1
|
Transcriptional Regulation and Implications for Controlling Hox Gene Expression. J Dev Biol 2022; 10:jdb10010004. [PMID: 35076545 PMCID: PMC8788451 DOI: 10.3390/jdb10010004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
Hox genes play key roles in axial patterning and regulating the regional identity of cells and tissues in a wide variety of animals from invertebrates to vertebrates. Nested domains of Hox expression generate a combinatorial code that provides a molecular framework for specifying the properties of tissues along the A–P axis. Hence, it is important to understand the regulatory mechanisms that coordinately control the precise patterns of the transcription of clustered Hox genes required for their roles in development. New insights are emerging about the dynamics and molecular mechanisms governing transcriptional regulation, and there is interest in understanding how these may play a role in contributing to the regulation of the expression of the clustered Hox genes. In this review, we summarize some of the recent findings, ideas and emerging mechanisms underlying the regulation of transcription in general and consider how they may be relevant to understanding the transcriptional regulation of Hox genes.
Collapse
|
2
|
De Kumar B, Parker HJ, Paulson A, Parrish ME, Pushel I, Singh NP, Zhang Y, Slaughter BD, Unruh JR, Florens L, Zeitlinger J, Krumlauf R. HOXA1 and TALE proteins display cross-regulatory interactions and form a combinatorial binding code on HOXA1 targets. Genome Res 2017; 27:1501-1512. [PMID: 28784834 PMCID: PMC5580710 DOI: 10.1101/gr.219386.116] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 07/24/2017] [Indexed: 01/02/2023]
Abstract
Hoxa1 has diverse functional roles in differentiation and development. We identify and characterize properties of regions bound by HOXA1 on a genome-wide basis in differentiating mouse ES cells. HOXA1-bound regions are enriched for clusters of consensus binding motifs for HOX, PBX, and MEIS, and many display co-occupancy of PBX and MEIS. PBX and MEIS are members of the TALE family and genome-wide analysis of multiple TALE members (PBX, MEIS, TGIF, PREP1, and PREP2) shows that nearly all HOXA1 targets display occupancy of one or more TALE members. The combinatorial binding patterns of TALE proteins define distinct classes of HOXA1 targets, which may create functional diversity. Transgenic reporter assays in zebrafish confirm enhancer activities for many HOXA1-bound regions and the importance of HOX-PBX and TGIF motifs for their regulation. Proteomic analyses show that HOXA1 physically interacts on chromatin with PBX, MEIS, and PREP family members, but not with TGIF, suggesting that TGIF may have an independent input into HOXA1-bound regions. Therefore, TALE proteins appear to represent a wide repertoire of HOX cofactors, which may coregulate enhancers through distinct mechanisms. We also discover extensive auto- and cross-regulatory interactions among the Hoxa1 and TALE genes, indicating that the specificity of HOXA1 during development may be regulated though a complex cross-regulatory network of HOXA1 and TALE proteins. This study provides new insight into a regulatory network involving combinatorial interactions between HOXA1 and TALE proteins.
Collapse
Affiliation(s)
- Bony De Kumar
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Ariel Paulson
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Mark E Parrish
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Irina Pushel
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Brian D Slaughter
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.,Department of Pathology
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
3
|
Merabet S, Mann RS. To Be Specific or Not: The Critical Relationship Between Hox And TALE Proteins. Trends Genet 2016; 32:334-347. [PMID: 27066866 DOI: 10.1016/j.tig.2016.03.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 10/22/2022]
Abstract
Hox proteins are key regulatory transcription factors that act in different tissues of the embryo to provide specific spatial and temporal coordinates to each cell. These patterning functions often depend on the presence of the TALE-homeodomain class cofactors, which form cooperative DNA-binding complexes with all Hox proteins. How this family of cofactors contributes to the highly diverse and specific functions of Hox proteins in vivo remains an important unsolved question. We review here the most recent advances in understanding the molecular mechanisms underlying Hox-TALE function. In particular, we discuss the role of DNA shape, DNA-binding affinity, and protein-protein interaction flexibility in dictating Hox-TALE specificity. We propose several models to explain how these mechanisms are integrated with each other in the context of the many distinct functions that Hox and TALE factors carry out in vivo.
Collapse
Affiliation(s)
- Samir Merabet
- Institut de Génomique Fonctionnelle de Lyon, Centre National de Recherche Scientifique, Ecole Normale Supérieure de Lyon, France.
| | | |
Collapse
|
4
|
Homozygosity and Heterozygosity for Null Col5a2 Alleles Produce Embryonic Lethality and a Novel Classic Ehlers-Danlos Syndrome-Related Phenotype. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2000-11. [PMID: 25987251 DOI: 10.1016/j.ajpath.2015.03.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/13/2015] [Accepted: 03/17/2015] [Indexed: 12/12/2022]
Abstract
Null alleles for the COL5A1 gene and missense mutations for COL5A1 or the COL5A2 gene underlie cases of classic Ehlers-Danlos syndrome, characterized by fragile, hyperextensible skin and hypermobile joints. However, no classic Ehlers-Danlos syndrome case has yet been associated with COL5A2 null alleles, and phenotypes that might result from such alleles are unknown. We describe mice with null alleles for the Col5a2. Col5a2(-/-) homozygosity is embryonic lethal at approximately 12 days post conception. Unlike previously described mice null for Col5a1, which die at 10.5 days post conception and virtually lack collagen fibrils, Col5a2(-/-) embryos have readily detectable collagen fibrils, thicker than in wild-type controls. Differences in Col5a2(-/-) and Col5a1(-/-) fibril formation and embryonic survival suggest that α1(V)3 homotrimers, a rare collagen V isoform that occurs in the absence of sufficient levels of α2(V) chains, serve functional roles that partially compensate for loss of the most common collagen V isoform. Col5a2(+/-) adults have skin with marked hyperextensibility and reduced tensile strength at high strain but not at low strain. Col5a2(+/-) adults also have aortas with increased compliance and reduced tensile strength. Results thus suggest that COL5A2(+/-) humans, although unlikely to present with frank classic Ehlers-Danlos syndrome, are likely to have fragile connective tissues with increased susceptibility to trauma and certain chronic pathologic conditions.
Collapse
|
5
|
Kuo JH, Cuevas I, Chen A, Dunn A, Kuri M, Boudreau N. Secreted HoxA3 Promotes Epidermal Proliferation and Angiogenesis in Genetically Modified Three-Dimensional Composite Skin Constructs. Adv Wound Care (New Rochelle) 2014; 3:605-613. [PMID: 25302136 DOI: 10.1089/wound.2013.0474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 06/21/2013] [Indexed: 01/21/2023] Open
Abstract
Objective: Homeobox (HOX) transcription factors coordinate gene expression in wound repair and angiogenesis. Previous studies have shown that gene transfer of HoxA3 to wounds of diabetic mice accelerates wound healing, increasing angiogenesis and keratinocyte migration. In this study, we examined whether HoxA3 can also improve angiogenesis, epidermal integrity, and viability of composite skin grafts. Approach: To determine the effects of HoxA3 on composite skin grafts, we constructed bilayered composite grafts incorporating fibroblasts engineered to constitutively secrete HoxA3. We then transplanted these composite grafts in vivo. Results: The composite grafts produced a stratified epidermal layer after seventeen days in culture and following transplantation in vivo, these grafts exhibit normal epidermal differentiation and reduced contraction compared to controls. In addition, HoxA3 grafts showed increased angiogenesis. Quantitative polymerase chain reaction (PCR) analyses of HoxA3 graft tissue reveal an increase in the downstream HoxA3 target genes MMP-14 and uPAR expression, as well as a reduction in CCL-2 and CxCl-12. Innovation: Expression of secreted HoxA3 in composite grafts represents a comprehensive approach that targets both keratinocytes and endothelial cells to promote epidermal proliferation and angiogenesis. Conclusion: Secreted HoxA3 improves angiogenesis, reduces expression of inflammatory mediators, and prolongs composite skin graft integrity.
