections are common features of eukaryotic cells, with cytoskeletal frameworks below the respective membranes underpinning these connections. A defining feature of Trypanosoma brucei is the lateral attachment of its single flagellum to the cell body, which is mediated by a cytoskeletal structure called the flagellum attachment zone (FAZ). The FAZ is a key morphogenetic structure. Disruption of FAZ assembly can lead to flagellum detachment and dramatic changes in cell shape. To understand this complex structure, the identity of more of its constituent proteins is required. Here, we have used both proteomics and bioinformatics to identify eight new FAZ proteins. Using inducible expression of FAZ proteins tagged with eYFP we demonstrate that the site of FAZ assembly is close to the flagellar pocket at the proximal end of the FAZ. This contrasts with the flagellum, which is assembled at its distal end; hence, these two interconnected cytoskeletal structures have distinct spatially separated assembly sites. This challenging result has many implications for understanding the process of cell morphogenesis and interpreting mutant phenotypes.
Collapse
Affiliation(s)
- Jack D Sunter
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Vladimir Varga
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Samuel Dean
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Keith Gull
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
22
|
Generation of a nanobody targeting the paraflagellar rod protein of trypanosomes. PLoS One 2014; 9:e115893. [PMID: 25551637 PMCID: PMC4281110 DOI: 10.1371/journal.pone.0115893] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 11/27/2014] [Indexed: 11/23/2022] Open
Abstract
Trypanosomes are protozoan parasites that cause diseases in humans and livestock for which no vaccines are available. Disease eradication requires sensitive diagnostic tools and efficient treatment strategies. Immunodiagnostics based on antigen detection are preferable to antibody detection because the latter cannot differentiate between active infection and cure. Classical monoclonal antibodies are inaccessible to cryptic epitopes (based on their size-150 kDa), costly to produce and require cold chain maintenance, a condition that is difficult to achieve in trypanosomiasis endemic regions, which are mostly rural. Nanobodies are recombinant, heat-stable, small-sized (15 kDa), antigen-specific, single-domain, variable fragments derived from heavy chain-only antibodies in camelids. Because of numerous advantages over classical antibodies, we investigated the use of nanobodies for the targeting of trypanosome-specific antigens and diagnostic potential. An alpaca was immunized using lysates of Trypanosoma evansi. Using phage display and bio-panning techniques, a cross-reactive nanobody (Nb392) targeting all trypanosome species and isolates tested was selected. Imunoblotting, immunofluorescence microscopy, immunoprecipitation and mass spectrometry assays were combined to identify the target recognized. Nb392 targets paraflagellar rod protein (PFR1) of T. evansi, T. brucei, T. congolense and T. vivax. Two different RNAi mutants with defective PFR assembly (PFR2RNAi and KIF9BRNAi) were used to confirm its specificity. In conclusion, using a complex protein mixture for alpaca immunization, we generated a highly specific nanobody (Nb392) that targets a conserved trypanosome protein, i.e., PFR1 in the flagella of trypanosomes. Nb392 is an excellent marker for the PFR and can be useful in the diagnosis of trypanosomiasis. In addition, as demonstrated, Nb392 can be a useful research or PFR protein isolation tool.
Collapse
|
23
|
Docampo R, Huang G. Calcium signaling in trypanosomatid parasites. Cell Calcium 2014; 57:194-202. [PMID: 25468729 DOI: 10.1016/j.ceca.2014.10.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/27/2014] [Accepted: 10/29/2014] [Indexed: 11/29/2022]
Abstract
Calcium ion (Ca(2+)) is an important second messenger in trypanosomatids and essential for their survival although prolonged high intracellular Ca(2+) levels lead to cell death. As other eukaryotic cells, trypanosomes use two sources of Ca(2+) for generating signals: Ca(2+) release from intracellular stores and Ca(2+) entry across the plasma membrane. Ca(2+) release from intracellular stores is controlled by the inositol 1,4,5-trisphosphate receptor (IP3R) that is located in acidocalcisomes, acidic organelles that are the primary Ca(2+) reservoir in these cells. A plasma membrane Ca(2+)-ATPase controls the cytosolic Ca(2+) levels and a number of pumps and exchangers are responsible for Ca(2+) uptake and release from intracellular compartments. The trypanosomatid genomes contain a wide variety of signaling and regulatory proteins that bind Ca(2+) as well as many Ca(2+)-binding proteins that await further characterization. The mitochondrial Ca(2+) transporters of trypanosomatids have an important role in the regulation of cell bioenergetics and flagellar Ca(2+) appears to have roles in sensing the environment. In trypanosomatids in which an intracellular life cycle is present, Ca(2+) signaling is important for host cell invasion.
Collapse
Affiliation(s)
- Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30620, USA; Departamento de Patologia Clínica, State University of Campinas, Campinas, SP 13083, Brazil.
| | - Guozhong Huang
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30620, USA
| |
Collapse
|
24
|
Portman N, Gull K. Identification of paralogous life-cycle stage specific cytoskeletal proteins in the parasite Trypanosoma brucei. PLoS One 2014; 9:e106777. [PMID: 25180513 PMCID: PMC4152294 DOI: 10.1371/journal.pone.0106777] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/07/2014] [Indexed: 12/03/2022] Open
Abstract
The life cycle of the African trypanosome Trypanosoma brucei, is characterised by a transition between insect and mammalian hosts representing very different environments that present the parasite with very different challenges. These challenges are met by the expression of life-cycle stage-specific cohorts of proteins, which function in systems such as metabolism and immune evasion. These life-cycle transitions are also accompanied by morphological rearrangements orchestrated by microtubule dynamics and associated proteins of the subpellicular microtubule array. Here we employed a gel-based comparative proteomic technique, Difference Gel Electrophoresis, to identify cytoskeletal proteins that are expressed differentially in mammalian infective and insect form trypanosomes. From this analysis we identified a pair of novel, paralogous proteins, one of which is expressed in the procyclic form and the other in the bloodstream form. We show that these proteins, CAP51 and CAP51V, localise to the subpellicular corset of microtubules and are essential for correct organisation of the cytoskeleton and successful cytokinesis in their respective life cycle stages. We demonstrate for the first time redundancy of function between life-cycle stage specific paralogous sets in the cytoskeleton and reveal modification of cytoskeletal components in situ prior to their removal during differentiation from the bloodstream form to the insect form. These specific results emphasise a more generic concept that the trypanosome genome encodes a cohort of cytoskeletal components that are present in at least two forms with life-cycle stage-specific expression.
