1
|
Munke A, Ahmed Abdelrahim Gamil A, Mikalsen AB, Wang H, Evensen Ø, Okamoto K. Structure of the T=13 capsid of infectious pancreatic necrosis virus (IPNV)-a salmonid birnavirus. J Virol 2025; 99:e0145424. [PMID: 39817769 PMCID: PMC11853034 DOI: 10.1128/jvi.01454-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025] Open
Abstract
Birnaviruses infect a broad range of vertebrate hosts, including fish and birds, and cause substantial economic losses in the fishery and livestock industries. The infectious pancreatic necrosis virus (IPNV), an aquabirnavirus, specifically infects salmonids. While structures on T=1 subviral particles of the birnaviruses, including IPNV, have been studied, structural insights into the infectious T=13 particles have been limited to the infectious bursal disease virus (IBDV), an avibirnavirus. Determining the capsid structure of the T=13 particle of IPNV is crucial for advancing knowledge of its antigenicity, capsid assembly, and possible functional structures. Here, the capsid structure of the IPNV L5 strain has been determined at a resolution of 2.75 Å. The overall structure resembles the T=13 IBDV structure, with notable differences in the surface loops on the P domain of the VP2 capsid protein essential for antigenicity and virulence. Additionally, previously undescribed structural features have been identified, including the C-terminal regions of the VP2 subunits within the pentagonal assembly unit at each 5-fold axis, which interlock with adjacent VP2 subunits. This interlocking, together with class-averaged projections of triangular and pentagonal units, suggests that the pentagonal unit formation could be important for a correct T=13 particle assembly, preventing the formation of T=1 subviral particles. Furthermore, positively charged residues in obstructed capsid pores at each 5-fold axis are speculated to facilitate intraparticle genome synthesis of IPNV.IMPORTANCEAquabirnaviruses cause deadly infectious diseases in salmonid fish, posing significant challenges for both wild and farmed fish populations. The most prevalent aquabirnavirus worldwide is the infectious pancreatic necrosis virus, whose multifunctional capsid is critical to its infection, replication, and maturation. Previously, research has focused on the structure of the virus' non-infectious subviral capsid. In this study, however, the first structure of the large, infectious, and functional form of the capsid has been determined. This new capsid structure reveals functional motifs that were previously unclear in the non-infectious capsid. These motifs are believed to be essential for the virus' replication and particle assembly, making them promising targets for developing strategies to control virus proliferation.
Collapse
Affiliation(s)
- Anna Munke
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | - Aase B. Mikalsen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, As, Norway
| | - Han Wang
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Øystein Evensen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, As, Norway
| | - Kenta Okamoto
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Diebold O, Zhou S, Sharp CP, Tesla B, Chook HW, Digard P, Gaunt ER. Towards the Development of a Minigenome Assay for Species A Rotaviruses. Viruses 2024; 16:1396. [PMID: 39339871 PMCID: PMC11437487 DOI: 10.3390/v16091396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
RNA virus polymerases carry out multiple functions necessary for successful genome replication and transcription. A key tool for molecular studies of viral RNA-dependent RNA polymerases (RdRps) is a 'minigenome' or 'minireplicon' assay, in which viral RdRps are reconstituted in cells in the absence of full virus infection. Typically, plasmids expressing the viral polymerase protein(s) and other co-factors are co-transfected, along with a plasmid expressing an RNA encoding a fluorescent or luminescent reporter gene flanked by viral untranslated regions containing cis-acting elements required for viral RdRp recognition. This reconstitutes the viral transcription/replication machinery and allows the viral RdRp activity to be measured as a correlate of the reporter protein signal. Here, we report on the development of a 'first-generation' plasmid-based minigenome assay for species A rotavirus using a firefly luciferase reporter gene.
Collapse
Affiliation(s)
- Ola Diebold
- Virology Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Shu Zhou
- Virology Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Colin Peter Sharp
- Virology Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Blanka Tesla
- Virology Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Hou Wei Chook
- Virology Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Paul Digard
- Virology Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Eleanor R Gaunt
- Virology Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| |
Collapse
|
3
|
Vetter J, Papa G, Tobler K, Rodriguez JM, Kley M, Myers M, Wiesendanger M, Schraner EM, Luque D, Burrone OR, Fraefel C, Eichwald C. The recruitment of TRiC chaperonin in rotavirus viroplasms correlates with virus replication. mBio 2024; 15:e0049924. [PMID: 38470055 PMCID: PMC11005421 DOI: 10.1128/mbio.00499-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Rotavirus (RV) replication takes place in the viroplasms, cytosolic inclusions that allow the synthesis of virus genome segments and their encapsidation in the core shell, followed by the addition of the second layer of the virion. The viroplasms are composed of several viral proteins, including NSP5, which serves as the main building block. Microtubules, lipid droplets, and miRNA-7 are among the host components recruited in viroplasms. We investigated the interaction between RV proteins and host components of the viroplasms by performing a pull-down assay of lysates from RV-infected cells expressing NSP5-BiolD2. Subsequent tandem mass spectrometry identified all eight subunits of the tailless complex polypeptide I ring complex (TRiC), a cellular chaperonin responsible for folding at least 10% of the cytosolic proteins. Our confirmed findings reveal that TRiC is brought into viroplasms and wraps around newly formed double-layered particles. Chemical inhibition of TRiC and silencing of its subunits drastically reduced virus progeny production. Through direct RNA sequencing, we show that TRiC is critical for RV replication by controlling dsRNA genome segment synthesis, particularly negative-sense single-stranded RNA. Importantly, cryo-electron microscopy analysis shows that TRiC inhibition results in defective virus particles lacking genome segments and polymerase complex (VP1/VP3). Moreover, TRiC associates with VP2 and NSP5 but not with VP1. Also, VP2 is shown to be essential for recruiting TRiC in viroplasms and preserving their globular morphology. This study highlights the essential role of TRiC in viroplasm formation and in facilitating virion assembly during the RV life cycle. IMPORTANCE The replication of rotavirus takes place in cytosolic inclusions termed viroplasms. In these inclusions, the distinct 11 double-stranded RNA genome segments are co-packaged to complete a genome in newly generated virus particles. In this study, we show for the first time that the tailless complex polypeptide I ring complex (TRiC), a cellular chaperonin responsible for the folding of at least 10% of the cytosolic proteins, is a component of viroplasms and is required for the synthesis of the viral negative-sense single-stranded RNA. Specifically, TRiC associates with NSP5 and VP2, the cofactor involved in RNA replication. Our study adds a new component to the current model of rotavirus replication, where TRiC is recruited to viroplasms to assist replication.
Collapse
Affiliation(s)
- Janine Vetter
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Guido Papa
- Molecular Immunology Lab, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Kurt Tobler
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Javier M. Rodriguez
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, Madrid, Spain
| | - Manuel Kley
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Michael Myers
- Proteomics Lab, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Mahesa Wiesendanger
- Institute of Virology, University of Zurich, Zurich, Switzerland
- Institute of Veterinary Anatomy, University of Zurich, Zurich, Switzerland
| | - Elisabeth M. Schraner
- Institute of Virology, University of Zurich, Zurich, Switzerland
- Institute of Veterinary Anatomy, University of Zurich, Zurich, Switzerland
| | - Daniel Luque
- School of Biomedical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales, Australia
| | - Oscar R. Burrone
- Molecular Immunology Lab, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Cornel Fraefel
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
4
|
Wang H, Marucci G, Munke A, Hassan MM, Lalle M, Okamoto K. High-resolution comparative atomic structures of two Giardiavirus prototypes infecting G. duodenalis parasite. PLoS Pathog 2024; 20:e1012140. [PMID: 38598600 PMCID: PMC11081498 DOI: 10.1371/journal.ppat.1012140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/09/2024] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
The Giardia lamblia virus (GLV) is a non-enveloped icosahedral dsRNA and endosymbiont virus that infects the zoonotic protozoan parasite Giardia duodenalis (syn. G. lamblia, G. intestinalis), which is a pathogen of mammals, including humans. Elucidating the transmission mechanism of GLV is crucial for gaining an in-depth understanding of the virulence of the virus in G. duodenalis. GLV belongs to the family Totiviridae, which infects yeast and protozoa intracellularly; however, it also transmits extracellularly, similar to the phylogenetically, distantly related toti-like viruses that infect multicellular hosts. The GLV capsid structure is extensively involved in the longstanding discussion concerning extracellular transmission in Totiviridae and toti-like viruses. Hence, this study constructed the first high-resolution comparative atomic models of two GLV strains, namely GLV-HP and GLV-CAT, which showed different intracellular localization and virulence phenotypes, using cryogenic electron microscopy single-particle analysis. The atomic models of the GLV capsids presented swapped C-terminal extensions, extra surface loops, and a lack of cap-snatching pockets, similar to those of toti-like viruses. However, their open pores and absence of the extra crown protein resemble those of other yeast and protozoan Totiviridae viruses, demonstrating the essential structures for extracellular cell-to-cell transmission. The structural comparison between GLV-HP and GLV-CAT indicates the first evidence of critical structural motifs for the transmission and virulence of GLV in G. duodenalis.
Collapse
Affiliation(s)
- Han Wang
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Gianluca Marucci
- Unit of Foodborne and Neglected Parasitic Diseases, Department of Infectious Diseases, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Anna Munke
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Mohammad Maruf Hassan
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Marco Lalle
- Unit of Foodborne and Neglected Parasitic Diseases, Department of Infectious Diseases, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Kenta Okamoto
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Sung PY, Zhou Y, Kao CC, Aburigh AA, Routh A, Roy P. A multidisciplinary approach to the identification of the protein-RNA connectome in double-stranded RNA virus capsids. Nucleic Acids Res 2023; 51:5210-5227. [PMID: 37070191 PMCID: PMC10250232 DOI: 10.1093/nar/gkad274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
How multi-segmented double-stranded RNA (dsRNA) viruses correctly incorporate their genomes into their capsids remains unclear for many viruses, including Bluetongue virus (BTV), a Reoviridae member, with a genome of 10 segments. To address this, we used an RNA-cross-linking and peptide-fingerprinting assay (RCAP) to identify RNA binding sites of the inner capsid protein VP3, the viral polymerase VP1 and the capping enzyme VP4. Using a combination of mutagenesis, reverse genetics, recombinant proteins and in vitro assembly, we validated the importance of these regions in virus infectivity. Further, to identify which RNA segments and sequences interact with these proteins, we used viral photo-activatable ribonucleoside crosslinking (vPAR-CL) which revealed that the larger RNA segments (S1-S4) and the smallest segment (S10) have more interactions with viral proteins than the other smaller segments. Additionally, using a sequence enrichment analysis we identified an RNA motif of nine bases that is shared by the larger segments. The importance of this motif for virus replication was confirmed by mutagenesis followed by virus recovery. We further demonstrated that these approaches could be applied to a related Reoviridae member, rotavirus (RV), which has human epidemic impact, offering the possibility of novel intervention strategies for a human pathogen.
