1
|
Ishikawa-Fukuda M, Seki T, Kishikawa JI, Masuya T, Okazaki KI, Kato T, Barquera B, Miyoshi H, Murai M. The Na +-pumping mechanism driven by redox reactions in the NADH-quinone oxidoreductase from Vibrio cholerae relies on dynamic conformational changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.06.01.656757. [PMID: 40501732 PMCID: PMC12157696 DOI: 10.1101/2025.06.01.656757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/28/2025]
Abstract
The Na+-pumping NADH-quinone oxidoreductase (Na+-NQR) is a key respiratory enzyme in many marine and pathogenic bacteria that couples electron transfer to Na+-pumping across the membrane. Earlier X-ray and cryo-EM structures of Na+-NQR from Vibrio cholerae suggested that the subunits harboring redox cofactors undergo conformational changes during catalytic turnover. However, these proposed rearrangements have not yet been confirmed. Here, we have identified at least five distinct conformational states of Na+-NQR using: mutants that lack specific cofactors, specific inhibitors or low-sodium conditions. Molecular dynamics simulations based on these structural insights indicate that 2Fe-2S reduction in NqrD/E plays a crucial role in triggering Na+ translocation by driving structural rearrangements in the NqrD/E subunits, which subsequently influence NqrC and NqrF positioning. This study provides the first structural insights into the mechanism of Na+ translocation coupled to electron transfer in Na+-NQR.
Collapse
Affiliation(s)
- Moe Ishikawa-Fukuda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto 606 8502, Japan
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Takehito Seki
- Research Center for Computational Science, Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| | - Jun-ichi Kishikawa
- Faculty of Applied Biology, Kyoto Institute of Technology, Kyoto, Kyoto 606-8585, Japan
- Institute for Protein Research, The University of Osaka, Suita, Osaka565-0871, Japan
| | - Takahiro Masuya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto 606 8502, Japan
| | - Kei-ichi Okazaki
- Research Center for Computational Science, Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| | - Takayuki Kato
- Institute for Protein Research, The University of Osaka, Suita, Osaka565-0871, Japan
| | - Blanca Barquera
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto 606 8502, Japan
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto 606 8502, Japan
| |
Collapse
|
2
|
Ishikawa-Fukuda M, Kishikawa JI, Masuya T, Ito T, Butler NL, McFee D, Kato T, Barquera B, Miyoshi H, Murai M. Structural Elucidation of the Mechanism for Inhibitor Resistance in the Na +-Translocating NADH-Ubiquinone Oxidoreductase from Vibrio cholerae. Biochemistry 2025; 64:1963-1972. [PMID: 40263754 PMCID: PMC12117499 DOI: 10.1021/acs.biochem.5c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Na+-translocating NADH-ubiquinone oxidoreductase (Na+-NQR) is a unique redox-driven Na+-pump. Since this enzyme is exclusively found in prokaryotes, including the human pathogens Vibrio cholerae and Neisseria gonorrhoeae, it is a promising target for highly selective antibiotics. Korormicin A, a natural product, and a specific and potent inhibitor of V. cholerae Na+-NQR, may become a lead compound for the relevant drug design. We previously showed that the G141A mutation in the NqrB subunit (NqrB-G141A) confers moderate resistance to korormicin A (about 100-fold). However, the efficiency of photoaffinity labeling of the mutant enzyme by a photoreactive korormicin derivative was the same as in the wild-type enzyme. Because of these apparently conflicting results, the molecular mechanism underlying the korormicin A-resistance remains elusive. In the present study, we determined the cryo-EM structure of the V. cholerae NqrB-G141A mutant in the presence of bound korormicin A, and compared it to the corresponding structure from the wild-type enzyme. The toxophoric moiety of korormicin A binds to the mutant enzyme similarly to how it binds to the wild type. However, the added bulk of the alanine-141 excludes the alkyl side chain from the binding cavity, resulting in a decrease in the binding affinity. In fact, isothermal titration calorimetry revealed that the binding affinity of korormicin to the NqrB-G141A mutant is significantly weaker compared to the wild-type. Altogether, we conclude that the inhibitory potency of korormicin A is weaker in the NqrB-G141A mutant due to the decrease in its binding affinity to the altered binding cavity.
Collapse
Affiliation(s)
- Moe Ishikawa-Fukuda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jun-Ichi Kishikawa
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan
- Faculty of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Takahiro Masuya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takeshi Ito
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Nicole L Butler
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Danielle McFee
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Takayuki Kato
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | - Blanca Barquera
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Alt TB, Moran GR. The binding modes of quinones in flavoprotein oxidoreductases. Arch Biochem Biophys 2025; 770:110443. [PMID: 40320059 DOI: 10.1016/j.abb.2025.110443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/23/2025] [Accepted: 04/26/2025] [Indexed: 05/11/2025]
Abstract
Flavoprotein quinone reductases regenerate quinols which serve metabolic and antioxidant roles. These enzymes catalyze the two-electron oxidation of substrates and the subsequent two electron reduction of quinones. Despite the net two electron transfer between substrates, the binding mode of quinones is typically end-on to the flavin, rather than stacked, dictating that the oxidative half reaction cannot proceed via hydride transfer and must instead occur by two successive single electron transfers. Here we present a review of six of the most well-studied flavoprotein quinone reductases to establish a framework for discussing this positional orientation for the quinone oxidant. There are two non-mutually exclusive rationalizations for this binding mode where the flavin isoalloxazine acts as a redox partition. The first is that energetics of the single electron transfer pathway create a kinetic barrier to the reverse reaction, trapping electrons in the quinone pool and countering the high ratio of quinol to quinone present in the membrane. The second is that the end-on binding allows the enzymes to utilize different binding sites for cytosolic and membrane associated substrates, avoiding the need to desorb substrates. These effects may be additive and serve to funnel electrons into the quinone pool as efficiently as possible.
Collapse
Affiliation(s)
- Tyler B Alt
- Department of Chemistry and Biochemistry, 1068 W Sheridan Rd, Loyola University Chicago, Chicago, IL 60660, USA
| | - Graham R Moran
- Department of Chemistry and Biochemistry, 1068 W Sheridan Rd, Loyola University Chicago, Chicago, IL 60660, USA.
| |
Collapse
|
4
|
Miyachi S, Tanaka H, Ishikawa M, Mcfee D, Aoki W, Murai M, Barquera B, Miyoshi H, Masuya T. Pinpoint introduction of functional molecular probe into the NqrB subunit of Na +-translocating NADH-ubiquinone oxidoreductase from Vibrio cholerae. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149551. [PMID: 40049505 DOI: 10.1016/j.bbabio.2025.149551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/24/2025] [Accepted: 03/02/2025] [Indexed: 03/15/2025]
Abstract
The Na+-translocating NADH-ubiquinone oxidoreductase (Na+-NQR) is a key enzyme in the respiratory chain of numerous pathogenic bacteria, including Vibrio cholerae. The flexible cytoplasmic N-terminal region of the NqrB subunit (Met1-Lys54), which may play an important role in the final UQ reduction at the adjacent NqrA, is the target of specific inhibitors. If we can develop a new method that enables pinpoint introduction of functional probe molecules (such as fluorescent probes) into the N-terminal region, this could lead to new experimental ways of monitoring dynamic structural changes of the region. We previously showed that an electrophilic chemical group, which can be released from korormicin A-templated synthetic ligand, can be predominantly introduced into nucleophilic Lys22 as a "foothold" via ligand-directed (LD) substitution, but the subsequent conjugation of a functional probe molecule to the foothold by Cu+-catalyzed click chemistry required destruction of the enzyme. Accordingly, we now report the nondestructive conjugation of the functional molecule into the N-terminal region via a two-step conjugation technique: first, pinpoint introduction of a foothold tag containing a ring-strained cyclopropene by LD substitution using a new korormicin A-templated ligand (BEK-1) and second, direct conjugation of a fluorescent probe molecule containing tetrazine with the introduced cyclopropene by inverse electron-demand Diels-Alder-type click chemistry. Protein sequence analyses revealed that the fluorescent probe is attached to Lys19, His20, or Lys22 in the region. The extent of conjugation of the fluorescent probe was approximately halved in the presence of different inhibitors, suggesting that the inhibitor binding induces structural changes around the residues.
Collapse
Affiliation(s)
- Saya Miyachi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Hinako Tanaka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Moe Ishikawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Danielle Mcfee
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Wataru Aoki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Blanca Barquera
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takahiro Masuya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
5
|
Baothman OAS. Identifying therapeutic antibacterial peptides against Vibrio cholerae to inhibit the function of Na(+)-translocating NADH-quinone reductase. J Biomol Struct Dyn 2023; 42:12489-12504. [PMID: 37850460 DOI: 10.1080/07391102.2023.2270696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023]
Abstract
Vibrio cholerae is the bacteria responsible for cholera, which is a significant threat to many nations. Curing and treating this infection requires identification of the critical protein and development of a drug to inhibit its function. In this context, Na(+)-translocating NADH-quinone reductase was considered a potential therapeutic target. A library of antibacterial peptides with residue lengths of 50 was screened using a docking method, and the five most potent peptides were selected on the basis of a weighted score derived from solvent accessible surface area and docking score. To investigate the stability of the protein-peptide complex, a 100-ns molecular dynamics simulation was performed. These peptides targeted the native dimeric binding interface of Na(+)-transporting NADH-quinone reductase. This study evaluated the binding affinity and conformational stability of these peptides with the protein using different post-simulation metrics. A peptide, CCL28, exhibited steady RMSD characteristics; nonetheless, it modified the docked conformation but stabilized in the new conformation. This peptide also demonstrated the best performance in addressing the protein's native binding interface. It demonstrated a binding free energy of -120 kcal/mol with the protein. Principal component analysis (PCA) revealed that the first PC had the lowest conformational variation and the greatest coverage. Eventually, these peptides were also evaluated using steered molecular dynamics, and it was discovered that CCL28 had a greater maximum force than the other five peptides, at 1139.08 kJ/mol/nm. Targeting the native binding interface, we present a CCL28 peptide with a strong potential to block the biological activity of Vibrio cholerae's Na(+)-translocating NADH-quinone reductase.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Othman A S Baothman
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Purification and structural characterization of the Na +-translocating ferredoxin: NAD + reductase (Rnf) complex of Clostridium tetanomorphum. Nat Commun 2022; 13:6315. [PMID: 36274063 PMCID: PMC9588780 DOI: 10.1038/s41467-022-34007-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/05/2022] [Indexed: 12/25/2022] Open
Abstract
Various microbial metabolisms use H+/Na+-translocating ferredoxin:NAD+ reductase (Rnf) either to exergonically oxidize reduced ferredoxin by NAD+ for generating a transmembrane electrochemical potential or reversely to exploit the latter for producing reduced ferredoxin. For cryo-EM structural analysis, we elaborated a quick four-step purification protocol for the Rnf complex from Clostridium tetanomorphum and integrated the homogeneous and active enzyme into a nanodisc. The obtained 4.27 Å density map largely allows chain tracing and redox cofactor identification complemented by biochemical data from entire Rnf and single subunits RnfB, RnfC and RnfG. On this basis, we postulated an electron transfer route between ferredoxin and NAD via eight [4Fe-4S] clusters, one Fe ion and four flavins crossing the cell membrane twice related to the pathway of NADH:ubiquinone reductase. Redox-coupled Na+ translocation is provided by orchestrating Na+ uptake/release, electrostatic effects of the assumed membrane-integrated FMN semiquinone anion and accompanied polypeptide rearrangements mediated by different redox steps.