Collapse
Affiliation(s)
- Neil Portman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Faculty of Veterinary Science, University of Sydney, Sydney, Australia
- * E-mail:
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Brown RWB, Collingridge PW, Gull K, Rigden DJ, Ginger ML. Evidence for loss of a partial flagellar glycolytic pathway during trypanosomatid evolution. PLoS One 2014; 9:e103026. [PMID: 25050549 PMCID: PMC4106842 DOI: 10.1371/journal.pone.0103026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/27/2014] [Indexed: 11/18/2022] Open
Abstract
Classically viewed as a cytosolic pathway, glycolysis is increasingly recognized as a metabolic pathway exhibiting surprisingly wide-ranging variations in compartmentalization within eukaryotic cells. Trypanosomatid parasites provide an extreme view of glycolytic enzyme compartmentalization as several glycolytic enzymes are found exclusively in peroxisomes. Here, we characterize Trypanosoma brucei flagellar proteins resembling glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoglycerate kinase (PGK): we show the latter associates with the axoneme and the former is a novel paraflagellar rod component. The paraflagellar rod is an essential extra-axonemal structure in trypanosomes and related protists, providing a platform into which metabolic activities can be built. Yet, bioinformatics interrogation and structural modelling indicate neither the trypanosome PGK-like nor the GAPDH-like protein is catalytically active. Orthologs are present in a free-living ancestor of the trypanosomatids, Bodo saltans: the PGK-like protein from B. saltans also lacks key catalytic residues, but its GAPDH-like protein is predicted to be catalytically competent. We discuss the likelihood that the trypanosome GAPDH-like and PGK-like proteins constitute molecular evidence for evolutionary loss of a flagellar glycolytic pathway, either as a consequence of niche adaptation or the re-localization of glycolytic enzymes to peroxisomes and the extensive changes to glycolytic flux regulation that accompanied this re-localization. Evidence indicating loss of localized ATP provision via glycolytic enzymes therefore provides a novel contribution to an emerging theme of hidden diversity with respect to compartmentalization of the ubiquitous glycolytic pathway in eukaryotes. A possibility that trypanosome GAPDH-like protein additionally represents a degenerate example of a moonlighting protein is also discussed.
Collapse
Affiliation(s)
- Robert W. B. Brown
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | | | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Daniel J. Rigden
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Michael L. Ginger
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Abstract
Trypanosoma brucei is a pathogenic unicellular eukaryote that infects humans and other mammals in sub-Saharan Africa. A central feature of trypanosome biology is the single flagellum of the parasite, which is an essential and multifunctional organelle that facilitates cell propulsion, controls cell morphogenesis and directs cytokinesis. Moreover, the flagellar membrane is a specialized subdomain of the cell surface that mediates attachment to host tissues and harbours multiple virulence factors. In this Review, we discuss the structure, assembly and function of the trypanosome flagellum, including canonical roles in cell motility as well as novel and emerging roles in cell morphogenesis and host-parasite interactions.
Collapse
Affiliation(s)
- Gerasimos Langousis
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Kent L. Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| |
Collapse
|
27
|
Subota I, Julkowska D, Vincensini L, Reeg N, Buisson J, Blisnick T, Huet D, Perrot S, Santi-Rocca J, Duchateau M, Hourdel V, Rousselle JC, Cayet N, Namane A, Chamot-Rooke J, Bastin P. Proteomic analysis of intact flagella of procyclic Trypanosoma brucei cells identifies novel flagellar proteins with unique sub-localization and dynamics. Mol Cell Proteomics 2014; 13:1769-86. [PMID: 24741115 DOI: 10.1074/mcp.m113.033357] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cilia and flagella are complex organelles made of hundreds of proteins of highly variable structures and functions. Here we report the purification of intact flagella from the procyclic stage of Trypanosoma brucei using mechanical shearing. Structural preservation was confirmed by transmission electron microscopy that showed that flagella still contained typical elements such as the membrane, the axoneme, the paraflagellar rod, and the intraflagellar transport particles. It also revealed that flagella severed below the basal body, and were not contaminated by other cytoskeletal structures such as the flagellar pocket collar or the adhesion zone filament. Mass spectrometry analysis identified a total of 751 proteins with high confidence, including 88% of known flagellar components. Comparison with the cell debris fraction revealed that more than half of the flagellum markers were enriched in flagella and this enrichment criterion was taken into account to identify 212 proteins not previously reported to be associated to flagella. Nine of these were experimentally validated including a 14-3-3 protein not yet reported to be associated to flagella and eight novel proteins termed FLAM (FLAgellar Member). Remarkably, they localized to five different subdomains of the flagellum. For example, FLAM6 is restricted to the proximal half of the axoneme, no matter its length. In contrast, FLAM8 is progressively accumulating at the distal tip of growing flagella and half of it still needs to be added after cell division. A combination of RNA interference and Fluorescence Recovery After Photobleaching approaches demonstrated very different dynamics from one protein to the other, but also according to the stage of construction and the age of the flagellum. Structural proteins are added to the distal tip of the elongating flagellum and exhibit slow turnover whereas membrane proteins such as the arginine kinase show rapid turnover without a detectible polarity.
