1
|
Li M, Wang S, Huang H, Li L. Reliable estrogen-related prognostic signature for uterine corpus endometrial carcinoma. Comput Biol Chem 2024; 113:108216. [PMID: 39326337 DOI: 10.1016/j.compbiolchem.2024.108216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/04/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Uterine corpus endometrial carcinoma (UCEC) is a predominant gynecological malignancy worldwide. Overdosed estrogen exposure has been widely known as a crucial risk factor for UCEC patients. The purpose of this work is to explore crucial estrogen-related genes (ERGs) in UCEC. METHODS UCEC scRNA-seq data, bulk RNA data, and ERGs were obtained from GEO, TCGA, and Molecular Signature Database, respectively. Differential expression analysis and cross analysis determined the candidate genes, and optimal genes in risk score were obtained after univariate Cox regression analysis, LASSO Cox regression analysis, and multivariate Cox regression analysis. The functional information was revealed by GO, KEGG, and GSVA enrichment analyses. CCK8 assay was used to detect the drug sensitivity. RESULTS After cross analysis of the differentially expressed genes and the 8734 ERGs, 86 differentially expressed ERGs were identified in UCEC, which were significantly enriched in some immune related pathways and microbiota related pathways. Of them, the most optimal 8 ERGs were obtained to build prognostic risk score, including GAL, PHGDH, SLC7A2, HNMT, CLU, AREG, MACC1, and HMGA1. The risk score could reliably predict patient prognosis, and high-risk patients had worse prognosis. Higher HMGA1 gene expression exhibited higher sensitivity to Osimertinib. CONCLUSIONS Predictive risk score based on 8 ERGs exhibited excellent prognostic value in UCEC patients, and high-risk patients had inferior survival. UCEC patients with distinct prognoses showed different tumor immune microenvironment.
Collapse
Affiliation(s)
- Mojuan Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 511500, China; Department of Obstetrics and Gynecology, the Sixth Affiliated Hospital, South China University of Technology, Foshan, Guangdong 528000, China
| | - Shuai Wang
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, Guangdong 511500, China
| | - Hao Huang
- Department of Obstetrics and Gynecology, the Sixth Affiliated Hospital, South China University of Technology, Foshan, Guangdong 528000, China
| | - Li Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 511500, China; Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, Guangdong 511500, China.
| |
Collapse
|
2
|
Fu L, Ma B, Zhang L, Xu H, Chen W, Wu D, Gao F, Huo Y. ERα Coregulator TRIM28 Promotes Breast Cancer Progression by Activating the AKT/GSK3β Pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:5162-5172. [PMID: 39109888 DOI: 10.1002/tox.24373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/08/2024] [Accepted: 06/01/2024] [Indexed: 10/17/2024]
Abstract
Estrogen receptor α (ERα) promotes the growth and survival of ER-positive breast cancer (BC) cells. ER regulates ER expression target genes by directly binding to specific estrogen response elements, upon activation by estrogens. In this study, 106 proteins interacting with endogenous chromatin-bound ER in a BC cell line MCF7 were identified using the RIME method. The interactome data showed that the tripartite motif containing 28 (TRIM28) is the most significantly enriched ER-associated protein. This study provides evidence that TRIM28 expression improves ER transcriptional activity and promotes the BC cells proliferation, migration, and invasion of BC cells. The high expression of TRIM28 is associated with poor clinical outcomes in patients with ER-positive BC. Mechanistic experiments indicate that TRIM28 expression activates the AKT/GSK3β pathway. To conclude, TRIM28 acts as a regulatory protein of ER and AKT signaling; therefore, it can be a target for the therapeutic interventions of BC.