Collapse
|
7
|
Cryo-EM structures of Na +-pumping NADH-ubiquinone oxidoreductase from Vibrio cholerae. Nat Commun 2022; 13:4082. [PMID: 35882843 PMCID: PMC9325719 DOI: 10.1038/s41467-022-31718-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/29/2022] [Indexed: 11/08/2022] Open
Abstract
The Na+-pumping NADH-ubiquinone oxidoreductase (Na+-NQR) couples electron transfer from NADH to ubiquinone with Na+-pumping, generating an electrochemical Na+ gradient that is essential for energy-consuming reactions in bacteria. Since Na+-NQR is exclusively found in prokaryotes, it is a promising target for highly selective antibiotics. However, the molecular mechanism of inhibition is not well-understood for lack of the atomic structural information about an inhibitor-bound state. Here we present cryo-electron microscopy structures of Na+-NQR from Vibrio cholerae with or without a bound inhibitor at 2.5- to 3.1-Å resolution. The structures reveal the arrangement of all six redox cofactors including a herein identified 2Fe-2S cluster located between the NqrD and NqrE subunits. A large part of the hydrophilic NqrF is barely visible in the density map, suggesting a high degree of flexibility. This flexibility may be responsible to reducing the long distance between the 2Fe-2S centers in NqrF and NqrD/E. Two different types of specific inhibitors bind to the N-terminal region of NqrB, which is disordered in the absence of inhibitors. The present study provides a foundation for understanding the function of Na+-NQR and the binding manner of specific inhibitors.
Collapse
|
8
|
Tuz K, Yuan M, Hu Y, Do TTT, Willow SY, DePaolo-Boisvert JA, Fuller JR, Minh DDL, Juárez O. Identification of the riboflavin-cofactor binding site in the Vibrio cholerae ion-pumping NQR complex: A novel structural motif in redox enzymes. J Biol Chem 2022; 298:102182. [PMID: 35752362 PMCID: PMC9293633 DOI: 10.1016/j.jbc.2022.102182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/18/2022] Open
Abstract
The ion-pumping NQR complex is an essential respiratory enzyme in the physiology of many pathogenic bacteria. This enzyme transfers electrons from NADH to ubiquinone through several cofactors, including riboflavin (vitamin B2). NQR is the only enzyme reported that is able to use riboflavin as a cofactor. Moreover, the riboflavin molecule is found as a stable neutral semiquinone radical. The otherwise highly reactive unpaired electron is stabilized via an unknown mechanism. Crystallographic data suggested that riboflavin might be found in a superficially located site in the interface of NQR subunits B and E. However, this location is highly problematic, as the site does not have the expected physiochemical properties. In this work, we have located the riboflavin-binding site in an amphipathic pocket in subunit B, previously proposed to be the entry site of sodium. Here, we show that this site contains absolutely conserved residues, including N200, N203, and D346. Mutations of these residues decrease enzymatic activity and specifically block the ability of NQR to bind riboflavin. Docking analysis and molecular dynamics simulations indicate that these residues participate directly in riboflavin binding, establishing hydrogen bonds that stabilize the cofactor in the site. We conclude that riboflavin is likely bound in the proposed pocket, which is consistent with enzymatic characterizations, thermodynamic studies, and distance between cofactors.
Collapse
Affiliation(s)
- Karina Tuz
- Department of Biological Sciences, Illinois Institute of Technology, Chicago IL
| | - Ming Yuan
- Department of Biological Sciences, Illinois Institute of Technology, Chicago IL
| | - Yuyao Hu
- Department of Biological Sciences, Illinois Institute of Technology, Chicago IL
| | - Tien T T Do
- Department of Chemistry, Illinois Institute of Technology, Chicago IL
| | | | | | - James R Fuller
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | - David D L Minh
- Department of Chemistry, Illinois Institute of Technology, Chicago IL
| | - Oscar Juárez
- Department of Biological Sciences, Illinois Institute of Technology, Chicago IL.
| |
Collapse
|
9
|
Ishikawa M, Masuya T, Kuroda S, Uno S, Butler NL, Foreman S, Murai M, Barquera B, Miyoshi H. The side chain of ubiquinone plays a critical role in Na + translocation by the NADH-ubiquinone oxidoreductase (Na +-NQR) from Vibrio cholerae. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148547. [PMID: 35337841 PMCID: PMC12067637 DOI: 10.1016/j.bbabio.2022.148547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/18/2022] [Accepted: 03/17/2022] [Indexed: 11/19/2022]
Abstract
The Na+-pumping NADH-ubiquinone (UQ) oxidoreductase (Na+-NQR) is an essential bacterial respiratory enzyme that generates a Na+ gradient across the cell membrane. However, the mechanism that couples the redox reactions to Na+ translocation remains unknown. To address this, we examined the relation between reduction of UQ and Na+ translocation using a series of synthetic UQs with Vibrio cholerae Na+-NQR reconstituted into liposomes. UQ0 that has no side chain and UQCH3 and UQC2H5, which have methyl and ethyl side chains, respectively, were catalytically reduced by Na+-NQR, but their reduction generated no membrane potential, indicating that the overall electron transfer and Na+ translocation are not coupled. While these UQs were partly reduced by electron leak from the cofactor(s) located upstream of riboflavin, this complete loss of Na+ translocation cannot be explained by the electron leak. Lengthening the UQ side chain to n-propyl (C3H7) or longer significantly restored Na+ translocation. It has been considered that Na+ translocation is completed when riboflavin, a terminal redox cofactor residing within the membrane, is reduced. In this view, the role of UQ is simply to accept electrons from the reduced riboflavin to regenerate the stable neutral riboflavin radical and reset the catalytic cycle. However, the present study revealed that the final UQ reduction via reduced riboflavin makes an important contribution to Na+ translocation through a critical role of its side chain. Based on the results, we discuss the critical role of the UQ side chain in Na+ translocation.
Collapse
Affiliation(s)
- Moe Ishikawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takahiro Masuya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Seina Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Shinpei Uno
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Nicole L Butler
- Department of Biological Science, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Sara Foreman
- Department of Biological Science, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Blanca Barquera
- Department of Biological Science, Rensselaer Polytechnic Institute, Troy, NY 12180, United States; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
10
|
Willow SY, Yuan M, Juárez O, Minh DDL. Electrostatics and water occlusion regulate covalently-bound flavin mononucleotide cofactors of Vibrio cholerae respiratory complex NQR. Proteins 2021; 89:1376-1385. [PMID: 34091964 DOI: 10.1002/prot.26158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/20/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
Proteins like NADH:ubiquinone oxidoreductase (NQR), an essential enzyme and ion pump in the physiology of several pathogenic bacteria, tightly regulate the redox properties of their cofactors. Although flavin mononucleotide (FMN) is fully reduced in aqueous solution, FMN in subunits B and C of NQR exclusively undergo one-electron transitions during its catalytic cycle. Here, we perform ab initio calculations and molecular dynamics simulations to elucidate the mechanisms that regulate the redox state of FMN in NQR. QM/MM calculations show that binding site electrostatics disfavor anionic forms of FMNH2 , but permit a neutral form of the fully reduced flavin. The potential energy surface is unaffected by covalent bonding between FMN and threonine. Molecular dynamics simulations show that the FMN binding sites are inaccessible by water, suggesting that further reductions of the cofactors are limited or prohibited by the availability of water and other proton donors. These findings provide a deeper understanding of the mechanisms used by NQR to regulate electron transfer through the cofactors and perform its physiologic role. They also provide the first, to our knowledge, evidence of the simple concept that proteins regulate flavin redox states via water occlusion.
Collapse
Affiliation(s)
- Soohaeng Yoo Willow
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Ming Yuan
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Oscar Juárez
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois, USA
| | - David D L Minh
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois, USA
| |
Collapse
|
11
|
Specific chemical modification explores dynamic structure of the NqrB subunit in Na +-pumping NADH-ubiquinone oxidoreductase from Vibrio cholerae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148432. [PMID: 33932367 DOI: 10.1016/j.bbabio.2021.148432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/20/2021] [Indexed: 12/28/2022]
Abstract
The Na+-pumping NADH-ubiquinone oxidoreductase (Na+-NQR) is a main ion transporter in many pathogenic bacteria. We previously proposed that N-terminal stretch of the NqrB subunit plays an important role in regulating the ubiquinone reaction at the adjacent NqrA subunit in Vibrio cholerae Na+-NQR. However, since approximately three quarters of the stretch (NqrB-Met1-Pro37) was not modeled in an earlier crystallographic study, its structure and function remain unknown. If we can develop a method that enables pinpoint modification of this stretch by functional chemicals (such as spin probes), it could lead to new ways to investigate the unsettled issues. As the first step to this end, we undertook to specifically attach an alkyne group to a lysine located in the stretch via protein-ligand affinity-driven substitution using synthetic ligands NAS-K1 and NAS-K2. The alkyne, once attached, can serve as an "anchor" for connecting functional chemicals via convenient click chemistry. After a short incubation of isolated Na+-NQR with these ligands, alkyne was predominantly incorporated into NqrB. Proteomic analyses in combination with mutagenesis of predicted target lysines revealed that alkyne attaches to NqrB-Lys22 located at the nonmodeled region of the stretch. This study not only achieved the specific modification initially aimed for but also provided valuable information about positioning of the nonmodeled region. For example, the fact that hydrophobic NAS-Ks come into contact with NqrB-Lys22 suggests that the nonmodeled region may orient toward the membrane phase rather than protruding into cytoplasmic medium. This conformation may be essential for regulating the ubiquinone reaction in the adjacent NqrA.
Collapse
|
12
|
Masuya T, Sano Y, Tanaka H, Butler NL, Ito T, Tosaki T, Morgan JE, Murai M, Barquera B, Miyoshi H. Inhibitors of a Na +-pumping NADH-ubiquinone oxidoreductase play multiple roles to block enzyme function. J Biol Chem 2020; 295:12739-12754. [PMID: 32690607 DOI: 10.1074/jbc.ra120.014229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/18/2020] [Indexed: 11/06/2022] Open
Abstract
The Na+-pumping NADH-ubiquinone (UQ) oxidoreductase (Na+-NQR) is present in the respiratory chain of many pathogenic bacteria and is thought to be a promising antibiotic target. Whereas many details of Na+-NQR structure and function are known, the mechanisms of action of potent inhibitors is not well-understood; elucidating the mechanisms would not only advance drug design strategies but might also provide insights on a terminal electron transfer from riboflavin to UQ. To this end, we performed photoaffinity labeling experiments using photoreactive derivatives of two known inhibitors, aurachin and korormicin, on isolated Vibrio cholerae Na+-NQR. The inhibitors labeled the cytoplasmic surface domain of the NqrB subunit including a protruding N-terminal stretch, which may be critical to regulate the UQ reaction in the adjacent NqrA subunit. The labeling was blocked by short-chain UQs such as ubiquinone-2. The photolabile group (2-aryl-5-carboxytetrazole (ACT)) of these inhibitors reacts with nucleophilic amino acids, so we tested mutations of nucleophilic residues in the labeled region of NqrB, such as Asp49 and Asp52 (to Ala), and observed moderate decreases in labeling yields, suggesting that these residues are involved in the interaction with ACT. We conclude that the inhibitors interfere with the UQ reaction in two ways: the first is blocking structural rearrangements at the cytoplasmic interface between NqrA and NqrB, and the second is the direct obstruction of UQ binding at this interfacial area. Unusual competitive behavior between the photoreactive inhibitors and various competitors corroborates our previous proposition that there may be two inhibitor binding sites in Na+-NQR.