Collapse
Affiliation(s)
- Ines Subota
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Daria Julkowska
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | | | - Nele Reeg
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Johanna Buisson
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Thierry Blisnick
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Diego Huet
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Sylvie Perrot
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Julien Santi-Rocca
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Magalie Duchateau
- §Proteomics Platform, Institut Pasteur, ¶Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur & CNRS UMR3528
| | - Véronique Hourdel
- §Proteomics Platform, Institut Pasteur, ¶Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur & CNRS UMR3528
| | | | - Nadège Cayet
- ‖Imagopole Platform, Institut Pasteur, Paris, France
| | | | - Julia Chamot-Rooke
- §Proteomics Platform, Institut Pasteur, ¶Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur & CNRS UMR3528
| | - Philippe Bastin
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581,
| |
Collapse
|
28
|
Morga B, Bastin P. Getting to the heart of intraflagellar transport using Trypanosoma and Chlamydomonas models: the strength is in their differences. Cilia 2013; 2:16. [PMID: 24289478 PMCID: PMC4015504 DOI: 10.1186/2046-2530-2-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/11/2013] [Indexed: 11/22/2022] Open
Abstract
Cilia and flagella perform diverse roles in motility and sensory perception, and defects in their construction or their function are responsible for human genetic diseases termed ciliopathies. Cilia and flagella construction relies on intraflagellar transport (IFT), the bi-directional movement of ‘trains’ composed of protein complexes found between axoneme microtubules and the flagellum membrane. Although extensive information about IFT components and their mode of action were discovered in the green algae Chlamydomonas reinhardtii, other model organisms have revealed further insights about IFT. This is the case of Trypanosoma brucei, a flagellated protist responsible for sleeping sickness that is turning out to be an emerging model for studying IFT. In this article, we review different aspects of IFT, based on studies of Chlamydomonas and Trypanosoma. Data available from both models are examined to ask challenging questions about IFT such as the initiation of flagellum construction, the setting-up of IFT and the mode of formation of IFT trains, and their remodeling at the tip as well as their recycling at the base. Another outstanding question is the individual role played by the multiple IFT proteins. The use of different models, bringing their specific biological and experimental advantages, will be invaluable in order to obtain a global understanding of IFT.
Collapse
Affiliation(s)
- Benjamin Morga
- Trypanosome Cell Biology Unit, Institut Pasteur and CNRS, URA 2581, 25 rue du Docteur Roux, 75015, Paris, France.
| | | |
Collapse
|
29
|
Wheeler RJ, Gluenz E, Gull K. The limits on trypanosomatid morphological diversity. PLoS One 2013; 8:e79581. [PMID: 24260255 PMCID: PMC3834336 DOI: 10.1371/journal.pone.0079581] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/02/2013] [Indexed: 01/13/2023] Open
Abstract
Cell shape is one, often overlooked, way in which protozoan parasites have adapted to a variety of host and vector environments and directional transmissions between these environments. Consequently, different parasite life cycle stages have characteristic morphologies. Trypanosomatid parasites are an excellent example of this in which large morphological variations between species and life cycle stage occur, despite sharing well-conserved cytoskeletal and membranous structures. Here, using previously published reports in the literature of the morphology of 248 isolates of trypanosomatid species from different hosts, we perform a meta-analysis of the occurrence and limits on morphological diversity of different classes of trypanosomatid morphology (trypomastigote, promastigote, etc.) in the vertebrate bloodstream and invertebrate gut environments. We identified several limits on cell body length, cell body width and flagellum length diversity which can be interpreted as biomechanical limits on the capacity of the cell to attain particular dimensions. These limits differed for morphologies with and without a laterally attached flagellum which we suggest represent two morphological superclasses, the ‘juxtaform’ and ‘liberform’ superclasses. Further limits were identified consistent with a selective pressure from the mechanical properties of the vertebrate bloodstream environment; trypanosomatid size showed limits relative to host erythrocyte dimensions. This is the first comprehensive analysis of the limits of morphological diversity in any protozoan parasite, revealing the morphogenetic constraints and extrinsic selection pressures associated with the full diversity of trypanosomatid morphology.
Collapse
Affiliation(s)
- Richard John Wheeler
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Cellular growth and mitochondrial ultrastructure of leishmania (Viannia) braziliensis promastigotes are affected by the iron chelator 2,2-dipyridyl. PLoS Negl Trop Dis 2013; 7:e2481. [PMID: 24147167 PMCID: PMC3798463 DOI: 10.1371/journal.pntd.0002481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 08/26/2013] [Indexed: 12/02/2022] Open
Abstract
Background Iron is an essential element for the survival of microorganisms in vitro and in vivo, acting as a cofactor of several enzymes and playing a critical role in host-parasite relationships. Leishmania (Viannia) braziliensis is a parasite that is widespread in the new world and considered the major etiological agent of American tegumentary leishmaniasis. Although iron depletion leads to promastigote and amastigote growth inhibition, little is known about the role of iron in the biology of Leishmania. Furthermore, there are no reports regarding the importance of iron for L. (V.) braziliensis. Methodology/Principal Findings In this study, the effect of iron on the growth, ultrastructure and protein expression of L. (V.) braziliensis was analyzed by the use of the chelator 2,2-dipyridyl. Treatment with 2,2-dipyridyl affected parasites' growth in a dose- and time-dependent manner. Multiplication of the parasites was recovered after reinoculation in fresh culture medium. Ultrastructural analysis of treated promastigotes revealed marked mitochondrial swelling with loss of cristae and matrix and the presence of concentric membranar structures inside the organelle. Iron depletion also induced Golgi disruption and intense cytoplasmic vacuolization. Fluorescence-activated cell sorting analysis of tetramethylrhodamine ester-stained parasites showed that 2,2-dipyridyl collapsed the mitochondrial membrane potential. The incubation of parasites with propidium iodide demonstrated that disruption of mitochondrial membrane potential was not associated with plasma membrane permeabilization. TUNEL assays indicated no DNA fragmentation in chelator-treated promastigotes. In addition, two-dimensional electrophoresis showed that treatment with the iron chelator induced up- or down-regulation of proteins involved in metabolism of nucleic acids and coordination of post-translational modifications, without altering their mRNA levels. Conclusions Iron chelation leads to a multifactorial response that results in cellular collapse, starting with the interruption of cell proliferation and culminating in marked mitochondrial impairment in some parasites and their subsequent cell death, whereas others may survive and resume proliferating. American tegumentary leishmaniasis (ATL) is a neglected disease that is widely distributed in the Americas. The protozoan parasite Leishmania (Viannia) braziliensis is one of the main causative agents of ATL, being responsible for the development of different clinical manifestations of the disease, which ranges from self-healing cutaneous lesions to disseminated and mucocutaneous forms. Because iron is essential for the survival and growth of Leishmania, as it is required for colonization of macrophages and development of lesions in mice, several chelating compounds have been tested for their effects on the growth of these parasites. In the present work, treatment of L. (V.) braziliensis with the iron chelator 2,2-dipyridyl inhibited the growth of promastigote forms in a dose- and time-dependent manner. However, multiplication of the parasites was recovered after reinoculation in fresh culture medium. The iron chelator also induced mitochondrial dysfunction and altered expression of proteins involved in metabolism of nucleic acids and coordination of post-translational modifications. The events described above ultimately caused the death of some parasites, most likely due to mitochondrial dysfunction, whereas others adapted and survived, suggesting a plasticity or resilience of the mitochondrion in this parasite.
