1
|
Crystal structure of Grimontia hollisae collagenase provides insights into its novel substrate specificity toward collagen. J Biol Chem 2022; 298:102109. [PMID: 35679897 PMCID: PMC9304777 DOI: 10.1016/j.jbc.2022.102109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/29/2022] Open
Abstract
Collagenase from the gram-negative bacterium Grimontia hollisae strain 1706B (Ghcol) degrades collagen more efficiently even than clostridial collagenase, the most widely used industrial collagenase. However, the structural determinants facilitating this efficiency are unclear. Here, we report the crystal structures of ligand-free and Gly-Pro-hydroxyproline (Hyp)-complexed Ghcol at 2.2 and 2.4 Å resolution, respectively. These structures revealed that the activator and peptidase domains in Ghcol form a saddle-shaped structure with one zinc ion and four calcium ions. In addition, the activator domain comprises two homologous subdomains, whereas zinc-bound water was observed in the ligand-free Ghcol. In the ligand-complexed Ghcol, we found two Gly-Pro-Hyp molecules, each bind at the active site and at two surfaces on the duplicate subdomains of the activator domain facing the active site, and the nucleophilic water is replaced by the carboxyl oxygen of Hyp at the P1 position. Furthermore, all Gly-Pro-Hyp molecules bound to Ghcol have almost the same conformation as Pro-Pro-Gly motif in model collagen (Pro-Pro-Gly)10, suggesting these three sites contribute to the unwinding of the collagen triple helix. A comparison of activities revealed that Ghcol exhibits broader substrate specificity than clostridial collagenase at the P2 and P2′ positions, which may be attributed to the larger space available for substrate binding at the S2 and S2′ sites in Ghcol. Analysis of variants of three active-site Tyr residues revealed that mutation of Tyr564 affected catalysis, whereas mutation of Tyr476 or Tyr555 affected substrate recognition. These results provide insights into the substrate specificity and mechanism of G. hollisae collagenase.
Collapse
|
2
|
Structure of Vibrio collagenase VhaC provides insight into the mechanism of bacterial collagenolysis. Nat Commun 2022; 13:566. [PMID: 35091565 PMCID: PMC8799719 DOI: 10.1038/s41467-022-28264-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
The collagenases of Vibrio species, many of which are pathogens, have been regarded as an important virulence factor. However, there is little information on the structure and collagenolytic mechanism of Vibrio collagenase. Here, we report the crystal structure of the collagenase module (CM) of Vibrio collagenase VhaC and the conformation of VhaC in solution. Structural and biochemical analyses and molecular dynamics studies reveal that triple-helical collagen is initially recognized by the activator domain, followed by subsequent cleavage by the peptidase domain along with the closing movement of CM. This is different from the peptidolytic mode or the proposed collagenolysis of Clostridium collagenase. We propose a model for the integrated collagenolytic mechanism of VhaC, integrating the functions of VhaC accessory domains and its collagen degradation pattern. This study provides insight into the mechanism of bacterial collagenolysis and helps in structure-based drug design targeting of the Vibrio collagenase. The collagenolytic mechanism of Vibrio collagenase, a virulence factor, remains unclear. Here, the authors report the structure of Vibrio collagenase VhaC and propose the mechanism for collagen recognition and degradation, providing new insight into bacterial collagenolysis.
Collapse
|
3
|
Varghese A, Chaturvedi SS, DiCastri B, Mehler E, Fields GB, Karabencheva-Christova TG. Effects of the Nature of the Metal Ion, Protein and Substrate on the Catalytic Center in Matrix Metalloproteinase-1: Insights from Multilevel MD, QM/MM and QM Studies. Chemphyschem 2021; 23:10.1002/cphc.202100680. [PMID: 35991515 PMCID: PMC9387770 DOI: 10.1002/cphc.202100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 11/06/2022]
Abstract
Matrix metalloproteinase-1 (MMP-1) is a Zn(II) dependent endopeptidase involved in the degradation of collagen, the most abundant structural protein in the extracellular matrix of connective tissues and the human body. Herein we performed a multilevel computational analysis including molecular dynamics (MD), combined quantum mechanics/molecular mechanics (QM/MM), and quantum mechanics (QM) calculations to characterize the structure and geometry of the catalytic Zn(II) within the MMP-1 protein environment in comparison to crystallographic and spectroscopic data. The substrate's removal fine-tuned impact on the conformational dynamics and geometry of the catalytic Zn(II) center was also explored. Finally, the study examined the effect of substituting catalytic Zn(II) by Co(II) on the overall structure and dynamics of the MMP-1 THP complex and specifically on the geometry of the catalytic metal center. Overall our QM/MM and QM studies were in good agreement with the MM description of the Zn(II) centers in the MD simulations.
Collapse
Affiliation(s)
- Ann Varghese
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931
| | - Shobhit S Chaturvedi
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931
| | - Bella DiCastri
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931
| | - Emerald Mehler
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan 49931
| | - Gregg B Fields
- Department of Chemistry and Biochemistry and I-HEALTH, Florida Atlantic University, Jupiter, Florida 33458
| | | |
Collapse
|
4
|
Birbo B, Madu EE, Madu CO, Jain A, Lu Y. Role of HSP90 in Cancer. Int J Mol Sci 2021; 22:ijms221910317. [PMID: 34638658 PMCID: PMC8508648 DOI: 10.3390/ijms221910317] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 11/25/2022] Open
Abstract
HSP90 is a vital chaperone protein conserved across all organisms. As a chaperone protein, it correctly folds client proteins. Structurally, this protein is a dimer with monomer subunits that consist of three main conserved domains known as the N-terminal domain, middle domain, and the C-terminal domain. Multiple isoforms of HSP90 exist, and these isoforms share high homology. These isoforms are present both within the cell and outside the cell. Isoforms HSP90α and HSP90β are present in the cytoplasm; TRAP1 is present in the mitochondria; and GRP94 is present in the endoplasmic reticulum and is likely secreted due to post-translational modifications (PTM). HSP90 is also secreted into an extracellular environment via an exosome pathway that differs from the classic secretion pathway. Various co-chaperones are necessary for HSP90 to function. Elevated levels of HSP90 have been observed in patients with cancer. Despite this observation, the possible role of HSP90 in cancer was overlooked because the chaperone was also present in extreme amounts in normal cells and was vital to normal cell function, as observed when the drastic adverse effects resulting from gene knockout inhibited the production of this protein. Differences between normal HSP90 and HSP90 of the tumor phenotype have been better understood and have aided in making the chaperone protein a target for cancer drugs. One difference is in the conformation: HSP90 of the tumor phenotype is more susceptible to inhibitors. Since overexpression of HSP90 is a factor in tumorigenesis, HSP90 inhibitors have been studied to combat the adverse effects of HSP90 overexpression. Monotherapies using HSP90 inhibitors have shown some success; however, combination therapies have shown better results and are thus being studied for a more effective cancer treatment.
Collapse
Affiliation(s)
- Bereket Birbo
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Elechi E. Madu
- Departments of Biological Sciences, University of Memphis, Memphis, TN 38152, USA; (E.E.M.); (C.O.M.); (A.J.)
| | - Chikezie O. Madu
- Departments of Biological Sciences, University of Memphis, Memphis, TN 38152, USA; (E.E.M.); (C.O.M.); (A.J.)
| | - Aayush Jain
- Departments of Biological Sciences, University of Memphis, Memphis, TN 38152, USA; (E.E.M.); (C.O.M.); (A.J.)
| | - Yi Lu
- Health Science Center, Department of Pathology and Laboratory Medicine, University of Tennessee, Memphis, TN 38163, USA
- Correspondence: ; Tel.: +1-(901)-448-5436; Fax: +1-(901)-448-5496
| |
Collapse
|
5
|
Kaya SG, Inanc-Surer S, Cakan-Akdogan G, Oktay G, Utine CA, Kalyoncu S. Roles of matrix metalloproteinases in the cornea: A special focus on macular corneal dystrophy. MEDICINE IN DRUG DISCOVERY 2021. [DOI: 10.1016/j.medidd.2021.100095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
6
|
Manka SW, Brew K. Thermodynamic and Mechanistic Insights into Coupled Binding and Unwinding of Collagen by Matrix Metalloproteinase 1. J Mol Biol 2020; 432:5985-5993. [PMID: 33058879 DOI: 10.1016/j.jmb.2020.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022]
Abstract
Local unwinding of the collagen triple helix is a necessary step for initiating the collagen degradation cascade in extracellular matrices. A few matrix metalloproteinases (MMPs) are known to support this key process, but its energetic aspects remain unknown. Here, we captured the thermodynamics of the triple helix unwinding by monitoring interactions between a collagen peptide and MMP-1(E200A) - an active-site mutant of an archetypal vertebrate collagenase - at increasing temperatures, using isothermal titration calorimetry (ITC). Coupled binding and unwinding manifests as a curved relationship between the total enthalpy change and temperature of the reaction, producing increasingly negative heat capacity change (ΔΔCp ≈ -36.3 kcal/molK2). A specially designed solid-phase binding and cleavage assay (SPBCA) reported strain in the catalytically relevant unwound state, suggesting that this state is distinct from the horizon of sampled conformations of the collagenase-susceptible site. MMP-1 appears to blend selected fit with induced fit mechanisms to catalyse collagen unwinding prior to cleavage of individual collagen chains.