Collapse
Affiliation(s)
- Po-yu Sung
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Yiyang Zhou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - C Cheng Kao
- Previously in the Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Ali A Aburigh
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Andrew Routh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Polly Roy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
6
|
Anderson ML, McDonald Esstman S. In vitro particle-associated uridyltransferase activity of the rotavirus VP1 polymerase. Virology 2022; 577:24-31. [PMID: 36257129 PMCID: PMC10728782 DOI: 10.1016/j.virol.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
Rotaviruses are 11-segmented, double-stranded RNA (dsRNA) viruses with a unique intra-particle RNA synthesis mechanism. During genome replication, the RNA-dependent RNA polymerase (VP1) performs minus-strand RNA (-ssRNA) synthesis on positive-strand RNA (+ssRNA) templates to create dsRNA segments. Recombinant VP1 catalyzes -ssRNA synthesis using substrate NTPs in vitro, but only when the VP2 core shell protein or virus-like particles made of VP2 and VP6 (2/6-VLPs) are included in the reaction. The dsRNA product can be labeled using [α32P]-UTP and separated from the input +ssRNA template by polyacrylamide gel electrophoresis. Here, we report the generation of [α32P]-labeled rotavirus +ssRNA templates in reactions that lacked non-radiolabeled NTPs but contained catalytically-active VP1, 2/6-VLPs, and [α32P]-UTP. Non-radiolabeled UTP competed with [α32P]-UTP to decrease product levels, whereas CTP and GTP had little effect. Interesting, ATP stimulated [α32P]-labeled product production. These results suggest that rotavirus VP1 transferred [α32P]-UMP onto viral + ssRNA in vitro via a particle-associated uridyltransferase activity.
Collapse
|
7
|
Wang H, de Matos Filipe D, Okamoto K. A full-length infectious cDNA clone of a dsRNA totivirus-like virus. Virology 2022; 576:127-133. [DOI: 10.1016/j.virol.2022.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
|
8
|
Ding P, Summers MF. Sequestering the 5′‐cap for viral RNA packaging. Bioessays 2022; 44:e2200104. [PMID: 36101513 DOI: 10.1002/bies.202200104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 11/11/2022]
Abstract
Many viruses evolved mechanisms for capping the 5'-ends of their plus-strand RNAs as a means of hijacking the eukaryotic messenger RNA (mRNA) splicing/translation machinery. Although capping is critical for replication, the RNAs of these viruses have other essential functions including their requirement to be packaged as either genomes or pre-genomes into progeny viruses. Recent studies indicate that human immunodeficiency virus type-1 (HIV-1) RNAs are segregated between splicing/translation and packaging functions by a mechanism that involves structural sequestration of the 5'-cap. Here, we examined studies reported for other viruses and retrotransposons that require both selective packaging of their RNAs and 5'-RNA capping for host-mediated translation. Our findings suggest that viruses and retrotransposons have evolved multiple mechanisms to control 5'-cap accessibility, consistent with the hypothesis that removal or sequestration of the 5' cap enables packageable RNAs to avoid capture by the cellular RNA processing and translation machinery.
Collapse
Affiliation(s)
- Pengfei Ding
- Department of Chemistry and Biochemistry and Howard Hughes Medical Institute University of Maryland Baltimore County Baltimore Maryland USA
| | - Michael F. Summers
- Department of Chemistry and Biochemistry and Howard Hughes Medical Institute University of Maryland Baltimore County Baltimore Maryland USA
| |
Collapse
|
9
|
Abstract
Rotavirus (RV) viroplasms are cytosolic inclusions where both virus genome replication and primary steps of virus progeny assembly take place. A stabilized microtubule cytoskeleton and lipid droplets are required for the viroplasm formation, which involves several virus proteins. The viral spike protein VP4 has not previously been shown to have a direct role in viroplasm formation. However, it is involved with virus-cell attachment, endocytic internalization, and virion morphogenesis. Moreover, VP4 interacts with actin cytoskeleton components, mainly in processes involving virus entrance and egress, and thereby may have an indirect role in viroplasm formation. In this study, we used reverse genetics to construct a recombinant RV, rRV/VP4-BAP, that contains a biotin acceptor peptide (BAP) in the K145-G150 loop of the VP4 lectin domain, permitting live monitoring. The recombinant virus was replication competent but showed a reduced fitness. We demonstrate that rRV/VP4-BAP infection, as opposed to rRV/wt infection, did not lead to a reorganized actin cytoskeleton as viroplasms formed were insensitive to drugs that depolymerize actin and inhibit myosin. Moreover, wild-type (wt) VP4, but not VP4-BAP, appeared to associate with actin filaments. Similarly, VP4 in coexpression with NSP5 and NSP2 induced a significant increase in the number of viroplasm-like structures. Interestingly, a small peptide mimicking loop K145-G150 rescued the phenotype of rRV/VP4-BAP by increasing its ability to form viroplasms and hence improve virus progeny formation. Collectively, these results provide a direct link between VP4 and the actin cytoskeleton to catalyze viroplasm assembly. IMPORTANCE The spike protein VP4 participates in diverse steps of the rotavirus (RV) life cycle, including virus-cell attachment, internalization, modulation of endocytosis, virion morphogenesis, and virus egress. Using reverse genetics, we constructed for the first time a recombinant RV, rRV/VP4-BAP, harboring a heterologous peptide in the lectin domain (loop K145-G150) of VP4. The rRV/VP4-BAP was replication competent but with reduced fitness due to a defect in the ability to reorganize the actin cytoskeleton, which affected the efficiency of viroplasm assembly. This defect was rescued by adding a permeable small-peptide mimicking the wild-type VP4 loop K145-G150. In addition to revealing a new role of VP4, our findings suggest that rRV harboring an engineered VP4 could be used as a new dual vaccination platform providing immunity against RV and additional heterologous antigens.
Collapse
|
10
|
Swevers L, Kontogiannatos D, Kolliopoulou A, Ren F, Feng M, Sun J. Mechanisms of Cell Entry by dsRNA Viruses: Insights for Efficient Delivery of dsRNA and Tools for Improved RNAi-Based Pest Control. Front Physiol 2021; 12:749387. [PMID: 34858204 PMCID: PMC8632066 DOI: 10.3389/fphys.2021.749387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/11/2021] [Indexed: 12/18/2022] Open
Abstract
While RNAi is often heralded as a promising new strategy for insect pest control, a major obstacle that still remains is the efficient delivery of dsRNA molecules within the cells of the targeted insects. However, it seems overlooked that dsRNA viruses already have developed efficient strategies for transport of dsRNA molecules across tissue barriers and cellular membranes. Besides protecting their dsRNA genomes in a protective shell, dsRNA viruses also display outer capsid layers that incorporate sophisticated mechanisms to disrupt the plasma membrane layer and to translocate core particles (with linear dsRNA genome fragments) within the cytoplasm. Because of the perceived efficiency of the translocation mechanism, it is well worth analyzing in detail the molecular processes that are used to achieve this feat. In this review, the mechanism of cell entry by dsRNA viruses belonging to the Reoviridae family is discussed in detail. Because of the large amount of progress in mammalian versus insect models, the mechanism of infections of reoviruses in mammals (orthoreoviruses, rotaviruses, orbiviruses) will be treated as a point of reference against which infections of reoviruses in insects (orbiviruses in midges, plant viruses in hemipterans, insect-specific cypoviruses in lepidopterans) will be compared. The goal of this discussion is to uncover the basic principles by which dsRNA viruses cross tissue barriers and translocate their cargo to the cellular cytoplasm; such knowledge subsequently can be incorporated into the design of dsRNA virus-based viral-like particles for optimal delivery of RNAi triggers in targeted insect pests.
Collapse
Affiliation(s)
- Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Dimitrios Kontogiannatos
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Feifei Ren
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Recent advances in rotavirus reverse genetics and its utilization in basic research and vaccine development. Arch Virol 2021; 166:2369-2386. [PMID: 34216267 PMCID: PMC8254061 DOI: 10.1007/s00705-021-05142-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/27/2021] [Indexed: 11/29/2022]
Abstract
Rotaviruses are segmented double-stranded RNA viruses with a high frequency of gene reassortment, and they are a leading cause of global diarrheal deaths in children less than 5 years old. Two-thirds of rotavirus-associated deaths occur in low-income countries. Currently, the available vaccines in developing countries have lower efficacy in children than those in developed countries. Due to added safety concerns and the high cost of current vaccines, there is a need to develop cost-effective next-generation vaccines with improved safety and efficacy. The reverse genetics system (RGS) is a powerful tool for investigating viral protein functions and developing novel vaccines. Recently, an entirely plasmid-based RGS has been developed for several rotaviruses, and this technological advancement has significantly facilitated novel rotavirus research. Here, we review the recently developed RGS platform and discuss its application in studying infection biology, gene reassortment, and development of vaccines against rotavirus disease.