Collapse
Affiliation(s)
- Takahiro Masuya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yuki Sano
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hinako Tanaka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | - Tatsuhiko Tosaki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Joel E Morgan
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Blanca Barquera
- Department of Biological Science and.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
The aerobic respiratory chain of Pseudomonas aeruginosa cultured in artificial urine media: Role of NQR and terminal oxidases. PLoS One 2020; 15:e0231965. [PMID: 32324772 PMCID: PMC7179901 DOI: 10.1371/journal.pone.0231965] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/04/2020] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative γ-proteobacterium that forms part of the normal human microbiota and it is also an opportunistic pathogen, responsible for 30% of all nosocomial urinary tract infections. P. aeruginosa carries a highly branched respiratory chain that allows the colonization of many environments, such as the urinary tract, catheters and other medical devices. P. aeruginosa respiratory chain contains three different NADH dehydrogenases (complex I, NQR and NDH-2), whose physiologic roles have not been elucidated, and up to five terminal oxidases: three cytochrome c oxidases (COx), a cytochrome bo3 oxidase (CYO) and a cyanide-insensitive cytochrome bd-like oxidase (CIO). In this work, we studied the composition of the respiratory chain of P. aeruginosa cells cultured in Luria Broth (LB) and modified artificial urine media (mAUM), to understand the metabolic adaptations of this microorganism to the growth in urine. Our results show that the COx oxidases play major roles in mAUM, while P. aeruginosa relies on CYO when growing in LB medium. Moreover, our data demonstrate that the proton-pumping NQR complex is the main NADH dehydrogenase in both LB and mAUM. This enzyme is resistant to HQNO, an inhibitory molecule produced by P. aeruginosa, and may provide an advantage against the natural antibacterial agents produced by this organism. This work offers a clear picture of the composition of this pathogen’s aerobic respiratory chain and the main roles that NQR and terminal oxidases play in urine, which is essential to understand its physiology and could be used to develop new antibiotics against this notorious multidrug-resistant microorganism.
Collapse
|
14
|
Raba D, Yuan M, Fang X, Menzer WM, Xie B, Liang P, Tuz K, Minh DDL, Juárez O. Role of Subunit D in Ubiquinone-Binding Site of Vibrio cholerae NQR: Pocket Flexibility and Inhibitor Resistance. ACS OMEGA 2019; 4:19324-19331. [PMID: 31763556 PMCID: PMC6868883 DOI: 10.1021/acsomega.9b02707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
The ion-pumping NADH: ubiquinone dehydrogenase (NQR) is a vital component of the respiratory chain of numerous species of marine and pathogenic bacteria, including Vibrio cholerae. This respiratory enzyme couples the transfer of electrons from NADH to ubiquinone (UQ) to the pumping of ions across the plasma membrane, producing a gradient that sustains multiple homeostatic processes. The binding site of UQ within the enzyme is an important functional and structural motif that could be used to design drugs against pathogenic bacteria. Our group recently located the UQ site in the interface between subunits B and D and identified the residues within subunit B that are important for UQ binding. In this study, we carried out alanine scanning mutagenesis of amino acid residues located in subunit D of V. cholerae NQR to understand their role in UQ binding and enzymatic catalysis. Moreover, molecular docking calculations were performed to characterize the structure of the site at the atomic level. The results show that mutations in these positions, in particular, in residues P185, L190, and F193, decrease the turnover rate and increase the Km for UQ. These mutants also showed an increase in the resistance against the inhibitor HQNO. The data indicate that residues in subunit D fulfill important structural roles, restricting and orienting UQ in a catalytically favorable position. In addition, mutations of these residues open the site and allow the simultaneous binding of substrate and inhibitors, producing partial inhibition, which appears to be a strategy used by Pseudomonas aeruginosa to avoid autopoisoning.
Collapse
Affiliation(s)
- Daniel
A. Raba
- Department
of Biological Sciences and Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Ming Yuan
- Department
of Biological Sciences and Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Xuan Fang
- Department
of Biological Sciences and Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - William M. Menzer
- Department
of Biological Sciences and Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Bing Xie
- Department
of Biological Sciences and Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Pingdong Liang
- Department
of Biological Sciences and Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Karina Tuz
- Department
of Biological Sciences and Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - David D. L. Minh
- Department
of Biological Sciences and Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Oscar Juárez
- Department
of Biological Sciences and Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| |
Collapse
|
15
|
Maynard A, Butler NL, Ito T, da Silva AJ, Murai M, Chen T, Koffas MAG, Miyoshi H, Barquera B. Antibiotic Korormicin A Kills Bacteria by Producing Reactive Oxygen Species. J Bacteriol 2019; 201:e00718-18. [PMID: 30858300 PMCID: PMC6509656 DOI: 10.1128/jb.00718-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/07/2019] [Indexed: 11/20/2022] Open
Abstract
Korormicin is an antibiotic produced by some pseudoalteromonads which selectively kills Gram-negative bacteria that express the Na+-pumping NADH:quinone oxidoreductase (Na+-NQR.) We show that although korormicin is an inhibitor of Na+-NQR, the antibiotic action is not a direct result of inhibiting enzyme activity. Instead, perturbation of electron transfer inside the enzyme promotes a reaction between O2 and one or more redox cofactors in the enzyme (likely the flavin adenine dinucleotide [FAD] and 2Fe-2S center), leading to the production of reactive oxygen species (ROS). All Pseudoalteromonas contain the nqr operon in their genomes, including Pseudoalteromonas strain J010, which produces korormicin. We present activity data indicating that this strain expresses an active Na+-NQR and that this enzyme is not susceptible to korormicin inhibition. On the basis of our DNA sequence data, we show that the Na+-NQR of Pseudoalteromonas J010 carries an amino acid substitution (NqrB-G141A; Vibrio cholerae numbering) that in other Na+-NQRs confers resistance against korormicin. This is likely the reason that a functional Na+-NQR is able to exist in a bacterium that produces a compound that typically inhibits this enzyme and causes cell death. Korormicin is an effective antibiotic against such pathogens as Vibrio cholerae, Aliivibrio fischeri, and Pseudomonas aeruginosa but has no effect on Bacteroides fragilis and Bacteroides thetaiotaomicron, microorganisms that are important members of the human intestinal microflora.IMPORTANCE As multidrug antibiotic resistance in pathogenic bacteria continues to rise, there is a critical need for novel antimicrobial agents. An essential requirement for a useful antibiotic is that it selectively targets bacteria without significant effects on the eukaryotic hosts. Korormicin is an excellent candidate in this respect because it targets a unique respiratory enzyme found only in prokaryotes, the Na+-pumping NADH:quinone oxidoreductase (Na+-NQR). Korormicin is synthesized by some species of the marine bacterium Pseudoalteromonas and is a potent and specific inhibitor of Na+-NQR, an enzyme that is essential for the survival and proliferation of many Gram-negative human pathogens, including Vibrio cholerae and Pseudomonas aeruginosa, among others. Here, we identified how korormicin selectively kills these bacteria. The binding of korormicin to Na+-NQR promotes the formation of reactive oxygen species generated by the reaction of the FAD and the 2Fe-2S center cofactors with O2.
Collapse
Affiliation(s)
- Adam Maynard
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Nicole L Butler
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Takeshi Ito
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Adilson José da Silva
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
- Chemical Engineering Department, Federal University of Sao Carlos, Sao Paulo, Brazil
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tsute Chen
- The Forsyth Institute, Cambridge, Massachusetts, USA
- School of Dental Medicine, Harvard University, Boston, Massachusetts, USA
| | - Mattheos A G Koffas
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Blanca Barquera
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
16
|
Mezic KG, Juárez O, Neehaul Y, Cho J, Cook D, Hellwig P, Barquera B. Glutamate 95 in NqrE Is an Essential Residue for the Translocation of Cations in Na +-NQR. Biochemistry 2019; 58:2167-2175. [PMID: 30907577 DOI: 10.1021/acs.biochem.8b01294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The sodium-pumping NADH:quinone oxidoreductase (Na+-NQR) is a bacterial enzyme that oxidizes NADH, reduces ubiquinone, and translocates Na+ across the membrane. We previously identified three acidic residues in the membrane-spanning helices, near the cytosol, NqrB-D397, NqrD-D133, and NqrE-E95, as candidates likely to be involved in Na+ uptake, and replacement of any one of them by a non-acidic residue affects the Na+-dependent kinetics of the enzyme. Here, we have inquired further into the role of the NqrE-E95 residue by constructing a series of mutants in which this residue is replaced by amino acids with charges and/or sizes different from those of the glutamate of the wild-type enzyme. All of the mutants showed altered steady-state kinetics with the acceleration of turnover by Na+ greatly diminished. Selected mutants were studied by other physical methods. Membrane potential measurements showed that NqrE-E95D and A are significantly less efficient in ion transport. NqrE-E95A, Q, and D were studied by transient kinetic measurements of the reduction of the enzyme by NADH. In all three cases, the results indicated inhibition of the electron-transfer step in which the FMNC becomes reduced. This is the first Na+-dependent step and is associated with Na+ uptake by the enzyme. Electrochemical measurements on NqrE-E95Q showed that the Na+ dependence of the redox potential of the FMN cofactors has been lost. The fact that the mutations at the NqrE-E95 site have specific effects related to translocation of Na+ and Li+ strongly indicates a definite role for NqrE-E95 in the cation transport process of Na+-NQR.
Collapse
Affiliation(s)
- Katherine G Mezic
- Department of Biological Sciences and Center of Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Oscar Juárez
- Department of Biological Sciences and Center of Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Yashvin Neehaul
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe , Université de Strasbourg-CNRS , 1 rue Blaise Pascal , 67000 Strasbourg , France
| | - Jonathan Cho
- Department of Biological Sciences and Center of Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Darcie Cook
- Department of Biological Sciences and Center of Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe , Université de Strasbourg-CNRS , 1 rue Blaise Pascal , 67000 Strasbourg , France
| | - Blanca Barquera
- Department of Biological Sciences and Center of Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| |
Collapse
|
17
|
Raba DA, Rosas-Lemus M, Menzer WM, Li C, Fang X, Liang P, Tuz K, Minh DDL, Juárez O. Characterization of the Pseudomonas aeruginosa NQR complex, a bacterial proton pump with roles in autopoisoning resistance. J Biol Chem 2018; 293:15664-15677. [PMID: 30135204 DOI: 10.1074/jbc.ra118.003194] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/13/2018] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium responsible for a large number of nosocomial infections. The P. aeruginosa respiratory chain contains the ion-pumping NADH:ubiquinone oxidoreductase (NQR). This enzyme couples the transfer of electrons from NADH to ubiquinone to the pumping of sodium ions across the cell membrane, generating a gradient that drives essential cellular processes in many bacteria. In this study, we characterized P. aeruginosa NQR (Pa-NQR) to elucidate its physiologic function. Our analyses reveal that Pa-NQR, in contrast with NQR homologues from other bacterial species, is not a sodium pump, but rather a completely new form of proton pump. Homology modeling and molecular dynamics simulations suggest that cation selectivity could be determined by the exit ion channels. We also show that Pa-NQR is resistant to the inhibitor 2-n-heptyl-4-hydroxyquinoline N-oxide (HQNO). HQNO is a quinolone secreted by P. aeruginosa during infection that acts as a quorum sensing agent and also has bactericidal properties against other bacteria. Using comparative analysis and computational modeling of the ubiquinone-binding site, we identified the specific residues that confer resistance toward this inhibitor. In summary, our findings indicate that Pa-NQR is a proton pump rather than a sodium pump and is highly resistant against the P. aeruginosa-produced compound HQNO, suggesting an important role in the adaptation against autotoxicity. These results provide a deep understanding of the metabolic role of NQR in P. aeruginosa and provide insight into the structural factors that determine the functional specialization in this family of respiratory complexes.