Collapse
Affiliation(s)
- Linlin Fu
- Department of Breast Surgery, Zhengzhou Central Hospital Affliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Baodong Ma
- Department of Breast Surgery, Zhengzhou Central Hospital Affliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Lan Zhang
- Department of Breast Surgery, Zhengzhou Central Hospital Affliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Huikang Xu
- Department of Breast Surgery, Zhengzhou Central Hospital Affliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Chen
- Department of Breast Surgery, Zhengzhou Central Hospital Affliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Di Wu
- Department of Breast Surgery, Zhengzhou Central Hospital Affliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Feng Gao
- Department of Breast Surgery, Zhengzhou Central Hospital Affliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Yanping Huo
- Department of Breast Surgery, Zhengzhou Central Hospital Affliated to Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Simińska D, Kojder K, Jeżewski D, Tarnowski M, Tomasiak P, Piotrowska K, Kolasa A, Patrycja K, Chlubek D, Baranowska-Bosiacka I. Estrogen α and β Receptor Expression in the Various Regions of Resected Glioblastoma Multiforme Tumors and in an In Vitro Model. Int J Mol Sci 2024; 25:4130. [PMID: 38612938 PMCID: PMC11012502 DOI: 10.3390/ijms25074130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a malignant tumor with a higher prevalence in men and a higher survival rate in transmenopausal women. It exhibits distinct areas influenced by changing environmental conditions. This study examines how these areas differ in the levels of estrogen receptors (ERs) which play an important role in the development and progression of many cancers, and whose expression levels are often correlated with patient survival. This study utilized two research models: an in vitro model employing the U87 cell line and a second model involving tumors resected from patients (including tumor core, enhancing tumor region, and peritumoral area). ER expression was assessed at both gene and protein levels, with the results validated using confocal microscopy and immunohistochemistry. Under hypoxic conditions, the U87 line displayed a decrease in ERβ mRNA expression and an increase in ERα mRNA expression. In patient samples, ERβ mRNA expression was lower in the tumor core compared to the enhancing tumor region (only in males when the study group was divided by sex). In addition, ERβ protein expression was lower in the tumor core than in the peritumoral area (only in women when the study group was divided by sex). Immunohistochemical analysis indicated the highest ERβ protein expression in the enhancing tumor area, followed by the peritumoral area, and the lowest in the tumor core. The findings suggest that ER expression may significantly influence the development of GBM, exhibiting variability under the influence of conditions present in different tumor areas.
Collapse
Affiliation(s)
- Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (D.S.); (K.P.); (I.B.-B.)
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Dariusz Jeżewski
- Department of Neurosurgery and Pediatric Neurosurgery, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54, 70-210 Szczecin, Poland;
| | - Patrycja Tomasiak
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland;
| | - Katarzyna Piotrowska
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Agnieszka Kolasa
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Kapczuk Patrycja
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (D.S.); (K.P.); (I.B.-B.)
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (D.S.); (K.P.); (I.B.-B.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (D.S.); (K.P.); (I.B.-B.)
| |
Collapse
|
4
|
Rymbai E, Sugumar D, Chakkittukandiyil A, Kothandan R, Selvaraj D. Molecular insights into the potential effects of selective estrogen receptor β agonists in Alzheimer's and Parkinson's diseases. Cell Biochem Funct 2024; 42:e4014. [PMID: 38616346 DOI: 10.1002/cbf.4014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative disorders. Pathologically, AD and PD are characterized by the accumulation of misfolded proteins. Hence, they are also called as proteinopathy diseases. Gender is considered as one of the risk factors in both diseases. Estrogens are widely accepted to be neuroprotective in several neurodegenerative disorders. Estrogens can be produced in the central nervous system, where they are called as neurosteroids. Estrogens mediate their neuroprotective action mainly through their actions on estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). However, ERα is mainly involved in the growth and development of the primary and secondary sexual organs in females. Hence, the activation of ERα is associated with undesired side effects such as gynecomastia and increase in the risk of breast cancer, thromboembolism, and feminization. Therefore, selective activation of ERβ is often considered to be safer. In this review, we explore the role of ERβ in regulating the expression and functions of AD- and PD-associated genes. Additionally, we discuss the association of these genes with the amyloid-beta peptide (Aβ) and α-synuclein mediated toxicity. Ultimately, we established a correlation between the importance of ERβ activation and the process underlying ERβ's neuroprotective mechanisms in AD and PD.