Collapse
|
12
|
Smith SC, Gribble J, Diller JR, Wiebe MA, Thoner TW, Denison MR, Ogden KM. Reovirus RNA recombination is sequence directed and generates internally deleted defective genome segments during passage. J Virol 2021; 95:JVI.02181-20. [PMID: 33472930 PMCID: PMC8103698 DOI: 10.1128/jvi.02181-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
For viruses with segmented genomes, genetic diversity is generated by genetic drift, reassortment, and recombination. Recombination produces RNA populations distinct from full-length gene segments and can influence viral population dynamics, persistence, and host immune responses. Viruses in the Reoviridae family, including rotavirus and mammalian orthoreovirus (reovirus), have been reported to package segments containing rearrangements or internal deletions. Rotaviruses with RNA segments containing rearrangements have been isolated from immunocompromised and immunocompetent children and in vitro following serial passage at relatively high multiplicity. Reoviruses that package small, defective RNA segments have established chronic infections in cells and in mice. However, the mechanism and extent of Reoviridae RNA recombination are undefined. Towards filling this gap in knowledge, we determined the titers and RNA segment profiles for reovirus and rotavirus following serial passage in cultured cells. The viruses exhibited occasional titer reductions characteristic of interference. Reovirus strains frequently accumulated segments that retained 5' and 3' terminal sequences and featured large internal deletions, while similarly fragmented segments were rarely detected in rotavirus populations. Using next-generation RNA-sequencing to analyze RNA molecules packaged in purified reovirus particles, we identified distinct recombination sites within individual viral genome segments. Recombination junctions were frequently but not always characterized by short direct sequence repeats upstream and downstream that spanned junction sites. Taken together, these findings suggest that reovirus accumulates defective gene segments featuring internal deletions during passage and undergoes sequence-directed recombination at distinct sites.IMPORTANCE Viruses in the Reoviridae family include important pathogens of humans and other animals and have segmented RNA genomes. Recombination in RNA virus populations can facilitate novel host exploration and increased disease severity. The extent, patterns, and mechanisms of Reoviridae recombination and the functions and effects of recombined RNA products are poorly understood. Here, we provide evidence that mammalian orthoreovirus regularly synthesizes RNA recombination products that retain terminal sequences but contain internal deletions, while rotavirus rarely synthesizes such products. Recombination occurs more frequently at specific sites in the mammalian orthoreovirus genome, and short regions of identical sequence are often detected at junction sites. These findings suggest that mammalian orthoreovirus recombination events are directed in part by RNA sequences. An improved understanding of recombined viral RNA synthesis may enhance our capacity to engineer improved vaccines and virotherapies in the future.
Collapse
Affiliation(s)
- Sydni Caet Smith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - Jennifer Gribble
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - Julia R Diller
- Department of Pediatrics, Vanderbilt University Medical Center
| | - Michelle A Wiebe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - Timothy W Thoner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - Mark R Denison
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
- Department of Pediatrics, Vanderbilt University Medical Center
| | - Kristen M Ogden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
- Department of Pediatrics, Vanderbilt University Medical Center
| |
Collapse
|
13
|
Chávez-Maya F, García-Espinosa G, López-Arellano ME, Padilla-Noriega L. Mutations in the VP2 gene of rotavirus associated with benzimidazole sensitivity. Virus Res 2020; 291:198189. [PMID: 33049307 DOI: 10.1016/j.virusres.2020.198189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/23/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
Rotavirus species A (RVA) is the etiological agent of acute gastroenteritis in young individuals of various animal species, including humans. Vaccination has helped to reduce the impact of these viruses on humans and some species of domestic mammals, but they do not confer complete immunity, so antirotavirus agents are another important control option. In this study, millimolar concentrations of benzimidazole inhibited the replication of the Rhesus rotavirus (RRV) strain of RVA. Two mutants partially resistant to the inhibitory effect of benzimidazole were independently selected, and their genomes and those of their parental strains were fully sequenced. Most (7/11) mutations occurred in the gene that encodes the VP2 protein, and similarly most of the missense mutations (5/9), including the only one shared by the two mutants (G2,414 → R[G/A], D800 N), occurred in the VP2 gene. Our results identify the VP2 gene as the primary target affected by benzimidazole.
Collapse
Affiliation(s)
- Fernando Chávez-Maya
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán 04510, Ciudad de México, Mexico.
| | - Gary García-Espinosa
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán 04510, Ciudad de México, Mexico.
| | - María Eugenia López-Arellano
- Departamento de Helmintología, Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, INIFAP-México, Jiutepec 62550, Morelos, Mexico.
| | - Luis Padilla-Noriega
- Departamento de Microbiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, edificio A, primer piso, Coyoacán 04510, Ciudad de México, Mexico.
| |
Collapse
|
14
|
Philip AA, Patton JT. Expression of Separate Heterologous Proteins from the Rotavirus NSP3 Genome Segment Using a Translational 2A Stop-Restart Element. J Virol 2020; 94:e00959-20. [PMID: 32611753 PMCID: PMC7459566 DOI: 10.1128/jvi.00959-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
The segmented 18.5-kbp dsRNA genome of rotavirus expresses 6 structural and 6 nonstructural proteins. We investigated the possibility of using the recently developed plasmid-based rotavirus reverse genetics (RG) system to generate recombinant viruses that express a separate heterologous protein in addition to the 12 viral proteins. To address this, we replaced the NSP3 open reading frame (ORF) of the segment 7 (pT7/NSP3) transcription vector used in the RG system with an ORF encoding NSP3 fused to a fluorescent reporter protein (i.e., UnaG, mRuby, mKate, or TagBFP). Inserted at the fusion junction was a teschovirus translational 2A stop-restart element designed to direct the separate expression of NSP3 and the fluorescent protein. Recombinant rotaviruses made with the modified pT7/NSP3 vectors were well growing and generally genetically stable, and they expressed NSP3 and a separate fluorescent protein detectable by live cell imaging. NSP3 made by the recombinant viruses was functional, inducing nuclear accumulation of cellular poly(A)-binding protein. Further modification of the NSP3 ORF showed that it was possible to generate recombinant viruses encoding 2 heterologous proteins (mRuby and UnaG) in addition to NSP3. Our results demonstrate that, through modification of segment 7, the rotavirus genome can be increased in size to at least 19.8 kbp and can be used to produce recombinant rotaviruses expressing a full complement of viral proteins and multiple heterologous proteins. The generation of recombinant rotaviruses expressing fluorescent proteins will be valuable for the study of rotavirus replication and pathogenesis by live cell imagining and suggest that rotaviruses will prove useful as expression vectors.IMPORTANCE Rotaviruses are a major cause of severe gastroenteritis in infants and young children. Recently, a highly efficient reverse genetics system was developed that allows genetic manipulation of the rotavirus segmented double-stranded RNA genome. Using the reverse genetics system, we show that it is possible to modify one of the rotavirus genome segments (segment 7) such that virus gains the capacity to express a separate heterologous protein in addition to the full complement of viral proteins. Through this approach, we have generated wild-type-like rotaviruses that express various fluorescent reporter proteins, including UnaG (green), mRuby (far red), mKate (red), and TagBFP (blue). Such strains will be of value in probing rotavirus biology and pathogenesis by live cell imagining techniques. Notably, our work indicates that the rotavirus genome is remarkably flexible and able to accommodate significant amounts of heterologous RNA sequence, raising the possibility of using the virus as a vaccine expression vector.
Collapse
Affiliation(s)
- Asha A Philip
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - John T Patton
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
15
|
Acquired Functional Capsid Structures in Metazoan Totivirus-like dsRNA Virus. Structure 2020; 28:888-896.e3. [PMID: 32413288 DOI: 10.1016/j.str.2020.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/21/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
Non-enveloped icosahedral double-stranded RNA (dsRNA) viruses possess multifunctional capsids required for their proliferation. Whereas protozoan/fungal dsRNA viruses have a relatively simple capsid structure, which suffices for the intracellular phase in their life cycle, metazoan dsRNA viruses have acquired additional structural features as an adaptation for extracellular cell-to-cell transmission in multicellular hosts. Here, we present the first atomic model of a metazoan dsRNA totivirus-like virus and the structure reveals three unique structural traits: a C-terminal interlocking arm, surface projecting loops, and an obstruction at the pore on the 5-fold symmetry axis. These traits are keys to understanding the capsid functions of metazoan dsRNA viruses, such as particle stability and formation, cell entry, and endogenous intraparticle transcription of mRNA. On the basis of molecular dynamics simulations of the obstructed pore, we propose a possible mechanism of intraparticle transcription in totivirus-like viruses, which dynamically switches between open and closed states of the pore(s).
Collapse
|
16
|
Generation of Recombinant Rotavirus Expressing NSP3-UnaG Fusion Protein by a Simplified Reverse Genetics System. J Virol 2019; 93:JVI.01616-19. [PMID: 31597761 DOI: 10.1128/jvi.01616-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 12/24/2022] Open
Abstract
Rotavirus is a segmented double-stranded RNA (dsRNA) virus that causes severe gastroenteritis in young children. We have established an efficient simplified rotavirus reverse genetics (RG) system that uses 11 T7 plasmids, each expressing a unique simian SA11 (+)RNA, and a cytomegalovirus support plasmid for the African swine fever virus NP868R capping enzyme. With the NP868R-based system, we generated recombinant rotavirus (rSA11/NSP3-FL-UnaG) with a genetically modified 1.5-kb segment 7 dsRNA encoding full-length nonstructural protein 3 (NSP3) fused to UnaG, a 139-amino-acid green fluorescent protein (FP). Analysis of rSA11/NSP3-FL-UnaG showed that the virus replicated efficiently and was genetically stable over 10 rounds of serial passaging. The NSP3-UnaG fusion product was well expressed in rSA11/NSP3-FL-UnaG-infected cells, reaching levels similar to NSP3 levels in wild-type recombinant SA11-infected cells. Moreover, the NSP3-UnaG protein, like functional wild-type NSP3, formed dimers in vivo Notably, the NSP3-UnaG protein was readily detected in infected cells via live-cell imaging, with intensity levels ∼3-fold greater than those of the NSP1-UnaG fusion product of rSA11/NSP1-FL-UnaG. Our results indicate that FP-expressing recombinant rotaviruses can be made through manipulation of the segment 7 dsRNA without deletion or interruption of any of the 12 open reading frames (ORFs) of the virus. Because NSP3 is expressed at higher levels than NSP1 in infected cells, rotaviruses expressing NSP3-based FPs may be more sensitive tools for studying rotavirus biology than rotaviruses expressing NSP1-based FPs. This is the first report of a recombinant rotavirus containing a genetically engineered segment 7 dsRNA.IMPORTANCE Previous studies generated recombinant rotaviruses that express FPs by inserting reporter genes into the NSP1 ORF of genome segment 5. Unfortunately, NSP1 is expressed at low levels in infected cells, making viruses expressing FP-fused NSP1 less than ideal probes of rotavirus biology. Moreover, FPs were inserted into segment 5 in such a way as to compromise NSP1, an interferon antagonist affecting viral growth and pathogenesis. We have identified an alternative approach for generating rotaviruses expressing FPs, one relying on fusing the reporter gene to the NSP3 ORF of genome segment 7. This was accomplished without interrupting any of the viral ORFs, yielding recombinant viruses that likely express the complete set of functional viral proteins. Given that NSP3 is made at moderate levels in infected cells, rotaviruses encoding NSP3-based FPs should be more sensitive probes of viral infection than rotaviruses encoding NSP1-based FPs.