Collapse
Affiliation(s)
| | | | - William M Menzer
- From the Departments of Biological Sciences and.,Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Chen Li
- Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Xuan Fang
- From the Departments of Biological Sciences and
| | | | - Karina Tuz
- From the Departments of Biological Sciences and
| | - David D L Minh
- Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616
| | | |
Collapse
|
18
|
Dibrov P, Dibrov E, Pierce GN. Na+-NQR (Na+-translocating NADH:ubiquinone oxidoreductase) as a novel target for antibiotics. FEMS Microbiol Rev 2017; 41:653-671. [PMID: 28961953 DOI: 10.1093/femsre/fux032] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/17/2017] [Indexed: 01/08/2023] Open
Abstract
The recent breakthrough in structural studies on Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) from the human pathogen Vibrio cholerae creates a perspective for the systematic design of inhibitors for this unique enzyme, which is the major Na+ pump in aerobic pathogens. Widespread distribution of Na+-NQR among pathogenic species, its key role in energy metabolism, its relation to virulence in different species as well as its absence in eukaryotic cells makes this enzyme especially attractive as a target for prospective antibiotics. In this review, the major biochemical, physiological and, especially, the pharmacological aspects of Na+-NQR are discussed to assess its 'target potential' for drug development. A comparison to other primary bacterial Na+ pumps supports the contention that NQR is a first rate prospective target for a new generation of antimicrobials. A new, narrowly targeted furanone inhibitor of NQR designed in our group is presented as a molecular platform for the development of anti-NQR remedies.
Collapse
Affiliation(s)
- Pavel Dibrov
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Elena Dibrov
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, Canada.,Department of Physiology and Pathophysiology, Colleges of Medicine and Pharmacy, Faculty of Health Sciences, Winnipeg, Canada
| | - Grant N Pierce
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, Canada.,Department of Physiology and Pathophysiology, Colleges of Medicine and Pharmacy, Faculty of Health Sciences, Winnipeg, Canada
| |
Collapse
|
19
|
Liang P, Rosas-Lemus M, Patel D, Fang X, Tuz K, Juárez O. Dynamic energy dependency of Chlamydia trachomatis on host cell metabolism during intracellular growth: Role of sodium-based energetics in chlamydial ATP generation. J Biol Chem 2017; 293:510-522. [PMID: 29123027 DOI: 10.1074/jbc.m117.797209] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/30/2017] [Indexed: 11/06/2022] Open
Abstract
Chlamydia trachomatis is an obligate intracellular human pathogen responsible for the most prevalent sexually-transmitted infection in the world. For decades C. trachomatis has been considered an "energy parasite" that relies entirely on the uptake of ATP from the host cell. The genomic data suggest that C. trachomatis respiratory chain could produce a sodium gradient that may sustain the energetic demands required for its rapid multiplication. However, this mechanism awaits experimental confirmation. Moreover, the relationship of chlamydiae with the host cell, in particular its energy dependence, is not well understood. In this work, we are showing that C. trachomatis has an active respiratory metabolism that seems to be coupled to the sodium-dependent synthesis of ATP. Moreover, our results show that the inhibition of mitochondrial ATP synthesis at an early stage decreases the rate of infection and the chlamydial inclusion size. In contrast, the inhibition of the chlamydial respiratory chain at mid-stage of the infection cycle decreases the inclusion size but has no effect on infection rate. Remarkably, the addition of monensin, a Na+/H+ exchanger, completely halts the infection. Altogether, our data indicate that chlamydial development has a dynamic relationship with the mitochondrial metabolism of the host, in which the bacterium mostly depends on host ATP synthesis at an early stage, and at later stages it can sustain its own energy needs through the formation of a sodium gradient.
Collapse
Affiliation(s)
- Pingdong Liang
- From the Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Mónica Rosas-Lemus
- From the Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Dhwani Patel
- From the Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Xuan Fang
- From the Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Karina Tuz
- From the Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Oscar Juárez
- From the Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| |
Collapse
|
20
|
Dibrov P, Dibrov E, Maddaford TG, Kenneth M, Nelson J, Resch C, Pierce GN. Development of a novel rationally designed antibiotic to inhibit a nontraditional bacterial target. Can J Physiol Pharmacol 2017; 95:595-603. [PMID: 28425301 DOI: 10.1139/cjpp-2016-0505] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The search for new nontraditional targets is a high priority in antibiotic design today. Bacterial membrane energetics based on sodium ion circulation offers potential alternative targets. The present work identifies the Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR), a key respiratory enzyme in many microbial pathogens, as indispensible for the Chlamydia trachomatis infectious process. Infection by Chlamydia trachomatis significantly increased first H+ and then Na+ levels within the host mammalian cell. A newly designed furanone Na+-NQR inhibitor, PEG-2S, blocked the changes in both H+ and Na+ levels induced by Chlamydia trachomatis infection. It also inhibited intracellular proliferation of Chlamydia trachomatis with a half-minimal inhibitory concentration in the submicromolar range but did not affect the viability of mammalian cells or bacterial species representing benign intestinal microflora. At low nanomolar concentrations (IC50 value = 1.76 nmol/L), PEG-2S inhibited the Na+-NQR activity in sub-bacterial membrane vesicles isolated from Vibrio cholerae. Taken together, these results show, for the first time, that Na+-NQR is critical for the bacterial infectious process and is susceptible to a precisely targeted bactericidal compound in situ. The obtained data have immediate relevance for many different diseases caused by pathogenic bacteria that rely on Na+-NQR activity for growth, including sexually transmitted, pulmonary, oral, gum, and ocular infections.
Collapse
Affiliation(s)
- Pavel Dibrov
- a Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Elena Dibrov
- b Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada.,c Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Thane G Maddaford
- b Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada.,c Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Melissa Kenneth
- b Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada
| | - Jordan Nelson
- b Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada
| | - Craig Resch
- a Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Grant N Pierce
- b Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada.,c Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
21
|
Ito T, Murai M, Ninokura S, Kitazumi Y, Mezic KG, Cress BF, Koffas MAG, Morgan JE, Barquera B, Miyoshi H. Identification of the binding sites for ubiquinone and inhibitors in the Na +-pumping NADH-ubiquinone oxidoreductase from Vibrio cholerae by photoaffinity labeling. J Biol Chem 2017; 292:7727-7742. [PMID: 28298441 DOI: 10.1074/jbc.m117.781393] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/11/2017] [Indexed: 12/30/2022] Open
Abstract
The Na+-pumping NADH-quinone oxidoreductase (Na+-NQR) is the first enzyme of the respiratory chain and the main ion transporter in many marine and pathogenic bacteria, including Vibrio cholerae The V. cholerae Na+-NQR has been extensively studied, but its binding sites for ubiquinone and inhibitors remain controversial. Here, using a photoreactive ubiquinone PUQ-3 as well as two aurachin-type inhibitors [125I]PAD-1 and [125I]PAD-2 and photoaffinity labeling experiments on the isolated enzyme, we demonstrate that the ubiquinone ring binds to the NqrA subunit in the regions Leu-32-Met-39 and Phe-131-Lys-138, encompassing the rear wall of a predicted ubiquinone-binding cavity. The quinolone ring and alkyl side chain of aurachin bound to the NqrB subunit in the regions Arg-43-Lys-54 and Trp-23-Gly-89, respectively. These results indicate that the binding sites for ubiquinone and aurachin-type inhibitors are in close proximity but do not overlap one another. Unexpectedly, although the inhibitory effects of PAD-1 and PAD-2 were almost completely abolished by certain mutations in NqrB (i.e. G140A and E144C), the binding reactivities of [125I]PAD-1 and [125I]PAD-2 to the mutated enzymes were unchanged compared with those of the wild-type enzyme. We also found that photoaffinity labeling by [125I]PAD-1 and [125I]PAD-2, rather than being competitively suppressed in the presence of other inhibitors, is enhanced under some experimental conditions. To explain these apparently paradoxical results, we propose models for the catalytic reaction of Na+-NQR and its interactions with inhibitors on the basis of the biochemical and biophysical results reported here and in previous work.
Collapse
Affiliation(s)
- Takeshi Ito
- From the Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan and
| | - Masatoshi Murai
- From the Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan and
| | - Satoshi Ninokura
- From the Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan and
| | - Yuki Kitazumi
- From the Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan and
| | - Katherine G Mezic
- the Departments of Biological Sciences and.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Brady F Cress
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180.,Chemical and Biological Engineering
| | - Mattheos A G Koffas
- the Departments of Biological Sciences and.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180.,Chemical and Biological Engineering
| | - Joel E Morgan
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Blanca Barquera
- the Departments of Biological Sciences and.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Hideto Miyoshi
- From the Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan and
| |
Collapse
|
22
|
Toulouse C, Claussen B, Muras V, Fritz G, Steuber J. Strong pH dependence of coupling efficiency of the Na+ – translocating NADH:quinone oxidoreductase (Na+-NQR) of Vibrio cholerae. Biol Chem 2017; 398:251-260. [DOI: 10.1515/hsz-2016-0238] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/06/2016] [Indexed: 12/23/2022]
Abstract
Abstract
The Na+-translocating NADH:quinone oxidoreductase (NQR) is the entry site for electrons into the respiratory chain of Vibrio cholerae, the causative agent of cholera disease. NQR couples the electron transfer from NADH to ubiquinone to the translocation of sodium ions across the membrane. We investigated the pH dependence of electron transfer and generation of a transmembrane voltage (ΔΨ) by NQR reconstituted in liposomes with Na+ or Li+ as coupling cation. ΔΨ formation was followed with the voltage-sensitive dye oxonol. With Na+, ΔΨ was barely influenced by pH (6.5–8.5), while Q reduction activity exhibited a maximum at pH 7.5–8.0. With Li+, ΔΨ was generally lower, and the pH profile of electron transfer activity did not reveal a pronounced maximum. We conclude that the coupling efficiency of NQR is influenced by the nature of the transported cation, and by the concentration of protons. The 3D structure of NQR reveals a transmembrane channel in subunit NqrB. It is proposed that partial uncoupling of the NQR observed with the smaller Li+, or with Na+ at pH 7.5–8.0, is caused by the backflow of the coupling cation through the channel in NqrB.