Collapse
Affiliation(s)
- Szymon W Manka
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| | - Keith Brew
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
7
|
Kumar L, Nash A, Harms C, Planas-Iglesias J, Wright D, Klein-Seetharaman J, Sarkar SK. Allosteric Communications between Domains Modulate the Activity of Matrix Metalloprotease-1. Biophys J 2020; 119:360-374. [PMID: 32585130 PMCID: PMC7376139 DOI: 10.1016/j.bpj.2020.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/30/2020] [Accepted: 06/09/2020] [Indexed: 11/23/2022] Open
Abstract
An understanding of the structure-dynamics relationship is essential for understanding how a protein works. Prior research has shown that the activity of a protein correlates with intradomain dynamics occurring at picosecond to millisecond timescales. However, the correlation between interdomain dynamics and the function of a protein is poorly understood. Here, we show that communications between the catalytic and hemopexin domains of matrix metalloprotease-1 (MMP1) on type 1 collagen fibrils correlate with its activity. Using single-molecule Förster resonance energy transfer, we identified functionally relevant open conformations in which the two MMP1 domains are well separated, which were significantly absent for catalytically inactive point mutant (E219Q) of MMP1 and could be modulated by an inhibitor or an enhancer of activity. The observed relevance of open conformations resolves the debate about the roles of open and closed MMP1 structures in function. We fitted the histograms of single-molecule Förster resonance energy transfer values to a sum of two Gaussians and the autocorrelations to an exponential and power law. We used a two-state Poisson process to describe the dynamics and calculate the kinetic rates from the fit parameters. All-atom and coarse-grained simulations reproduced some of the experimental features and revealed substrate-dependent MMP1 dynamics. Our results suggest that an interdomain separation facilitates opening up the catalytic pocket so that the collagen chains come closer to the MMP1 active site. Coordination of functional conformations at different parts of MMP1 occurs via allosteric communications that can take place via interactions mediated by collagen even if the linker between the domains is absent. Modeling dynamics as a Poisson process enables connecting the picosecond timescales of molecular dynamics simulations with the millisecond timescales of single-molecule measurements. Water-soluble MMP1 interacting with water-insoluble collagen fibrils poses challenges for biochemical studies that the single-molecule tracking can overcome for other insoluble substrates. Interdomain communications are likely important for multidomain proteins.
Collapse
Affiliation(s)
- Lokender Kumar
- Department of Physics, Colorado School of Mines, Golden, Colorado
| | - Anthony Nash
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Chase Harms
- Department of Physics, Colorado School of Mines, Golden, Colorado
| | - Joan Planas-Iglesias
- Warwick Medical School, University of Warwick, Coventry, United Kingdom; Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Derek Wright
- Department of Physics, Colorado School of Mines, Golden, Colorado
| | - Judith Klein-Seetharaman
- Warwick Medical School, University of Warwick, Coventry, United Kingdom; Department of Chemistry, Colorado School of Mines, Golden, Colorado
| | - Susanta K Sarkar
- Department of Physics, Colorado School of Mines, Golden, Colorado.
| |
Collapse
|
8
|
Rukmani SJ, Anstine DM, Munasinghe A, Colina CM. An Insight into Structural and Mechanical Properties of Ideal‐Networked Poly(Ethylene Glycol)–Peptide Hydrogels from Molecular Dynamics Simulations. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.201900326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shalini J. Rukmani
- Department of Materials Science and EngineeringUniversity of Florida Gainesville FL 32611 USA
- George and Josephine Butler Polymer Research LaboratoryDepartment of ChemistryUniversity of Florida Gainesville FL 32611 USA
| | - Dylan M. Anstine
- Department of Materials Science and EngineeringUniversity of Florida Gainesville FL 32611 USA
- George and Josephine Butler Polymer Research LaboratoryDepartment of ChemistryUniversity of Florida Gainesville FL 32611 USA
| | - Aravinda Munasinghe
- George and Josephine Butler Polymer Research LaboratoryDepartment of ChemistryUniversity of Florida Gainesville FL 32611 USA
- Department of ChemistryUniversity of Florida Gainesville FL 32611 USA
| | - Coray M. Colina
- Department of Materials Science and EngineeringUniversity of Florida Gainesville FL 32611 USA
- George and Josephine Butler Polymer Research LaboratoryDepartment of ChemistryUniversity of Florida Gainesville FL 32611 USA
- Department of ChemistryUniversity of Florida Gainesville FL 32611 USA
| |
Collapse
|
9
|
Cerofolini L, Fragai M, Luchinat C. Mechanism and Inhibition of Matrix Metalloproteinases. Curr Med Chem 2019; 26:2609-2633. [PMID: 29589527 DOI: 10.2174/0929867325666180326163523] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 01/02/2023]
Abstract
Matrix metalloproteinases hydrolyze proteins and glycoproteins forming the extracellular matrix, cytokines and growth factors released in the extracellular space, and membrane-bound receptors on the outer cell membrane. The pathological relevance of MMPs has prompted the structural and functional characterization of these enzymes and the development of synthetic inhibitors as possible drug candidates. Recent studies have provided a better understanding of the substrate preference of the different members of the family, and structural data on the mechanism by which these enzymes hydrolyze the substrates. Here, we report the recent advancements in the understanding of the mechanism of collagenolysis and elastolysis, and we discuss the perspectives of new therapeutic strategies for targeting MMPs.
Collapse
Affiliation(s)
- Linda Cerofolini
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
10
|
Adhipandito CF, Ludji DPKS, Aprilianto E, Jenie RI, Al-Najjar B, Hariono M. Matrix metalloproteinase9 as the protein target in anti-breast cancer drug discovery: an approach by targeting hemopexin domain. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2019. [DOI: 10.1186/s43094-019-0001-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
11
|
Integrative Approaches in Structural Biology: A More Complete Picture from the Combination of Individual Techniques. Biomolecules 2019; 9:biom9080370. [PMID: 31416261 PMCID: PMC6723403 DOI: 10.3390/biom9080370] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 11/21/2022] Open
Abstract
With the recent technological and computational advancements, structural biology has begun to tackle more and more difficult questions, including complex biochemical pathways and transient interactions among macromolecules. This has demonstrated that, to approach the complexity of biology, one single technique is largely insufficient and unable to yield thorough answers, whereas integrated approaches have been more and more adopted with successful results. Traditional structural techniques (X-ray crystallography and Nuclear Magnetic Resonance (NMR)) and the emerging ones (cryo-electron microscopy (cryo-EM), Small Angle X-ray Scattering (SAXS)), together with molecular modeling, have pros and cons which very nicely complement one another. In this review, three examples of synergistic approaches chosen from our previous research will be revisited. The first shows how the joint use of both solution and solid-state NMR (SSNMR), X-ray crystallography, and cryo-EM is crucial to elucidate the structure of polyethylene glycol (PEG)ylated asparaginase, which would not be obtainable through any of the techniques taken alone. The second deals with the integrated use of NMR, X-ray crystallography, and SAXS in order to elucidate the catalytic mechanism of an enzyme that is based on the flexibility of the enzyme itself. The third one shows how it is possible to put together experimental data from X-ray crystallography and NMR restraints in order to refine a protein model in order to obtain a structure which simultaneously satisfies both experimental datasets and is therefore closer to the ‘real structure’.
Collapse
|
12
|
Collagen degradation in tuberculosis pathogenesis: the biochemical consequences of hosting an undesired guest. Biochem J 2018; 475:3123-3140. [PMID: 30315001 DOI: 10.1042/bcj20180482] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/03/2018] [Accepted: 09/07/2018] [Indexed: 12/15/2022]
Abstract
The scenario of chemical reactions prompted by the infection by Mycobacterium tuberculosis is huge. The infection generates a localized inflammatory response, with the recruitment of neutrophils, monocytes, and T-lymphocytes. Consequences of this immune reaction can be the eradication or containment of the infection, but these events can be deleterious to the host inasmuch as lung tissue can be destroyed. Indeed, a hallmark of tuberculosis (TB) is the formation of lung cavities, which increase disease development and transmission, as they are sites of high mycobacterial burden. Pulmonary cavitation is associated with antibiotic failure and the emergence of antibiotic resistance. For cavities to form, M. tuberculosis induces the overexpression of host proteases, like matrix metalloproteinases and cathepsin, which are secreted from monocyte-derived cells, neutrophils, and stromal cells. These proteases destroy the lung parenchyma, in particular the collagen constituent of the extracellular matrix (ECM). Namely, in an attempt to destroy infected cells, the immune reactions prompted by mycobacterial infections induce the destruction of vital regions of the lung, in a process that can become fatal. Here, we review structure and function of the main molecular actors of ECM degradation due to M. tuberculosis infection and the proposed mechanisms of tissue destruction, mainly attacking fibrillar collagen. Importantly, enzymes responsible for collagen destruction are emerging as key targets for adjunctive therapies to limit immunopathology in TB.