Collapse
|
17
|
Borodavka A, Desselberger U, Patton JT. Genome packaging in multi-segmented dsRNA viruses: distinct mechanisms with similar outcomes. Curr Opin Virol 2018; 33:106-112. [PMID: 30145433 PMCID: PMC6289821 DOI: 10.1016/j.coviro.2018.08.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022]
Abstract
Segmented double-stranded (ds)RNA viruses share remarkable similarities in their replication strategy and capsid structure. During virus replication, positive-sense single-stranded (+)RNAs are packaged into procapsids, where they serve as templates for dsRNA synthesis, forming progeny particles containing a complete equimolar set of genome segments. How the +RNAs are recognized and stoichiometrically packaged remains uncertain. Whereas bacteriophages of the Cystoviridae family rely on specific RNA-protein interactions to select appropriate +RNAs for packaging, viruses of the Reoviridae instead rely on specific inter-molecular interactions between +RNAs that guide multi-segmented genome assembly. While these families use distinct mechanisms to direct +RNA packaging, both yield progeny particles with a complete set of genomic dsRNAs.
Collapse
Affiliation(s)
- Alexander Borodavka
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Ulrich Desselberger
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - John T Patton
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
18
|
Venkataraman S, Prasad BVLS, Selvarajan R. RNA Dependent RNA Polymerases: Insights from Structure, Function and Evolution. Viruses 2018; 10:v10020076. [PMID: 29439438 PMCID: PMC5850383 DOI: 10.3390/v10020076] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/30/2018] [Accepted: 02/03/2018] [Indexed: 12/11/2022] Open
Abstract
RNA dependent RNA polymerase (RdRp) is one of the most versatile enzymes of RNA viruses that is indispensable for replicating the genome as well as for carrying out transcription. The core structural features of RdRps are conserved, despite the divergence in their sequences. The structure of RdRp resembles that of a cupped right hand and consists of fingers, palm and thumb subdomains. The catalysis involves the participation of conserved aspartates and divalent metal ions. Complexes of RdRps with substrates, inhibitors and metal ions provide a comprehensive view of their functional mechanism and offer valuable insights regarding the development of antivirals. In this article, we provide an overview of the structural aspects of RdRps and their complexes from the Group III, IV and V viruses and their structure-based phylogeny.
Collapse
Affiliation(s)
- Sangita Venkataraman
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522510, India.
| | - Burra V L S Prasad
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurgaon 122413, India.
| | - Ramasamy Selvarajan
- ICAR National Research Centre for Banana, Thayanur Post, Tiruchirapalli 620102, India.
| |
Collapse
|
19
|
Interaction between a Unique Minor Protein and a Major Capsid Protein of Bluetongue Virus Controls Virus Infectivity. J Virol 2018; 92:JVI.01784-17. [PMID: 29142128 PMCID: PMC5774872 DOI: 10.1128/jvi.01784-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/03/2017] [Indexed: 11/30/2022] Open
Abstract
Among the Reoviridae family of double-stranded RNA viruses, only members of the Orbivirus genus possess a unique structural protein, termed VP6, within their particles. Bluetongue virus (BTV), an important livestock pathogen, is the prototype Orbivirus. BTV VP6 is an ATP-dependent RNA helicase, and it is indispensable for virus replication. In the study described in this report, we investigated how VP6 might be recruited to the virus capsid and whether the BTV structural protein VP3, which forms the internal layer of the virus capsid core, is involved in VP6 recruitment. We first demonstrated that VP6 interacts with VP3 and colocalizes with VP3 during capsid assembly. A series of VP6 mutants was then generated, and in combination with immunoprecipitation and size exclusion chromatographic analyses, we demonstrated that VP6 directly interacts with VP3 via a specific region of the C-terminal portion of VP6. Finally, using our reverse genetics system, mutant VP6 proteins were introduced into the BTV genome and interactions between VP6 and VP3 were shown in a live cell system. We demonstrate that BTV strains possessing a mutant VP6 are replication deficient in wild-type BSR cells and fail to recruit the viral replicase complex into the virus particle core. Taken together, these data suggest that the interaction between VP3 and VP6 could be important in the packaging of the viral genome and early stages of particle formation. IMPORTANCE The orbivirus bluetongue virus (BTV) is the causative agent of bluetongue disease of livestock, often causing significant economic and agricultural impacts in the livestock industry. In the study described in this report, we identified the essential region and residues of the unique orbivirus capsid protein VP6 which are responsible for its interaction with other BTV proteins and its subsequent recruitment into the virus particle. The nature and mechanism of these interactions suggest that VP6 has a key role in packaging of the BTV genome into the virus particle. As such, this is a highly significant finding, as this new understanding of BTV assembly could be exploited to design novel vaccines and antivirals against bluetongue disease.
Collapse
|
20
|
Borodavka A, Dykeman EC, Schrimpf W, Lamb DC. Protein-mediated RNA folding governs sequence-specific interactions between rotavirus genome segments. eLife 2017; 6:27453. [PMID: 28922109 PMCID: PMC5621836 DOI: 10.7554/elife.27453] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/03/2017] [Indexed: 01/06/2023] Open
Abstract
Segmented RNA viruses are ubiquitous pathogens, which include influenza viruses and rotaviruses. A major challenge in understanding their assembly is the combinatorial problem of a non-random selection of a full genomic set of distinct RNAs. This process involves complex RNA-RNA and protein-RNA interactions, which are often obscured by non-specific binding at concentrations approaching in vivo assembly conditions. Here, we present direct experimental evidence of sequence-specific inter-segment interactions between rotavirus RNAs, taking place in a complex RNA- and protein-rich milieu. We show that binding of the rotavirus-encoded non-structural protein NSP2 to viral ssRNAs results in the remodeling of RNA, which is conducive to formation of stable inter-segment contacts. To identify the sites of these interactions, we have developed an RNA-RNA SELEX approach for mapping the sequences involved in inter-segment base-pairing. Our findings elucidate the molecular basis underlying inter-segment interactions in rotaviruses, paving the way for delineating similar RNA-RNA interactions that govern assembly of other segmented RNA viruses. Rotavirus is a highly infectious virus that affects children worldwide, causing severe diarrhoea. Despite the introduction of several highly effective vaccines, more than 200,000 children still die from rotavirus each year. There are currently no drugs that can combat this disease once a child has been infected. Viruses carry the instructions that determine their properties and behavior in molecules of DNA or RNA. Unlike many other viruses, which typically have a single molecule of DNA or RNA, rotavirus has 11 distinct “RNA segments”. After invading a cell the virus begins to replicate itself. During replication, the RNA segments (which consist of two strands of RNA paired together) are copied many times. It is not clear how rotaviruses ‘count’ up to 11 so that each new virus acquires a single copy of each segment. Previous biochemical and structural studies of rotavirus replication suggest that selecting 11 distinct RNA segments must involve the RNAs forming complex interactions with proteins and other RNA molecules. Using a highly sensitive fluorescence-based approach, termed fluorescence cross-correlation spectroscopy, Borodavka et al. now present direct experimental evidence of interactions between the RNA segments that occur via single strands of the rotavirus RNA. These RNA-RNA interactions require the binding of a rotavirus protein NSP2 to the RNA strands, which results in the remodeling of the RNA; this remodeling is required to form stable contacts between different RNA segments. Furthermore, a new experimental approach (called RNA-RNA SELEX) developed by Borodavka et al. identified the parts of the RNA segments that may take part in these interactions. The results presented by Borodavka et al. pave the way for identifying the RNA-RNA interactions that govern how other segmented RNA viruses can package their genetic material. Further work to uncover the entire RNA interaction network in rotaviruses would also accelerate the design of new vaccines and may help us to develop antiviral drugs to treat infections.
Collapse
Affiliation(s)
- Alexander Borodavka
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom.,Department of Chemistry, Center for NanoScience, Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilian University of Munich, Munich, Germany
| | - Eric C Dykeman
- York Centre for Complex Systems Analysis, University of York, York, United Kingdom.,Department of Mathematics, University of York, York, United Kingdom.,Department of Biology, University of York, York, United Kingdom
| | - Waldemar Schrimpf
- Department of Chemistry, Center for NanoScience, Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilian University of Munich, Munich, Germany
| | - Don C Lamb
- Department of Chemistry, Center for NanoScience, Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilian University of Munich, Munich, Germany
| |
Collapse
|
21
|
Abstract
In infected cells rotavirus (RV) replicates in viroplasms, cytosolic structures that require a stabilized microtubule (MT) network for their assembly, maintenance of the structure and perinuclear localization. Therefore, we hypothesized that RV could interfere with the MT-breakdown that takes place in mitosis during cell division. Using synchronized RV-permissive cells, we show that RV infection arrests the cell cycle in S/G2 phase, thus favoring replication by improving viroplasms formation, viral protein translation, and viral assembly. The arrest in S/G2 phase is independent of the host or viral strain and relies on active RV replication. RV infection causes cyclin B1 down-regulation, consistent with blocking entry into mitosis. With the aid of chemical inhibitors, the cytoskeleton network was linked to specific signaling pathways of the RV-induced cell cycle arrest. We found that upon RV infection Eg5 kinesin was delocalized from the pericentriolar region to the viroplasms. We used a MA104-Fucci system to identify three RV proteins (NSP3, NSP5, and VP2) involved in cell cycle arrest in the S-phase. Our data indicate that there is a strong correlation between the cell cycle arrest and RV replication.