Collapse
|
31
|
Hughes L, Towers K, Starborg T, Gull K, Vaughan S. A cell-body groove housing the new flagellum tip suggests an adaptation of cellular morphogenesis for parasitism in the bloodstream form of Trypanosoma brucei. J Cell Sci 2013; 126:5748-57. [PMID: 24127564 PMCID: PMC3860315 DOI: 10.1242/jcs.139139] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Flagella are highly conserved organelles present in a wide variety of species. In Trypanosoma brucei the single flagellum is necessary for morphogenesis, cell motility and pathogenesis, and is attached along the cell body. A new flagellum is formed alongside the old during the cell division cycle. In the (insect) procyclic form, the flagella connector (FC) attaches the tip of the new flagellum to the side of the old flagellum, ensuring faithful replication of cell architecture. The FC is not present in the bloodstream form of the parasite. We show here, using new imaging techniques including serial block-face scanning electron microscopy (SBF-SEM), that the distal tip of the new flagellum in the bloodstream form is embedded within an invagination in the cell body plasma membrane, named the groove. We suggest that the groove has a similar function to the flagella connector. The groove is a mobile junction located alongside the microtubule quartet (MtQ) and occurred within a gap in the subpellicular microtubule corset, causing significant modification of microtubules during elongation of the new flagellum. It appears likely that this novel form of morphogenetic structure has evolved to withstand the hostile immune response in the mammalian blood.
Collapse
Affiliation(s)
- Louise Hughes
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford OX3 0BP, UK
| | | | | | | | | |
Collapse
|
32
|
Diniz MC, Pacheco ACL, Farias KM, de Oliveira DM. The eukaryotic flagellum makes the day: novel and unforeseen roles uncovered after post-genomics and proteomics data. Curr Protein Pept Sci 2013; 13:524-46. [PMID: 22708495 PMCID: PMC3499766 DOI: 10.2174/138920312803582951] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 12/21/2022]
Abstract
This review will summarize and discuss the current biological understanding of the motile eukaryotic flagellum,
as posed out by recent advances enabled by post-genomics and proteomics approaches. The organelle, which is crucial
for motility, survival, differentiation, reproduction, division and feeding, among other activities, of many eukaryotes,
is a great example of a natural nanomachine assembled mostly by proteins (around 350-650 of them) that have been conserved
throughout eukaryotic evolution. Flagellar proteins are discussed in terms of their arrangement on to the axoneme,
the canonical “9+2” microtubule pattern, and also motor and sensorial elements that have been detected by recent proteomic
analyses in organisms such as Chlamydomonas reinhardtii, sea urchin, and trypanosomatids. Such findings can be
remarkably matched up to important discoveries in vertebrate and mammalian types as diverse as sperm cells, ciliated
kidney epithelia, respiratory and oviductal cilia, and neuro-epithelia, among others. Here we will focus on some exciting
work regarding eukaryotic flagellar proteins, particularly using the flagellar proteome of C. reinhardtii as a reference map
for exploring motility in function, dysfunction and pathogenic flagellates. The reference map for the eukaryotic flagellar
proteome consists of 652 proteins that include known structural and intraflagellar transport (IFT) proteins, less well-characterized
signal transduction proteins and flagellar associated proteins (FAPs), besides almost two hundred unannotated
conserved proteins, which lately have been the subject of intense investigation and of our present examination.
Collapse
Affiliation(s)
- Michely C Diniz
- Programa de Pós-Graduação em Biotecnologia-RENORBIO-Rede Nordeste de Biotecnologia, Universidade Estadual do Ceará-UECE, Av. Paranjana, 1700, Campus do Itaperi, Fortaleza, CE 60740-000 Brasil
| | | | | | | |
Collapse
|
33
|
Ginger ML, Collingridge PW, Brown RWB, Sproat R, Shaw MK, Gull K. Calmodulin is required for paraflagellar rod assembly and flagellum-cell body attachment in trypanosomes. Protist 2013; 164:528-40. [PMID: 23787017 DOI: 10.1016/j.protis.2013.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 05/03/2013] [Accepted: 05/09/2013] [Indexed: 02/02/2023]
Abstract
In the flagellum of the African sleeping sickness parasite Trypanosoma brucei calmodulin (CaM) is found within the paraflagellar rod (PFR), an elaborate extra-axonemal structure, and the axoneme. In dissecting mechanisms of motility regulation we analysed CaM function using RNAi. Unexpectedly CaM depletion resulted in total and catastrophic failure in PFR assembly; even connections linking axoneme to PFR failed to form following CaM depletion. This provides an intriguing parallel with the role in the green alga Chlamydomonas of a CaM-related protein in docking outer-dynein arms to axoneme outer-doublet microtubules. Absence of CaM had no discernible effect on axoneme assembly, but the failure in PFR assembly was further compounded by loss of the normal linkage between PFR and axoneme to the flagellum attachment zone of the cell body. Thus, flagellum detachment was a secondary, time-dependent consequence of CaM RNAi, and coincided with the loss of normal trypomastigote morphology, thereby linking the presence of PFR architecture with maintenance of cell form, as well as cell motility. Finally, wider comparison between the flagellum detachment phenotypes of RNAi mutants for CaM and the FLA1 glycoprotein potentially provides new perspective into the function of the latter into establishing and maintaining flagellum-cell body attachment.