Collapse
Affiliation(s)
- Jennifer H. Kuo
- Department of Surgery, University of California Davis, Sacramento, California
| | - Ileana Cuevas
- Surgical Research Laboratory, University of California San Francisco, San Francisco, California
| | - Amy Chen
- Surgical Research Laboratory, University of California San Francisco, San Francisco, California
| | - Ashley Dunn
- Surgical Research Laboratory, University of California San Francisco, San Francisco, California
| | - Mauricio Kuri
- Surgical Research Laboratory, University of California San Francisco, San Francisco, California
| | - Nancy Boudreau
- Surgical Research Laboratory, University of California San Francisco, San Francisco, California
| |
Collapse
|
6
|
Fang M, Jacob R, McDougal O, Oxford JT. Minor fibrillar collagens, variable regions alternative splicing, intrinsic disorder, and tyrosine sulfation. Protein Cell 2012; 3:419-33. [PMID: 22752873 PMCID: PMC3484837 DOI: 10.1007/s13238-012-2917-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 02/07/2012] [Indexed: 12/25/2022] Open
Abstract
Minor fibrillar collagen types V and XI, are those less abundant than the fibrillar collagen types I, II and III. The alpha chains share a high degree of similarity with respect to protein sequence in all domains except the variable region. Genomic variation and, in some cases, extensive alternative splicing contribute to the unique sequence characteristics of the variable region. While unique expression patterns in tissues exist, the functions and biological relevance of the variable regions have not been elucidated. In this review, we summarize the existing knowledge about expression patterns and biological functions of the collagen types V and XI alpha chains. Analysis of biochemical similarities among the peptides encoded by each exon of the variable region suggests the potential for a shared function. The alternative splicing, conservation of biochemical characteristics in light of low sequence conservation, and evidence for intrinsic disorder, suggest modulation of binding events between the surface of collagen fibrils and surrounding extracellular molecules as a shared function.
Collapse
Affiliation(s)
- Ming Fang
- Department of Biological Sciences, Boise State University, Boise, ID 83725 USA
- Biomolecular Research Center, Boise State University, Boise, ID 83725 USA
| | - Reed Jacob
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725 USA
- Biomolecular Research Center, Boise State University, Boise, ID 83725 USA
| | - Owen McDougal
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725 USA
- Biomolecular Research Center, Boise State University, Boise, ID 83725 USA
| | - Julia Thom Oxford
- Department of Biological Sciences, Boise State University, Boise, ID 83725 USA
- Biomolecular Research Center, Boise State University, Boise, ID 83725 USA
| |
Collapse
|
7
|
Ma Y, Guess M, Datar A, Hennessey A, Cardenas I, Johnson J, Connell KA. Knockdown of Hoxa11 in vivo in the uterosacral ligament and uterus of mice results in altered collagen and matrix metalloproteinase activity. Biol Reprod 2012; 86:100. [PMID: 22190701 DOI: 10.1095/biolreprod.111.093245] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Homeobox (HOX) genes are evolutionarily conserved genes encoding transcription factors that regulate mammalian embryonic growth and development of the urogenital tract. In both humans and mice, HOXA11 persists in the adult reproductive tract and is thought to play an important role in maintaining tissue developmental plasticity by regulating the expression of genes involved in extracellular matrix metabolism in the reproductive organs. Previously, we have shown that HOXA11 is necessary for development of the uterosacral ligaments in mice and is deficient in women with pelvic organ prolapse. Therefore, we hypothesized that Hoxa11 regulates the synthesis and/or metabolism of collagens in the uterosacral ligaments and uterus, and tested this by establishing an in utero and peritoneal Hoxa11 gene knockdown system in C57/BL6 mice using vectors bearing Hoxa11 short hairpin RNA. Specific knockdown of Hoxa11 transcripts and protein levels were confirmed versus control vectors. Protein and mRNA expression of collagen types I and III exhibited significant decreases following Hoxa11 knockdown according to Western blot analysis and real-time PCR. Tissue inhibitor of matrix metalloproteinase 1 (MMP1) expression also exhibited a significant decrease. Gelatinase zymography confirmed increases in pro-MMP2 and MMP9, as well as activated MMP2, following Hoxa11 knockdown. These results reveal that Hoxa11 knockdown in the uterosacral ligaments and uterus increases extracellular matrix degradation. More importantly, it suggests a mechanism in the weakening of the pelvic floor support in women, because decreased HOXA11 gene expression has been reported to be associated with decreased collagen and increased MMP2 expression in the uterosacral ligaments of women with pelvic organ prolapse.
Collapse
Affiliation(s)
- Yan Ma
- Division of Urogynecology, Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Zhu XL, Ai ZH, Wang J, Xu YL, Teng YC. Weighted gene co-expression network analysis in identification of endometrial cancer prognosis markers. Asian Pac J Cancer Prev 2012; 13:4607-11. [PMID: 23167388 DOI: 10.7314/apjcp.2012.13.9.4607] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Endometrial cancer (EC) is the most common gynecologic malignancy. Identification of potential biomarkers of EC would be helpful for the detection and monitoring of malignancy, improving clinical outcomes. METHODS The Weighted Gene Co-expression Network Analysis method was used to identify prognostic markers for EC in this study. Moreover, underlying molecular mechanisms were characterized by KEGG pathway enrichment and transcriptional regulation analyses. RESULTS Seven gene co-expression modules were obtained, but only the turquoise module was positively related with EC stage. Among the genes in the turquoise module, COL5A2 (collagen, type V, alpha 2) could be regulated by PBX (pre-B-cell leukemia homeobox 1)1/2 and HOXB1(homeobox B1) transcription factors to be involved in the focal adhesion pathway; CENP-E (centromere protein E, 312kDa) by E2F4 (E2F transcription factor 4, p107/p130-binding); MYCN (v-myc myelocytomatosis viral related oncogene, neuroblastoma derived [avian]) by PAX5 (paired box 5); and BCL-2 (B-cell CLL/ lymphoma 2) and IGFBP-6 (insulin-like growth factor binding protein 6) by GLI1. They were predicted to be associated with EC progression via Hedgehog signaling and other cancer related-pathways. CONCLUSIONS These data on transcriptional regulation may provide a better understanding of molecular mechanisms and clues to potential therapeutic targets in the treatment of EC.
Collapse
Affiliation(s)
- Xiao-Lu Zhu
- Department of Obstetrics and Gynecology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | |
Collapse
|
9
|
Istrail S, Tarpine R, Schutter K, Aguiar D. Practical computational methods for regulatory genomics: a cisGRN-Lexicon and cisGRN-browser for gene regulatory networks. Methods Mol Biol 2010; 674:369-99. [PMID: 20827603 DOI: 10.1007/978-1-60761-854-6_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The CYRENE Project focuses on the study of cis-regulatory genomics and gene regulatory networks (GRN) and has three components: a cisGRN-Lexicon, a cisGRN-Browser, and the Virtual Sea Urchin software system. The project has been done in collaboration with Eric Davidson and is deeply inspired by his experimental work in genomic regulatory systems and gene regulatory networks. The current CYRENE cisGRN-Lexicon contains the regulatory architecture of 200 transcription factors encoding genes and 100 other regulatory genes in eight species: human, mouse, fruit fly, sea urchin, nematode, rat, chicken, and zebrafish, with higher priority on the first five species. The only regulatory genes included in the cisGRN-Lexicon (CYRENE genes) are those whose regulatory architecture is validated by what we call the Davidson Criterion: they contain functionally authenticated sites by site-specific mutagenesis, conducted in vivo, and followed by gene transfer and functional test. This is recognized as the most stringent experimental validation criterion to date for such a genomic regulatory architecture. The CYRENE cisGRN-Browser is a full genome browser tailored for cis-regulatory annotation and investigation. It began as a branch of the Celera Genome Browser (available as open source at http://sourceforge.net/projects/celeragb /) and has been transformed to a genome browser fully devoted to regulatory genomics. Its access paradigm for genomic data is zoom-to-the-DNA-base in real time. A more recent component of the CYRENE project is the Virtual Sea Urchin system (VSU), an interactive visualization tool that provides a four-dimensional (spatial and temporal) map of the gene regulatory networks of the sea urchin embryo.