Collapse
|
22
|
A Temperature-Sensitive Lesion in the N-Terminal Domain of the Rotavirus Polymerase Affects Its Intracellular Localization and Enzymatic Activity. J Virol 2017; 91:JVI.00062-17. [PMID: 28100623 DOI: 10.1128/jvi.00062-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 12/20/2022] Open
Abstract
Temperature-sensitive (ts) mutants of simian rotavirus (RV) strain SA11 have been previously created to investigate the functions of viral proteins during replication. One mutant, SA11-tsC, has a mutation that maps to the gene encoding the VP1 polymerase and shows diminished growth and RNA synthesis at 39°C compared to that at 31°C. In the present study, we sequenced all 11 genes of SA11-tsC, confirming the presence of an L138P mutation in the VP1 N-terminal domain and identifying 52 additional mutations in four other viral proteins (VP4, VP7, NSP1, and NSP2). To investigate whether the L138P mutation induces a ts phenotype in VP1 outside the SA11-tsC genetic context, we employed ectopic expression systems. Specifically, we tested whether the L138P mutation affects the ability of VP1 to localize to viroplasms, which are the sites of RV RNA synthesis, by expressing the mutant form as a green fluorescent protein (GFP) fusion protein (VP1L138P-GFP) (i) in wild-type SA11-infected cells or (ii) in uninfected cells along with viroplasm-forming proteins NSP2 and NSP5. We found that VP1L138P-GFP localized to viroplasms and interacted with NSP2 and/or NSP5 at 31°C but not at 39°C. Next, we tested the enzymatic activity of a recombinant mutant polymerase (rVP1L138P) in vitro and found that it synthesized less RNA at 39°C than at 31°C, as well as less RNA than the control at all temperatures. Together, these results provide a mechanistic basis for the ts phenotype of SA11-tsC and raise important questions about the role of leucine 138 in supporting key protein interactions and the catalytic function of the VP1 polymerase.IMPORTANCE RVs cause diarrhea in the young of many animal species, including humans. Despite their medical and economic importance, gaps in knowledge exist about how these viruses replicate inside host cells. Previously, a mutant simian RV (SA11-tsC) that replicates worse at higher temperatures was identified. This virus has an amino acid mutation in VP1, which is the enzyme responsible for copying the viral RNA genome. The mutation is located in a poorly understood region of the polymerase called the N-terminal domain. In this study, we determined that the mutation reduces the ability of VP1 to properly localize within infected cells at high temperatures, as well as reduced the ability of the enzyme to copy viral RNA in a test tube. The results of this study explain the temperature sensitivity of SA11-tsC and shed new light on functional protein-protein interaction sites of VP1.
Collapse
|
23
|
Gastañaduy AS, Bégué RE. Acute Gastroenteritis Viruses. Infect Dis (Lond) 2017. [PMCID: PMC7173516 DOI: 10.1016/b978-0-7020-6285-8.00162-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Acute diarrhea is the leading cause of morbidity and second commonest cause of mortality in children <5 years old worldwide. Most acute diarrheal illnesses are caused by viruses. Noroviruses are the commonest cause of diarrhea in all age groups combined, and rotaviruses are still the leading cause of diarrhea for children <5 years old. Transmission is mainly by the fecal–oral route through person-to-person contact, contaminated food and water. Most cases of viral diarrhea are mild and self-limiting, but severe cases occur, leading to dehydration and death. Repeated episodes lead to malnutrition. Most cases can be managed at home with oral rehydration solutions and feeding a regular diet. Vaccines will be the best preventive measure. Only rotavirus vaccines are available. Breast-feeding, vitamin A supplementation and zinc significantly reduce the frequency and/or severity of diarrhea.
Collapse
|
24
|
Forsdyke DR. Self/Not-Self? Evol Bioinform Online 2016. [DOI: 10.1007/978-3-319-28755-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
25
|
Chen Q, Zhang L, Chen H, Xie L, Wei T. Nonstructural protein Pns4 of rice dwarf virus is essential for viral infection in its insect vector. Virol J 2015; 12:211. [PMID: 26646953 PMCID: PMC4673743 DOI: 10.1186/s12985-015-0438-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/25/2015] [Indexed: 01/04/2023] Open
Abstract
Background Rice dwarf virus (RDV), a plant reovirus, is mainly transmitted by the green rice leafhopper, Nephotettix cincticeps, in a persistent-propagative manner. Plant reoviruses are thought to replicate and assemble within cytoplasmic structures called viroplasms. Nonstructural protein Pns4 of RDV, a phosphoprotein, is localized around the viroplasm matrix and forms minitubules in insect vector cells. However, the functional role of Pns4 minitubules during viral infection in insect vector is still unknown yet. Methods RNA interference (RNAi) system targeting Pns4 gene of RDV was conducted. Double-stranded RNA (dsRNA) specific for Pns4 gene was synthesized in vitro, and introduced into cultured leafhopper cells by transfection or into insect body by microinjection. The effects of the knockdown of Pns4 expression due to RNAi induced by synthesized dsRNA from Pns4 gene on viral replication and spread in cultured cells and insect vector were analyzed using immunofluorescence, western blotting or RT-PCR assays. Results In cultured leafhopper cells, the knockdown of Pns4 expression due to RNAi induced by synthesized dsRNA from Pns4 gene strongly inhibited the formation of minitubules, preventing the accumulation of viroplasms and efficient viral infection in insect vector cells. RNAi induced by microinjection of dsRNA from Pns4 gene significantly reduced the viruliferous rate of N. cincticeps. Furthermore, it also strongly inhibited the formation of minitubules and viroplasms, preventing efficient viral spread from the initially infected site in the filter chamber of intact insect vector. Conclusions Pns4 of RDV is essential for viral infection and replication in insect vector. It may directly participate in the functional role of viroplasm for viral replication and assembly of progeny virions during viral infection in leafhopper vector.
Collapse
Affiliation(s)
- Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China.
| | - Linghua Zhang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China.
| | - Hongyan Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China.
| | - Lianhui Xie
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China.
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China.
| |
Collapse
|
26
|
Eusebio-Cope A, Suzuki N. Mycoreovirus genome rearrangements associated with RNA silencing deficiency. Nucleic Acids Res 2015; 43:3802-13. [PMID: 25800742 PMCID: PMC4402544 DOI: 10.1093/nar/gkv239] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 03/06/2015] [Indexed: 01/31/2023] Open
Abstract
Mycoreovirus 1 (MyRV1) has 11 double-stranded RNA genome segments (S1 to S11) and confers hypovirulence to the chestnut blight fungus, Cryphonectria parasitica. MyRV1 genome rearrangements are frequently generated by a multifunctional protein, p29, encoded by a positive-strand RNA virus, Cryphonectria hypovirus 1. One of its functional roles is RNA silencing suppression. Here, we explored a possible link between MyRV1 genome rearrangements and the host RNA silencing pathway using wild-type (WT) and mutant strains of both MyRV1 and the host fungus. Host strains included deletion mutants of RNA silencing components such as dicer-like (dcl) and argonaute-like (agl) genes, while virus strains included an S4 internal deletion mutant MyRV1/S4ss. Consequently, intragenic rearrangements with nearly complete duplication of the three largest segments, i.e. S1, S2 and S3, were observed even more frequently in the RNA silencing-deficient strains Δdcl2 and Δagl2 infected with MyRV1/S4ss, but not with any other viral/host strain combinations. An interesting difference was noted between genome rearrangement events in the two host strains, i.e. generation of the rearrangement required prolonged culture for Δagl2 in comparison with Δdcl2. These results suggest a role for RNA silencing that suppresses genome rearrangements of a dsRNA virus.
Collapse
Affiliation(s)
- Ana Eusebio-Cope
- Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Nobuhiro Suzuki
- Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
27
|
Boudreaux CE, Kelly DF, McDonald SM. Electron microscopic analysis of rotavirus assembly-replication intermediates. Virology 2015; 477:32-41. [PMID: 25635339 PMCID: PMC4359669 DOI: 10.1016/j.virol.2015.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/14/2014] [Accepted: 01/05/2015] [Indexed: 11/24/2022]
Abstract
Rotaviruses (RVs) replicate their segmented, double-stranded RNA genomes in tandem with early virion assembly. In this study, we sought to gain insight into the ultrastructure of RV assembly-replication intermediates (RIs) using transmission electron microscopy (EM). Specifically, we examined a replicase-competent, subcellular fraction that contains all known RV RIs. Three never-before-seen complexes were visualized in this fraction. Using in vitro reconstitution, we showed that ~15-nm doughnut-shaped proteins in strings were nonstructural protein 2 (NSP2) bound to viral RNA transcripts. Moreover, using immunoaffinity-capture EM, we revealed that ~20-nm pebble-shaped complexes contain the viral RNA polymerase (VP1) and RNA capping enzyme (VP3). Finally, using a gel purification method, we demonstrated that ~30–70-nm electron-dense, particle-shaped complexes represent replicase-competent core RIs, containing VP1, VP3, and NSP2 as well as capsid proteins VP2 and VP6. The results of this study raise new questions about the interactions among viral proteins and RNA during the concerted assembly-replicase process.