Collapse
Affiliation(s)
- Michael L Ginger
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK.
| | | | | | | | | | | |
Collapse
|
34
|
Bower R, Tritschler D, Vanderwaal K, Perrone CA, Mueller J, Fox L, Sale WS, Porter ME. The N-DRC forms a conserved biochemical complex that maintains outer doublet alignment and limits microtubule sliding in motile axonemes. Mol Biol Cell 2013; 24:1134-52. [PMID: 23427265 PMCID: PMC3623635 DOI: 10.1091/mbc.e12-11-0801] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The nexin–dynein regulatory complex (N-DRC) is implicated in the control of dynein activity as a structural component of the nexin link. This study identifies several new subunits of the N-DRC and demonstrates for the first time that it forms a discrete biochemical complex that maintains outer doublet integrity and regulates microtubule sliding. The nexin–dynein regulatory complex (N-DRC) is proposed to coordinate dynein arm activity and interconnect doublet microtubules. Here we identify a conserved region in DRC4 critical for assembly of the N-DRC into the axoneme. At least 10 subunits associate with DRC4 to form a discrete complex distinct from other axonemal substructures. Transformation of drc4 mutants with epitope-tagged DRC4 rescues the motility defects and restores assembly of missing DRC subunits and associated inner-arm dyneins. Four new DRC subunits contain calcium-signaling motifs and/or AAA domains and are nearly ubiquitous in species with motile cilia. However, drc mutants are motile and maintain the 9 + 2 organization of the axoneme. To evaluate the function of the N-DRC, we analyzed ATP-induced reactivation of isolated axonemes. Rather than the reactivated bending observed with wild-type axonemes, ATP addition to drc-mutant axonemes resulted in splaying of doublets in the distal region, followed by oscillatory bending between pairs of doublets. Thus the N-DRC provides some but not all of the resistance to microtubule sliding and helps to maintain optimal alignment of doublets for productive flagellar motility. These findings provide new insights into the mechanisms that regulate motility and further highlight the importance of the proximal region of the axoneme in generating flagellar bending.
Collapse
Affiliation(s)
- Raqual Bower
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Novel bilobe components in Trypanosoma brucei identified using proximity-dependent biotinylation. EUKARYOTIC CELL 2012; 12:356-67. [PMID: 23264645 DOI: 10.1128/ec.00326-12] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The trypanosomes are a family of parasitic protists of which the African trypanosome, Trypanosoma brucei, is the best characterized. The complex and highly ordered cytoskeleton of T. brucei has been shown to play vital roles in its biology but remains difficult to study, in large part owing to the intractability of its constituent proteins. Existing methods of protein identification, such as bioinformatic analysis, generation of monoclonal antibody panels, proteomics, affinity purification, and yeast two-hybrid screens, all have drawbacks. Such deficiencies-troublesome proteins and technical limitations-are common not only to T. brucei but also to many other protists, many of which are even less well studied. Proximity-dependent biotin identification (BioID) is a recently developed technique that allows forward screens for interaction partners and near neighbors in a native environment with no requirement for solubility in nonionic detergent. As such, it is extremely well suited to the exploration of the cytoskeleton. In this project, BioID was adapted for use in T. brucei. The trypanosome bilobe, a discrete cytoskeletal structure with few known protein components, represented an excellent test subject. Use of the bilobe protein TbMORN1 as a probe resulted in the identification of seven new bilobe constituents and two new flagellum attachment zone proteins. This constitutes the first usage of BioID on a largely uncharacterized structure, and demonstrates its utility in identifying new components of such a structure. This remarkable success validates BioID as a new tool for the study of unicellular eukaryotes in particular and the eukaryotic cytoskeleton in general.
Collapse
|
36
|
Apoptotic marker expression in the absence of cell death in staurosporine-treated Leishmania donovani. Antimicrob Agents Chemother 2012; 57:1252-61. [PMID: 23263009 DOI: 10.1128/aac.01983-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The protozoan parasite Leishmania donovani undergoes several developmental transitions in its insect and vertebrate hosts that are induced by environmental changes. The roles of protein kinases in these adaptive differentiation steps and their potential as targets for antiparasitic intervention are only poorly characterized. Here, we used the generic protein kinase inhibitor staurosporine to gain insight into how interference with phosphotransferase activities affects the viability, growth, and motility of L. donovani promastigotes in vitro. Unlike the nonkinase drugs miltefosine and amphotericin B, staurosporine strongly reduced parasite biosynthetic activity and had a cytostatic rather than a cytotoxic effect. Despite the induction of a number of classical apoptotic markers, including caspase-like activity and surface binding of annexin V, we determined that, on the basis of cellular integrity, staurosporine did not cause cell death but caused cell cycle arrest and abrogated parasite motility. In contrast, targeted inhibition of the parasite casein kinase 1 (CK1) protein family by use of the CK1-specific inhibitor D4476 resulted in cell death. Thus, pleiotropic inhibition of L. donovani protein kinases and possibly other ATP-binding proteins by staurosporine dissociates apoptotic marker expression from cell death, which underscores the relevance of specific rather than broad kinase inhibitors for antiparasitic drug development.