Collapse
Affiliation(s)
- Sorin Istrail
- Department of Computer Science, Center for Computational Molecular Biology, Brown University, Providence, RI, USA.
| | | | | | | |
Collapse
|
10
|
Mann RS, Lelli KM, Joshi R. Hox specificity unique roles for cofactors and collaborators. Curr Top Dev Biol 2009; 88:63-101. [PMID: 19651302 DOI: 10.1016/s0070-2153(09)88003-4] [Citation(s) in RCA: 268] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hox proteins are well known for executing highly specific functions in vivo, but our understanding of the molecular mechanisms underlying gene regulation by these fascinating proteins has lagged behind. The premise of this review is that an understanding of gene regulation-by any transcription factor-requires the dissection of the cis-regulatory elements that they act upon. With this goal in mind, we review the concepts and ideas regarding gene regulation by Hox proteins and apply them to a curated list of directly regulated Hox cis-regulatory elements that have been validated in the literature. Our analysis of the Hox-binding sites within these elements suggests several emerging generalizations. We distinguish between Hox cofactors, proteins that bind DNA cooperatively with Hox proteins and thereby help with DNA-binding site selection, and Hox collaborators, proteins that bind in parallel to Hox-targeted cis-regulatory elements and dictate the sign and strength of gene regulation. Finally, we summarize insights that come from examining five X-ray crystal structures of Hox-cofactor-DNA complexes. Together, these analyses reveal an enormous amount of flexibility into how Hox proteins function to regulate gene expression, perhaps providing an explanation for why these factors have been central players in the evolution of morphological diversity in the animal kingdom.
Collapse
Affiliation(s)
- Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
11
|
Díaz VM, Bachi A, Blasi F. Purification of the Prep1 interactome identifies novel pathways regulated by Prep1. Proteomics 2007; 7:2617-23. [PMID: 17623278 DOI: 10.1002/pmic.200700197] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Prep1 homeodomain transcription factor interacts with Pbx proteins to regulate oculogenesis, angiogenesis, and hematopoiesis in mice. To isolate new Prep1 interactors competing or copurifying with Pbx, we identified proteins copurified with Prep1-TAP by tandem affinity purification (TAP). Prep1-TAP was fully functional and allowed the isolation of a Prep1 proteome from cytoplasm and nucleus, but most interactors were nuclear. The Prep1-TAP complex included Pbx1b, Pbx2, and other nonhomeodomain proteins: p160 Myb-binding protein (p160), beta-actin, NMMHCIIA.
Collapse
Affiliation(s)
- Víctor M Díaz
- Molecular Genetics Unit, Department of Molecular Biology and Functional Genomics, Università Vita Salute San Raffaele and DIBIT, H San Raffaele, Milan, Italy
| | | | | |
Collapse
|
12
|
Knosp WM, Saneyoshi C, Shou S, Bächinger HP, Stadler HS. Elucidation, Quantitative Refinement, and in Vivo Utilization of the HOXA13 DNA Binding Site. J Biol Chem 2007; 282:6843-53. [PMID: 17200107 DOI: 10.1074/jbc.m610775200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mutations in Hoxa13 cause malformations of the appendicular skeleton and genitourinary tract, including digit loss, syndactyly, and hypospadias. To determine the molecular basis for these defects, the DNA sequences bound by HOXA13 were empirically determined, revealing a novel high affinity binding site. Correlating the utilization of this high affinity binding site with genes exhibiting perturbed expression in Hoxa13 mutant limbs, we identified that HOXA13 suppresses the expression of the BMP antagonist, Sostdc1. In the absence of HOXA13 function, Sostdc1 is ectopically expressed in the distal limb, causing reduced expression of BMP-activated genes and decreased SMAD phosphorylation. Limb chromatin immunoprecipitation revealed HOXA13 binding at its high affinity site in two conserved Sostdc1 regulatory sites in vivo. In vitro, HOXA13 represses gene expression through the Sostdc1 high affinity binding sites in a dosage-dependent manner. Together, these findings confirm that the high affinity HOXA13 binding site deduced by quantitative analyses is used in vivo to facilitate HOXA13 target gene regulation, providing a critical advance toward understanding the molecular basis for defects associated with the loss of HOXA13 function.
Collapse
Affiliation(s)
- Wendy M Knosp
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
13
|
Svingen T, Tonissen KF. Hox transcription factors and their elusive mammalian gene targets. Heredity (Edinb) 2006; 97:88-96. [PMID: 16721389 DOI: 10.1038/sj.hdy.6800847] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Hox family of homeodomain transcription factors regulate numerous pathways during developmental and normal cellular processes. All Hox proteins recognise similar sequences in vitro yet display functional diversity in an in vivo environment. This review focuses on the transcriptional and functional specificity elicited by Hox proteins, giving an overview of homeodomain-DNA interactions and the gain of binding specificity through cooperative binding with cofactors. Furthermore, currently identified mammalian Hox target genes are presented, of which the most striking feature is that very few direct Hox targets have been identified. The direct targets participate in an array of cellular functions including organogenesis and cellular differentiation, cell adhesion and migration and cell cycle and apoptotic pathways. A further assessment of identified mammalian promoter targets and the contribution of bases outside the canonical recognition motif is given, highlighting roles they may play in either trans-activation or repression by Hox proteins.
Collapse
Affiliation(s)
- T Svingen
- Cell Biology Group, Eskitis Institute for Cell and Molecular Therapies and School of Biomolecular and Biomedical Science, Griffith University, Nathan, Queensland 4111, Australia
| | | |
Collapse
|
14
|
Cole M, Nolte C, Werr W. Nuclear import of the transcription factor SHOOT MERISTEMLESS depends on heterodimerization with BLH proteins expressed in discrete sub-domains of the shoot apical meristem of Arabidopsis thaliana. Nucleic Acids Res 2006; 34:1281-92. [PMID: 16513846 PMCID: PMC1388269 DOI: 10.1093/nar/gkl016] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The gene SHOOT MERISTEMLESS (STM) is required for the initiation and the maintenance of the shoot apical meristem (SAM) in Arabidopsis and encodes a MEINOX/three amino acid loop extension (TALE)-HD-type transcription factor. Translational fusions with the green fluorescent protein showed that STM is not nuclear by default. In a yeast two-hybrid screen performed with a meristem-enriched cDNA library, three interacting BLH (Bel1-like homeodomain) transcription factors were identified. According to bimolecular fluorescence complementation, STM is targeted into the nuclear compartment through heterodimerization with BLH partner proteins, which are expressed in distinct SAM domains from the center to the periphery. On a functional level, overexpression experiments in transgenic Arabidopsis plants suggest that individual heterodimers provide distinct contributions. These results contribute to our understanding of the STM transcription factor function in the SAM and also shed new light on the evolution of the TALE-HD super gene family in animal and plant lineages.