Collapse
Affiliation(s)
- Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Deepa Sugumar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Amritha Chakkittukandiyil
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Ram Kothandan
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| |
Collapse
|
5
|
Abbott DA, Mancini MG, Bolt MJ, Szafran AT, Neugebauer KA, Stossi F, Gorelick DA, Mancini MA. A novel ERβ high throughput microscopy platform for testing endocrine disrupting chemicals. Heliyon 2024; 10:e23119. [PMID: 38169792 PMCID: PMC10758781 DOI: 10.1016/j.heliyon.2023.e23119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
In this study we present an inducible biosensor model for the Estrogen Receptor Beta (ERβ), GFP-ERβ:PRL-HeLa, a single-cell-based high throughput (HT) in vitro assay that allows direct visualization and measurement of GFP-tagged ERβ binding to ER-specific DNA response elements (EREs), ERβ-induced chromatin remodeling, and monitor transcriptional alterations via mRNA fluorescence in situ hybridization for a prolactin (PRL)-dsRED2 reporter gene. The model was used to accurately (Z' = 0.58-0.8) differentiate ERβ-selective ligands from ERα ligands when treated with a panel of selective agonists and antagonists. Next, we tested an Environmental Protection Agency (EPA)-provided set of 45 estrogenic reference chemicals with known ERα in vivo activity and identified several that activated ERβ as well, with varying sensitivity, including a subset that is completely novel. We then used an orthogonal ERE-containing transgenic zebrafish (ZF) model to cross validate ERβ and ERα selective activities at the organism level. Using this environmentally relevant ZF assay, some compounds were confirmed to have ERβ activity, validating the GFP-ERβ:PRL-HeLa assay as a screening tool for potential ERβ active endocrine disruptors (EDCs). These data demonstrate the value of sensitive multiplex mechanistic data gathered by the GFP-ERβ:PRL-HeLa assay coupled with an orthogonal zebrafish model to rapidly identify environmentally relevant ERβ EDCs and improve upon currently available screening tools for this understudied nuclear receptor.
Collapse
Affiliation(s)
- Derek A. Abbott
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Maureen G. Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA
| | - Michael J. Bolt
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX, USA
| | - Adam T. Szafran
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA
| | - Kaley A. Neugebauer
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA
| | - Daniel A. Gorelick
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Michael A. Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
6
|
Schüler-Toprak S, Skrzypczak M, Gründker C, Ortmann O, Treeck O. Role of Estrogen Receptor β, G-Protein Coupled Estrogen Receptor and Estrogen-Related Receptors in Endometrial and Ovarian Cancer. Cancers (Basel) 2023; 15:2845. [PMID: 37345182 DOI: 10.3390/cancers15102845] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Ovarian and endometrial cancers are affected by estrogens and their receptors. It has been long known that in different types of cancers, estrogens activate tumor cell proliferation via estrogen receptor α (ERα). In contrast, the role of ERs discovered later, including ERβ and G-protein-coupled ER (GPER1), in cancer is less well understood, but the current state of knowledge indicates them to have a considerable impact on both cancer development and progression. Moreover, estrogen related receptors (ERRs) have been reported to affect pathobiology of many tumor types. This article provides a summary and update of the current findings on the role of ERβ, GPER1, and ERRs in ovarian and endometrial cancer. For this purpose, original research articles on the role of ERβ, GPER1, and ERRs in ovarian and endometrial cancers listed in the PubMed database have been reviewed.