Collapse
|
23
|
Tuz K, Li C, Fang X, Raba DA, Liang P, Minh DDL, Juárez O. Identification of the Catalytic Ubiquinone-binding Site of Vibrio cholerae Sodium-dependent NADH Dehydrogenase: A NOVEL UBIQUINONE-BINDING MOTIF. J Biol Chem 2017; 292:3039-3048. [PMID: 28053088 DOI: 10.1074/jbc.m116.770982] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/29/2016] [Indexed: 11/06/2022] Open
Abstract
The sodium-dependent NADH dehydrogenase (Na+-NQR) is a key component of the respiratory chain of diverse prokaryotic species, including pathogenic bacteria. Na+-NQR uses the energy released by electron transfer between NADH and ubiquinone (UQ) to pump sodium, producing a gradient that sustains many essential homeostatic processes as well as virulence factor secretion and the elimination of drugs. The location of the UQ binding site has been controversial, with two main hypotheses that suggest that this site could be located in the cytosolic subunit A or in the membrane-bound subunit B. In this work, we performed alanine scanning mutagenesis of aromatic residues located in transmembrane helices II, IV, and V of subunit B, near glycine residues 140 and 141. These two critical glycine residues form part of the structures that regulate the site's accessibility. Our results indicate that the elimination of phenylalanine residue 211 or 213 abolishes the UQ-dependent activity, produces a leak of electrons to oxygen, and completely blocks the binding of UQ and the inhibitor HQNO. Molecular docking calculations predict that UQ interacts with phenylalanine 211 and pinpoints the location of the binding site in the interface of subunits B and D. The mutagenesis and structural analysis allow us to propose a novel UQ-binding motif, which is completely different compared with the sites of other respiratory photosynthetic complexes. These results are essential to understanding the electron transfer pathways and mechanism of Na+-NQR catalysis.
Collapse
Affiliation(s)
- Karina Tuz
- From the Departments of Biological Sciences and
| | - Chen Li
- Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Xuan Fang
- From the Departments of Biological Sciences and
| | | | | | - David D L Minh
- Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616
| | | |
Collapse
|
24
|
Yuan L, Mu YY, Shen GB, Zhu XQ. Thermodynamic, kinetic, and mechanistic examination of 1,5- dihydro-3,4-dihydroxy-2-pyrrolone derivatives as a new type of antioxidants to mimic vitamin C. J PHYS ORG CHEM 2016. [DOI: 10.1002/poc.3670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lin Yuan
- The State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry; Nankai University; Tianjin China
| | - Yuan-Yuan Mu
- The State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry; Nankai University; Tianjin China
| | - Guang-Bin Shen
- The State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry; Nankai University; Tianjin China
| | - Xiao-Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry; Nankai University; Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering; Nankai University; Tianjin China
| |
Collapse
|
25
|
Belevich NP, Bertsova YV, Verkhovskaya ML, Baykov AA, Bogachev AV. Identification of the coupling step in Na(+)-translocating NADH:quinone oxidoreductase from real-time kinetics of electron transfer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:141-149. [PMID: 26655930 DOI: 10.1016/j.bbabio.2015.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/02/2015] [Accepted: 12/03/2015] [Indexed: 10/22/2022]
Abstract
Bacterial Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) uses a unique set of prosthetic redox groups-two covalently bound FMN residues, a [2Fe-2S] cluster, FAD, riboflavin and a Cys4[Fe] center-to catalyze electron transfer from NADH to ubiquinone in a reaction coupled with Na(+) translocation across the membrane. Here we used an ultra-fast microfluidic stopped-flow instrument to determine rate constants and the difference spectra for the six consecutive reaction steps of Vibrio harveyi Na(+)-NQR reduction by NADH. The instrument, with a dead time of 0.25 ms and optical path length of 1 cm allowed collection of visible spectra in 50-μs intervals. By comparing the spectra of reaction steps with the spectra of known redox transitions of individual enzyme cofactors, we were able to identify the chemical nature of most intermediates and the sequence of electron transfer events. A previously unknown spectral transition was detected and assigned to the Cys4[Fe] center reduction. Electron transfer from the [2Fe-2S] cluster to the Cys4[Fe] center and all subsequent steps were markedly accelerated when Na(+) concentration was increased from 20 μM to 25 mM, suggesting coupling of the former step with tight Na(+) binding to or occlusion by the enzyme. An alternating access mechanism was proposed to explain electron transfer between subunits NqrF and NqrC. According to the proposed mechanism, the Cys4[Fe] center is alternatively exposed to either side of the membrane, allowing the [2Fe-2S] cluster of NqrF and the FMN residue of NqrC to alternatively approach the Cys4[Fe] center from different sides of the membrane.
Collapse
Affiliation(s)
- Nikolai P Belevich
- Institute of Biotechnology, University of Helsinki, PO Box 65, Viikinkaari 1, FIN-00014, Finland
| | - Yulia V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Marina L Verkhovskaya
- Institute of Biotechnology, University of Helsinki, PO Box 65, Viikinkaari 1, FIN-00014, Finland
| | - Alexander A Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Alexander V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| |
Collapse
|
26
|
Tuz K, Mezic KG, Xu T, Barquera B, Juárez O. The Kinetic Reaction Mechanism of the Vibrio cholerae Sodium-dependent NADH Dehydrogenase. J Biol Chem 2015; 290:20009-21. [PMID: 26004776 DOI: 10.1074/jbc.m115.658773] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Indexed: 11/06/2022] Open
Abstract
The sodium-dependent NADH dehydrogenase (Na(+)-NQR) is the main ion transporter in Vibrio cholerae. Its activity is linked to the operation of the respiratory chain and is essential for the development of the pathogenic phenotype. Previous studies have described different aspects of the enzyme, including the electron transfer pathways, sodium pumping structures, cofactor and subunit composition, among others. However, the mechanism of the enzyme remains to be completely elucidated. In this work, we have studied the kinetic mechanism of Na(+)-NQR with the use of steady state kinetics and stopped flow analysis. Na(+)-NQR follows a hexa-uni ping-pong mechanism, in which NADH acts as the first substrate, reacts with the enzyme, and the oxidized NAD leaves the catalytic site. In this conformation, the enzyme is able to capture two sodium ions and transport them to the external side of the membrane. In the last step, ubiquinone is bound and reduced, and ubiquinol is released. Our data also demonstrate that the catalytic cycle involves two redox states, the three- and five-electron reduced forms. A model that gathers all available information is proposed to explain the kinetic mechanism of Na(+)-NQR. This model provides a background to understand the current structural and functional information.
Collapse
Affiliation(s)
- Karina Tuz
- From the Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616 and
| | - Katherine G Mezic
- the Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Tianhao Xu
- From the Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616 and
| | - Blanca Barquera
- the Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Oscar Juárez
- From the Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616 and
| |
Collapse
|
27
|
Hreha TN, Mezic KG, Herce HD, Duffy EB, Bourges A, Pryshchep S, Juarez O, Barquera B. Complete topology of the RNF complex from Vibrio cholerae. Biochemistry 2015; 54:2443-55. [PMID: 25831459 DOI: 10.1021/acs.biochem.5b00020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RNF is a redox-driven ion (Na(+) and in one case possibly H(+)) transporter present in many prokaryotes. It has been proposed that RNF performs a variety of reactions in different organisms, delivering low-potential reducing equivalents for specific cellular processes. RNF shares strong homology with the Na(+)-pumping respiratory enzyme Na(+)-NQR, although there are significant differences in subunit and redox cofactor composition. Here we report a topological analysis of the six subunits of RNF from Vibrio cholerae. Although individual subunits from other organisms have previously been studied, this is the first complete, experimentally derived, analysis of RNF from any one source. This has allowed us to identify and confirm key properties of RNF. The putative NADH binding site in RnfC is located on the cytoplasmic side of the membrane. FeS centers in RnfB and RnfC are also located on the cytoplasmic side. However, covalently attached FMNs in RnfD and RnfG are both located in the periplasm. RNF also contains a number of acidic residues that correspond to functionally important groups in Na(+)-NQR. The acidic residues involved in Na(+) uptake and many of those implicated in Na(+) translocation are topologically conserved. The topology of RNF closely matches the topology represented in the newly published structure of Na(+)-NQR, consistent with the close relation between the two enzymes. The topology of RNF is discussed in the context of the current structural model of Na(+)-NQR, and the proposed functionality of the RNF complex itself.
Collapse
|
28
|
Borshchevskiy V, Round E, Bertsova Y, Polovinkin V, Gushchin I, Ishchenko A, Kovalev K, Mishin A, Kachalova G, Popov A, Bogachev A, Gordeliy V. Structural and functional investigation of flavin binding center of the NqrC subunit of sodium-translocating NADH:quinone oxidoreductase from Vibrio harveyi. PLoS One 2015; 10:e0118548. [PMID: 25734798 PMCID: PMC4348036 DOI: 10.1371/journal.pone.0118548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/17/2015] [Indexed: 12/20/2022] Open
Abstract
Na+-translocating NADH:quinone oxidoreductase (NQR) is a redox-driven sodium pump operating in the respiratory chain of various bacteria, including pathogenic species. The enzyme has a unique set of redox active prosthetic groups, which includes two covalently bound flavin mononucleotide (FMN) residues attached to threonine residues in subunits NqrB and NqrC. The reason of FMN covalent bonding in the subunits has not been established yet. In the current work, binding of free FMN to the apo-form of NqrC from Vibrio harveyi was studied showing very low affinity of NqrC to FMN in the absence of its covalent bonding. To study structural aspects of flavin binding in NqrC, its holo-form was crystallized and its 3D structure was solved at 1.56 Å resolution. It was found that the isoalloxazine moiety of the FMN residue is buried in a hydrophobic cavity and that its pyrimidine ring is squeezed between hydrophobic amino acid residues while its benzene ring is extended from the protein surroundings. This structure of the flavin-binding pocket appears to provide flexibility of the benzene ring, which can help the FMN residue to take the bended conformation and thus to stabilize the one-electron reduced form of the prosthetic group. These properties may also lead to relatively weak noncovalent binding of the flavin. This fact along with periplasmic location of the FMN-binding domains in the vast majority of NqrC-like proteins may explain the necessity of the covalent bonding of this prosthetic group to prevent its loss to the external medium.