Collapse
Affiliation(s)
| | | | - Wolfgang Werr
- To whom correspondence should be addressed. Tel: +49 221 470 2619; Fax: +49 221 470 5164;
| |
Collapse
|
15
|
Beaudet MJ, Desrochers M, Lachaud A, Anderson A. The CYP2B2 phenobarbital response unit contains binding sites for hepatocyte nuclear factor 4, PBX-PREP1, the thyroid hormone receptor beta and the liver X receptor. Biochem J 2005; 388:407-18. [PMID: 15656786 PMCID: PMC1138947 DOI: 10.1042/bj20041556] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A 163 bp enhancer in the CYP2B2 5' flank confers PB (phenobarbital) inducibility and constitutes a PBRU (PB response unit). The PBRU contains several transcription factor binding sites, including NR1, NR2 and NR3, which are direct repeats separated by 4 bp of the nuclear receptor consensus half-site AGGTCA, as well as an ER (everted repeat) separated by 7 bp (ER-7). Constitutive androstane receptor (CAR)-RXR (retinoic X receptor) heterodimers are known to bind to NR1, NR2 and NR3. Electrophoretic mobility-shift analysis using nuclear extracts from livers of untreated or PB-treated rats revealed binding of several other proteins to different PBRU elements. Using supershift analysis and in vitro coupled transcription and translation, the proteins present in four retarded complexes were identified as TRbeta (thyroid hormone receptor beta), LXR (liver X receptor), HNF-4 (hepatocyte nuclear factor 4) and heterodimers of PBX-PREP1 (pre-B cell homoeobox-Pbx regulatory protein 1). LXR-RXR heterodimers bound to NR3 and TRbeta bound to NR3, NR1 and ER-7, whereas the PBX-PREP1 site is contained within NR2. The HNF-4 site overlaps with NR1. A mutation described previously, GRE1m1, which decreases PB responsiveness, increased the affinity of this site for HNF-4. The PBRU also contains a site for nuclear factor 1. The PBRU thus contains a plethora of transcription factor binding sites. The profiles of transcription factor binding to NR1 and NR3 were quite similar, although strikingly different from, and more complex than, that of NR2. This parallels the functional differences in conferring PB responsiveness between NR1 and NR3 on the one hand, and NR2 on the other.
Collapse
Affiliation(s)
- Marie-Josée Beaudet
- Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, Centre hospitalier universitaire de Québec, Québec G1R 2J6, Canada, and Département de biologie, Université Laval, Québec G1K 7P4, Canada
| | - Marc Desrochers
- Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, Centre hospitalier universitaire de Québec, Québec G1R 2J6, Canada, and Département de biologie, Université Laval, Québec G1K 7P4, Canada
| | - Antoine Amaury Lachaud
- Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, Centre hospitalier universitaire de Québec, Québec G1R 2J6, Canada, and Département de biologie, Université Laval, Québec G1K 7P4, Canada
| | - Alan Anderson
- Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, Centre hospitalier universitaire de Québec, Québec G1R 2J6, Canada, and Département de biologie, Université Laval, Québec G1K 7P4, Canada
- To whom correspondence should be addressed (email )
| |
Collapse
|
16
|
Mace KA, Hansen SL, Myers C, Young DM, Boudreau N. HOXA3 induces cell migration in endothelial and epithelial cells promoting angiogenesis and wound repair. J Cell Sci 2005; 118:2567-77. [PMID: 15914537 DOI: 10.1242/jcs.02399] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Wound repair requires both the recruitment and coordination of numerous cell types including inflammatory cells, fibroblasts, endothelial and epithelial cells. Each cell type has a distinct set of cell behavior such as formation of granulation tissue and basement membrane, migration, proliferation and redifferentiation. These processes are dependent on cell-cell and cell-ECM signaling, intracellular signal transduction cascades, and ultimately, changes in gene transcription. We have investigated the role of the transcription factor HOXA3 in wound repair and angiogenesis. Here we show that HOXA3 increases endothelial cell migration, induces angiogenesis in vivo, and leads to increased expression of the matrix metalloproteinase-14 (MMP-14) and urokinase-type plasminogen activator receptor (uPAR) genes in endothelial cells in culture and in vivo in response to injury. We find that HOXA3 gene expression is upregulated during wound healing in angiogenic endothelial cells and keratinocytes, and that HOXA3 is not induced in genetically diabetic mice that have impaired angiogenesis and wound repair. We demonstrate that gene transfer of HOXA3 into diabetic mouse wounds leads to dramatic improvements in both angiogenesis and wound closure. In addition, we show that HOXA3 promotes migration of endothelial cells and keratinocytes in a uPAR-dependent manner. Together these findings illustrate how the morphoregulatory protein, HOXA3 can facilitate tissue remodeling via coordinated changes in both epithelial and endothelial cell gene expression and behavior in adult tissues during wound repair.
Collapse
Affiliation(s)
- Kimberly A Mace
- Surgical Research Laboratory, Department of Surgery, University of California San Francisco, San Francisco General Hospital, CA 94110, USA
| | | | | | | | | |
Collapse
|
17
|
Bijl J, Sauvageau M, Thompson A, Sauvageau G. High incidence of proviral integrations in the Hoxa locus in a new model of E2a-PBX1-induced B-cell leukemia. Genes Dev 2005; 19:224-33. [PMID: 15655112 PMCID: PMC545883 DOI: 10.1101/gad.1268505] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Relevant mouse models of E2a-PBX1-induced pre-B cell leukemia are still elusive. We now report the generation of a pre-B leukemia model using E2a-PBX1 transgenic mice, which lack mature and precursor T-cells as a result of engineered loss of CD3epsilon expression (CD3epsilon(-/-)). Using insertional mutagenesis and inverse-PCR, we show that B-cell leukemia development in the E2a-PBX1 x CD3epsilon(-/-) compound transgenic animals is significantly accelerated when compared to control littermates, and document several known and novel integrations in these tumors. Of all common integration sites, a small region of 19 kb in the Hoxa gene locus, mostly between Hoxa6 and Hoxa10, represented 18% of all integrations in the E2a-PBX1 B-cell leukemia and was targeted in 86% of these leukemias compared to 17% in control tumors. Q-PCR assessment of expression levels for most Hoxa cluster genes in these tumors revealed an unprecedented impact of the proviral integrations on Hoxa gene expression, with tumors having one to seven different Hoxa genes overexpressed at levels up to 6600-fold above control values. Together our studies set the stage for modeling E2a-PBX1-induced B-cell leukemia and shed new light on the complexity pertaining to Hox gene regulation. In addition, our results show that the Hoxa gene cluster is preferentially targeted in E2a-PBX1-induced tumors, thus suggesting functional collaboration between these oncogenes in pre-B-cell tumors.
Collapse
Affiliation(s)
- Janet Bijl
- Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer, Montréal, Québec H3C 3J7, Canada
| | | | | | | |
Collapse
|
18
|
Nagato H, Matsuo N, Sumiyoshi H, Sakata-Takatani K, Nasu M, Yoshioka H. The transcription factor CCAAT-binding factor CBF/NF-Y and two repressors regulate the core promoter of the human pro-alpha3(V) collagen gene (COL5A3). J Biol Chem 2004; 279:46373-83. [PMID: 15316020 DOI: 10.1074/jbc.m406069200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To elucidate the mechanisms underlining alpha3(V) collagen chain expression, we performed an initial analysis of the structure and function of the core promoter of the human COL5A3 gene. The core promoter, which lacks a typical TATA motif and has a high GC content, was defined within the -129 bp immediately upstream from the major transcription start site by transient transfection experiments. In this region, we identified four DNA-protein complexes, named A, B, C, and D, by a combination of DNase I footprinting and electrophoretic mobility shift assays. Electrophoretic mobility shift assays using mutant oligonucleotide revealed that the complexes A, B, C, and D bind to -122 to -117, the -101 to -96, the -83 to -78, and the -68 to -57 bp, respectively. The competition assays using consensus oligonucleotides and supershift assays with specific antibodies showed that complex A consists of CBF/NF-Y. In a chromatin immunoprecipitation assay, CBF/NF-Y protein directly bound to this region, in vivo. Functional analysis showed that CBF/NF-Y activated the gene, whereas the proteins of complexes B and C repressed its activity. Furthermore, overexpression of a mutant form of the CBF-B/NF-YA subunit, which forms CBF/NF-Y with CBF-A/NF-YB and CBF-C/NF-YC subunits, inhibited promoter activity.