Collapse
Affiliation(s)
- Crystal E Boudreaux
- Virginia Tech Carilion School of Medicine and Research Institute, Roanoke, VA, USA
| | - Deborah F Kelly
- Virginia Tech Carilion School of Medicine and Research Institute, Roanoke, VA, USA
| | - Sarah M McDonald
- Virginia Tech Carilion School of Medicine and Research Institute, Roanoke, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, USA.
| |
Collapse
|
28
|
Li W, Zhang Y, Kao CC. The classic swine fever virus (CSFV) core protein can enhance de novo-initiated RNA synthesis by the CSFV polymerase NS5B. Virus Genes 2014; 49:106-15. [DOI: 10.1007/s11262-014-1080-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/23/2014] [Indexed: 12/28/2022]
|
29
|
McNeal MM, Bernstein DI. Rotaviruses. VIRAL INFECTIONS OF HUMANS 2014:713-732. [DOI: 10.1007/978-1-4899-7448-8_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
30
|
Yun T, Yu B, Ni Z, Ye W, Chen L, Hua J, Zhang C. Isolation and genomic characterization of a classical Muscovy duck reovirus isolated in Zhejiang, China. INFECTION GENETICS AND EVOLUTION 2013; 20:444-53. [PMID: 24140560 DOI: 10.1016/j.meegid.2013.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/23/2013] [Accepted: 10/06/2013] [Indexed: 11/16/2022]
Abstract
A classical Muscovy reovirus was isolated from a sick Muscovy duck with white necrotic foci in its liver in Zhejiang, China, in 2000. This classical reovirus was propagated in a chicken fibroblast cell line (DF-1) with obvious cytopathic effects. Its genome was 22,967 bp in length, with approximately 51.41% G+C content and 10 dsRNA segments encoding 11 proteins, which formed a 3/3/4 electrophoretic PAGE profile pattern. The length of the genomic segments was similar to those of avian orthoreoviruses (ARV and N-MDRV), ranging from 3959 nt (L1) to 1191nt (S4). All of the segments have the conserved terminal sequences 5'-GCUUUU--UUCAUC-3', and with the exception of the S4 segment, all the genome segments apparently encode one single primary translation product. The genome analysis revealed that the S4 segment of classical MDRV is a bicistronic gene, encoding the overlapping ORFs for p10 and σC but distinct from ARV and N-MDRV/N-GRV, which codes for p10, p18 and σC via the tricistronic S1 segment. A comparative sequence analysis provided evidence indicating extensive sequence divergence between classical MDRV and other avian orthoreoviruses. A phylogenetic analysis based on the RNA-dependent RNA polymerase (RdRp) and the major outer capsid proteins σC was performed. Members of the DRVs in the Avian orthoreovirus species were clustered into two genetic groups (classical MDRV and N-MDRV genotype), and the classical MDRV isolates formed distinct lineages (China and Europe lineages), suggesting that the classical MDRVs isolated in restricted geographical region are evolving by different and independent pathways.
Collapse
Affiliation(s)
- Tao Yun
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Rotavirus mRNAS are released by transcript-specific channels in the double-layered viral capsid. Proc Natl Acad Sci U S A 2013; 110:12042-7. [PMID: 23818620 DOI: 10.1073/pnas.1220345110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Rotaviruses are the single most common cause of fatal and severe childhood diarrheal illness worldwide (>125 million cases annually). Rotavirus shares structural and functional features with many viruses, such as the presence of segmented double-stranded RNA genomes selectively and tightly packed with a conserved number of transcription complexes in icosahedral capsids. Nascent transcripts exit the capsid through 12 channels, but it is unknown whether these channels specialize in specific transcripts or simply act as general exit conduits; a detailed description of this process is needed for understanding viral replication and genomic organization. To this end, we developed a single molecule assay for capturing and identifying transcripts extruded from transcriptionally active viral particles. Our findings support a model in which each channel specializes in extruding transcripts of a specific segment that in turn is linked to a single transcription complex. Our approach can be extended to study other viruses and transcription systems.
Collapse
|
32
|
McDonald SM. RNA synthetic mechanisms employed by diverse families of RNA viruses. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:351-67. [PMID: 23606593 PMCID: PMC7169773 DOI: 10.1002/wrna.1164] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RNA viruses are ubiquitous in nature, infecting every known organism on the planet. These viruses can also be notorious human pathogens with significant medical and economic burdens. Central to the lifecycle of an RNA virus is the synthesis of new RNA molecules, a process that is mediated by specialized virally encoded enzymes called RNA‐dependent RNA polymerases (RdRps). RdRps directly catalyze phosphodiester bond formation between nucleoside triphosphates in an RNA‐templated manner. These enzymes are strikingly conserved in their structural and functional features, even among diverse RNA viruses belonging to different families. During host cell infection, the activities of viral RdRps are often regulated by viral cofactor proteins. Cofactors can modulate the type and timing of RNA synthesis by directly engaging the RdRp and/or by indirectly affecting its capacity to recognize template RNA. High‐resolution structures of RdRps as apoenzymes, bound to RNA templates, in the midst of catalysis, and/or interacting with regulatory cofactor proteins, have dramatically increased our understanding of viral RNA synthetic mechanisms. Combined with elegant biochemical studies, such structures are providing a scientific platform for the rational design of antiviral agents aimed at preventing and treating RNA virus‐induced diseases. WIREs RNA 2013, 4:351–367. doi: 10.1002/wrna.1164 This article is categorized under:
RNA Interactions with Proteins and Other Molecules > RNA–Protein Complexes RNA in Disease and Development > RNA in Disease
Collapse
Affiliation(s)
- Sarah M McDonald
- Virginia Tech Carilion Research Institute and School of Medicine, Roanoke, VA, USA.
| |
Collapse
|
33
|
Boudreaux CE, Vile DC, Gilmore BL, Tanner JR, Kelly DF, McDonald SM. Rotavirus core shell subdomains involved in polymerase encapsidation into virus-like particles. J Gen Virol 2013; 94:1818-1826. [PMID: 23596269 DOI: 10.1099/vir.0.052951-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The triple-layered rotavirus virion encases an 11-segmented, dsRNA genome and 11-12 copies of the viral polymerase (VP1). VP1 transcribes and replicates the genome while tethered beneath the VP2 core shell. Genome replication (i.e. minus-strand RNA synthesis) by VP1 occurs in association with core assembly. During this process, VP2 directly engages VP1, thereby (i) packaging the polymerase into a nascent core and (ii) triggering the enzyme to initiate minus-strand RNA synthesis on bound plus-strand RNA templates. Recent work has shed light on VP2 regions important for VP1 enzymic activity. In the current study, we sought to investigate VP2 subdomains involved in the encapsidation of VP1 into recombinant virus-like particles (VLPs), which are formed of VP2 and the middle layer virion protein (VP6). We showed that strain SA11 VLPs efficiently encapsidated SA11 VP1, but not the genetically divergent Bristol VP1. VLPs made with an SA11 VP2 mutant lacking residues 1-10 of the amino-terminal domain (NTD) were still able to encapsidate VP1; however, removal of the entire NTD (residues 1-102) completely abolished polymerase packaging. We also showed that a chimeric VP2 protein containing the NTD and dimer-forming subdomain of strain Bristol VP2 can efficiently encapsidate SA11 VP1. These results suggest that the VP2 NTD and dimer-forming subdomain play important, albeit non-specific, roles in both VP1 packaging and activation. When combined with previous work, the results of this study support the notion that the same VP2 regions that engage VP1 during activation are also involved in packaging the enzyme into the core.
Collapse
Affiliation(s)
| | - Donald C Vile
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA.,Virginia Tech Carilion Research Institute, Roanoke, VA, USA
| | | | | | - Deborah F Kelly
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.,Virginia Tech Carilion School of Medicine, Roanoke, VA, USA.,Virginia Tech Carilion Research Institute, Roanoke, VA, USA
| | - Sarah M McDonald
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, USA.,Virginia Tech Carilion School of Medicine, Roanoke, VA, USA.,Virginia Tech Carilion Research Institute, Roanoke, VA, USA
| |
Collapse
|
34
|
Generation of genetically stable recombinant rotaviruses containing novel genome rearrangements and heterologous sequences by reverse genetics. J Virol 2013; 87:6211-20. [PMID: 23536662 DOI: 10.1128/jvi.00413-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The rotavirus (RV) genome consists of 11 segments of double-stranded RNA (dsRNA). Typically, each segment contains 5' and 3' untranslated regions (UTRs) that flank an open reading frame (ORF) encoding a single protein. RV variants with segments of atypical size owing to sequence rearrangements have been described. In many cases, the rearrangement originates from a partial head-to-tail sequence duplication that initiates after the stop codon of the ORF, leaving the protein product of the segment unaffected. To probe the limits of the RV genome to accommodate additional genetic sequence, we used reverse genetics to insert duplications (analogous to synthetic rearrangements) and heterologous sequences into the 3' UTR of the segment encoding NSP2 (gene 8). The approach allowed the recovery of recombinant RVs that contained sequence duplications (up to 200 bp) and heterologous sequences, including those for FLAG, the hepatitis C virus E2 epitope, and the internal ribosome entry site of cricket paralysis virus. The recombinant RVs grew to high titer (>10(7) PFU/ml) and remained genetically stable during serial passage. Despite their longer 3' UTRs, rearranged RNAs of recombinant RVs expressed wild-type levels of protein in vivo. Competitive growth experiments indicated that, unlike RV segments with naturally occurring sequence duplications, genetically engineered segments were less efficiently packaged into progeny viruses. Thus, features of naturally occurring rearranged segments, other than their increased length, contribute to their enhanced packaging phenotype. Our results define strategies for developing recombinant RVs as expression vectors, potentially leading to next-generation RV vaccines that induce protection against other infectious agents.
Collapse
|
35
|
Santana AY, Guerrero CA, Acosta O. Implication of Hsc70, PDI and integrin αvβ3 involvement during entry of the murine rotavirus ECwt into small-intestinal villi of suckling mice. Arch Virol 2013; 158:1323-36. [PMID: 23404461 DOI: 10.1007/s00705-013-1626-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/23/2012] [Indexed: 11/25/2022]
Abstract
In the present study, a homologous rotavirus, ECwt, infecting small intestinal villi isolated from ICR and BALB/c mice were used as a model for identifying cell-surface molecules involved in rotavirus entry. Small-intestinal villi were treated with anti-Hsc70, anti-PDI, anti-integrin β3 or anti-ERp57 antibodies or their corresponding F(ab')2 fragments before inoculation with rotavirus ECwt, RRV or Wa. Pretreatment of villi decreased virus infectivity by about 50-100 % depending of the rotavirus strain, antibody structure and detection assay used. Similar results were obtained by treating viral inocula with purified proteins Hsc70, PDI or integrin β3 before inoculation of untreated villi. Rotavirus infection of villi proved to be sensitive to membrane-impermeant thiol/disulfide inhibitors such as DTNB and bacitracin, suggesting the involvement of a redox reaction in infection. The present results suggest that PDI, Hsc70 and integrin β3 are used by both homologous and heterologous rotaviruses during infection of isolated mouse villi.