Collapse
Affiliation(s)
- Valentin Borshchevskiy
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
| | - Ekaterina Round
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
| | - Yulia Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vitaly Polovinkin
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
| | - Ivan Gushchin
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
| | - Andrii Ishchenko
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
| | - Kirill Kovalev
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Alexey Mishin
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Galina Kachalova
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Alexander Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- * E-mail: (AB); (VG)
| | - Valentin Gordeliy
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
- Univ. Grenoble Alpes, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
- * E-mail: (AB); (VG)
| |
Collapse
|
29
|
Shea ME, Mezic KG, Juárez O, Barquera B. A mutation in Na(+)-NQR uncouples electron flow from Na(+) translocation in the presence of K(+). Biochemistry 2014; 54:490-6. [PMID: 25486106 DOI: 10.1021/bi501266e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The sodium-pumping NADH:ubiquinone oxidoreductase (Na(+)-NQR) is a bacterial respiratory enzyme that obtains energy from the redox reaction between NADH and ubiquinone and uses this energy to create an electrochemical Na(+) gradient across the cell membrane. A number of acidic residues in transmembrane helices have been shown to be important for Na(+) translocation. One of these, Asp-397 in the NqrB subunit, is a key residue for Na(+) uptake and binding. In this study, we show that when this residue is replaced with asparagine, the enzyme acquires a new sensitivity to K(+); in the mutant, K(+) both activates the redox reaction and uncouples it from the ion translocation reaction. In the wild-type enzyme, Na(+) (or Li(+)) accelerates turnover while K(+) alone does not activate. In the NqrB-D397N mutant, K(+) accelerates the same internal electron transfer step (2Fe-2S → FMNC) that is accelerated by Na(+). This is the same step that is inhibited in mutants in which Na(+) uptake is blocked. NqrB-D397N is able to translocate Na(+) and Li(+), but when K(+) is introduced, no ion translocation is observed, regardless of whether Na(+) or Li(+) is present. Thus, this mutant, when it turns over in the presence of K(+), is the first, and currently the only, example of an uncoupled Na(+)-NQR. The fact the redox reaction and ion pumping become decoupled from each other only in the presence of K(+) provides a switch that promises to be a useful experimental tool.
Collapse
Affiliation(s)
- Michael E Shea
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | | | | | | |
Collapse
|
30
|
The sodium pumping NADH:quinone oxidoreductase (Na⁺-NQR), a unique redox-driven ion pump. J Bioenerg Biomembr 2014; 46:289-98. [PMID: 25052842 DOI: 10.1007/s10863-014-9565-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 07/03/2014] [Indexed: 12/15/2022]
Abstract
The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) is a unique Na(+) pumping respiratory complex found only in prokaryotes, that plays a key role in the metabolism of marine and pathogenic bacteria, including Vibrio cholerae and other human pathogens. Na(+)-NQR is the main entrance for reducing equivalents into the respiratory chain of these bacteria, catalyzing the oxidation of NADH and the reduction of quinone, the free energy of this redox reaction drives the selective translocation of Na(+) across the cell membrane, which energizes key cellular processes. In this review we summarize the unique properties of Na(+)-NQR in terms of its redox cofactor composition, electron transfer reactions and a possible mechanism of coupling and pumping.
Collapse
|
31
|
Strickland M, Juárez O, Neehaul Y, Cook DA, Barquera B, Hellwig P. The conformational changes induced by ubiquinone binding in the Na+-pumping NADH:ubiquinone oxidoreductase (Na+-NQR) are kinetically controlled by conserved glycines 140 and 141 of the NqrB subunit. J Biol Chem 2014; 289:23723-33. [PMID: 25006248 DOI: 10.1074/jbc.m114.574640] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Na(+)-pumping NADH:ubiquinone oxidoreductase (Na(+)-NQR) is responsible for maintaining a sodium gradient across the inner bacterial membrane. This respiratory enzyme, which couples sodium pumping to the electron transfer between NADH and ubiquinone, is not present in eukaryotes and as such could be a target for antibiotics. In this paper it is shown that the site of ubiquinone reduction is conformationally coupled to the NqrB subunit, which also hosts the final cofactor in the electron transport chain, riboflavin. Previous work showed that mutations in conserved NqrB glycine residues 140 and 141 affect ubiquinone reduction and the proper functioning of the sodium pump. Surprisingly, these mutants did not affect the dissociation constant of ubiquinone or its analog HQNO (2-n-heptyl-4-hydroxyquinoline N-oxide) from Na(+)-NQR, which indicates that these residues do not participate directly in the ubiquinone binding site but probably control its accessibility. Indeed, redox-induced difference spectroscopy showed that these mutations prevented the conformational change involved in ubiquinone binding but did not modify the signals corresponding to bound ubiquinone. Moreover, data are presented that demonstrate the NqrA subunit is able to bind ubiquinone but with a low non-catalytically relevant affinity. It is also suggested that Na(+)-NQR contains a single catalytic ubiquinone binding site and a second site that can bind ubiquinone but is not active.
Collapse
Affiliation(s)
- Madeleine Strickland
- From the Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, CNRS Université de Strasbourg, Strasbourg, France, 67000 and
| | - Oscar Juárez
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Yashvin Neehaul
- From the Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, CNRS Université de Strasbourg, Strasbourg, France, 67000 and
| | - Darcie A Cook
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Blanca Barquera
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Petra Hellwig
- From the Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, CNRS Université de Strasbourg, Strasbourg, France, 67000 and
| |
Collapse
|
32
|
Origin and evolution of the sodium -pumping NADH: ubiquinone oxidoreductase. PLoS One 2014; 9:e96696. [PMID: 24809444 PMCID: PMC4014512 DOI: 10.1371/journal.pone.0096696] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/11/2014] [Indexed: 11/27/2022] Open
Abstract
The sodium -pumping NADH: ubiquinone oxidoreductase (Na+-NQR) is the main ion pump and the primary entry site for electrons into the respiratory chain of many different types of pathogenic bacteria. This enzymatic complex creates a transmembrane gradient of sodium that is used by the cell to sustain ionic homeostasis, nutrient transport, ATP synthesis, flagellum rotation and other essential processes. Comparative genomics data demonstrate that the nqr operon, which encodes all Na+-NQR subunits, is found in a large variety of bacterial lineages with different habitats and metabolic strategies. Here we studied the distribution, origin and evolution of this enzymatic complex. The molecular phylogenetic analyses and the organizations of the nqr operon indicate that Na+-NQR evolved within the Chlorobi/Bacteroidetes group, after the duplication and subsequent neofunctionalization of the operon that encodes the homolog RNF complex. Subsequently, the nqr operon dispersed through multiple horizontal transfer events to other bacterial lineages such as Chlamydiae, Planctomyces and α, β, γ and δ -proteobacteria. Considering the biochemical properties of the Na+-NQR complex and its physiological role in different bacteria, we propose a detailed scenario to explain the molecular mechanisms that gave rise to its novel redox- dependent sodium -pumping activity. Our model postulates that the evolution of the Na+-NQR complex involved a functional divergence from its RNF homolog, following the duplication of the rnf operon, the loss of the rnfB gene and the recruitment of the reductase subunit of an aromatic monooxygenase.
Collapse
|
33
|
Localization-controlled specificity of FAD:threonine flavin transferases in Klebsiella pneumoniae and its implications for the mechanism of Na(+)-translocating NADH:quinone oxidoreductase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:1122-9. [PMID: 24361839 DOI: 10.1016/j.bbabio.2013.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/04/2013] [Accepted: 12/13/2013] [Indexed: 12/22/2022]
Abstract
The Klebsiella pneumoniae genome contains genes for two putative flavin transferase enzymes (ApbE1 and ApbE2) that add FMN to protein Thr residues. ApbE1, but not ApbE2, has a periplasm-addressing signal sequence. The genome also contains genes for three target proteins with the Dxx(s/t)gAT flavinylation motif: two subunits of Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR), and a 99.5kDa protein, KPK_2907, with a previously unknown function. We show here that KPK_2907 is an active cytoplasmically-localized fumarate reductase. K. pneumoniae cells with an inactivated kpk_2907 gene lack cytoplasmic fumarate reductase activity, while retaining this activity in the membrane fraction. Complementation of the mutant strain with a kpk_2907-containing plasmid resulted in a complete recovery of cytoplasmic fumarate reductase activity. KPK_2907 produced in Escherichia coli cells contains 1mol/mol each of covalently bound FMN, noncovalently bound FMN and noncovalently bound FAD. Lesion in the ApbE1 gene in K. pneumoniae resulted in inactive Na(+)-NQR, but cytoplasmic fumarate reductase activity remained unchanged. On the contrary, lesion in the ApbE2 gene abolished the fumarate reductase but not the Na(+)-NQR activity. Both activities could be restored by transformation of the ApbE1- or ApbE2-deficient K. pneumoniae strains with plasmids containing the Vibrio cholerae apbE gene with or without the periplasm-directing signal sequence, respectively. Our data thus indicate that ApbE1 and ApbE2 bind FMN to Na(+)-NQR and fumarate reductase, respectively, and that, contrary to the presently accepted view, the FMN residues are on the periplasmic side of Na(+)-NQR. A new, "electron loop" mechanism is proposed for Na(+)-NQR, involving an electroneutral Na(+)/electron symport. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
|
34
|
Shea ME, Juárez O, Cho J, Barquera B. Aspartic acid 397 in subunit B of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae forms part of a sodium-binding site, is involved in cation selectivity, and affects cation-binding site cooperativity. J Biol Chem 2013; 288:31241-9. [PMID: 24030824 DOI: 10.1074/jbc.m113.510776] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Na(+)-pumping NADH:quinone complex is found in Vibrio cholerae and other marine and pathogenic bacteria. NADH:ubiquinone oxidoreductase oxidizes NADH and reduces ubiquinone, using the free energy released by this reaction to pump sodium ions across the cell membrane. In a previous report, a conserved aspartic acid residue in the NqrB subunit at position 397, located in the cytosolic face of this protein, was proposed to be involved in the capture of sodium. Here, we studied the role of this residue through the characterization of mutant enzymes in which this aspartic acid was substituted by other residues that change charge and size, such as arginine, serine, lysine, glutamic acid, and cysteine. Our results indicate that NqrB-Asp-397 forms part of one of the at least two sodium-binding sites and that both size and charge at this position are critical for the function of the enzyme. Moreover, we demonstrate that this residue is involved in cation selectivity, has a critical role in the communication between sodium-binding sites, by promoting cooperativity, and controls the electron transfer step involved in sodium uptake (2Fe-2S → FMNC).
Collapse
Affiliation(s)
- Michael E Shea
- From the Department of Biology and Center of Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 121801
| | | | | | | |
Collapse
|
35
|
Nedielkov R, Steffen W, Steuber J, Möller HM. NMR reveals double occupancy of quinone-type ligands in the catalytic quinone binding site of the Na+-translocating NADH:Quinone oxidoreductase from Vibrio cholerae. J Biol Chem 2013; 288:30597-30606. [PMID: 24003222 DOI: 10.1074/jbc.m112.435750] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sodium ion-translocating NADH:quinone oxidoreductase (Na(+)-NQR) from the pathogen Vibrio cholerae exploits the free energy liberated during oxidation of NADH with ubiquinone to pump sodium ions across the cytoplasmic membrane. The Na(+)-NQR consists of four membrane-bound subunits NqrBCDE and the peripheral NqrF and NqrA subunits. NqrA binds ubiquinone-8 as well as quinones with shorter prenyl chains (ubiquinone-1 and ubiquinone-2). Here we show that the quinone derivative 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), a known inhibitor of the bc1 and b6f complexes found in mitochondria and chloroplasts, also inhibits quinone reduction by the Na(+)-NQR in a mixed inhibition mode. Tryptophan fluorescence quenching and saturation transfer difference NMR experiments in the presence of Na(+)-NQR inhibitor (DBMIB or 2-n-heptyl-4-hydroxyquinoline N-oxide) indicate that two quinone analog ligands are bound simultaneously by the NqrA subunit with very similar interaction constants as observed with the holoenzyme complex. We conclude that the catalytic site of quinone reduction is located on NqrA. The two ligands bind to an extended binding pocket in direct vicinity to each other as demonstrated by interligand Overhauser effects between ubiquinone-1 and DBMIB or 2-n-heptyl-4-hydroxyquinoline N-oxide, respectively. We propose that a similar spatially close arrangement of the native quinone substrates is also operational in vivo, enhancing the catalytic efficiency during the final electron transfer steps in the Na(+)-NQR.