Collapse
|
13
|
Ravera E, Takis PG, Fragai M, Parigi G, Luchinat C. NMR Spectroscopy and Metal Ions in Life Sciences. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800875] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Panteleimon G. Takis
- Giotto Biotech S.R.L.; Via Madonna del Piano 6 50019 Sesto Fiorentino (FI) Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| |
Collapse
|
14
|
Andrałojć W, Ravera E. Treating Biomacromolecular Conformational Variability. PARAMAGNETISM IN EXPERIMENTAL BIOMOLECULAR NMR 2018. [DOI: 10.1039/9781788013291-00107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The function of a biomacromolecule is related not only to its structure but also to the different conformations that its structural elements can sample. It is therefore important to determine the extent of the structural fluctuations and to identify the states that are actually populated as a result of the rearrangement. However, this accomplishment is undermined by an intrinsic limitation: the amount of experimental data is by and large inferior to the number of the states that a biomacromolecule can actually sample. This means that additional, a priori information must be applied in order to derive the most from the available experimental data but not to run into overinterpretation. In this chapter we will give a summary of the experimental observables that can be used towards the reconstruction of structural ensembles, how the data can be profitably combined and to what extent the data are affected by error; finally we will give an overview of the computational methods that have been developed to model structural ensembles, highlighting their difference and similarities, advantages and disadvantages.
Collapse
Affiliation(s)
- Witold Andrałojć
- Polish Academy of Sciences, Institute of Bioorganic Chemistry Noskowskiego 12/14 Poznan 61-704 Poland
| | - Enrico Ravera
- University of Florence, Department of Chemistry and Magnetic Resonance Center Via L. Sacconi 6 50019 Sesto Fiorentino (FI) Italy
| |
Collapse
|
15
|
Karabencheva-Christova TG, Christov CZ, Fields GB. Conformational Dynamics of Matrix Metalloproteinase-1·Triple-Helical Peptide Complexes. J Phys Chem B 2017; 122:5316-5326. [DOI: 10.1021/acs.jpcb.7b09771] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tatyana G. Karabencheva-Christova
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Christo Z. Christov
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Gregg B. Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, Florida 33458, United States
- Department of Chemistry, The Scripps Research Institute/Scripps Florida, Jupiter, Florida 33458, United States
| |
Collapse
|
16
|
Amar S, Smith L, Fields GB. Matrix metalloproteinase collagenolysis in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2017; 1864:1940-1951. [PMID: 28456643 PMCID: PMC5605394 DOI: 10.1016/j.bbamcr.2017.04.015] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 01/08/2023]
Abstract
The proteolytic processing of collagen (collagenolysis) is critical in development and homeostasis, but also contributes to numerous pathologies. Mammalian interstitial collagenolytic enzymes include members of the matrix metalloproteinase (MMP) family and cathepsin K. While MMPs have long been recognized for their ability to catalyze the hydrolysis of collagen, the roles of individual MMPs in physiological and pathological collagenolysis are less defined. The use of knockout and mutant animal models, which reflect human diseases, has revealed distinct collagenolytic roles for MT1-MMP and MMP-13. A better understanding of temporal and spatial collagen processing, along with the knowledge of the specific MMP involved, will ultimately lead to more effective treatments for cancer, arthritis, cardiovascular conditions, and infectious diseases. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
Affiliation(s)
- Sabrina Amar
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL 33458, USA.
| | - Lyndsay Smith
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL 33458, USA.
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Chemistry, The Scripps Research Institute/Scripps Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
17
|
Lal P, Cerofolini L, D'Agostino VG, Zucal C, Fuccio C, Bonomo I, Dassi E, Giuntini S, Di Maio D, Vishwakarma V, Preet R, Williams SN, Fairlamb MS, Munk R, Lehrmann E, Abdelmohsen K, Elezgarai SR, Luchinat C, Novellino E, Quattrone A, Biasini E, Manzoni L, Gorospe M, Dixon DA, Seneci P, Marinelli L, Fragai M, Provenzani A. Regulation of HuR structure and function by dihydrotanshinone-I. Nucleic Acids Res 2017; 45:9514-9527. [PMID: 28934484 PMCID: PMC5766160 DOI: 10.1093/nar/gkx623] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 07/07/2017] [Indexed: 12/27/2022] Open
Abstract
The Human antigen R protein (HuR) is an RNA-binding protein that recognizes U/AU-rich elements in diverse RNAs through two RNA-recognition motifs, RRM1 and RRM2, and post-transcriptionally regulates the fate of target RNAs. The natural product dihydrotanshinone-I (DHTS) prevents the association of HuR and target RNAs in vitro and in cultured cells by interfering with the binding of HuR to RNA. Here, we report the structural determinants of the interaction between DHTS and HuR and the impact of DHTS on HuR binding to target mRNAs transcriptome-wide. NMR titration and Molecular Dynamics simulation identified the residues within RRM1 and RRM2 responsible for the interaction between DHTS and HuR. RNA Electromobility Shifts and Alpha Screen Assays showed that DHTS interacts with HuR through the same binding regions as target RNAs, stabilizing HuR in a locked conformation that hampers RNA binding competitively. HuR ribonucleoprotein immunoprecipitation followed by microarray (RIP-chip) analysis showed that DHTS treatment of HeLa cells paradoxically enriched HuR binding to mRNAs with longer 3′UTR and with higher density of U/AU-rich elements, suggesting that DHTS inhibits the association of HuR to weaker target mRNAs. In vivo, DHTS potently inhibited xenograft tumor growth in a HuR-dependent model without systemic toxicity.
Collapse
Affiliation(s)
- Preet Lal
- Centre for Integrative Biology, CIBIO, University of Trento, Trento 38122, Italy
| | - Linda Cerofolini
- Centre for Magnetic Resonance, CERM, University of Florence, Sesto Fiorentino 50019, Italy
| | | | - Chiara Zucal
- Centre for Integrative Biology, CIBIO, University of Trento, Trento 38122, Italy
| | - Carmelo Fuccio
- Centre for Magnetic Resonance, CERM, University of Florence, Sesto Fiorentino 50019, Italy
| | - Isabelle Bonomo
- Centre for Integrative Biology, CIBIO, University of Trento, Trento 38122, Italy
| | - Erik Dassi
- Centre for Integrative Biology, CIBIO, University of Trento, Trento 38122, Italy
| | - Stefano Giuntini
- Centre for Magnetic Resonance, CERM, University of Florence, Sesto Fiorentino 50019, Italy
| | - Danilo Di Maio
- Scuola Normale Superiore, Pisa 56126, Italy.,Istituto Nazionale di Fisica Nucleare (INFN), Pisa 56127, Italy
| | - Vikalp Vishwakarma
- Department of Cancer Biology and University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Ranjan Preet
- Department of Cancer Biology and University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sha Neisha Williams
- Department of Cancer Biology and University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Max S Fairlamb
- Department of Cancer Biology and University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Rachel Munk
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Elin Lehrmann
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | - Claudio Luchinat
- Centre for Magnetic Resonance, CERM, University of Florence, Sesto Fiorentino 50019, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II, Naples 80138, Italy
| | - Alessandro Quattrone
- Centre for Integrative Biology, CIBIO, University of Trento, Trento 38122, Italy
| | - Emiliano Biasini
- Centre for Integrative Biology, CIBIO, University of Trento, Trento 38122, Italy.,Istituto di Ricerche Farmacologiche Mario Negri, Milan 20156, Italy
| | - Leonardo Manzoni
- Istituto di Scienze e Tecnologie Molecolari (ISTM), CNR, Milan 20133, Italy
| | - Myriam Gorospe
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Dan A Dixon
- Department of Cancer Biology and University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Pierfausto Seneci
- Dipartimento di Chimica, Università degli Studi di Milano, Milan 20133, Italy
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples Federico II, Naples 80138, Italy
| | - Marco Fragai
- Centre for Magnetic Resonance, CERM, University of Florence, Sesto Fiorentino 50019, Italy
| | | |
Collapse
|
18
|
Using Small Angle X-Ray Scattering (SAXS) to Characterize the Solution Conformation and Flexibility of Matrix Metalloproteinases (MMPs). Methods Mol Biol 2017. [PMID: 28299734 DOI: 10.1007/978-1-4939-6863-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Small angle X-ray scattering (SAXS) provides information about the conformation and flexibility of proteins in solution, and hence provides complementary structural information to that obtained from X-ray crystallography and nuclear magnetic resonance spectroscopy. In this chapter, we describe the methods for the preparation of matrix metalloproteinase (MMP) samples for SAXS analyses, and for the acquisition, processing and interpretation of the SAXS data.
Collapse
|
19
|
Abstract
Matrix metalloproteases are multidomain enzymes with a remarkable proteolytic activity located in the extracellular environment. Their catalytic activity and structural properties have been intensively studied during the last few decades using both experimental and theoretical approaches, but many open questions still remain. Extensive molecular dynamics simulations enable the sampling of the configurational space of a molecular system, thus contributing to the characterization of the structure, dynamics, and ligand binding properties of a particular MMP. Based on previous computational experience, we provide in this chapter technical and methodological guidelines that may be useful to and stimulate other researchers to perform molecular dynamics simulations to help address unresolved questions concerning the molecular mode of action of MMPs.