Collapse
|
37
|
Judelson HS, Shrivastava J, Manson J. Decay of genes encoding the oomycete flagellar proteome in the downy mildew Hyaloperonospora arabidopsidis. PLoS One 2012; 7:e47624. [PMID: 23077652 PMCID: PMC3471859 DOI: 10.1371/journal.pone.0047624] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 09/19/2012] [Indexed: 11/19/2022] Open
Abstract
Zoospores are central to the life cycles of most of the eukaryotic microbes known as oomycetes, but some genera have lost the ability to form these flagellated cells. In the plant pathogen Phytophthora infestans, genes encoding 257 proteins associated with flagella were identified by comparative genomics. These included the main structural components of the axoneme and basal body, proteins involved in intraflagellar transport, regulatory proteins, enzymes for maintaining ATP levels, and others. Transcripts for over three-quarters of the genes were up-regulated during sporulation, and persisted to varying degrees in the pre-zoospore stage (sporangia) and motile zoospores. Nearly all of these genes had orthologs in other eukaryotes that form flagella or cilia, but not species that lack the organelle. Orthologs of 211 of the genes were also absent from a sister taxon to P. infestans that lost the ability to form flagella, the downy mildew Hyaloperonospora arabidopsidis. Many of the genes retained in H. arabidopsidis were also present in other non-flagellates, suggesting that they play roles both in flagella and other cellular processes. Remnants of the missing genes were often detected in the H. arabidopsidis genome. Degradation of the genes was associated with local compaction of the chromosome and a heightened propensity towards genome rearrangements, as such regions were less likely to share synteny with P. infestans.
Collapse
Affiliation(s)
- Howard S Judelson
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, California, United States of America.
| | | | | |
Collapse
|
38
|
Abstract
Trypanosoma brucei is the etiological agent of devastating parasitic disease in humans and livestock in sub-saharan Africa. The pathogenicity and growth of the parasite are intimately linked to its shape and form. This is in turn derived from a highly ordered microtubule cytoskeleton that forms a tightly arrayed cage directly beneath the pellicular membrane and numerous other cytoskeletal structures such as the flagellum. The parasite undergoes extreme changes in cellular morphology during its life cycle and cell cycles which require a high level of integration and coordination of cytoskeletal processes. In this review we will discuss the role that proteomics techniques have had in advancing our understanding of the molecular composition of the cytoskeleton and its functions. We then consider future opportunities for the application of these techniques in terms of addressing some of the unanswered questions of trypanosome cytoskeletal cell biology with particular focus on the differences in the composition and organisation of the cytoskeleton through the trypanosome life-cycle.
Collapse
|
39
|
Höög JL, Bouchet-Marquis C, McIntosh JR, Hoenger A, Gull K. Cryo-electron tomography and 3-D analysis of the intact flagellum in Trypanosoma brucei. J Struct Biol 2012; 178:189-98. [PMID: 22285651 PMCID: PMC3355306 DOI: 10.1016/j.jsb.2012.01.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 01/04/2012] [Accepted: 01/12/2012] [Indexed: 12/19/2022]
Abstract
Trypanosoma brucei is a uni-cellular protist that causes African sleeping sickness. These parasites have a flagellum that is attached to the cell body and is indispensible for its motility. The flagellum consists of a canonical 9+2 axoneme and a paraflagellar rod (PFR), an intricate tripartite, fibrous structure that is connected to the axoneme. In this paper we describe results from cryo-electron tomography of unperturbed flagella. This method revealed novel structures that are likely involved in attaching the flagellum to the cell. We also show the first cryo-electron tomographic images of a basal body in situ, revealing electron dense structures inside its triplet microtubules. Sub-tomogram averaging of the PFR revealed that its distal region is organized as an orthorhombic crystal.
Collapse
Affiliation(s)
- Johanna L Höög
- The Boulder Laboratory for 3-D Electron Microscopy of Cells, MCD-Biology, University of Colorado at Boulder, Boulder, CO 80309-0347, USA.
| | | | | | | | | |
Collapse
|
40
|
Teixeira SM, de Paiva RMC, Kangussu-Marcolino MM, Darocha WD. Trypanosomatid comparative genomics: Contributions to the study of parasite biology and different parasitic diseases. Genet Mol Biol 2012; 35:1-17. [PMID: 22481868 PMCID: PMC3313497 DOI: 10.1590/s1415-47572012005000008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/18/2011] [Indexed: 01/23/2023] Open
Abstract
In 2005, draft sequences of the genomes of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major, also known as the Tri-Tryp genomes, were published. These protozoan parasites are the causative agents of three distinct insect-borne diseases, namely sleeping sickness, Chagas disease and leishmaniasis, all with a worldwide distribution. Despite the large estimated evolutionary distance among them, a conserved core of ~6,200 trypanosomatid genes was found among the Tri-Tryp genomes. Extensive analysis of these genomic sequences has greatly increased our understanding of the biology of these parasites and their host-parasite interactions. In this article, we review the recent advances in the comparative genomics of these three species. This analysis also includes data on additional sequences derived from other trypanosmatid species, as well as recent data on gene expression and functional genomics. In addition to facilitating the identification of key parasite molecules that may provide a better understanding of these complex diseases, genome studies offer a rich source of new information that can be used to define potential new drug targets and vaccine candidates for controlling these parasitic infections.
Collapse
Affiliation(s)
- Santuza M Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | |
Collapse
|
41
|
|
42
|
Hughes LC, Ralston KS, Hill KL, Zhou ZH. Three-dimensional structure of the Trypanosome flagellum suggests that the paraflagellar rod functions as a biomechanical spring. PLoS One 2012; 7:e25700. [PMID: 22235240 PMCID: PMC3250385 DOI: 10.1371/journal.pone.0025700] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/08/2011] [Indexed: 11/30/2022] Open
Abstract
Flagellum motility is critical for normal human development and for transmission of pathogenic protozoa that cause tremendous human suffering worldwide. Biophysical principles underlying motility of eukaryotic flagella are conserved from protists to vertebrates. However, individual cells exhibit diverse waveforms that depend on cell-specific elaborations on basic flagellum architecture. Trypanosoma brucei is a uniflagellated protozoan parasite that causes African sleeping sickness. The T. brucei flagellum is comprised of a 9+2 axoneme and an extra-axonemal paraflagellar rod (PFR), but the three-dimensional (3D) arrangement of the underlying structural units is poorly defined. Here, we use dual-axis electron tomography to determine the 3D architecture of the T. brucei flagellum. We define the T. brucei axonemal repeating unit. We observe direct connections between the PFR and axonemal dyneins, suggesting a mechanism by which mechanochemical signals may be transmitted from the PFR to axonemal dyneins. We find that the PFR itself is comprised of overlapping laths organized into distinct zones that are connected through twisting elements at the zonal interfaces. The overall structure has an underlying 57nm repeating unit. Biomechanical properties inferred from PFR structure lead us to propose that the PFR functions as a biomechanical spring that may store and transmit energy derived from axonemal beating. These findings provide insight into the structural foundations that underlie the distinctive flagellar waveform that is a hallmark of T. brucei cell motility.