Collapse
Affiliation(s)
- Hitoshi Nagato
- Department of Anatomy, Biology and Medicine, Faculty of Medicine, Oita University, 1-1 Hasama-machi, Oita 879-5593, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Rave-Harel N, Givens ML, Nelson SB, Duong HA, Coss D, Clark ME, Hall SB, Kamps MP, Mellon PL. TALE homeodomain proteins regulate gonadotropin-releasing hormone gene expression independently and via interactions with Oct-1. J Biol Chem 2004; 279:30287-97. [PMID: 15138251 PMCID: PMC2935805 DOI: 10.1074/jbc.m402960200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is the central regulator of reproductive function. Expression of the GnRH gene is confined to a rare population of neurons scattered throughout the hypothalamus. Restricted expression of the rat GnRH gene is driven by a multicomponent enhancer and an evolutionarily conserved promoter. Oct-1, a ubiquitous POU homeodomain transcription factor, was identified as an essential factor regulating GnRH transcription in the GT1-7 hypothalamic neuronal cell line. In this study, we conducted a two-hybrid interaction screen in yeast using a GT1-7 cDNA library to search for specific Oct-1 cofactors. Using this approach, we isolated Pbx1b, a TALE homeodomain transcription factor that specifically associates with Oct-1. We show that heterodimers containing Pbx/Prep1 or Pbx/Meis1 TALE homeodomain proteins bind to four functional elements within the GnRH regulatory region, each in close proximity to an Oct-1-binding site. Cotransfection experiments indicate that TALE proteins are essential for GnRH promoter activity in the GT1-7 cells. Moreover, Pbx1 and Oct-1, as well as Prep1 and Oct-1, form functional complexes that enhance GnRH gene expression. Finally, Pbx1 is expressed in GnRH neurons in embryonic as well as mature mice, suggesting that the associations between TALE homeodomain proteins and Oct-1 regulate neuron-specific expression of the GnRH gene in vivo.
Collapse
Affiliation(s)
- Naama Rave-Harel
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92903
| | - Marjory L. Givens
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92903
| | - Shelley B. Nelson
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92903
| | - Hao A. Duong
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92903
| | - Djurdjica Coss
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92903
| | - Melody E. Clark
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92903
| | - Sara Barth Hall
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92903
| | - Mark P. Kamps
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, California 92903
| | - Pamela L. Mellon
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92903
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, California 92903
- To whom correspondence should be addressed: Dept. of Reproductive Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0674; Tel.: 858-534-1312; Fax: 858-534-1438;
| |
Collapse
|
20
|
Bhatt AM, Etchells JP, Canales C, Lagodienko A, Dickinson H. VAAMANA--a BEL1-like homeodomain protein, interacts with KNOX proteins BP and STM and regulates inflorescence stem growth in Arabidopsis. Gene 2004; 328:103-11. [PMID: 15019989 DOI: 10.1016/j.gene.2003.12.033] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Revised: 11/14/2003] [Accepted: 12/02/2003] [Indexed: 11/26/2022]
Abstract
Plant shoot growth depends on the activity of the shoot apical meristem (SAM), where organ primordia are initiated. In turn, the function of the SAM depends on the activities of homeodomain (HD) proteins of the knotted1-like homeobox (KNOX) class [Long et al., Nature 379 (1996) 66; Vollbrecht et al., Development 127 (2000) 3161]. In plants, KNOX proteins have been shown to interact specifically with the BEL1-like (BELL) class of homeodomain proteins [Bellaoui et al., Plant Cell 13 (2001) 2455; Muller et al., Plant 27 (2001) 13; Smith et al., Proc. Natl. Acad. Sci. USA 99 (2002) 9579], through a domain conserved between plants and animals. We have isolated a mutation in a BELL homeobox gene VAAMANA (VAN) that causes a dwarf phenotype. In addition, van inflorescence stems have clusters of cauline leaves; typically three are produced at each node. VAN interacts specifically with the class I KNOX proteins SHOOTMERISTEMLESS (STM), BREVIPEDICELLUS (BP), and KNAT6 (K6), and nuclear localisation of a VAN-GFP fusion depends on co-expression of STM or BP in tobacco leaves. This suggests that localisation of VAN, like that of the animal PBC homeodomain protein [Rieckhof et al., Cell 91 (1997) 171; Berthelsen et al., Genes Dev. 13 (1999) 946], is also regulated by interaction with a partner homeodomain protein.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Base Sequence
- Blotting, Northern
- Cell Nucleus/metabolism
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Flowers/genetics
- Flowers/growth & development
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Green Fluorescent Proteins
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Microscopy, Confocal
- Molecular Sequence Data
- Mutation
- Phenotype
- Phylogeny
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Protein Binding
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Saccharomyces cerevisiae/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Anuj M Bhatt
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| | | | | | | | | |
Collapse
|
21
|
Qin P, Haberbusch JM, Soprano KJ, Soprano DR. Retinoic acid regulates the expression of PBX1, PBX2, and PBX3 in P19 cells both transcriptionally and post-translationally. J Cell Biochem 2004; 92:147-63. [PMID: 15095411 DOI: 10.1002/jcb.20057] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Pre-B cell leukemia transcription factors (PBXs) are important co-factors for the transcriptional regulation mediated by a number of Hox proteins during embryonic development. It was previously shown that the expression of several Pbx genes is elevated in mouse embryo limb buds and embryonal carcinoma P19 cells upon retinoic acid (RA) treatment although the mechanism of this induction is not well understood. In this report, we demonstrate that PBX1a, PBX1b, PBX2, and PBX3 mRNAs and PBX1/2/3 proteins are induced during endodermal and neuronal differentiation of P19 cells in a RAR-dependent subtype-unspecific manner following RA treatment. The increases in both PBX1 mRNA and PBX3 mRNA levels are secondary responses to RA treatment requiring new proteins synthesis while the increase in PBX2 mRNA is a primary response. The RA-dependent increases in PBX1 mRNA, PBX2 mRNA, and PBX3 mRNA levels are likely to be transcriptionally regulated since the stability of these mRNAs does not change. In addition, the half-lives of PBX1/2/3 proteins are significantly extended by RA treatment. Two possible mechanisms could contribute to the stabilization of PBX proteins: PBX proteins associate with RA-dependent increased levels of MEIS proteins, and RA may decrease the proteasome dependent degradation of PBX proteins.
Collapse
Affiliation(s)
- Pu Qin
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
22
|
Matsuo N, Yu-Hua W, Sumiyoshi H, Sakata-Takatani K, Nagato H, Sakai K, Sakurai M, Yoshioka H. The transcription factor CCAAT-binding factor CBF/NF-Y regulates the proximal promoter activity in the human alpha 1(XI) collagen gene (COL11A1). J Biol Chem 2003; 278:32763-70. [PMID: 12805369 DOI: 10.1074/jbc.m305599200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have characterized the proximal promoter region of the human COL11A1 gene. Transient transfection assays indicate that the segment from -199 to +1 is necessary for the activation of basal transcription. Electrophoretic mobility shift assays (EMSAs) demonstrated that the ATTGG sequence, within the -147 to -121 fragment, is critical to bind nuclear proteins in the proximal COL11A1 promoter. We demonstrated that the CCAAT binding factor (CBF/NF-Y) bound to this region using an interference assay with consensus oligonucleotides and a supershift assay with specific antibodies in an EMSA. In a chromatin immunoprecipitation assay and EMSA using DNA-affinity-purified proteins, CBF/NF-Y proteins directly bound this region in vitro and in vivo. We also showed that four tandem copies of the CBF/NF-Y-binding fragment produced higher transcriptional activity than one or two copies, whereas the absence of a CBF/NF-Y-binding fragment suppressed the COL11A1 promoter activity. Furthermore, overexpression of a dominant-negative CBF-B/NF-YA subunit significantly inhibited promoter activity in both transient and stable cells. These results indicate that the CBF/NF-Y proteins regulate the transcription of COL11A1 by directly binding to the ATTGG sequence in the proximal promoter region.