Collapse
Affiliation(s)
- Ruslan Nedielkov
- From the Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany and
| | - Wojtek Steffen
- the Department of Microbiology, University of Hohenheim (Stuttgart), 70599 Stuttgart, Germany
| | - Julia Steuber
- the Department of Microbiology, University of Hohenheim (Stuttgart), 70599 Stuttgart, Germany.
| | - Heiko M Möller
- From the Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany and.
| |
Collapse
|
36
|
Neehaul Y, Juárez O, Barquera B, Hellwig P. Infrared Spectroscopic Evidence of a Redox-Dependent Conformational Change Involving Ion Binding Residue NqrB-D397 in the Na+-Pumping NADH:Quinone Oxidoreductase from Vibrio cholerae. Biochemistry 2013; 52:3085-93. [DOI: 10.1021/bi4000386] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yashvin Neehaul
- Laboratoire de bioelectrochimie
et spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, Strasbourg, France
| | - Oscar Juárez
- Department of Biology, Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United
States
| | - Blanca Barquera
- Department of Biology, Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United
States
| | - Petra Hellwig
- Laboratoire de bioelectrochimie
et spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, Strasbourg, France
| |
Collapse
|
37
|
Matallana-Surget S, Joux F, Wattiez R, Lebaron P. Proteome analysis of the UVB-resistant marine bacterium Photobacterium angustum S14. PLoS One 2012; 7:e42299. [PMID: 22870314 PMCID: PMC3411663 DOI: 10.1371/journal.pone.0042299] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 07/03/2012] [Indexed: 12/22/2022] Open
Abstract
The proteome of the marine bacterium Photobacterium angustum S14 was exposed to UVB and analyzed by the implementation of both the post-digest ICPL labeling method and 2D-DIGE technique using exponentially growing cells. A total of 40 and 23 proteins were quantified in all replicates using either the ICPL or 2D-DIGE methods, respectively. By combining both datasets from 8 biological replicates (4 biological replicates for each proteomics technique), 55 proteins were found to respond significantly to UVB radiation in P. angustum. A total of 8 UVB biomarkers of P. angustum were quantified in all replicates using both methods. Among them, the protein found to present the highest increase in abundance (almost a 3-fold change) was RecA, which is known to play a crucial role in the so-called recombinational repair process. We also observed a high number of antioxidants, transport proteins, metabolism-related proteins, transcription/translation regulators, chaperonins and proteases. We also discuss and compare the UVB response and global protein expression profiles obtained for two different marine bacteria with trophic lifestyles: the copiotroph P. angustum and oligotroph Sphingopyxis alaskensis.
Collapse
Affiliation(s)
- Sabine Matallana-Surget
- UPMC Univ Paris 06, UMR7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Banyuls/mer, France.
| | | | | | | |
Collapse
|
38
|
Verkhovsky MI, Bogachev AV, Pivtsov AV, Bertsova YV, Fedin MV, Bloch DA, Kulik LV. Sodium-dependent movement of covalently bound FMN residue(s) in Na(+)-translocating NADH:quinone oxidoreductase. Biochemistry 2012; 51:5414-21. [PMID: 22697411 DOI: 10.1021/bi300322n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) is a component of respiratory electron-transport chain of various bacteria generating redox-driven transmembrane electrochemical Na(+) potential. We found that the change in Na(+) concentration in the reaction medium has no effect on the thermodynamic properties of prosthetic groups of Na(+)-NQR from Vibrio harveyi, as was revealed by the anaerobic equilibrium redox titration of the enzyme's EPR spectra. On the other hand, the change in Na(+) concentration strongly alters the EPR spectral properties of the radical pair formed by the two anionic semiquinones of FMN residues bound to the NqrB and NqrC subunits (FMN(NqrB) and FMN(NqrC)). Using data obtained by pulse X- and Q-band EPR as well as by pulse ENDOR and ELDOR spectroscopy, the interspin distance between FMN(NqrB) and FMN(NqrC) was found to be 15.3 Å in the absence and 20.4 Å in the presence of Na(+), respectively. Thus, the distance between the covalently bound FMN residues can vary by about 5 Å upon changes in Na(+) concentration. Using these results, we propose a scheme of the sodium potential generation by Na(+)-NQR based on the redox- and sodium-dependent conformational changes in the enzyme.
Collapse
Affiliation(s)
- Michael I Verkhovsky
- Department of Molecular Energetics of Microorganisms, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| | | | | | | | | | | | | |
Collapse
|
39
|
Juárez O, Neehaul Y, Turk E, Chahboun N, DeMicco JM, Hellwig P, Barquera B. The role of glycine residues 140 and 141 of subunit B in the functional ubiquinone binding site of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae. J Biol Chem 2012; 287:25678-85. [PMID: 22645140 DOI: 10.1074/jbc.m112.366088] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Na(+)-pumping NADH:quinone oxidoreductase (Na(+)-NQR) is the main entrance for electrons into the respiratory chain of many marine and pathogenic bacteria. The enzyme accepts electrons from NADH and donates them to ubiquinone, and the free energy released by this redox reaction is used to create an electrochemical gradient of sodium across the cell membrane. Here we report the role of glycine 140 and glycine 141 of the NqrB subunit in the functional binding of ubiquinone. Mutations at these residues altered the affinity of the enzyme for ubiquinol. Moreover, mutations in residue NqrB-G140 almost completely abolished the electron transfer to ubiquinone. Thus, NqrB-G140 and -G141 are critical for the binding and reaction of Na(+)-NQR with its electron acceptor, ubiquinone.
Collapse
Affiliation(s)
- Oscar Juárez
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Lunin VY, Lunina NL, Casutt MS, Knoops K, Schaffitzel C, Steuber J, Fritz G, Baumstark MW. Low-resolution structure determination of Na(+)-translocating NADH:ubiquinone oxidoreductase from Vibrio cholerae by ab initio phasing and electron microscopy. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:724-31. [PMID: 22683795 DOI: 10.1107/s0907444912012012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/20/2012] [Indexed: 11/10/2022]
Abstract
A low-resolution structure of the Na(+)-translocating NADH:ubiquinone oxidoreductase from the human pathogen Vibrio cholerae was determined by ab initio phasing and independently confirmed by electron microscopy. This multi-subunit membrane-protein complex (molecular weight 210 kDa) generates an Na(+) gradient that is essential for substrate uptake, motility, pathogenicity and efflux of antibiotics. The obtained 16 Å resolution electron density-map revealed an asymmetric particle with a central region of low electron density and a putative detergent region, and allowed the identification of the transmembrane regions of the complex.
Collapse
Affiliation(s)
- Vladimir Y Lunin
- Department of Rehabilitative and Preventative Sports Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Neehaul Y, Juárez O, Barquera B, Hellwig P. Thermodynamic contribution to the regulation of electron transfer in the Na(+)-pumping NADH:quinone oxidoreductase from Vibrio cholerae. Biochemistry 2012; 51:4072-7. [PMID: 22533880 DOI: 10.1021/bi300343u] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Na(+)-pumping NADH:quinone oxidoreductase (Na(+)-NQR) is a fundamental enzyme of the oxidative phosphorylation metabolism and ionic homeostasis in several pathogenic and marine bacteria. To understand the mechanism that couples electron transfer with sodium translocation in Na(+)-NQR, the ion dependence of the redox potential of the individual cofactors was studied using a spectroelectrochemical approach. The redox potential of one of the FMN cofactors increased 90 mV in the presence of Na(+) or Li(+), compared to the redox potentials measured in the presence of other cations that are not transported by the enzyme, such as K(+), Rb(+), and NH(4)(+). This shift in redox potential of one FMN confirms the crucial role of the FMN anionic radicals in the Na(+) pumping mechanism and demonstrates that the control of the electron transfer rate has both kinetic (via conformational changes) and thermodynamic components.
Collapse
Affiliation(s)
- Yashvin Neehaul
- Laboratoire de spectroscopie vibrationnelle et electrochimie des biomolecules, Institut de Chimie, UMR 7177, Université de Strasbourg-CNRS, 67070 Strasbourg, France
| | | | | | | |
Collapse
|
42
|
Insights into the mechanism of electron transfer and sodium translocation of the Na(+)-pumping NADH:quinone oxidoreductase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1823-32. [PMID: 22465856 DOI: 10.1016/j.bbabio.2012.03.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/13/2012] [Accepted: 03/15/2012] [Indexed: 11/22/2022]
Abstract
Na(+)-NQR is a unique energy-transducing complex, widely distributed among marine and pathogenic bacteria. It converts the energy from the oxidation of NADH and the reduction of quinone into an electrochemical Na(+)-gradient that can provide energy for the cell. Na(+)-NQR is not homologous to any other respiratory protein but is closely related to the RNF complex. In this review we propose that sodium pumping in Na(+)-NQR is coupled to the redox reactions by a novel mechanism, which operates at multiple sites, is indirect and mediated by conformational changes of the protein. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
|
43
|
Zhu XQ, Mu YY, Li XT. What are the differences between ascorbic acid and NADH as hydride and electron sources in vivo on thermodynamics, kinetics, and mechanism? J Phys Chem B 2011; 115:14794-811. [PMID: 22035071 DOI: 10.1021/jp2067974] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ascorbic acid (AscH(2)) and dihydronicotinamide adenine dinucleotide (NADH) are two very important natural redox cofactors, which can be used as hydride, electron, and hydrogen atom sources to take part in many important bioreduction processes in vivo. The differences of the two natural reducing agents as hydride, hydrogen atom, and electron donors in thermodynamics, kinetics, and mechanisms were examined by using 5,6-isopropylidene ascorbate (iAscH(-)) and β-D-glucopyranosyl-1,4-dihydronicotinamide acetate (GluNAH) as their models, respectively. The results show that the hydride-donating ability of iAscH(-) is smaller than that of GluNAH by 6.0 kcal/mol, but the electron-donating ability and hydrogen-donating ability of iAscH(-) are larger than those of GluNAH by 20.8 and 8.4 kcal/mol, respectively, which indicates that iAscH(-) is a good electron donor and a good hydrogen atom donor, but GluNAH is a good hydride donor. The kinetic intrinsic barrier energy of iAscH(-) to release hydride anion in acetonitrile is larger than that of GluNAH to release hydride anion in acetonitrile by 6.9 kcal/mol. The mechanisms of hydride transfer from iAscH(-) and GluNAH to phenylxanthium perchlorate (PhXn(+)), a well-known hydride acceptor, were examined, and the results show that hydride transfer from GluNAH adopted a one-step mechanism, but the hydride transfer from iAscH(-) adopted a two-step mechanism (e-H(•)). The thermodynamic relation charts (TRC) of the iAscH(-) family (including iAscH(-), iAscH(•), iAsc(•-), and iAsc) and of the GluNAH family (including GluNAH, GluNAH(•+), GluNA(•), and GluNA(+)) in acetonitrile were constructed as Molecule ID Cards of iAscH(-) and of GluNAH in acetonitrile. By using the Molecule ID Cards of iAscH(-) and GluNAH, the character chemical properties not only of iAscH(-) and GluNAH but also of the various reaction intermediates of iAscH(-) and GluNAH all have been quantitatively diagnosed and compared. It is clear that these comparisons of the thermodynamics, kinetics, and mechanisms between iAscH(-) and GluNAH as hydride and electron donors in acetonitrile should be quite important and valuable to diagnose and understand the different roles and functions of ascorbic acid and NADH as hydride, hydrogen atom, and electron sources in vivo.