Collapse
Affiliation(s)
- Ana Y Santana
- Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | |
Collapse
|
36
|
Arnold MM, Sen A, Greenberg HB, Patton JT. The battle between rotavirus and its host for control of the interferon signaling pathway. PLoS Pathog 2013; 9:e1003064. [PMID: 23359266 PMCID: PMC3554623 DOI: 10.1371/journal.ppat.1003064] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Viral pathogens must overcome innate antiviral responses to replicate successfully in the host organism. Some of the mechanisms viruses use to interfere with antiviral responses in the infected cell include preventing detection of viral components, perturbing the function of transcription factors that initiate antiviral responses, and inhibiting downstream signal transduction. RNA viruses with small genomes and limited coding space often express multifunctional proteins that modulate several aspects of the normal host response to infection. One such virus, rotavirus, is an important pediatric pathogen that causes severe gastroenteritis, leading to ∼450,000 deaths globally each year. In this review, we discuss the nature of the innate antiviral responses triggered by rotavirus infection and the viral mechanisms for inhibiting these responses.
Collapse
Affiliation(s)
- Michelle M. Arnold
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Adrish Sen
- Department of Medicine and Microbiology and Immunology, Stanford University, Stanford, California, and VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Harry B. Greenberg
- Department of Medicine and Microbiology and Immunology, Stanford University, Stanford, California, and VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - John T. Patton
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
37
|
Eichwald C, Arnoldi F, Laimbacher AS, Schraner EM, Fraefel C, Wild P, Burrone OR, Ackermann M. Rotavirus viroplasm fusion and perinuclear localization are dynamic processes requiring stabilized microtubules. PLoS One 2012; 7:e47947. [PMID: 23110139 PMCID: PMC3479128 DOI: 10.1371/journal.pone.0047947] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 09/17/2012] [Indexed: 12/21/2022] Open
Abstract
Rotavirus viroplasms are cytosolic, electron-dense inclusions corresponding to the viral machinery of replication responsible for viral template transcription, dsRNA genome segments replication and assembly of new viral cores. We have previously observed that, over time, those viroplasms increase in size and decrease in number. Therefore, we hypothesized that this process was dependent on the cellular microtubular network and its associated dynamic components. Here, we present evidence demonstrating that viroplasms are dynamic structures, which, in the course of an ongoing infection, move towards the perinuclear region of the cell, where they fuse among each other, thereby gaining considerably in size and, simultaneouly, explaining the decrease in numbers. On the viral side, this process seems to depend on VP2 for movement and on NSP2 for fusion. On the cellular side, both the temporal transition and the maintenance of the viroplasms are dependent on the microtubular network, its stabilization by acetylation, and, surprisingly, on a kinesin motor of the kinesin-5 family, Eg5. Thus, we provide for the first time deeper insights into the dynamics of rotavirus replication, which can explain the behavior of viroplasms in the infected cell.
Collapse
|
38
|
Tanaka T, Eusebio-Cope A, Sun L, Suzuki N. Mycoreovirus genome alterations: similarities to and differences from rearrangements reported for other reoviruses. Front Microbiol 2012; 3:186. [PMID: 22675320 PMCID: PMC3365852 DOI: 10.3389/fmicb.2012.00186] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/04/2012] [Indexed: 11/13/2022] Open
Abstract
The family Reoviridae is one of the largest virus families with genomes composed of 9-12 double-stranded RNA segments. It includes members infecting organisms from protists to humans. It is well known that reovirus genomes are prone to various types of genome alterations including intragenic rearrangement and reassortment under laboratory and natural conditions. Recently distinct genetic alterations were reported for members of the genus Mycoreovirus, Mycoreovirus 1 (MyRV1), and MyRV3 with 11 (S1-S11) and 12 genome segments (S1-S12), respectively. While MyRV3 S8 is lost during subculturing of infected host fungal strains, MyRV1 rearrangements undergo alterations spontaneously and inducibly. The inducible MyRV1 rearrangements are different from any other previous examples of reovirus rearrangements in their dependence on an unrelated virus factor, a multifunctional protein, p29, encoded by a distinct virus Cryphonectria parasitica hypovirus 1 (CHV1). A total of 5 MyRV1 variants with genome rearranged segments (S1-S3, S6 and S10) are generated in the background of a single viral strain in the presence of CHV1 p29 supplied either transgenically or by coinfection. MyRV1 S4 and S10 are rearranged, albeit very infrequently, in a CHV1 p29 independent fashion. A variant of MyRV1 with substantial deletions in both S4 and S10, generated through a combined reassortment and rearrangement approach, shows comparable replication levels to the wild-type MyRV1. In vivo and in vitro interactions of CHV1 p29 and MyRV1 VP9 are implicated in the induction of MyRV1 rearrangements. However, the mechanism underlying p29-mediated rearrangements remains largely unknown. MyRV1 S4 rearrangements spontaneously occurred independently of CHV1 p29. In the absence of reverse genetics systems for mycoreoviruses, molecular and biological characterization of these MyRV1 and MyRV3 variants contribute to functional analyses of the protein products encoded by those rearranged segments.
Collapse
Affiliation(s)
- Toru Tanaka
- Agrivirology Laboratory, Institute of Plant Science and Bioresources, Okayama University Kurashiki, Okayama, Japan
| | | | | | | |
Collapse
|
39
|
Assembly of Large Icosahedral Double-Stranded RNA Viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:379-402. [DOI: 10.1007/978-1-4614-0980-9_17] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
Matsuo E, Roy P. Bluetongue virus VP1 polymerase activity in vitro: template dependency, dinucleotide priming and cap dependency. PLoS One 2011; 6:e27702. [PMID: 22110731 PMCID: PMC3216989 DOI: 10.1371/journal.pone.0027702] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 10/22/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Bluetongue virus (BTV) protein, VP1, is known to possess an intrinsic polymerase function, unlike rotavirus VP1, which requires the capsid protein VP2 for its catalytic activity. However, compared with the polymerases of other members of the Reoviridae family, BTV VP1 has not been characterized in detail. METHODS AND FINDINGS Using an in vitro polymerase assay system, we demonstrated that BTV VP1 could synthesize the ten dsRNAs simultaneously from BTV core-derived ssRNA templates in a single in vitro reaction as well as genomic dsRNA segments from rotavirus core-derived ssRNA templates that possess no sequence similarity with BTV. In contrast, dsRNAs were not synthesized from non-viral ssRNA templates by VP1, unless they were fused with specific BTV sequences. Further, we showed that synthesis of dsRNAs from capped ssRNA templates was significantly higher than that from uncapped ssRNA templates and the addition of dinucleotides enhanced activity as long as the last base of the dinucleotide complemented the 3' -terminal nucleotide of the ssRNA template. CONCLUSIONS We showed that the polymerase activity was stimulated by two different factors: cap structure, likely due to allosteric effect, and dinucleotides due to priming. Our results also suggested the possible presence of cis-acting elements shared by ssRNAs in the members of family Reoviridae.
Collapse
Affiliation(s)
- Eiko Matsuo
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Polly Roy
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
41
|
McDonald SM, Patton JT. Assortment and packaging of the segmented rotavirus genome. Trends Microbiol 2011; 19:136-44. [PMID: 21195621 PMCID: PMC3072067 DOI: 10.1016/j.tim.2010.12.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/19/2010] [Accepted: 12/01/2010] [Indexed: 12/13/2022]
Abstract
The rotavirus (RV) genome comprises 11 segments of double-stranded RNA (dsRNA) and is contained within a non-enveloped, icosahedral particle. During assembly, a highly coordinated selective packaging mechanism ensures that progeny RV virions contain one of each genome segment. Cis-acting signals thought to mediate assortment and packaging are associated with putative panhandle structures formed by base-pairing of the ends of RV plus-strand RNAs (+RNAs). Viral polymerases within assembling core particles convert the 11 distinct +RNAs to dsRNA genome segments. It remains unclear whether RV +RNAs are assorted before or during encapsidation, and the functions of viral proteins during these processes are not resolved. However, as reviewed here, recent insights gained from the study of RV and two other segmented RNA viruses, influenza A virus and bacteriophage Φ6, reveal potential mechanisms of RV assortment and packaging.
Collapse
Affiliation(s)
- Sarah M McDonald
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8026, USA
| | | |
Collapse
|
42
|
The early interferon response to rotavirus is regulated by PKR and depends on MAVS/IPS-1, RIG-I, MDA-5, and IRF3. J Virol 2011; 85:3717-32. [PMID: 21307186 DOI: 10.1128/jvi.02634-10] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In mouse embryonic fibroblasts (MEFs), the bovine rotavirus (UK strain) but not the simian rhesus rotavirus (RRV) robustly triggers beta interferon (IFN-β) secretion, resulting in an IFN-dependent restriction of replication. We now find that both rotavirus strains trigger antiviral transcriptional responses early during infection and that both transcriptional responses and IFN-β secretion are completely abrogated in MAVS/IPS-1(-/-) MEFs. Replication of UK virus could be rescued in MAVS/IPS-1(-/-) MEFs, and synthesis of viral RNA significantly increased early during virus infection. UK virus induced IFN-β secretion and transcription of IFN-stimulated genes (ISGs) in both RIG-I(-/-) and MDA-5(-/-) MEFs, and neither receptor was essential by itself for the antiviral response to UK rotavirus. However, when receptors RIG-I and MDA-5 were depleted using RNA interference, we found that both contribute to the magnitude of the IFN response. IRF3 was found to be essential for MAVS/IPS-1-directed ISG transcription and IFN-β secretion during rotavirus infection. Interestingly, absence of the double-stranded RNA-dependent protein kinase PKR led to a profound defect in the capacity of host cells to secrete IFN-β in response to virus. Both PKR and IRF3 restricted the early replication of UK as indicated by significant increases in viral RNA in fibroblasts lacking either gene. Despite the loss in IFN-β secretion in PKR(-/-) MEFs, we did not observe decreased IRF3- or NF-κB-dependent early ISG transcription in these cells. Levels of transcripts encoding IFN-α4, IFN-α5, and IFN-β were high in infected PKR(-/-) MEFs, indicating that during rotavirus infection, PKR functions at a stage between IFN gene transcription and subsequent IFN-β secretion. These findings reveal that activation of the antiviral response by rotavirus is dependent on MAVS/IPS-1 and IRF3 and involves both RIG-I and MDA-5 and that IFN-β secretion during rotavirus infection is regulated by PKR.