Collapse
Affiliation(s)
- Natalia Díaz
- Dpto. Química Física y Analítica, Universidad de Oviedo, Oviedo, Spain.
| | - Dimas Suárez
- Dpto. Química Física y Analítica, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
20
|
Marcink TC, Koppisetti RK, Fulcher YG, Van Doren SR. Mapping Lipid Bilayer Recognition Sites of Metalloproteinases and Other Prospective Peripheral Membrane Proteins. Methods Mol Biol 2017; 1579:61-86. [PMID: 28299733 DOI: 10.1007/978-1-4939-6863-3_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Peripheral binding of proteins to lipid bilayers is critical not only in intracellular signaling but also in metalloproteinase shedding of signaling proteins from cell surfaces. Assessment of how proteins recognize fluid bilayers peripherally using crystallography or structure-based predictions has been important but incomplete. Assay of dynamic protein-bilayer interactions in solution has become feasible and reliable using paramagnetic NMR and site-directed fluor labeling. Details of preparations and assay protocols for these spectroscopic measurements of bilayer proximity or contact, respectively, are described.
Collapse
Affiliation(s)
- Tara C Marcink
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA
| | - Rama K Koppisetti
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA
- Department of Medical Microbiology and Immunology, Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Yan G Fulcher
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA
| | - Steven R Van Doren
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA.
| |
Collapse
|
21
|
Singh W, Fields GB, Christov CZ, Karabencheva-Christova TG. Effects of Mutations on Structure-Function Relationships of Matrix Metalloproteinase-1. Int J Mol Sci 2016; 17:ijms17101727. [PMID: 27754420 PMCID: PMC5085758 DOI: 10.3390/ijms17101727] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/16/2016] [Accepted: 10/03/2016] [Indexed: 02/06/2023] Open
Abstract
Matrix metalloproteinase-1 (MMP-1) is one of the most widely studied enzymes involved in collagen degradation. Mutations of specific residues in the MMP-1 hemopexin-like (HPX) domain have been shown to modulate activity of the MMP-1 catalytic (CAT) domain. In order to reveal the structural and conformational effects of such mutations, a molecular dynamics (MD) study was performed of in silico mutated residues in the X-ray crystallographic structure of MMP-1 complexed with a collagen-model triple-helical peptide (THP). The results indicate an important role of the mutated residues in MMP-1 interactions with the THP and communication between the CAT and the HPX domains. Each mutation has a distinct impact on the correlated motions in the MMP-1•THP. An increased collagenase activity corresponded to the appearance of a unique anti-correlated motion and decreased correlated motions, while decreased collagenase activity corresponded both to increased and decreased anti-correlated motions.
Collapse
Affiliation(s)
- Warispreet Singh
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL 33458, USA.
- Department of Chemistry, The Scripps Research Institute/Scripps Florida, Jupiter, FL 33458, USA.
| | - Christo Z Christov
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | | |
Collapse
|
22
|
Cerofolini L, Amar S, Lauer JL, Martelli T, Fragai M, Luchinat C, Fields GB. Bilayer Membrane Modulation of Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) Structure and Proteolytic Activity. Sci Rep 2016; 6:29511. [PMID: 27405411 PMCID: PMC4942797 DOI: 10.1038/srep29511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 06/20/2016] [Indexed: 11/23/2022] Open
Abstract
Cell surface proteolysis is an integral yet poorly understood physiological process. The present study has examined how the pericellular collagenase membrane-type 1 matrix metalloproteinase (MT1-MMP) and membrane-mimicking environments interplay in substrate binding and processing. NMR derived structural models indicate that MT1-MMP transiently associates with bicelles and cells through distinct residues in blades III and IV of its hemopexin-like domain, while binding of collagen-like triple-helices occurs within blades I and II of this domain. Examination of simultaneous membrane interaction and triple-helix binding revealed a possible regulation of proteolysis due to steric effects of the membrane. At bicelle concentrations of 1%, enzymatic activity towards triple-helices was increased 1.5-fold. A single mutation in the putative membrane interaction region of MT1-MMP (Ser466Pro) resulted in lower enzyme activation by bicelles. An initial structural framework has thus been developed to define the role(s) of cell membranes in modulating proteolysis.
Collapse
Affiliation(s)
- Linda Cerofolini
- Giotto Biotech S.R.L., Via Madonna del Piano 6, 50019 Sesto Fiorentino (FI), Italy
| | - Sabrina Amar
- Department of Chemistry &Biochemistry, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Janelle L Lauer
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Tommaso Martelli
- CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy.,Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy
| | - Marco Fragai
- CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy.,Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy
| | - Claudio Luchinat
- CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy.,Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy
| | - Gregg B Fields
- Department of Chemistry &Biochemistry, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA.,Department of Chemistry, The Scripps Research Institute/Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA.,Departments of Chemistry and Biology, Torrey Pines Institute for Molecular Studies, 33458, Port St. Lucie, FL 34987, USA
| |
Collapse
|
23
|
Azhagiya Singam ER, Rajapandian V, Subramanian V. Molecular dynamics simulation study on the interaction of collagen-like peptides with gelatinase-A (MMP-2). Biopolymers 2016; 101:779-94. [PMID: 24374600 DOI: 10.1002/bip.22457] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/21/2013] [Accepted: 12/21/2013] [Indexed: 12/19/2022]
Abstract
Although several models have been proposed for the interaction of collagen with gelatinase-A (matrix metalloproteinases-2 (MMP-2)), the extensive role of each domain of gelatinase A in hydrolyzing the collagens with and without interruptions is still elusive. Molecular docking, molecular dynamics (MD) simulation, normal mode analysis (NMA) and framework rigidity optimized dynamics algorithm (FRODAN) based analysis were carried out to understand the function of various domains of MMP-2 upon interaction with collagen like peptides. The results reveal that the collagen binding domain (CBD) binds to the C-terminal of collagen like peptide with interruption. CBD helps in unwinding the loosely packed interrupted region of triple helical structure to a greater extent. It can be possible to speculate that the role of hemopexin (HPX) domain is to prevent further unwinding of collagen like peptide by binding to the other end of the collagen like peptide. The catalytic (CAT) domain then reorients itself to interact with the part of the unwound region of collagen like peptide for further hydrolysis. In conclusion the CBD of MMP-2 recognizes the collagen and aids in unwinding the collagen like peptide with interruptions, and the HPX domain of MMP-2 binds to the other end of the collagen allowing CAT domain to access the cleavage site. This study provides a comprehensive understanding of the structural basis of collagenolysis by MMP-2.
Collapse
Affiliation(s)
- E R Azhagiya Singam
- Chemical Laboratory, Council of Scientific and Industrial Research, Central Leather Research Institute, Adyar, Chennai, 600 020, Tamil Nadu, India
| | | | | |
Collapse
|
24
|
Richichi B, Baldoneschi V, Burgalassi S, Fragai M, Vullo D, Akdemir A, Dragoni E, Louka A, Mamusa M, Monti D, Berti D, Novellino E, Rosa GD, Supuran CT, Nativi C. A Divalent PAMAM-Based Matrix Metalloproteinase/Carbonic Anhydrase Inhibitor for the Treatment of Dry Eye Syndrome. Chemistry 2015; 22:1714-21. [DOI: 10.1002/chem.201504355] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Indexed: 01/09/2023]
Affiliation(s)
- B. Richichi
- Department of Chemistry “Ugo Schiff”; University of Florence; via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - V. Baldoneschi
- Department of Chemistry “Ugo Schiff”; University of Florence; via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - S. Burgalassi
- Department of Pharmacy; University of Pisa; via Bonanno 33 56126 Pisa Italy
| | - M. Fragai
- Department of Chemistry “Ugo Schiff”; University of Florence; via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
- CERM; University of Florence; via Sacconi 6 50019 Sesto Fiorentino Italy
| | - D. Vullo
- Department of Chemistry “Ugo Schiff”; University of Florence; via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - A. Akdemir
- Department of Pharmacy; Faculty of Pharmacy; Bezmialem Vakif University; Vatan Caddesi 34093 Fatih, Istanbul Turkey
| | - E. Dragoni
- Department of Chemistry “Ugo Schiff”; University of Florence; via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - A. Louka
- CERM; University of Florence; via Sacconi 6 50019 Sesto Fiorentino Italy
| | - M. Mamusa
- Department of Chemistry “Ugo Schiff”; University of Florence; via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - D. Monti
- Department of Pharmacy; University of Pisa; via Bonanno 33 56126 Pisa Italy
| | - D. Berti
- Department of Chemistry “Ugo Schiff”; University of Florence; via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - E. Novellino
- Department of Pharmacy; University of Napoli “Federico II” via Montesano 49; 80131 Napoli Italy
| | - G. De Rosa
- Department of Pharmacy; University of Napoli “Federico II” via Montesano 49; 80131 Napoli Italy
| | - C. T. Supuran
- NEUROFARBA Department; University of Florence; via U. Schiff 6 Sesto Fiorentino Italy
| | - C. Nativi
- Department of Chemistry “Ugo Schiff”; University of Florence; via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
- CERM; University of Florence; via Sacconi 6 50019 Sesto Fiorentino Italy
| |
Collapse
|
25
|
Borysik AJ, Kovacs D, Guharoy M, Tompa P. Ensemble Methods Enable a New Definition for the Solution to Gas-Phase Transfer of Intrinsically Disordered Proteins. J Am Chem Soc 2015; 137:13807-17. [DOI: 10.1021/jacs.5b06027] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Antoni J. Borysik
- King’s College London, Department of Chemistry,
Britannia House, 7 Trinity
Street, London SE1 1DB, U.K
| | - Denes Kovacs
- VIB
Structural Biology Research Centre (SBRC), Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Mainak Guharoy
- VIB
Structural Biology Research Centre (SBRC), Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Peter Tompa
- VIB
Structural Biology Research Centre (SBRC), Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
- Institute
of Enzymology, Research Centre for Natural Sciences of
the Hungarian Academy of Sciences, 1117 Budapest, Hungary
| |
Collapse
|
26
|
Kikhney AG, Svergun DI. A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Lett 2015; 589:2570-7. [PMID: 26320411 DOI: 10.1016/j.febslet.2015.08.027] [Citation(s) in RCA: 436] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 08/14/2015] [Accepted: 08/15/2015] [Indexed: 12/17/2022]
Abstract
Small-angle X-ray scattering (SAXS) is a biophysical method to study the overall shape and structural transitions of biological macromolecules in solution. SAXS provides low resolution information on the shape, conformation and assembly state of proteins, nucleic acids and various macromolecular complexes. The technique also offers powerful means for the quantitative analysis of flexible systems, including intrinsically disordered proteins (IDPs). Here, the basic principles of SAXS are presented, and profits and pitfalls of the characterization of multidomain flexible proteins and IDPs using SAXS are discussed from the practical point of view. Examples of the synergistic use of SAXS with high resolution methods like X-ray crystallography and nuclear magnetic resonance (NMR), as well as other experimental and in silico techniques to characterize completely, or partially unstructured proteins, are presented.