Collapse
Affiliation(s)
- Xiao-Qing Zhu
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Tianjin, China.
| | | | | |
Collapse
|
44
|
Casutt MS, Nedielkov R, Wendelspiess S, Vossler S, Gerken U, Murai M, Miyoshi H, Möller HM, Steuber J. Localization of ubiquinone-8 in the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae. J Biol Chem 2011; 286:40075-82. [PMID: 21885438 DOI: 10.1074/jbc.m111.224980] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Na(+) is the second major coupling ion at membranes after protons, and many pathogenic bacteria use the sodium-motive force to their advantage. A prominent example is Vibrio cholerae, which relies on the Na(+)-pumping NADH:quinone oxidoreductase (Na(+)-NQR) as the first complex in its respiratory chain. The Na(+)-NQR is a multisubunit, membrane-embedded NADH dehydrogenase that oxidizes NADH and reduces quinone to quinol. Existing models describing redox-driven Na(+) translocation by the Na(+)-NQR are based on the assumption that the pump contains four flavins and one FeS cluster. Here we show that the large, peripheral NqrA subunit of the Na(+)-NQR binds one molecule of ubiquinone-8. Investigations of the dynamic interaction of NqrA with quinones by surface plasmon resonance and saturation transfer difference NMR reveal a high affinity, which is determined by the methoxy groups at the C-2 and C-3 positions of the quinone headgroup. Using photoactivatable quinone derivatives, it is demonstrated that ubiquinone-8 bound to NqrA occupies a functional site. A novel scheme of electron transfer in Na(+)-NQR is proposed that is initiated by NADH oxidation on subunit NqrF and leads to quinol formation on subunit NqrA.
Collapse
Affiliation(s)
- Marco S Casutt
- Department of Neuropathology, University of Freiburg, 79106 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Juárez O, Shea ME, Makhatadze GI, Barquera B. The role and specificity of the catalytic and regulatory cation-binding sites of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae. J Biol Chem 2011; 286:26383-90. [PMID: 21652714 DOI: 10.1074/jbc.m111.257873] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Na(+)-translocating NADH:quinone oxidoreductase is the entry site for electrons into the respiratory chain and the main sodium pump in Vibrio cholerae and many other pathogenic bacteria. In this work, we have employed steady-state and transient kinetics, together with equilibrium binding measurements to define the number of cation-binding sites and characterize their roles in the enzyme. Our results show that sodium and lithium ions stimulate enzyme activity, and that Na(+)-NQR enables pumping of Li(+), as well as Na(+) across the membrane. We also confirm that the enzyme is not able to translocate other monovalent cations, such as potassium or rubidium. Although potassium is not used as a substrate, Na(+)-NQR contains a regulatory site for this ion, which acts as a nonessential activator, increasing the activity and affinity for sodium. Rubidium can bind to the same site as potassium, but instead of being activated, enzyme turnover is inhibited. Activity measurements in the presence of both sodium and lithium indicate that the enzyme contains at least two functional sodium-binding sites. We also show that the binding sites are not exclusively responsible for ion selectivity, and other steps downstream in the mechanism also play a role. Finally, equilibrium-binding measurements with (22)Na(+) show that, in both its oxidized and reduced states, Na(+)-NQR binds three sodium ions, and that the affinity for sodium is the same for both of these states.
Collapse
Affiliation(s)
- Oscar Juárez
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | | | |
Collapse
|
46
|
Casutt MS, Wendelspiess S, Steuber J, Fritz G. Crystallization of the Na+-translocating NADH:quinone oxidoreductase from Vibrio cholerae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1677-9. [PMID: 21139223 DOI: 10.1107/s1744309110043125] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 10/22/2010] [Indexed: 05/26/2023]
Abstract
The Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) from the human pathogen Vibrio cholerae couples the exergonic oxidation of NADH by membrane-bound quinone to Na+ translocation across the membrane. Na+-NQR consists of six different subunits (NqrA-NqrF) and contains a [2Fe-2S] cluster, a noncovalently bound FAD, a noncovalently bound riboflavin, two covalently bound FMNs and potentially Q8 as cofactors. Initial crystallization of the entire Na+-NQR complex was achieved by the sitting-drop method using a nanolitre dispenser. Optimization of the crystallization conditions yielded flat yellow-coloured crystals with dimensions of up to 200×80×20 µm. The crystals diffracted to 4.0 Å resolution and belonged to space group P2(1), with unit-cell parameters a=94, b=146, c=105 Å, α=γ=90, β=111°.
Collapse
Affiliation(s)
- Marco S Casutt
- Department of Neuropathology, University of Freiburg, Breisacher Strasse 64, 79106 Freiburg, Germany
| | | | | | | |
Collapse
|
47
|
Casutt MS, Huber T, Brunisholz R, Tao M, Fritz G, Steuber J. Localization and function of the membrane-bound riboflavin in the Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) from Vibrio cholerae. J Biol Chem 2010; 285:27088-27099. [PMID: 20558724 PMCID: PMC2930708 DOI: 10.1074/jbc.m109.071126] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 06/16/2010] [Indexed: 12/29/2022] Open
Abstract
The sodium ion-translocating NADH:quinone oxidoreductase (Na(+)-NQR) from the human pathogen Vibrio cholerae is a respiratory membrane protein complex that couples the oxidation of NADH to the transport of Na(+) across the bacterial membrane. The Na(+)-NQR comprises the six subunits NqrABCDEF, but the stoichiometry and arrangement of these subunits are unknown. Redox-active cofactors are FAD and a 2Fe-2S cluster on NqrF, covalently attached FMNs on NqrB and NqrC, and riboflavin and ubiquinone-8 with unknown localization in the complex. By analyzing the cofactor content and NADH oxidation activity of subcomplexes of the Na(+)-NQR lacking individual subunits, the riboflavin cofactor was unequivocally assigned to the membrane-bound NqrB subunit. Quantitative analysis of the N-terminal amino acids of the holo-complex revealed that NqrB is present in a single copy in the holo-complex. It is concluded that the hydrophobic NqrB harbors one riboflavin in addition to its covalently attached FMN. The catalytic role of two flavins in subunit NqrB during the reduction of ubiquinone to ubiquinol by the Na(+)-NQR is discussed.
Collapse
Affiliation(s)
- Marco S Casutt
- Department of Neuropathology, Breisacherstrasse 64, University of Freiburg, 79106 Freiburg, Germany
| | - Tamara Huber
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - René Brunisholz
- Functional Genomics Centre Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Minli Tao
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Günter Fritz
- Department of Neuropathology, Breisacherstrasse 64, University of Freiburg, 79106 Freiburg, Germany
| | - Julia Steuber
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
48
|
Energy transducing redox steps of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae. Proc Natl Acad Sci U S A 2010; 107:12505-10. [PMID: 20616050 DOI: 10.1073/pnas.1002866107] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Na(+)-NQR is a unique respiratory enzyme that couples the free energy of electron transfer reactions to electrogenic pumping of sodium across the cell membrane. This enzyme is found in many marine and pathogenic bacteria where it plays an analogous role to the H(+)-pumping complex I. It has generally been assumed that the sodium pump of Na(+)-NQR operates on the basis of thermodynamic coupling between reduction of a single redox cofactor and the binding of sodium at a nearby site. In this study, we have defined the coupling to sodium translocation of individual steps in the redox reaction of Na(+)-NQR. Sodium uptake takes place in the reaction step in which an electron moves from the 2Fe-2S center to FMN(C), while the translocation of sodium across the membrane dielectric (and probably its release into the external medium) occurs when an electron moves from FMN(B) to riboflavin. This argues against a single-site coupling model because the redox steps that drive these two parts of the sodium pumping process do not have any redox cofactor in common. The significance of these results for the mechanism of coupling is discussed, and we proposed that Na(+)-NQR operates through a novel mechanism based on kinetic coupling, mediated by conformational changes.
Collapse
|
49
|
Sodium-translocating NADH:quinone oxidoreductase as a redox-driven ion pump. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:738-46. [PMID: 20056102 DOI: 10.1016/j.bbabio.2009.12.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/17/2009] [Accepted: 12/24/2009] [Indexed: 11/20/2022]
Abstract
The Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) is a component of the respiratory chain of various bacteria. This enzyme is an analogous but not homologous counterpart of mitochondrial Complex I. Na+-NQR drives the same chemistry and also uses released energy to translocate ions across the membrane, but it pumps Na+ instead of H+. Most likely the mechanism of sodium pumping is quite different from that of proton pumping (for example, it could not accommodate the Grotthuss mechanism of ion movement); this is why the enzyme structure, subunits and prosthetic groups are completely special. This review summarizes modern knowledge on the structural and catalytic properties of bacterial Na+-translocating NADH:quinone oxidoreductases. The sequence of electron transfer through the enzyme cofactors and thermodynamic properties of those cofactors is discussed. The resolution of the intermediates of the catalytic cycle and localization of sodium-dependent steps are combined in a possible molecular mechanism of sodium transfer by the enzyme.
Collapse
|
50
|
Juárez O, Athearn K, Gillespie P, Barquera B. Acid residues in the transmembrane helices of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae involved in sodium translocation. Biochemistry 2009; 48:9516-24. [PMID: 19694431 PMCID: PMC2758334 DOI: 10.1021/bi900845y] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vibrio cholerae and many other marine and pathogenic bacteria possess a unique respiratory complex, the Na(+)-pumping NADH:quinone oxidoreductase (Na(+)-NQR), which pumps Na(+) across the cell membrane using the energy released by the redox reaction between NADH and ubiquinone. To function as a selective sodium pump, Na(+)-NQR must contain structures that (1) allow the sodium ion to pass through the hydrophobic core of the membrane and (2) provide cation specificity to the translocation system. In other sodium-transporting proteins, the structures that carry out these roles frequently include aspartate and glutamate residues. The negative charge of these residues facilitates binding and translocation of sodium. In this study, we have analyzed mutants of acid residues located in the transmembrane helices of subunits B, D, and E of Na(+)-NQR. The results are consistent with the participation of seven of these residues in the translocation process of sodium. Mutations at NqrB-D397, NqrD-D133, and NqrE-E95 produced a decrease of approximately >or=10-fold in the apparent affinity of the enzyme for sodium (Km(app)(Na+)), which suggests that these residues may form part of a sodium-binding site. Mutation at other residues, including NqrB-E28, NqrB-E144, NqrB-E346, and NqrD-D88, had a strong effect on the quinone reductase activity of the enzyme and its sodium sensitivity, but a weaker effect on the apparent sodium affinity, consistent with a possible role in sodium conductance pathways.
Collapse
Affiliation(s)
- Oscar Juárez
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Kathleen Athearn
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Portia Gillespie
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Blanca Barquera
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| |
Collapse
|