Collapse
Affiliation(s)
- Louise C. Hughes
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Katherine S. Ralston
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Kent L. Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (ZZ); (KH)
| | - Z. Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (ZZ); (KH)
| |
Collapse
|
43
|
Structure of Trypanosoma brucei flagellum accounts for its bihelical motion. Proc Natl Acad Sci U S A 2011; 108:11105-8. [PMID: 21690369 DOI: 10.1073/pnas.1103634108] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma brucei is a parasitic protozoan that causes African sleeping sickness. It contains a flagellum required for locomotion and viability. In addition to a microtubular axoneme, the flagellum contains a crystalline paraflagellar rod (PFR) and connecting proteins. We show here, by cryoelectron tomography, the structure of the flagellum in three bending states. The PFR lattice in straight flagella repeats every 56 nm along the length of the axoneme, matching the spacing of the connecting proteins. During flagellar bending, the PFR crystallographic unit cell lengths remain constant while the interaxial angles vary, similar to a jackscrew. The axoneme drives the expansion and compression of the PFR lattice. We propose that the PFR modifies the in-plane axoneme motion to produce the characteristic trypanosome bihelical motility as captured by high-speed light microscope videography.
Collapse
|
44
|
Oberholzer M, Langousis G, Nguyen HT, Saada EA, Shimogawa MM, Jonsson ZO, Nguyen SM, Wohlschlegel JA, Hill KL. Independent analysis of the flagellum surface and matrix proteomes provides insight into flagellum signaling in mammalian-infectious Trypanosoma brucei. Mol Cell Proteomics 2011; 10:M111.010538. [PMID: 21685506 DOI: 10.1074/mcp.m111.010538] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The flagellum of African trypanosomes is an essential and multifunctional organelle that functions in motility, cell morphogenesis, and host-parasite interaction. Previous studies of the trypanosome flagellum have been limited by the inability to purify flagella without first removing the flagellar membrane. This limitation is particularly relevant in the context of studying flagellum signaling, as signaling requires surface-exposed proteins in the flagellar membrane and soluble signaling proteins in the flagellar matrix. Here we employ a combination of genetic and mechanical approaches to purify intact flagella from the African trypanosome, Trypanosoma brucei, in its mammalian-infectious stage. We combined flagellum purification with affinity-purification of surface-exposed proteins to conduct independent proteomic analyses of the flagellum surface and matrix fractions. The proteins identified encompass a broad range of molecular functionalities, including many predicted to function in signaling. Immunofluorescence and RNA interference studies demonstrate flagellum localization and function for proteins identified and provide insight into mechanisms of flagellum attachment and motility. The flagellum surface proteome includes many T. brucei-specific proteins and is enriched for proteins up-regulated in the mammalian-infectious stage of the parasite life-cycle. The combined results indicate that the flagellum surface presents a diverse and dynamic host-parasite interface that is well-suited for host-parasite signaling.
Collapse
Affiliation(s)
- Michael Oberholzer
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Vincensini L, Blisnick T, Bastin P. [The importance of model organisms to study cilia and flagella biology]. Biol Aujourdhui 2011; 205:5-28. [PMID: 21501571 DOI: 10.1051/jbio/2011005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Indexed: 12/24/2022]
Abstract
Cilia and flagella are ubiquitous organelles that protrude from the surfaces of many cells, and whose architecture is highly conserved from protists to humans. These complex organelles, composed of over 500 proteins, can be either immotile or motile. They are involved in a myriad of biological processes, including sensing (non-motile cilia) and/or cell motility or movement of extracellular fluids (motile cilia). The ever-expanding list of human diseases linked to defective cilia illustrates the functional importance of cilia and flagella. These ciliopathies are characterised by an impressive diversity of symptoms and an often complex genetic etiology. A precise knowledge of cilia and flagella biology is thus critical to better understand these pathologies. However, multi-ciliated cells are terminally differentiated and difficult to manipulate, and a primary cilium is assembled only when the cell exits from the cell cycle. In this context the use of model organisms, that relies on the high degree of structural but also of molecular conservation of these organelles across evolution, is instrumental to decipher the many facets of cilia and flagella biology. In this review, we highlight the specific strengths of the main model organisms to investigate the molecular composition, mode of assembly, sensing and motility mechanisms and functions of cilia and flagella. Pioneering studies carried out in the green alga Chlamydomonas established the link between cilia and several genetic diseases. Moreover, multicellular organisms such as mouse, zebrafish, Xenopus, C. elegans or Drosophila, and protists like Paramecium, Tetrahymena and Trypanosoma or Leishmania each bring specific advantages to the study of cilium biology. For example, the function of genes involved in primary ciliary dyskinesia (due to defects in ciliary motility) can be efficiently assessed in trypanosomes.