Collapse
Affiliation(s)
- Noritaka Matsuo
- Department of Anatomy, Biology, and Medicine, Oita Medical University, Hasama-machi, Oita 879-5593, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Sánchez-Font MF, Bosch-Comas A, Gonzàlez-Duarte R, Marfany G. Overexpression of FABP7 in Down syndrome fetal brains is associated with PKNOX1 gene-dosage imbalance. Nucleic Acids Res 2003; 31:2769-77. [PMID: 12771203 PMCID: PMC156729 DOI: 10.1093/nar/gkg396] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Suppression subtractive hybridization performed on Down syndrome (DS) fetal brains revealed a differentially expressed gene, FABP7, mapped to 6q22-23. FABP7 overexpression in DS brains was verified by real-time PCR (1.63-fold). To elucidate the molecular basis of FABP7 overexpression and establish the relationship with chromosome 21 trisomy, the FABP7 promoter was cloned by genomic inverse PCR. Comparison to the mouse ortholog revealed conservation of reported regulatory elements, among them a Pbx/POU binding site, known to be the target of PBX heteromeric complexes. PBX partners include homeobox-containing proteins, such as PKNOX1 (PREP1), a transcription factor mapping at 21q22.3. We report here: (i) overexpression of PKNOX1 in DS fetal brains; (ii) in vitro specific binding of PKNOX1 to the Pbx/POU site of the FABP7 promoter; (iii) in vivo FABP7 promoter trans-activation in cultured neuroblastoma cells caused by PKNOX1 overexpression. To our knowledge this is the first report of a direct relation between dosage imbalance of a chromosome 21 gene and altered expression of a downstream gene mapping on another chromosome. Given the role of FABP7 in the establishment, development and maintenance of the CNS, we suggest that the overexpression of FABP7 could contribute to DS-associated neurological disorders.
Collapse
Affiliation(s)
- Ma Francisca Sánchez-Font
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal, 645, E-08028 Barcelona, Spain
| | | | | | | |
Collapse
|
24
|
Theokli C, Morsi El-Kadi AS, Morgan R. TALE class homeodomain gene Irx5 is an immediate downstream target for Hoxb4 transcriptional regulation. Dev Dyn 2003; 227:48-55. [PMID: 12701098 DOI: 10.1002/dvdy.10287] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Hox genes are a family of homeodomain-containing transcription factors that determine anteroposterior identity early on in development. Although much is now known about their regulation and function, very little is known of their effector (downstream target) genes. Here, we show that the TALE class homeodomain transcription factor Irx5 is a direct, positively regulated target of Hoxb4.
Collapse
Affiliation(s)
- Christopher Theokli
- Department of Anatomy and Developmental Biology, St. George's Hospital Medical School, London, United Kingdom
| | | | | |
Collapse
|
25
|
Petrovas C, Jeay S, Lewis RE, Sonenshein GE. B-Myb repressor function is regulated by cyclin A phosphorylation and sequences within the C-terminal domain. Oncogene 2003; 22:2011-20. [PMID: 12673206 DOI: 10.1038/sj.onc.1206231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
B-Myb is a widely expressed member of the myb oncogene family that has been shown to act as either an activator or repressor of gene transcription in a cell-type-specific fashion. For example, in aortic smooth muscle cells B-Myb represses transcription of the alpha2(V) collagen gene. Recently, phosphorylation of B-Myb by cyclin A was shown to enhance greatly its ability to transactivate. Here, we have tested the effects of cyclin A on the ability of B-Myb to repress. We report that coexpression of cyclin A abolished repression of the alpha2(V) collagen promoter, whereas a dominant-negative cyclin-dependent kinase 2 (cdk2) enhanced repression by ectopic and endogenous B-Myb protein. Mutation of 10 of 22 putative cyclin A sites, which greatly reduces the effects of cyclin A on transactivation by B-Myb, had no effect on the ability of cyclin A to alleviate B-Myb-mediated repression of alpha2(V) collagen promoter activity. Furthermore, the stability of the mutant B-Myb protein was largely unaffected by cyclin A, although ectopic expression of cyclin A enhanced the rate of decay of wild-type B-Myb protein. Thus, the mechanisms of repression and activation appear distinct, for example, mediated by different critical phosphorylation sites or protein-protein interactions. B-Myb mutants with either deletion of aa 374-581 (B-Myb-Mut3) or C-terminal truncation beyond aa 491 (B-Myb-491) positively regulated alpha2(V) collagen promoter activity, and were not affected by cyclin A. Thus, our findings indicate that the ability of B-Myb to function as a repressor of matrix promoter activity is abolished by cyclin A, and maps the sites mediating negative regulation by B-Myb to the region between aa 491 and 582.
Collapse
|
26
|
Subramaniam N, Campión J, Rafter I, Okret S. Cross-talk between glucocorticoid and retinoic acid signals involving glucocorticoid receptor interaction with the homoeodomain protein Pbx1. Biochem J 2003; 370:1087-95. [PMID: 12487626 PMCID: PMC1223238 DOI: 10.1042/bj20020471] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2002] [Revised: 10/28/2002] [Accepted: 12/17/2002] [Indexed: 02/07/2023]
Abstract
Glucocorticoid (GC) signalling influences the response of the cell to a number of other signals via a mechanism referred to as 'cross-talk'. This cross-talk may act at several levels, including an interaction between the transcription factors involved in the signalling pathways. In the present paper, we demonstrate a novel functional interaction between GC and all- trans -retinoic acid (RA) signalling. We show that, in P19 embryonal carcinoma cells, GCs potentiate RA-induced expression of the murine Hoxb -1 gene through an autoregulatory element, b1-ARE, recognized by the Pbx1 and HOXB1 homoeodomain proteins. The synergistic effect of GC did not involve GC receptor (GR) binding to the b1-ARE, and the GC-GR complex alone was unable to activate transcription via the element. Furthermore, the ability of the GR to transactivate was not required, excluding expression of a GC-induced protein as the mechanism for the GC/RA synergy. Additional transfection experiments showed that the Pbx1/HOXB1 heterodimer was the target for the GC effect. Furthermore, functional dissection of the GR demonstrated that the DNA-binding domain (DBD) of the GR was required for the synergy. A physical interaction between the GR and Pbx1 proteins was demonstrated in vivo by co-immunoprecipitation experiments. These results are compatible with a model in which the GC/RA synergy is mediated by a direct interaction between the GR and Pbx1. On the basis of the ubiquitous expression of both GR and Pbx1, a number of genes regulated by Pbx are likely to be important targets for GC-mediated 'cross-talk'.
Collapse
Affiliation(s)
- Nanthakumar Subramaniam
- Department of Medical Nutrition, Karolinska Institutet, Huddinge University Hospital, Novum, SE-141 86 Huddinge, Sweden
| | | | | | | |
Collapse
|
27
|
Joosten PHLJ, Toepoel M, van Oosterhout D, Afink GB, van Zoelen EJJ. A regulating element essential for PDGFRA transcription is recognized by neural tube defect-associated PRX homeobox transcription factors. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1588:254-60. [PMID: 12393181 DOI: 10.1016/s0925-4439(02)00175-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have previously shown that deregulated expression of the platelet-derived growth factor alpha-receptor (PDGFRA) can be associated with neural tube defects (NTDs) in both men and mice. In the present study, we have investigated the transcription factors that control the up-regulation of PDGFRA expression during differentiation of early embryonic human cells in culture. In Tera-2 embryonal carcinoma cells, PDGFRA expression is strongly enhanced upon differentiation induced by retinoic acid and cAMP treatment. Here we show that the corresponding increase in promoter activity is controlled by an ATTA-sequence-containing element located near the transcription initiation site, which is bound by a transcriptional complex that includes PBX and PRX homeobox transcription factors. Mutation of the putative binding sites for these transcription factors results in strong impairment of PDGFRA promoter activity in differentiated cells. Since functional inactivation of Prx genes has been associated with NTDs in mice, these data support a model in which improper PDGFRA expression as a result of mutations in or altered binding of its upstream regulators may be causally related to NTDs.