Collapse
Affiliation(s)
- Alexey G Kikhney
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestr. 85, Geb. 25a, 22607 Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestr. 85, Geb. 25a, 22607 Hamburg, Germany.
| |
Collapse
|
27
|
Radisky ES, Radisky DC. Matrix metalloproteinases as breast cancer drivers and therapeutic targets. Front Biosci (Landmark Ed) 2015; 20:1144-63. [PMID: 25961550 DOI: 10.2741/4364] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Members of the matrix metalloproteinase (MMP) family have been identified as poor prognosis markers for breast cancer patients and as drivers of many facets of the tumor phenotype in experimental models. Early enthusiasm for MMPs as therapeutic targets was tempered following disappointing clinical trials that utilized broad spectrum, small molecule catalytic site inhibitors. However, subsequent research has continued to define key roles for MMPs as breast cancer promoters, to elucidate the complex roles that that these proteins play in breast cancer development and progression, and to identify how these roles are linked to specific and unique biochemical features of individual members of the MMP family. Here, we provide an overview of the structural features of the MMPs, then discuss clinical studies identifying which MMP family members are linked with breast cancer development and new experimental studies that reveal how these specific MMPs may play unique roles in the breast cancer microenvironment. We conclude with a discussion of the most promising avenues for development of therapeutic agents capable of targeting the tumor-promoting properties of MMPs.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224,
| | | |
Collapse
|
28
|
Brosey CA, Soss SE, Brooks S, Yan C, Ivanov I, Dorai K, Chazin WJ. Functional dynamics in replication protein A DNA binding and protein recruitment domains. Structure 2015; 23:1028-38. [PMID: 26004442 DOI: 10.1016/j.str.2015.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/30/2015] [Accepted: 04/03/2015] [Indexed: 11/29/2022]
Abstract
Replication Protein A (RPA) is an essential scaffold for many DNA processing machines; its function relies on its modular architecture. Here, we report (15)N-nuclear magnetic resonance heteronuclear relaxation analysis to characterize the movements of single-stranded (ss) DNA binding and protein interaction modules in the RPA70 subunit. Our results provide direct evidence for coordination of the motion of the tandem RPA70AB ssDNA binding domains. Moreover, binding of ssDNA substrate is found to cause dramatic reorientation and full coupling of inter-domain motion. In contrast, the RPA70N protein interaction domain remains structurally and dynamically independent of RPA70AB regardless of binding of ssDNA. This autonomy of motion between the 70N and 70AB modules supports a model in which the two binding functions of RPA are mediated fully independently, but remain differentially coordinated depending on the length of their flexible tethers. A critical role for linkers between the globular domains in determining the functional dynamics of RPA is proposed.
Collapse
Affiliation(s)
- Chris A Brosey
- Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-8725, USA
| | - Sarah E Soss
- Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-8725, USA
| | - Sonja Brooks
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Chunli Yan
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-4098, USA
| | - Ivaylo Ivanov
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-4098, USA
| | - Kavita Dorai
- Department of Physics, Indian Institute of Science Education and Research (IISER), Mohali, Sector 81 Manauli PO, SAS Nagar, Punjab 140306, India
| | - Walter J Chazin
- Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-8725, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
29
|
Díaz N, Suárez D. Extensive Simulations of the Full-Length Matrix Metalloproteinase-2 Enzyme in a Prereactive Complex with a Collagen Triple-Helical Peptide. Biochemistry 2015; 54:1243-58. [DOI: 10.1021/bi501014w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Natalia Díaz
- Departamento
de Química
Física y Analítica, Universidad de Oviedo, Julián
Clavería 8, Oviedo, Asturias, 33006 Spain
| | - Dimas Suárez
- Departamento
de Química
Física y Analítica, Universidad de Oviedo, Julián
Clavería 8, Oviedo, Asturias, 33006 Spain
| |
Collapse
|
30
|
Matrix metalloproteinase interactions with collagen and elastin. Matrix Biol 2015; 44-46:224-31. [PMID: 25599938 PMCID: PMC4466143 DOI: 10.1016/j.matbio.2015.01.005] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/10/2015] [Accepted: 01/10/2015] [Indexed: 12/18/2022]
Abstract
Most abundant in the extracellular matrix are collagens, joined by elastin that confers elastic recoil to the lung, aorta, and skin. These fibrils are highly resistant to proteolysis but can succumb to a minority of the matrix metalloproteinases (MMPs). Considerable inroads to understanding how such MMPs move to the susceptible sites in collagen and then unwind the triple helix of collagen monomers have been gained. The essential role in unwinding of the hemopexin-like domain of interstitial collagenases or the collagen binding domain of gelatinases is highlighted. Elastolysis is also facilitated by the collagen binding domain in the cases of MMP-2 and MMP-9, and remote exosites of the catalytic domain in the case of MMP-12.
Collapse
|
31
|
Göbl C, Madl T, Simon B, Sattler M. NMR approaches for structural analysis of multidomain proteins and complexes in solution. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 80:26-63. [PMID: 24924266 DOI: 10.1016/j.pnmrs.2014.05.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/14/2014] [Indexed: 05/22/2023]
Abstract
NMR spectroscopy is a key method for studying the structure and dynamics of (large) multidomain proteins and complexes in solution. It plays a unique role in integrated structural biology approaches as especially information about conformational dynamics can be readily obtained at residue resolution. Here, we review NMR techniques for such studies focusing on state-of-the-art tools and practical aspects. An efficient approach for determining the quaternary structure of multidomain complexes starts from the structures of individual domains or subunits. The arrangement of the domains/subunits within the complex is then defined based on NMR measurements that provide information about the domain interfaces combined with (long-range) distance and orientational restraints. Aspects discussed include sample preparation, specific isotope labeling and spin labeling; determination of binding interfaces and domain/subunit arrangements from chemical shift perturbations (CSP), nuclear Overhauser effects (NOEs), isotope editing/filtering, cross-saturation, and differential line broadening; and based on paramagnetic relaxation enhancements (PRE) using covalent and soluble spin labels. Finally, the utility of complementary methods such as small-angle X-ray or neutron scattering (SAXS, SANS), electron paramagnetic resonance (EPR) or fluorescence spectroscopy techniques is discussed. The applications of NMR techniques are illustrated with studies of challenging (high molecular weight) protein complexes.
Collapse
Affiliation(s)
- Christoph Göbl
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany
| | - Tobias Madl
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Molecular Biology, University of Graz, Graz, Austria.
| | - Bernd Simon
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Michael Sattler
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
32
|
Sterckx YGJ, Volkov AN, Vranken WF, Kragelj J, Jensen MR, Buts L, Garcia-Pino A, Jové T, Van Melderen L, Blackledge M, van Nuland NAJ, Loris R. Small-angle X-ray scattering- and nuclear magnetic resonance-derived conformational ensemble of the highly flexible antitoxin PaaA2. Structure 2014; 22:854-65. [PMID: 24768114 DOI: 10.1016/j.str.2014.03.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/14/2014] [Accepted: 03/15/2014] [Indexed: 11/26/2022]
Abstract
Antitoxins from prokaryotic type II toxin-antitoxin modules are characterized by a high degree of intrinsic disorder. The description of such highly flexible proteins is challenging because they cannot be represented by a single structure. Here, we present a combination of SAXS and NMR data to describe the conformational ensemble of the PaaA2 antitoxin from the human pathogen E. coli O157. The method encompasses the use of SAXS data to filter ensembles out of a pool of conformers generated by a custom NMR structure calculation protocol and the subsequent refinement by a block jackknife procedure. The final ensemble obtained through the method is validated by an established residual dipolar coupling analysis. We show that the conformational ensemble of PaaA2 is highly compact and that the protein exists in solution as two preformed helices, connected by a flexible linker, that probably act as molecular recognition elements for toxin inhibition.