Collapse
Affiliation(s)
- Laetitia Vincensini
- Unité de Biologie Cellulaire des Trypanosomes, Institut Pasteur et CNRS URA 2581, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
46
|
The cell cycle regulated transcriptome of Trypanosoma brucei. PLoS One 2011; 6:e18425. [PMID: 21483801 PMCID: PMC3069104 DOI: 10.1371/journal.pone.0018425] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 03/07/2011] [Indexed: 11/19/2022] Open
Abstract
Progression of the eukaryotic cell cycle requires the regulation of hundreds of genes to ensure that they are expressed at the required times. Integral to cell cycle progression in yeast and animal cells are temporally controlled, progressive waves of transcription mediated by cell cycle-regulated transcription factors. However, in the kinetoplastids, a group of early-branching eukaryotes including many important pathogens, transcriptional regulation is almost completely absent, raising questions about the extent of cell-cycle regulation in these organisms and the mechanisms whereby regulation is achieved. Here, we analyse gene expression over the Trypanosoma brucei cell cycle, measuring changes in mRNA abundance on a transcriptome-wide scale. We developed a “double-cut” elutriation procedure to select unperturbed, highly synchronous cell populations from log-phase cultures, and compared this to synchronization by starvation. Transcriptome profiling over the cell cycle revealed the regulation of at least 430 genes. While only a minority were homologous to known cell cycle regulated transcripts in yeast or human, their functions correlated with the cellular processes occurring at the time of peak expression. We searched for potential target sites of RNA-binding proteins in these transcripts, which might earmark them for selective degradation or stabilization. Over-represented sequence motifs were found in several co-regulated transcript groups and were conserved in other kinetoplastids. Furthermore, we found evidence for cell-cycle regulation of a flagellar protein regulon with a highly conserved sequence motif, bearing similarity to consensus PUF-protein binding motifs. RNA sequence motifs that are functional in cell-cycle regulation were more widespread than previously expected and conserved within kinetoplastids. These findings highlight the central importance of post-transcriptional regulation in the proliferation of parasitic kinetoplastids.
Collapse
|
47
|
Arruda Campos Brasil de Souza T, Graça-de Souza VK, Lancheros CAC, Monteiro-Góes V, Krieger MA, Goldenberg S, Yamauchi LM, Yamada-Ogatta SF. Identification, Molecular and Functional Characterization of Calmodulin Gene of Phytomonas serpens 15T that Shares High Similarity with its Pathogenic Counterparts Trypanosoma cruzi. Protein J 2011; 30:212-9. [DOI: 10.1007/s10930-011-9322-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
The N terminus of phosphodiesterase TbrPDEB1 of Trypanosoma brucei contains the signal for integration into the flagellar skeleton. EUKARYOTIC CELL 2010; 9:1466-75. [PMID: 20693305 DOI: 10.1128/ec.00112-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The precise subcellular localization of the components of the cyclic AMP (cAMP) signaling pathways is a crucial aspect of eukaryotic intracellular signaling. In the human pathogen Trypanosoma brucei, the strict control of cAMP levels by cAMP-specific phosphodiesterases is essential for parasite survival, both in cell culture and in the infected host. Among the five cyclic nucleotide phosphodiesterases identified in this organism, two closely related isoenzymes, T. brucei PDEB1 (TbrPDEB1) (PDEB1) and TbrPDEB2 (PDEB2) are predominantly responsible for the maintenance of cAMP levels. Despite their close sequence similarity, they are distinctly localized in the cell. PDEB1 is mostly located in the flagellum, where it forms an integral part of the flagellar skeleton. PDEB2 is mainly located in the cell body, and only a minor part of the protein localizes to the flagellum. The current study, using transfection of procyclic trypanosomes with green fluorescent protein (GFP) reporters, demonstrates that the N termini of the two enzymes are essential for determining their final subcellular localization. The first 70 amino acids of PDEB1 are sufficient to specifically direct a GFP reporter to the flagellum and to lead to its detergent-resistant integration into the flagellar skeleton. In contrast, the analogous region of PDEB2 causes the GFP reporter to reside predominantly in the cell body. Mutagenesis of selected residues in the N-terminal region of PDEB2 demonstrated that single amino acid changes are sufficient to redirect the reporter from a cell body location to stable integration into the flagellar skeleton.
Collapse
|
49
|
Hill KL. Parasites in motion: flagellum-driven cell motility in African trypanosomes. Curr Opin Microbiol 2010; 13:459-65. [PMID: 20591724 DOI: 10.1016/j.mib.2010.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 05/21/2010] [Accepted: 05/27/2010] [Indexed: 10/19/2022]
Abstract
Motility of the sleeping sickness parasite, Trypanosoma brucei, impacts disease transmission and pathogenesis. Trypanosome motility is driven by a flagellum that harbors a canonical 9+2 axoneme, together with trypanosome-specific elaborations. Trypanosome flagellum biology and motility have been the object of intense research over the last two years. These studies have led to the discovery of a novel form of motility, termed social motility, and provided revision of long-standing models for cell propulsion. Recent work has also uncovered novel structural features and motor proteins associated with the flagellar apparatus and has identified candidate signaling molecules that are predicted to regulate flagellar motility. Together with earlier inventories of flagellar proteins from proteomic and genomic studies, the stage is now set to move forward with functional studies to elucidate molecular mechanisms and investigate parasite motility in the context of host-parasite interactions.
Collapse
Affiliation(s)
- Kent L Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, 609 Charles E. Young Drive, Los Angeles, CA 90095, USA.
| |
Collapse
|
50
|
Gluenz E, Ginger ML, McKean PG. Flagellum assembly and function during the Leishmania life cycle. Curr Opin Microbiol 2010; 13:473-9. [PMID: 20541962 DOI: 10.1016/j.mib.2010.05.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 05/14/2010] [Accepted: 05/17/2010] [Indexed: 11/17/2022]
Abstract
During a complex digenetic life cycle flagellated Leishmania parasites alternate between promastigote and amastigote forms which differ significantly in cellular morphology and flagellum length. Recent studies have provided important new insights into mechanisms by which Leishmania regulate expression of genes required for flagellum assembly, and mechanisms used to modify flagellum length. While the critical role of the promastigote flagellum in parasite biology has long been appreciated, the importance of the amastigote flagellum has often been disregarded. However, recent work suggests that the 'rudimentary' amastigote flagellum may serve indispensable roles in cellular organisation, and/or sensory perception, which are critical for intracellular survival of Leishmania within host macrophages.
Collapse
Affiliation(s)
- Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | |
Collapse
|