Collapse
Affiliation(s)
- Susanne Schüler-Toprak
- Department of Obstetrics and Gynecology, University Medical Center Regensburg, Caritas-Hospital St. Josef, 93053 Regensburg, Germany
| | - Maciej Skrzypczak
- Second Department of Gynecology, Medical University of Lublin, 20-954 Lublin, Poland
| | - Carsten Gründker
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Olaf Ortmann
- Department of Obstetrics and Gynecology, University Medical Center Regensburg, Caritas-Hospital St. Josef, 93053 Regensburg, Germany
| | - Oliver Treeck
- Department of Obstetrics and Gynecology, University Medical Center Regensburg, Caritas-Hospital St. Josef, 93053 Regensburg, Germany
| |
Collapse
|
7
|
Bonfim Neto AP, Cardoso APMM, Silva RDS, Sousa LMMDC, Giometti IC, Binelli M, Bauersachs S, Kowalewski MP, Papa PDC. An approach to uncover the relationship between 17b-estradiol and ESR1/ESR2 ratio in the regulation of canine corpus luteum. Front Vet Sci 2022; 9:885257. [PMID: 35982918 PMCID: PMC9378837 DOI: 10.3389/fvets.2022.885257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/15/2022] [Indexed: 11/28/2022] Open
Abstract
The canine corpus luteum (CL) is able to synthetise, activate and deactivate 17b-estradiol (E2) and also expresses nuclear estrogen receptors in a time-dependent manner during diestrus. Nevertheless, we are still missing a better comprehension of E2 functions in the canine CL, especially regarding the specific roles of estrogen receptor alpha (ERa) and ERb, encoded by ESR1 and 2, respectively. For that purpose, we analyzed transcriptomic data of canine non-pregnant CL collected on days 10, 20, 30, 40, 50 and 60 of diestrus and searched for differentially expressed genes (DEG) containing predicted transcription factor binding sites (TFBS) for ESR1 or ESR2. Based on biological functions of DEG presenting TFBS, expression of select transcripts and corresponding proteins was assessed. Additionally, luteal cells were collected across specific time points during diestrus and specificity of E2 responses was tested using ERa and/or ERb inhibitors. Bioinformatic analyses revealed 517 DEGs containing TFBS, from which 67 for both receptors. In general, abundance of predicted ESR1 targets was greater in the beginning, while abundance of ESR2 targets was greater in the end of diestrus. ESR1/ESR2 ratio shifted from an increasing to a decreasing pattern from day 30 to 40 post ovulation. Specific receptor inhibition suggested an ERa-mediated positive regulation of CL function at the beginning of diestrus and an ERb-mediated effect contributing to luteal regression. In conclusion, our data points toward a broad spectrum of action of E2 and its nuclear receptors, which can also act as transcription factors for other genes regulating canine CL function.
Collapse
Affiliation(s)
| | | | - Renata dos Santos Silva
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | - Ines Cristina Giometti
- Faculty of Veterinary Medicine, University of Western São Paulo, Presidente Prudente, Brazil
| | - Mario Binelli
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Stefan Bauersachs
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | - Paula de Carvalho Papa
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- *Correspondence: Paula de Carvalho Papa
| |
Collapse
|
8
|
Gallegos-Arreola MP, Zúñiga-González GM, Figuera LE, Puebla-Pérez AM, Márquez-Rosales MG, Gómez-Meda BC, Rosales-Reynoso MA. ESR2 gene variants (rs1256049, rs4986938, and rs1256030) and their association with breast cancer risk. PeerJ 2022; 10:e13379. [PMID: 35573183 PMCID: PMC9104083 DOI: 10.7717/peerj.13379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/13/2022] [Indexed: 01/13/2023] Open
Abstract
Background Variants of the estrogen receptor b (ESR2) gene have been associated with different types of cancer. However, these associations have been inconsistent. We genotyped the ESR2 variants (rs1256049, rs4986938, and rs1256030) in breast cancer (BC) patients and in healthy women. Results The variants rs1256049 and rs4986938 in the ESR2 gene were not associated with risk susceptibility in BC patients. However, the rs1256030 variant had an association as a risk factor for BC patients when compared with controls and BC patients for the TT genotype (odds ratio (OR) 1.86, 95% confidence intervals (CI) [1.05-3.28], p = 0.042). In addition, differences were observed in patients and controls carrying the TT genotype under 50 years of age (OR 1.85, 95% CI [1.05-3.27], p = 0.043). Thus, evident differences showed the rs1256030 variant in patients with TT, TC, and TC+TT genotypes with: (1) Stage IV (OR 1.60, 95% CI [1.06-2.54], p = 0.033), and (2) Luminal A (OR 1.60, 95% CI [0.47-0.21], p = 0.041), as well as in BC carriers of the TT genotype with indices of cellular proliferative (Ki-67) elevated (>20%) and overweight (OR 1.67, 95% CI [0.85-3.28], p = 0.041), respectively. In BC HER2 with lymph node metastasis, the TT genotype was a protective factor (OR 0.38, 95% CI [0.18-0.78], p = 0.005). The identification of haplotypes included two common GAT as risk factors (OR 3.1, 95% CI [1.31-7.72], p = 0.011) and GGC as a protective factor (OR 0.7, 95% CI [0.60-0.97], p = 0.034). The haplogenotype GGGATC was a risk factor (OR 2.5, 95% CI [1.28-5.0], p = 0.008). Conclusion The variant rs1256030 (TT) of the ESR2 gene and haplotype GAT were associated with susceptibility to BC as risk factors in this sample from the Mexican population.