Collapse
Affiliation(s)
- Yann G J Sterckx
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; Molecular Recognition Unit and Jean Jeener NMR Centre, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Alexander N Volkov
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; Molecular Recognition Unit and Jean Jeener NMR Centre, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Wim F Vranken
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; Molecular Recognition Unit and Jean Jeener NMR Centre, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Jaka Kragelj
- Protein Dynamics and Flexibility, Institut de Biologie Structurale Jean-Pierre Ebel CNRS-CEA-UJF UMR 5075, 41 Rue Jules Horowitz, 38027 Grenoble Cedex, France
| | - Malene Ringkjøbing Jensen
- Protein Dynamics and Flexibility, Institut de Biologie Structurale Jean-Pierre Ebel CNRS-CEA-UJF UMR 5075, 41 Rue Jules Horowitz, 38027 Grenoble Cedex, France
| | - Lieven Buts
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; Molecular Recognition Unit and Jean Jeener NMR Centre, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Abel Garcia-Pino
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; Molecular Recognition Unit and Jean Jeener NMR Centre, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Thomas Jové
- Laboratoire de Génétique et Physiologie Bactérienne, Institut de Biologie et de Médecine Moléculaires Faculté des Sciences, Université Libre de Bruxelles, 12 Rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Laurence Van Melderen
- Laboratoire de Génétique et Physiologie Bactérienne, Institut de Biologie et de Médecine Moléculaires Faculté des Sciences, Université Libre de Bruxelles, 12 Rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Martin Blackledge
- Protein Dynamics and Flexibility, Institut de Biologie Structurale Jean-Pierre Ebel CNRS-CEA-UJF UMR 5075, 41 Rue Jules Horowitz, 38027 Grenoble Cedex, France
| | - Nico A J van Nuland
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; Molecular Recognition Unit and Jean Jeener NMR Centre, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Remy Loris
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; Molecular Recognition Unit and Jean Jeener NMR Centre, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium.
| |
Collapse
|
33
|
Hennig J, Sattler M. The dynamic duo: combining NMR and small angle scattering in structural biology. Protein Sci 2014; 23:669-82. [PMID: 24687405 DOI: 10.1002/pro.2467] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 12/12/2022]
Abstract
Structural biology provides essential information for elucidating molecular mechanisms that underlie biological function. Advances in hardware, sample preparation, experimental methods, and computational approaches now enable structural analysis of protein complexes with increasing complexity that more closely represent biologically entities in the cellular environment. Integrated multidisciplinary approaches are required to overcome limitations of individual methods and take advantage of complementary aspects provided by different structural biology techniques. Although X-ray crystallography remains the method of choice for structural analysis of large complexes, crystallization of flexible systems is often difficult and does typically not provide insights into conformational dynamics present in solution. Nuclear magnetic resonance spectroscopy (NMR) is well-suited to study dynamics at picosecond to second time scales, and to map binding interfaces even of large systems at residue resolution but suffers from poor sensitivity with increasing molecular weight. Small angle scattering (SAS) methods provide low resolution information in solution and can characterize dynamics and conformational equilibria complementary to crystallography and NMR. The combination of NMR, crystallography, and SAS is, thus, very useful for analysis of the structure and conformational dynamics of (large) protein complexes in solution. In high molecular weight systems, where NMR data are often sparse, SAS provides additional structural information and can differentiate between NMR-derived models. Scattering data can also validate the solution conformation of a crystal structure and indicate the presence of conformational equilibria. Here, we review current state-of-the-art approaches for combining NMR, crystallography, and SAS data to characterize protein complexes in solution.
Collapse
Affiliation(s)
- Janosch Hennig
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr.1, D-85764, Neuherberg, Germany; Center for Integrated Protein Science Munich at Chair Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747, Garching, Germany
| | | |
Collapse
|
34
|
Rinaldelli M, Ravera E, Calderone V, Parigi G, Murshudov GN, Luchinat C. Simultaneous use of solution NMR and X-ray data in REFMAC5 for joint refinement/detection of structural differences. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:958-67. [PMID: 24699641 PMCID: PMC4306559 DOI: 10.1107/s1399004713034160] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 12/18/2013] [Indexed: 11/12/2022]
Abstract
The program REFMAC5 from CCP4 was modified to allow the simultaneous use of X-ray crystallographic data and paramagnetic NMR data (pseudocontact shifts and self-orientation residual dipolar couplings) and/or diamagnetic residual dipolar couplings. Incorporation of these long-range NMR restraints in REFMAC5 can reveal differences between solid-state and solution conformations of molecules or, in their absence, can be used together with X-ray crystallographic data for structural refinement. Since NMR and X-ray data are complementary, when a single structure is consistent with both sets of data and still maintains reasonably `ideal' geometries, the reliability of the derived atomic model is expected to increase. The program was tested on five different proteins: the catalytic domain of matrix metalloproteinase 1, GB3, ubiquitin, free calmodulin and calmodulin complexed with a peptide. In some cases the joint refinement produced a single model consistent with both sets of observations, while in other cases it indicated, outside the experimental uncertainty, the presence of different protein conformations in solution and in the solid state.
Collapse
Affiliation(s)
- Mauro Rinaldelli
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
- Department of Chemistry ‘Ugo Schiff’, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Enrico Ravera
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
- Department of Chemistry ‘Ugo Schiff’, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Vito Calderone
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
- Department of Chemistry ‘Ugo Schiff’, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Giacomo Parigi
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
- Department of Chemistry ‘Ugo Schiff’, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Garib N. Murshudov
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, England
| | - Claudio Luchinat
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
- Department of Chemistry ‘Ugo Schiff’, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
35
|
Lauer JL, Bhowmick M, Tokmina-Roszyk D, Lin Y, Van Doren SR, Fields GB. The role of collagen charge clusters in the modulation of matrix metalloproteinase activity. J Biol Chem 2014; 289:1981-92. [PMID: 24297171 PMCID: PMC3900948 DOI: 10.1074/jbc.m113.513408] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/28/2013] [Indexed: 12/22/2022] Open
Abstract
Members of the matrix metalloproteinase (MMP) family selectively cleave collagens in vivo. Several substrate structural features that direct MMP collagenolysis have been identified. The present study evaluated the role of charged residue clusters in the regulation of MMP collagenolysis. A series of 10 triple-helical peptide (THP) substrates were constructed in which either Lys-Gly-Asp or Gly-Asp-Lys motifs replaced Gly-Pro-Hyp (where Hyp is 4-hydroxy-L-proline) repeats. The stabilities of THPs containing the two different motifs were analyzed, and kinetic parameters for substrate hydrolysis by six MMPs were determined. A general trend for virtually all enzymes was that, as Gly-Asp-Lys motifs were moved from the extreme N and C termini to the interior next to the cleavage site sequence, kcat/Km values increased. Additionally, all Gly-Asp-Lys THPs were as good or better substrates than the parent THP in which Gly-Asp-Lys was not present. In turn, the Lys-Gly-Asp THPs were also always better substrates than the parent THP, but the magnitude of the difference was considerably less compared with the Gly-Asp-Lys series. Of the MMPs tested, MMP-2 and MMP-9 most greatly favored the presence of charged residues with preference for the Gly-Asp-Lys series. Lys-Gly-(Asp/Glu) motifs are more commonly found near potential MMP cleavage sites than Gly-(Asp/Glu)-Lys motifs. As Lys-Gly-Asp is not as favored by MMPs as Gly-Asp-Lys, the Lys-Gly-Asp motif appears advantageous over the Gly-Asp-Lys motif by preventing unwanted MMP hydrolysis. More specifically, the lack of Gly-Asp-Lys clusters may diminish potential MMP-2 and MMP-9 collagenolytic activity. The present study indicates that MMPs have interactions spanning the P23-P23' subsites of collagenous substrates.
Collapse
Affiliation(s)
- Janelle L. Lauer
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Manishabrata Bhowmick
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987 and
| | - Dorota Tokmina-Roszyk
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987 and
| | - Yan Lin
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Steven R. Van Doren
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Gregg B. Fields
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987 and
| |
Collapse
|
36
|
Fields GB. Biophysical studies of matrix metalloproteinase/triple-helix complexes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 97:37-48. [PMID: 25458354 PMCID: PMC4337812 DOI: 10.1016/bs.apcsb.2014.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Several members of the zinc-dependent matrix metalloproteinase (MMP) family catalyze collagen degradation. The structures of MMPs, in solution and solid state and in the presence and absence of triple-helical collagen models, have been assessed by NMR spectroscopy, small-angle X-ray scattering, and X-ray crystallography. Structures observed in solution exhibit flexibility between the MMP catalytic (CAT) and hemopexin-like (HPX) domains, while solid-state structures are relatively compact. Evaluation of the maximum occurrence (MO) of MMP-1 conformations in solution found that, for all the high MO conformations, the CAT and HPX domains are not in tight contact, and the residues of the HPX domain reported to be responsible for the binding to the collagen triple-helix are solvent exposed. A mechanism for collagenolysis has been developed based on analysis of MMP solution structures. Information obtained from solid-state structures has proven valuable for analyzing specific contacts between MMPs and the collagen triple-helix.