Collapse
|
43
|
Nates SV, Gatti MSV, Ludert JE. The picobirnavirus: an integrated view on its biology, epidemiology and pathogenic potential. Future Virol 2011. [DOI: 10.2217/fvl.10.76] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Picobirnaviruses (PBV) are a group of small, nonenveloped viruses with bi-segmented dsRNA genomes. The large genomic segment encodes for the capsid protein while the small segment encodes for the RNA-dependent RNA polymerase. PBV are widely distributed and have been detected in the feces of a large variety of vertebrate species, including farm and captive animals and also in humans. Their etiological role as a cause of diarrhea remains elusive. Still, compelling evidence indicates that PBV may be opportunistic pathogens associated with diarrhea in immunocompromised individuals. The partial molecular characterization of human and animal strains revealed that PBVs are highly variable, and at least two distinct genogroups have been recognized. In addition, the possibility of interspecies transmission has been suggested. This article examines the molecular epidemiology and the biology of PBV and highlights the major challenges in the field.
Collapse
Affiliation(s)
- Silvia V Nates
- Institute for Virology ‘Dr JM Vanella’, Faculty of Medical Sciences, Cordoba National University, Cordoba, Argentina
| | - Maria Silvia Viccari Gatti
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas, Campinas, Sao Paulo, Brazil
| | - Juan E Ludert
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies (CINVESTAV), Mexico City, Mexico and Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y Estudios Avanzados del IPN. Av. IPN 2508, Colonia San Pedro Zacatenco, Mexico, D.F., C.P. 07360, Mexico
| |
Collapse
|
44
|
Broquet AH, Hirata Y, McAllister CS, Kagnoff MF. RIG-I/MDA5/MAVS are required to signal a protective IFN response in rotavirus-infected intestinal epithelium. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:1618-26. [PMID: 21187438 DOI: 10.4049/jimmunol.1002862] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rotavirus is a dsRNA virus that infects epithelial cells that line the surface of the small intestine. It causes severe diarrheal illness in children and ∼500,000 deaths per year worldwide. We studied the mechanisms by which intestinal epithelial cells (IECs) sense rotavirus infection and signal IFN-β production, and investigated the importance of IFN-β production by IECs for controlling rotavirus production by intestinal epithelium and virus excretion in the feces. In contrast with most RNA viruses, which interact with either retinoic acid-inducible gene I (RIG-I) or melanoma differentiation-associated gene 5 (MDA5) inside cells, rotavirus was sensed by both RIG-I and MDA5, alone and in combination. Rotavirus did not signal IFN-β through either of the dsRNA sensors TLR3 or dsRNA-activated protein kinase (PKR). Silencing RIG-I or MDA5, or their common adaptor protein mitochondrial antiviral signaling protein (MAVS), significantly decreased IFN-β production and increased rotavirus titers in infected IECs. Overexpression of laboratory of genetics and physiology 2, a RIG-I-like receptor that interacts with viral RNA but lacks the caspase activation and recruitment domains required for signaling through MAVS, significantly decreased IFN-β production and increased rotavirus titers in infected IECs. Rotavirus-infected mice lacking MAVS, but not those lacking TLR3, TRIF, or PKR, produced significantly less IFN-β and increased amounts of virus in the intestinal epithelium, and shed increased quantities of virus in the feces. We conclude that RIG-I or MDA5 signaling through MAVS is required for the activation of IFN-β production by rotavirus-infected IECs and has a functionally important role in determining the magnitude of rotavirus replication in the intestinal epithelium.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Cell Line
- Chlorocebus aethiops
- DEAD Box Protein 58
- DEAD-box RNA Helicases/deficiency
- DEAD-box RNA Helicases/physiology
- HT29 Cells
- Humans
- Interferon-Induced Helicase, IFIH1
- Interferon-beta/biosynthesis
- Interferon-beta/physiology
- Intestinal Mucosa/enzymology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/virology
- Membrane Proteins/deficiency
- Membrane Proteins/physiology
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/physiology
- RNA Helicases/genetics
- RNA Helicases/physiology
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- Receptors, Cell Surface
- Receptors, Immunologic
- Response Elements/immunology
- Rotavirus/genetics
- Rotavirus/immunology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- Alexis H Broquet
- Laboratory of Mucosal Immunology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
45
|
Abstract
The innermost VP2 core shell of the triple-layered, icosahedral rotavirus particle surrounds the viral genome and RNA processing enzymes, including the RNA-dependent RNA polymerase (VP1). In addition to anchoring VP1 within the core, VP2 is also an essential cofactor that triggers the polymerase to initiate double-stranded RNA (dsRNA) synthesis using packaged plus-strand RNA templates. The VP2 requirement effectively couples packaging with genome replication and ensures that VP1 makes dsRNA only within an assembling previrion particle. However, the mechanism by which the rotavirus core shell protein activates the viral polymerase remains very poorly understood. In the current study, we sought to elucidate VP2 regions critical for VP1-mediated in vitro dsRNA synthesis. By comparing the functions of proteins from several different rotaviruses, we found that polymerase activation by the core shell protein is specific. Through truncation and chimera mutagenesis, we demonstrate that the VP2 amino terminus, which forms a decameric, internal hub underneath each 5-fold axis, plays an important but nonspecific role in VP1 activation. Our results indicate that the VP2 residues correlating with polymerase activation specificity are located on the inner face of the core shell, distinct from the amino terminus. Based on these findings, we predict that several regions of VP2 engage the polymerase during the concerted processes of rotavirus core assembly and genome replication.
Collapse
|
46
|
Quito-Avila DF, Jelkmann W, Tzanetakis IE, Keller K, Martin RR. Complete sequence and genetic characterization of Raspberry latent virus, a novel member of the family Reoviridae. Virus Res 2010; 155:397-405. [PMID: 21144872 DOI: 10.1016/j.virusres.2010.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/12/2010] [Accepted: 11/19/2010] [Indexed: 12/18/2022]
Abstract
A new virus isolated from red raspberry plants and detected in the main production areas in northern Washington State, USA and British Columbia, Canada was fully sequenced and found to be a novel member of the family Reoviridae. The virus was designated as Raspberry latent virus (RpLV) based on the fact that it is symptomless when present in single infections in several Rubus virus indicators and commercial raspberry cultivars. RpLV genome is 26,128 nucleotides (nt) divided into 10 dsRNA segments. The length of the genomic segments (S) was similar to those of other reoviruses ranging from 3948 nt (S1) to 1141 nt (S10). All of the segments, except S8, have the conserved terminal sequences 5'-AGUU----GAAUAC-3'. A point mutation at each terminus of S8 resulted in the sequences 5'-AGUA----GAUUAC-3'. Inverted repeats adjacent to each conserved terminus as well as stem loops and extended pan handles were identified by analyses of secondary structures of the non-coding sequences. All segments, except S3 and S10, contained a single open reading frame (ORF) on the positive sense RNAs. Two out-of-frame overlapping ORFs were identified in segments S3 (ORF S3a and S3b) and S10 (ORF S10a and S10b). Amino acid (aa) alignments of the putative proteins encoded by the main ORF in each segment revealed a high identity to several proteins encoded by reoviruses from different genera including Oryzavirus, Cypovirus, and Dinovernavirus. Alignments of the polymerase, the most conserved protein among reoviruses, revealed a 36% aa identity between RpLV and Rice ragged stunt virus (RRSV), the type member of the genus Oryzavirus, indicating that these two viruses are closely related. Phylogenetic analyses showed that RpLV clusters with members of the genera Oryzavirus, Cypovirus, Dinovernavirus and Fijivirus. These genera belong to the subfamily Spinareovirinae which includes reoviruses with spiked core particles ('turreted' reoviruses). In addition, two nucleotide binding motifs, regarded as 'signature' sequences among turreted reoviruses, were also found in RpLV P8, suggesting that RpLV is a novel dicot-infecting reovirus in the subfamily Spinareovirinae.
Collapse
Affiliation(s)
- Diego F Quito-Avila
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.
| | | | | | | | | |
Collapse
|
47
|
Li W, Manktelow E, von Kirchbach JC, Gog JR, Desselberger U, Lever AM. Genomic analysis of codon, sequence and structural conservation with selective biochemical-structure mapping reveals highly conserved and dynamic structures in rotavirus RNAs with potential cis-acting functions. Nucleic Acids Res 2010; 38:7718-35. [PMID: 20671030 PMCID: PMC2995077 DOI: 10.1093/nar/gkq663] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 07/07/2010] [Accepted: 07/14/2010] [Indexed: 01/05/2023] Open
Abstract
Rotaviruses are a major cause of acute, often fatal, gastroenteritis in infants and young children world-wide. Virions contain an 11 segment double-stranded RNA genome. Little is known about the cis-acting sequences and structural elements of the viral RNAs. Using a database of 1621 full-length sequences of mammalian group A rotavirus RNA segments, we evaluated the codon, sequence and RNA structural conservation of the complete genome. Codon conservation regions were found in eight ORFs, suggesting the presence of functional RNA elements. Using ConStruct and RNAz programmes, we identified conserved secondary structures in the positive-sense RNAs including long-range interactions (LRIs) at the 5' and 3' terminal regions of all segments. In RNA9, two mutually exclusive structures were observed suggesting a switch mechanism between a conserved terminal LRI and an independent 3' stem-loop structure. In RNA6, a conserved stem-loop was found in a region previously reported to have translation enhancement activity. Biochemical structural analysis of RNA11 confirmed the presence of terminal LRIs and two internal helices with high codon and sequence conservation. These extensive in silico and in vitro analyses provide evidence of the conservation, complexity, multi-functionality and dynamics of rotavirus RNA structures which likely influence RNA replication, translation and genome packaging.
Collapse
Affiliation(s)
- Wilson Li
- Department of Medicine, University of Cambridge, Level 5, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ and Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
| | - Emily Manktelow
- Department of Medicine, University of Cambridge, Level 5, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ and Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
| | - Johann C. von Kirchbach
- Department of Medicine, University of Cambridge, Level 5, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ and Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
| | - Julia R. Gog
- Department of Medicine, University of Cambridge, Level 5, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ and Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
| | - Ulrich Desselberger
- Department of Medicine, University of Cambridge, Level 5, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ and Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
| | - Andrew M. Lever
- Department of Medicine, University of Cambridge, Level 5, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ and Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
| |
Collapse
|