Collapse
Affiliation(s)
- Martha Patricia Gallegos-Arreola
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| | - Guillermo M. Zúñiga-González
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| | - Luis E. Figuera
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| | - Ana María Puebla-Pérez
- Laboratorio de Inmunofarmacología, Departamento de Farmacología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - María Guadalupe Márquez-Rosales
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| | - Belinda Claudia Gómez-Meda
- Departamento de Biología Molecular y Genómica, Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Mónica Alejandra Rosales-Reynoso
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| |
Collapse
|
9
|
Holtzer L, Wesseling-Rozendaal Y, Verhaegh W, van de Stolpe A. Measurement of activity of developmental signal transduction pathways to quantify stem cell pluripotency and phenotypically characterize differentiated cells. Stem Cell Res 2022; 61:102748. [PMID: 35325817 DOI: 10.1016/j.scr.2022.102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/28/2022] [Accepted: 03/11/2022] [Indexed: 10/18/2022] Open
Abstract
Important challenges in stem cell research and regenerative medicine are reliable assessment of pluripotency state and purity of differentiated cell populations. Pluripotency and differentiation are regulated and determined by activity of developmental signal transduction pathways (STPs). To date activity of these STPs could not be directly measured on a cell sample. Here we validate a novel assay platform for measurement of activity of developmental STPs (STP) for use in stem cells and stem cell derivatives. In addition to previously developed STP assays, we report development of an additional STP assay for the MAPK-AP1 pathway. Subsequently, activity of Notch, Hedgehog, TGFβ, Wnt, PI3K, MAPK-AP1, and NFκB signaling pathways was calculated from Affymetrix transcriptome data of human pluripotent embryonic (hES) and iPS cell lines under different culture conditions, organ-derived multipotent stem cells, and differentiated cell types, to generate quantitative STP activity profiles. Results show that the STP assay technology enables reliable and quantitative measurement of multiple STP activities simultaneously on any individual cell sample. Using the technology, we found that culture conditions dominantly influence the pluripotent stem cell STP activity profile, while the origin of the stem cell line was a minor variable. A pluripotency STP activity profile (Pluripotency qPAP) was defined (active PI3K, MAPK, Hedgehog, Notch, TGFβ, and NFκB pathway, inactive Wnt pathway). Differentiation of hES cells to intestinal progenitor cells resulted in an STP activity profile characterized by active PI3K, Wnt and Notch pathways, comparable to the STP activity profile measured on primary intestinal crypt stem cells. Quantitative STP activity measurement is expected to improve experimental reproducibility and standardization of pluripotent and multipotent stem cell culture/differentiation, and enable controlled manipulation of pluripotency/differentiation state using pathway targeting compounds.
Collapse
Affiliation(s)
- Laurent Holtzer
- Molecular Pathway Diagnostics, Philips, Eindhoven, The Netherlands.
| | | | - Wim Verhaegh
- Molecular Pathway Diagnostics, Philips, Eindhoven, The Netherlands.
| | | |
Collapse
|
10
|
Mehta RG. Functional Significance of Selective Expression of ERα and ERβ in Mammary Gland Organ Culture. Int J Mol Sci 2021; 22:ijms222313151. [PMID: 34884959 PMCID: PMC8658419 DOI: 10.3390/ijms222313151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023] Open
Abstract
Thoracic pair of mammary glands from steroid hormone-pretreated mice respond to hormones structurally and functionally in organ culture. A short exposure of glands for 24 h to 7,12 Dimethylbenz(a)anthracene (DMBA) during a 24-day culture period induced alveolar or ductal lesions. Methods: To differentiate the functional significance of ERα and ERβ, we employed estrogen receptor (ER) knockout mice. We compared the effects of DMBA on the development of preneoplastic lesions in the glands in the absence of ERα (αERKO) and ERβ (βERKO) using an MMOC protocol. Glands were also subjected to microarray analyses. We showed that estradiol can be replaced by EGF for pretreatment of mice. The carcinogen-induced lesions developed under both steroids and EGF pretreatment protocols. The glands from αERKO did not develop any lesions, whereas in βERKO mice in which ERα is intact, mammary alveolar lesions developed. Comparison of microarrays of control, αERKO and βERKO mice showed that ERα was largely responsible for proliferation and the MAP kinase pathways, whereas ERβ regulated steroid metabolism-related genes. The results indicate that ERα is essential for the development of precancerous lesions. Both subtypes, ERα and Erβ, differentially regulated gene expression in mammary glands in organ cultures.