Collapse
|
37
|
Fragai M, Luchinat C, Parigi G, Ravera E. Conformational freedom of metalloproteins revealed by paramagnetism-assisted NMR. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Cerofolini L, Fields GB, Fragai M, Geraldes CFGC, Luchinat C, Parigi G, Ravera E, Svergun DI, Teixeira JMC. Examination of matrix metalloproteinase-1 in solution: a preference for the pre-collagenolysis state. J Biol Chem 2013; 288:30659-30671. [PMID: 24025334 DOI: 10.1074/jbc.m113.477240] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Catalysis of collagen degradation by matrix metalloproteinase 1 (MMP-1) has been proposed to critically rely on flexibility between the catalytic (CAT) and hemopexin-like (HPX) domains. A rigorous assessment of the most readily accessed conformations in solution is required to explain the onset of substrate recognition and collagenolysis. The present study utilized paramagnetic NMR spectroscopy and small angle x-ray scattering (SAXS) to calculate the maximum occurrence (MO) of MMP-1 conformations. The MMP-1 conformations with large MO values (up to 47%) are restricted into a relatively small conformational region. All conformations with high MO values differ largely from the closed MMP-1 structures obtained by x-ray crystallography. The MO of the latter is ~20%, which represents the upper limit for the presence of this conformation in the ensemble sampled by the protein in solution. In all the high MO conformations, the CAT and HPX domains are not in tight contact, and the residues of the HPX domain reported to be responsible for the binding to the collagen triple-helix are solvent exposed. Thus, overall analysis of the highest MO conformations indicated that MMP-1 in solution was poised to interact with collagen and then could readily proceed along the steps of collagenolysis.
Collapse
Affiliation(s)
| | - Gregg B Fields
- the Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987,.
| | - Marco Fragai
- From the CERM and; the Department of Chemistry "U. Schiff," University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Carlos F G C Geraldes
- the Center for Neuroscience and Cell Biology and; the Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, P.O. Box 3046, 3001-401 Coimbra, Portugal, and
| | - Claudio Luchinat
- From the CERM and; the Department of Chemistry "U. Schiff," University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (FI), Italy,.
| | - Giacomo Parigi
- From the CERM and; the Department of Chemistry "U. Schiff," University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Enrico Ravera
- From the CERM and; the Department of Chemistry "U. Schiff," University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Dmitri I Svergun
- the EMBL, c/o DESY, Notkestrasse 85, Geb. 25 A, 22603 Hamburg, Germany
| | - João M C Teixeira
- From the CERM and; the Center for Neuroscience and Cell Biology and; the Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, P.O. Box 3046, 3001-401 Coimbra, Portugal, and
| |
Collapse
|
39
|
Stura EA, Visse R, Cuniasse P, Dive V, Nagase H. Crystal structure of full-length human collagenase 3 (MMP-13) with peptides in the active site defines exosites in the catalytic domain. FASEB J 2013; 27:4395-405. [PMID: 23913860 DOI: 10.1096/fj.13-233601] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Matrix metalloproteinase (MMP)-13 is one of the mammalian collagenases that play key roles in tissue remodelling and repair and in progression of diseases such as cancer, arthritis, atherosclerosis, and aneurysm. For collagenase to cleave triple helical collagens, the triple helical structure has to be locally unwound before hydrolysis, but this process is not well understood. We report crystal structures of catalytically inactive full-length human MMP-13(E223A) in complex with peptides of 14-26 aa derived from the cleaved prodomain during activation. Peptides are bound to the active site of the enzyme by forming an extended β-strand with Glu(40) or Tyr(46) inserted into the S1' specificity pocket. The structure of the N-terminal part of the peptides is variable and interacts with different parts of the catalytic domain. Those areas are designated substrate-dependent exosites, in that they accommodate different peptide structures, whereas the precise positioning of the substrate backbone is maintained in the active site. These modes of peptide-MMP-13 interactions have led us to propose how triple helical collagen strands fit into the active site cleft of the collagenase.
Collapse
Affiliation(s)
- Enrico A Stura
- 2H.N., Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK.
| | | | | | | | | |
Collapse
|
40
|
Abstract
Interstitial collagen mechanical and biological properties are altered by proteases that catalyze the hydrolysis of the collagen triple-helical structure. Collagenolysis is critical in development and homeostasis but also contributes to numerous pathologies. Mammalian collagenolytic enzymes include matrix metalloproteinases, cathepsin K, and neutrophil elastase, and a variety of invertebrates and pathogens possess collagenolytic enzymes. Components of the mechanism of action for the collagenolytic enzyme MMP-1 have been defined experimentally, and insights into other collagenolytic mechanisms have been provided. Ancillary biomolecules may modulate the action of collagenolytic enzymes.
Collapse
Affiliation(s)
- Gregg B Fields
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL 34987, USA.
| |
Collapse
|
41
|
Chen CY, Chiu CC, Wu CP, Chou YT, Wang HM. Enhancements of skin cell proliferations and migrations via 6-dehydrogingerdione. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:1349-56. [PMID: 23268563 DOI: 10.1021/jf304340q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Human skin protects the body from mechanical and chemical damages, and skin wound healing is a costly procedure and worldwide issue. A Zingiber officinale compound, 6-dehydrogingerdione (6-DG), is presented as a novel biofunctional healing agent for human skin wound repair. The effectiveness on cell growth/migration, growth factor, collagen amount, and enzymatic activity was assessed. 6-DG treatment accelerated cellular proliferation and migration dose-dependently. Enzyme-linked immunosorbent assay (ELISA) showed that 6-DG brought about higher growth factor productions on transforming growth factor-β (TGF-β), platelet-derived growth factor-αβ (PDGF-αβ), and vascular endothelial growth factors (VEGF). Under phorbol 12-myristate 13-acetate (PMA) incubation, 6-DG increased fibroblast collagen yield obviously, reduced matrix metalloproteinase-1 (MMP-1) protein expression, and recovered tissue inhibitor of metalloproteinase-1 (TIMP-1) secretion. 6-DG also blocked the mitogen-activated protein kinase (MAPK) pathway by suppressing c-Jun protein levels and extracellular signal-regulated kinases (ERK) phosphorylation in fibroblasts. From all of the above, 6-DG has potential to be a novel agent for human skin repair.
Collapse
Affiliation(s)
- Chung-Yi Chen
- School of Medical and Health Sciences, Fooyin University, Kaohsiung 831, Taiwan, ROC
| | | | | | | | | |
Collapse
|
42
|
Bertini I, Ferella L, Luchinat C, Parigi G, Petoukhov MV, Ravera E, Rosato A, Svergun DI. MaxOcc: a web portal for maximum occurrence analysis. JOURNAL OF BIOMOLECULAR NMR 2012; 53:271-280. [PMID: 22639196 DOI: 10.1007/s10858-012-9638-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/16/2012] [Indexed: 06/01/2023]
Abstract
The MaxOcc web portal is presented for the characterization of the conformational heterogeneity of two-domain proteins, through the calculation of the Maximum Occurrence that each protein conformation can have in agreement with experimental data. Whatever the real ensemble of conformations sampled by a protein, the weight of any conformation cannot exceed the calculated corresponding Maximum Occurrence value. The present portal allows users to compute these values using any combination of restraints like pseudocontact shifts, paramagnetism-based residual dipolar couplings, paramagnetic relaxation enhancements and small angle X-ray scattering profiles, given the 3D structure of the two domains as input. MaxOcc is embedded within the NMR grid services of the WeNMR project and is available via the WeNMR gateway at http://py-enmr.cerm.unifi.it/access/index/maxocc . It can be used freely upon registration to the grid with a digital certificate.
Collapse
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, FI, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1. Proc Natl Acad Sci U S A 2012; 109:12461-6. [PMID: 22761315 DOI: 10.1073/pnas.1204991109] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Collagenases of the matrix metalloproteinase (MMP) family play major roles in morphogenesis, tissue repair, and human diseases, but how they recognize and cleave the collagen triple helix is not fully understood. Here, we report temperature-dependent binding of a catalytically inactive MMP-1 mutant (E200A) to collagen through the cooperative action of its catalytic and hemopexin domains. Contact between the two molecules was mapped by screening the Collagen Toolkit peptide library and by hydrogen/deuterium exchange. The crystal structure of MMP-1(E200A) bound to a triple-helical collagen peptide revealed extensive interactions of the 115-Å-long triple helix with both MMP-1 domains. An exosite in the hemopexin domain, which binds the leucine 10 residues C-terminal to the scissile bond, is critical for collagenolysis and represents a unique target for inhibitor development. The scissile bond is not correctly positioned for hydrolysis in the crystallized complex. A productive binding mode is readily modeled, without altering the MMP-1 structure or the exosite interactions, by axial rotation of the collagen homotrimer. Interdomain flexing of the enzyme and a localized excursion of the collagen chain closest to the active site, facilitated by thermal loosening of the substrate, may lead to the first transition state of collagenolysis.