Collapse
Affiliation(s)
- Paul H L J Joosten
- Department of Cell Biology, Faculty of Science, University of Nijmegen, Toernooiveld 1, The Netherlands
| | | | | | | | | |
Collapse
|
28
|
Gregory PA, Mackenzie PI. The homeodomain Pbx2-Prep1 complex modulates hepatocyte nuclear factor 1alpha-mediated activation of the UDP-glucuronosyltransferase 2B17 gene. Mol Pharmacol 2002; 62:154-61. [PMID: 12065766 DOI: 10.1124/mol.62.1.154] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
UDP glucuronosyltransferases (UGT) are expressed in a wide range of tissues in which their levels of expression and distribution are dependent on cell-type specific regulatory mechanisms. The presence of a hepatocyte nuclear factor (HNF) 1 binding site in the proximal promoters of several UGT2B genes has been shown to contribute to their expression in liver cells and possibly other HNF1-containing cell types. In some of these UGT2B genes, a putative pre-B cell homeobox (Pbx) transcription factor binding site is found directly adjacent to the functional HNF1 site. To determine whether this putative Pbx site contributes to the regulation of UGT2B expression, we chose the UGT2B17 gene and investigated the capacity of its Pbx site to bind specific transcription factors and alter promoter activity. The UGT2B17 Pbx site matches a consensus Pbx site known to bind members of the Pbx, Hox, Meis, and Prep1 families of homeodomain-containing proteins and has previously been shown to bind nuclear proteins in DNaseI footprint assays. In this study, we used gel shift and functional assays to show that a Pbx2-Prep1 heterodimer can bind to the UGT2B17 Pbx site and interfere with the binding of HNF1alpha to its site adjacent to the Pbx site. This interaction of Pbx2-Prep1 and HNF1alpha results in down-regulation of HNF1alpha-mediated activation of the UGT2B17 promoter. Modulation of transcription by restricting the binding of transcriptional effectors to their target site is a novel role for Pbx2-Prep1 complexes.
Collapse
Affiliation(s)
- Philip A Gregory
- Department of Clinical Pharmacology, Flinders University School of Medicine, Flinders Medical Centre, Adelaide, Australia
| | | |
Collapse
|
29
|
Brake RL, Kees UR, Watt PM. A complex containing PBX2 contributes to activation of the proto-oncogene HOX11. Biochem Biophys Res Commun 2002; 294:23-34. [PMID: 12054735 DOI: 10.1016/s0006-291x(02)00426-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ectopic expression of the homeobox gene HOX11 is associated with a significant proportion of childhood T-cell acute lymphoblastic leukaemias (T-ALLs). We hypothesise that one mechanism of gene deregulation involves overcoming the silencing mechanism(s) of gene expression present in normal cells. Here, we describe a search for trans-acting factors that control transcriptional activity from a distal 5' region of the HOX11 promoter. We have identified a region of this promoter which contributes significantly to HOX11 activation and two distinct regulatory elements are involved. First, a PBX2 Regulatory Element PRE-1048 has been identified which contains a novel DNA-binding sequence and mediates significant activation of the HOX11 gene in K562 cells. This is the first report of a homeobox gene being specifically regulated by PBX2 and the second report of a vertebrate homeobox target gene of a PBX protein. The PREP1 protein was also shown to be part of the PRE-1048-binding complex. The other regulatory element we describe here RE-1019 contains little sequence conservation to known transcription control elements. It appears that this element is a novel sequence that binds an as yet unidentified factor, mediating significant activation of the HOX11 gene in K562 cells. This is the first detailed report of elements that mediate regulation of the proto-oncogene HOX11.
Collapse
Affiliation(s)
- R L Brake
- Division of Children's Leukaemia and Cancer Research, Telethon Institute for Child Health Research and Center for Child Health Research, The University of Western Australia, PO Box 855, West Perth, WA 6872, Australia.
| | | | | |
Collapse
|
30
|
Morsi El-Kadi AS, in der Reiden P, Durston A, Morgan R. The small GTPase Rap1 is an immediate downstream target for Hoxb4 transcriptional regulation. Mech Dev 2002; 113:131-9. [PMID: 11960701 DOI: 10.1016/s0925-4773(02)00047-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Hox genes are a family of homeodomain-containing transcription factors which determine anteroposterior identity early on in development. Although a lot is now known about their regulation and function, very little is known of their effector (downstream target) genes. Here we show that the small GTPase Rap1 is a direct, negatively regulated target of Hoxb4 and is excluded from Hoxb4 expressing cells.
Collapse
Affiliation(s)
- Ali S Morsi El-Kadi
- Department of Anatomy and Developmental Biology, St. George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK
| | | | | | | |
Collapse
|
31
|
Curto EV, Lambert GW, Davis RL, Wilborn TW, Dooley TP. Biomarkers of human skin cells identified using DermArray DNA arrays and new bioinformatics methods. Biochem Biophys Res Commun 2002; 291:1052-64. [PMID: 11866472 DOI: 10.1006/bbrc.2002.6542] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biomarker genes of human skin-derived cells were identified by new simple bioinformatic methods and DNA microarray analysis utilizing in vitro cultures of normal neonatal human epidermal keratinocytes, melanocytes, and dermal fibroblasts. A survey of 4405 human cDNAs was performed using DermArray DNA microarrays. Biomarkers were rank ordered by "likelihood ratio" algorithms and stringent selection criteria that have general applicability for analyzing a minimum of three RNA samples. Signature biomarker genes (up-regulated in one cell type) and anti-signature biomarker genes (down-regulated in one cell type) were determined for the three major skin cell types. Many of the signature genes are known biomarkers for these cell types. In addition, 17 signature genes were identified as ESTs, and 22 anti-signature biomarkers were discovered. Quantitative RT-PCR was used to verify nine signature biomarker genes. A total of 158 biomarkers of normal human skin cells were identified, many of which may be valuable in diagnostic applications and as molecular targets for drug discovery and therapeutic intervention.
Collapse
Affiliation(s)
- Ernest V Curto
- IntegriDerm Inc., 2130 Memorial Parkway SW, Huntsville, Alabama 35801, USA.
| | | | | | | | | |
Collapse
|
32
|
Imoto I, Sonoda I, Yuki Y, Inazawa J. Identification and characterization of human PKNOX2, a novel homeobox-containing gene. Biochem Biophys Res Commun 2001; 287:270-6. [PMID: 11549286 DOI: 10.1006/bbrc.2001.5578] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The three-amino-acid loop extension (TALE) homeodomain proteins are highly conserved transcription regulators. Since cooperative function among members of this growing family is critical for regulating transcription, we have tried to explore novel members to understand their regulatory mechanisms in cellular proliferation and differentiation. Here we report identification of PKNOX2, a novel TALE homeodomain protein that shows distinct homology with PKNOX1, a stable partner of PBX proteins. PKNOX2 is composed of 460 amino acids and contains HR1, HR2, and homeodomain, which are highly similar to PKNOX1, suggesting that PKNOX2 may also interact with PBX proteins as well as the same DNA sequence as PKNOX1. Genomic organization of PKNOX2 also showed high similarity to PKNOX1, though PKNOX2 lies on a different chromosomal region, 11q24. Unlike PKNOX1, which was broadly expressed in many tissues, PKNOX2 showed a more restricted pattern of mRNA expression. Nuclear localization of PKNOX2 was confirmed by transfection of epitope-tagged cDNA. Taken together, these data indicate that PKNOX2 is a novel PKNOX-related protein and may interact with PBX proteins and play a tissue-specific regulation of transcription.