Collapse
Affiliation(s)
- Rajendra G Mehta
- IIT Research Institute, 10 West 35th St., Chicago, IL 60616, USA
| |
Collapse
|
11
|
Ko MC, Frankl-Vilches C, Bakker A, Gahr M. The Gene Expression Profile of the Song Control Nucleus HVC Shows Sex Specificity, Hormone Responsiveness, and Species Specificity Among Songbirds. Front Neurosci 2021; 15:680530. [PMID: 34135731 PMCID: PMC8200640 DOI: 10.3389/fnins.2021.680530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022] Open
Abstract
Singing occurs in songbirds of both sexes, but some species show typical degrees of sex-specific performance. We studied the transcriptional sex differences in the HVC, a brain nucleus critical for song pattern generation, of the forest weaver (Ploceus bicolor), the blue-capped cordon-bleu (Uraeginthus cyanocephalus), and the canary (Serinus canaria), which are species that show low, medium, and high levels of sex-specific singing, respectively. We observed persistent sex differences in gene expression levels regardless of the species-specific sexual singing phenotypes. We further studied the HVC transcriptomes of defined phenotypes of canary, known for its testosterone-sensitive seasonal singing. By studying both sexes of canaries during both breeding and non-breeding seasons, non-breeding canaries treated with testosterone, and spontaneously singing females, we found that the circulating androgen levels and sex were the predominant variables associated with the variations in the HVC transcriptomes. The comparison of natural singing with testosterone-induced singing in canaries of the same sex revealed considerable differences in the HVC transcriptomes. Strong transcriptional changes in the HVC were detected during the transition from non-singing to singing in canaries of both sexes. Although the sex-specific genes of singing females shared little resemblance with those of males, our analysis showed potential functional convergences. Thus, male and female songbirds achieve comparable singing behaviours with sex-specific transcriptomes.
Collapse
Affiliation(s)
- Meng-Ching Ko
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Carolina Frankl-Vilches
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Antje Bakker
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Manfred Gahr
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
12
|
张 梦, 杨 玉, 刘 敏, 梁 利, 罗 瑞, 尹 丹, 郭 风. [Estradiol activates ERK phosphorylation by binding to ERβ to inhibit proliferation and promote apoptosis of human chondrocytes]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:336-343. [PMID: 33849823 PMCID: PMC8075796 DOI: 10.12122/j.issn.1673-4254.2021.03.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To explore the effect of estradiol (E2) binding to its receptor ERβ on the proliferation and apoptosis of C28I2 cells. OBJECTIVE We cloned the sequence of ESR2 into a recombinant adenovirus plasmid (pAd-ESR2) and packaged the plasmid in HEK293 cells. Normal human chondrocyte C28I2 cells were transfected with Ad-ESR2 or small interfering RNA targeting ESR2-siRNA (ESR2-siRNA), and the effects of treatment with DMSO or E2 on the expression of the proteins associated with endoplasmic reticulum (ER) stress and cell apoptosis were determined using Western blotting. qRT-PCR was used to detect the expressions of proliferation-related marker genes, and an EdU kit and flow cytometry were used to assess cell proliferation and apoptosis. We also tested the effects of U0126 (an ERK pathway inhibitor) and E2, alone or in combination, on ER stress, apoptosis and the ERK signaling pathway in C28I2 cells infected with Ad-ESR2 using Western blotting. OBJECTIVE Overexpression of Ad-ESR2 in C28I2 cells significantly promoted the expressions of IRE1α, PERK, XBP1s, and cleaved caspase-12, inhibited proliferation related marker genes PCNA, cyclin B1, cyclin D1, and decreased the level of ERK phosphorylation following E2 treatment (all P < 0.05). Interference of ESR2 caused significant reduction in the expressions of ER stress-related proteins and apoptosis-related proteins, up-regulated the genes related to cell proliferation, and increased intracellular pERK/ERK ratio in C28I2 cells. The effect of E2 binding to ERβ, which promoted the expressions of ER stress associated proteins and apoptosis related proteins, was obviously antagonized by treatment of the cells with U0126. OBJECTIVE The binding of E2 to ERβ promotes ER stress and apoptosis in human chondrocytes by activating ERK pathway phosphorylation inhibit cell proliferation.