Collapse
|
44
|
Fasciglione GF, Gioia M, Tsukada H, Liang J, Iundusi R, Tarantino U, Coletta M, Pourmotabbed T, Marini S. The collagenolytic action of MMP-1 is regulated by the interaction between the catalytic domain and the hinge region. J Biol Inorg Chem 2012; 17:663-72. [DOI: 10.1007/s00775-012-0886-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/26/2012] [Indexed: 10/28/2022]
|
45
|
Díaz N, Suárez D. Alternative interdomain configurations of the full-length MMP-2 enzyme explored by molecular dynamics simulations. J Phys Chem B 2012; 116:2677-86. [PMID: 22324833 DOI: 10.1021/jp211088d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conformational freedom between the different domains of the matrix metalloproteinase family of enzymes has been repeatedly invoked to explain the mechanism of hydrolysis of some of their most complex macromolecular substrates. This proposed interdomain motion has been experimentally confirmed to occur in solution for matrix metalloproteinases MMP-1, MMP-9, and MMP-12. In this work, we computationally assess the likely conformational freedom in aqueous solution of the full-length form of the MMP-2 enzyme in the absence of its pro-peptide domain. To this end, we perform molecular dynamics (MD) simulations and approximate free energy analyses in four different arrangements of the protein domains that correspond to (a) the compact conformation observed in the X-ray structure; (b) an initially elongated structure in which the hemopexin (HPX) domain is separated from the catalytic (CAT) and fibronectin domains; and (c-d) two alternative conformations suggested by protein-protein docking calculations. Overall, our results indicate that the interdomain flexibility is very likely a general property of the MMP-2 enzyme in solution.
Collapse
Affiliation(s)
- Natalia Díaz
- Departamento de Química Física y Analítica, Julián Clavería 8, Universidad de Oviedo, Oviedo (Asturias), 33006 Spain.
| | | |
Collapse
|
46
|
Bertini I, Fragai M, Luchinat C, Melikian M, Toccafondi M, Lauer JL, Fields GB. Structural basis for matrix metalloproteinase 1-catalyzed collagenolysis. J Am Chem Soc 2012; 134:2100-10. [PMID: 22239621 PMCID: PMC3298817 DOI: 10.1021/ja208338j] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The proteolysis of collagen triple-helical structure (collagenolysis) is a poorly understood yet critical physiological process. Presently, matrix metalloproteinase 1 (MMP-1) and collagen triple-helical peptide models have been utilized to characterize the events and calculate the energetics of collagenolysis via NMR spectroscopic analysis of 12 enzyme-substrate complexes. The triple-helix is bound initially by the MMP-1 hemopexin-like (HPX) domain via a four amino acid stretch (analogous to type I collagen residues 782-785). The triple-helix is then presented to the MMP-1 catalytic (CAT) domain in a distinct orientation. The HPX and CAT domains are rotated with respect to one another compared with the X-ray "closed" conformation of MMP-1. Back-rotation of the CAT and HPX domains to the X-ray closed conformation releases one chain out of the triple-helix, and this chain is properly positioned in the CAT domain active site for subsequent hydrolysis. The aforementioned steps provide a detailed, experimentally derived, and energetically favorable collagenolytic mechanism, as well as significant insight into the roles of distinct domains in extracellular protease function.
Collapse
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Shiff”, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Shiff”, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Shiff”, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Maxime Melikian
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Mirco Toccafondi
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Janelle L. Lauer
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Molecular Therapeutics, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Gregg B. Fields
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987 USA
| |
Collapse
|
47
|
Arnold LH, Butt LE, Prior SH, Read CM, Fields GB, Pickford AR. The interface between catalytic and hemopexin domains in matrix metalloproteinase-1 conceals a collagen binding exosite. J Biol Chem 2011; 286:45073-82. [PMID: 22030392 PMCID: PMC3247971 DOI: 10.1074/jbc.m111.285213] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/10/2011] [Indexed: 11/06/2022] Open
Abstract
Matrix metalloproteinase-1 (MMP-1) is an instigator of collagenolysis, the catabolism of triple helical collagen. Previous studies have implicated its hemopexin (HPX) domain in binding and possibly destabilizing the collagen substrate in preparation for hydrolysis of the polypeptide backbone by the catalytic (CAT) domain. Here, we use biophysical methods to study the complex formed between the MMP-1 HPX domain and a synthetic triple helical peptide (THP) that encompasses the MMP-1 cleavage site of the collagen α1(I) chain. The two components interact with 1:1 stoichiometry and micromolar affinity via a binding site within blades 1 and 2 of the four-bladed HPX domain propeller. Subsequent site-directed mutagenesis and assay implicates blade 1 residues Phe(301), Val(319), and Asp(338) in collagen binding. Intriguingly, Phe(301) is partially masked by the CAT domain in the crystal structure of full-length MMP-1 implying that transient separation of the domains is important in collagen recognition. However, mutation of this residue in the intact enzyme disrupts the CAT-HPX interface resulting in a drastic decrease in binding activity. Thus, a balanced equilibrium between these compact and dislocated states may be an essential feature of MMP-1 collagenase activity.
Collapse
Affiliation(s)
- Laurence H. Arnold
- From the Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | - Louise E. Butt
- the Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom, and
| | - Stephen H. Prior
- the Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom, and
| | - Christopher M. Read
- the Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom, and
| | - Gregg B. Fields
- the Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987
| | - Andrew R. Pickford
- the Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom, and
| |
Collapse
|
48
|
Geurts N, Opdenakker G, Van den Steen PE. Matrix metalloproteinases as therapeutic targets in protozoan parasitic infections. Pharmacol Ther 2011; 133:257-79. [PMID: 22138604 DOI: 10.1016/j.pharmthera.2011.11.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 10/28/2011] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinases (MMPs) are associated with processes of tissue remodeling and are expressed in all infections with protozoan parasites. We here report the status of MMP research in malaria, trypanosomiasis, leishmaniasis and toxoplasmosis. In all these infections, the balances between MMPs and endogenous MMP inhibitors are disturbed, mostly in favor of active proteolysis. When the infection is associated with leukocyte influx into specific organs, immunopathology and collateral tissue damage may occur. These pathologies include cerebral malaria, sleeping sickness (human African trypanosomiasis), Chagas disease (human American trypanosomiasis), leishmaniasis and toxoplasmic encephalitis in immunocompromised hosts. Destruction of the integrity of the blood-brain barrier (BBB) is a common denominator that may be executed by leukocytic MMPs under the control of host cytokines and chemokines as well as influenced by parasite products. Mechanisms by which parasite-derived products alter host expression of MMP and endogenous MMP inhibitors, have only been described for hemozoin (Hz) in malaria. Hence, understanding these interactions in other parasitic infections remains an important challenge. Furthermore, the involved parasites are also known to produce their own metalloproteinases, and this forms an extra stimulus to investigate MMP inhibitory drugs as therapeutics. MMP inhibitors (MMPIs) may dampen collateral tissue damage, as is anecdotically reported for tetracyclines as MMP regulators in parasite infections.
Collapse
Affiliation(s)
- Nathalie Geurts
- Laboratory of Immunobiology, Rega Institute for Medical Research, University of Leuven, Leuven, Minderbroedersstraat 10, B3000 Leuven, Belgium
| | | | | |
Collapse
|
49
|
Bernadó P, Svergun DI. Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering. MOLECULAR BIOSYSTEMS 2011; 8:151-67. [PMID: 21947276 DOI: 10.1039/c1mb05275f] [Citation(s) in RCA: 265] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Small-angle scattering of X-rays (SAXS) is an established method to study the overall structure and structural transitions of biological macromolecules in solution. For folded proteins, the technique provides three-dimensional low resolution structures ab initio or it can be used to drive rigid-body modeling. SAXS is also a powerful tool for the quantitative analysis of flexible systems, including intrinsically disordered proteins (IDPs), and is highly complementary to the high resolution methods of X-ray crystallography and NMR. Here we present the basic principles of SAXS and review the main approaches to the characterization of IDPs and flexible multidomain proteins using SAXS. Together with the standard approaches based on the analysis of overall parameters, a recently developed Ensemble Optimization Method (EOM) is now available. The latter method allows for the co-existence of multiple protein conformations in solution compatible with the scattering data. Analysis of the selected ensembles provides quantitative information about flexibility and also offers insights into structural features. Examples of the use of SAXS and combined approaches with NMR, X-ray crystallography, and computational methods to characterize completely or partially disordered proteins are presented.
Collapse
Affiliation(s)
- Pau Bernadó
- Institute for Research in Biomedicine, Parc Científic de Barcelona, Barcelona, Spain.
| | | |
Collapse
|
50
|
The catalytic domain of MMP-1 studied through tagged lanthanides. FEBS Lett 2011; 586:557-67. [DOI: 10.1016/j.febslet.2011.09.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/12/2011] [Accepted: 09/12/2011] [Indexed: 11/22/2022]
|