Collapse
Affiliation(s)
- I Imoto
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8510 Tokyo, Japan
| | | | | | | |
Collapse
|
33
|
Selleri L, Depew MJ, Jacobs Y, Chanda SK, Tsang KY, Cheah KS, Rubenstein JL, O'Gorman S, Cleary ML. Requirement for Pbx1 in skeletal patterning and programming chondrocyte proliferation and differentiation. Development 2001; 128:3543-57. [PMID: 11566859 DOI: 10.1242/dev.128.18.3543] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pbx1 and a subset of homeodomain proteins collaboratively bind DNA as higher-order molecular complexes with unknown consequences for mammalian development. Pbx1 contributions were investigated through characterization of Pbx1-deficient mice. Pbx1 mutants died at embryonic day 15/16 with severe hypoplasia or aplasia of multiple organs and widespread patterning defects of the axial and appendicular skeleton. An obligatory role for Pbx1 in limb axis patterning was apparent from malformations of proximal skeletal elements, but distal structures were unaffected. In addition to multiple rib and vertebral malformations, neural crest cell-derived skeletal structures of the second branchial arch were morphologically transformed into elements reminiscent of first arch-derived cartilages. Although the skeletal malformations did not phenocopy single or compound Hox gene defects, they were restricted to domains specified by Hox proteins bearing Pbx dimerization motifs and unaccompanied by alterations in Hox gene expression. In affected domains of limbs and ribs, chondrocyte proliferation was markedly diminished and there was a notable increase of hypertrophic chondrocytes, accompanied by premature ossification of bone. The pattern of expression of genes known to regulate chondrocyte differentiation was not perturbed in Pbx1-deficient cartilage at early days of embryonic skeletogenesis, however precocious expression of Col1a1, a marker of bone formation, was found. These studies demonstrate a role for Pbx1 in multiple developmental programs and reveal a novel function in co-ordinating the extent and/or timing of proliferation with terminal differentiation. This impacts on the rate of endochondral ossification and bone formation and suggests a mechanistic basis for most of the observed skeletal malformations.
Collapse
Affiliation(s)
- L Selleri
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pan L, Xie Y, Black TA, Jones CA, Pruitt SC, Gross KW. An Abd-B class HOX.PBX recognition sequence is required for expression from the mouse Ren-1c gene. J Biol Chem 2001; 276:32489-94. [PMID: 11432851 DOI: 10.1074/jbc.m011541200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression from the mouse Ren-1(c) gene in As4.1 cells is dependent on a proximal promoter element (PPE) located at approximately -60 and a 241-base pair enhancer region located at -2625 relative to the transcription start site. The PPE (TAATAAATCAA) is identical to a consensus HOX.PBX binding sequence. Further, PBX1b has been shown to be a component of a PPE-specific binding complex present in nuclear extracts from As4.1 cells. The binding affinities of different paralog HOX members to the PPE were examined in the absence or presence of PBX1b. HOXB6, -B7, and -C8 failed to bind the PPE alone but showed weak affinity in the presence of PBX1b. In contrast, HOXD10 and to a lesser degree HOXB9 bound the PPE with high affinities regardless of whether PBX1b was present. Abd-B HOX members, including HOXD10, -A10, -A9, -B9, and -C9, are expressed in As4.1 cells. The ability of HOX and PBX1b to form a ternary complex with PREP1 on the PPE is also demonstrated both in vivo and in vitro. Point mutations in either the HOX or PBX half-site of the PPE disrupted the formation of the HOX.PBX complex and dramatically decreased transcriptional activity of the Ren-1(c) gene demonstrating that both the HOX and PBX half-sites are critical for mouse renin gene expression. These results strongly implicate Abd-B class Hox genes and their cofactors as major determinants of the sites of renin expression.
Collapse
Affiliation(s)
- L Pan
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | |
Collapse
|
35
|
Wang Y, Yin L, Hillgartner FB. The homeodomain proteins PBX and MEIS1 are accessory factors that enhance thyroid hormone regulation of the malic enzyme gene in hepatocytes. J Biol Chem 2001; 276:23838-48. [PMID: 11331288 DOI: 10.1074/jbc.m102166200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Triiodothyronine (T3) stimulates a robust increase (>40-fold) in transcription of the malic enzyme gene in chick embryo hepatocytes. Previous work has shown that optimal T3 regulation of malic enzyme transcription is dependent on the presence of an accessory element (designated as region E) that immediately flanks a cluster of five T3 response elements in the malic enzyme gene. Here, we have analyzed the binding of nuclear proteins to region E and investigated the mechanism by which region E enhances T3 responsiveness. In nuclear extracts from hepatocytes, region E binds heterodimeric complexes consisting of the homeodomain proteins PBX and MEIS1. Region E contains four consecutive PBX/MEIS1 half-sites. PBX-MEIS1 heterodimers bind the first and second half-sites, the third and fourth half-sites, and the first and fourth half-sites. The configuration conferring the greatest increase in T3 responsiveness consists of the first and fourth half-sites that are separated by 7 nucleotides. Stimulation of T3 response element functions by region E does not require the presence of additional malic enzyme sequences. In pull-down experiments, PBX1a and PBX1b specifically bind the nuclear T3 receptor-alpha, and this interaction is enhanced by the presence of T3. A T3 receptor-alpha region containing the DNA binding domain plus flanking sequences (amino acids 21-157) is necessary and sufficient for binding to PBX1a and PBX1b. These results indicate that PBX-MEIS1 complexes interact with nuclear T3 receptors to enhance T3 regulation of malic enzyme transcription in hepatocytes.
Collapse
Affiliation(s)
- Y Wang
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
| | | | | |
Collapse
|
36
|
Abstract
The homothorax (hth) gene is involved in multiple aspects of embryonic and adult fly development. It encodes a homeodomain-containing protein of the MEIS family and was shown to regulate the subcellular localization of the homeotic protein cofactor Extradenticle (EXD). The HTH protein contains a TALE class homeodomain and a conserved MH domain, which is required for its interaction with EXD. In this work, we describe the structure of the hth locus, characterize at the molecular level a collection of mutant alleles of hth, and discuss the correlation between the identified structural defects and their consequent phenotypes. The hth locus spans more than 100 kb and contains 14 exons. Several of the exon-intron boundaries within the homeodomain and the MH domain-coding regions are conserved between Drosophila and Caenorhabditis elegans. The analysis of hth mutations demonstrates that the homeodomain of HTH is not required for nuclear localization of EXD and that the MH domain-containing first 240 residues are sufficient for nuclear localization of both EXD and HTH. Mutations that alter or delete the homeodomain cause only partial homeotic transformations in the PNS, whereas mutations affecting the MH domain cause distinct and more severe PNS phenotypes. These observations may suggest that driving nuclear localization of EXD is the main role of HTH in patterning the embryonic PNS. They may also suggest that homeodomain-defective HTH protein retains some of its transcription-regulating functions by binding DNA via its interaction with EXD.
Collapse
Affiliation(s)
- E Kurant
- Unit of Genetics, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | |
Collapse
|
37
|
Saleh M, Huang H, Green NC, Featherstone MS. A conformational change in PBX1A is necessary for its nuclear localization. Exp Cell Res 2000; 260:105-15. [PMID: 11010815 DOI: 10.1006/excr.2000.5010] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fly homeodomain (HD) protein EXTRADENTICLE (EXD) is dependent on a second HD protein, HOMOTHORAX (HTH), for nuclear localization. We show here that in insect cells the mammalian homolog of EXD, PBX1A, shows a similar dependence on the HTH homologs MEIS1, 2, and 3 and the MEIS-like protein PREP1. Paradoxically, removal of residues N-terminal to the PBX1A HD abolishes interactions with MEIS/PREP but allows nuclear accumulation of PBX1A. We use deletion mapping and fusion to green fluorescent protein to map two cooperative nuclear localization signals (NLSs) in the PBX HD. The results of DNA-binding assays and pull-down experiments are consistent with a model whereby the PBX N-terminus binds to the HD and masks the two NLSs. In support of the model, a mutation in the PBX HD that disrupts contact with the N-terminus leads to constitutive nuclear localization. The HD mutation also increases sensitivity to protease digestion, consistent with a change in conformation. We propose that MEIS family proteins induce a conformational change in PBX that unmasks the NLS, leading to nuclear localization and increased DNA-binding activity. Consistent with this, PBX1 is nuclear only where Meis1 is expressed in the mouse limb bud.
Collapse
Affiliation(s)
- M Saleh
- McGill Cancer Centre, McGill University, Montréal, Québec, H3G 1Y6, Canada
| | | | | | | |
Collapse
|