Collapse
Affiliation(s)
- 梦颖 张
- />重庆医科大学基础医学院细胞生物学与遗传学教研室,重庆 400016Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
| | - 玉有 杨
- />重庆医科大学基础医学院细胞生物学与遗传学教研室,重庆 400016Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
| | - 敏 刘
- />重庆医科大学基础医学院细胞生物学与遗传学教研室,重庆 400016Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
| | - 利 梁
- />重庆医科大学基础医学院细胞生物学与遗传学教研室,重庆 400016Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
| | - 瑞 罗
- />重庆医科大学基础医学院细胞生物学与遗传学教研室,重庆 400016Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
| | - 丹旸 尹
- />重庆医科大学基础医学院细胞生物学与遗传学教研室,重庆 400016Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
| | - 风劲 郭
- />重庆医科大学基础医学院细胞生物学与遗传学教研室,重庆 400016Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
13
|
Sexual hormones and diabetes: The impact of estradiol in pancreatic β cell. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021. [PMID: 33832654 DOI: 10.1016/bs.ircmb.2021.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Diabetes is one of the most prevalent metabolic diseases and its incidence is increasing throughout the world. Data from World Health Organization (WHO) point-out that diabetes is a major cause of blindness, kidney failure, heart attacks, stroke and lower limb amputation and estimated 1.6 million deaths were directly caused by it in 2016. Population studies show that the incidence of this disease increases in women after menopause, when the production of estrogen is decreasing in them. Knowing the impact that estrogenic signaling has on insulin-secreting β cells is key to prevention and design of new therapeutic targets. This chapter explores the role of estrogen and their receptors in the regulation of insulin secretion and biosynthesis, proliferation, regeneration and survival in pancreatic β cells. In addition, delves into the genetic animal models developed and its application for the specific study of the different estrogen signaling pathways. Finally, discusses the impact of menopause and hormone replacement therapy on pancreatic β cell function.
Collapse
|
14
|
Zhou WJ, Zhang J, Xie F, Wu JN, Ye JF, Wang J, Wu K, Li MQ. CD45RO -CD8 + T cell-derived exosomes restrict estrogen-driven endometrial cancer development via the ERβ/miR-765/PLP2/Notch axis. Theranostics 2021; 11:5330-5345. [PMID: 33859750 PMCID: PMC8039953 DOI: 10.7150/thno.58337] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Rationale: Estrogen-dependent cancers (e.g., breast, endometrial, and ovarian cancers) are among the leading causes of morbidity and mortality in women worldwide. Recently, exosomes released by tumor-infiltrating CD8+ T cells have been under the spotlight in the field of cancer immunotherapy. Our study aims at elucidating the underlying mechanisms of the crosstalk between estrogen signaling and CD8+ T cells, and possible intervention values in uterine corpus endometrial cancer (UCEC). Methods: Micro RNA-seq was conducted to screen differentially expressed micro RNA in UCEC. Bioinformatic analysis was processed to predict the target of miR-765. RNA silencing or overexpressing and pharmacologic inhibitors were used to assess the functions of ERβ/miR-765/PLP2/Notch axis in UCEC cell proliferation and invasion in vivo and in vitro. In vivo imaging was performed to evaluate the metastasis of tumor in mice. Combined fluorescent in situ hybridization for miR-765 and immunofluorescent labeling for CD8 was carried out to prove the co-localization between miR-765 and CD8+ T cells. Exosomes derived from CD45RO-CD8+ T cells were isolated to detect the regulatory effects on UCEC. Results: miR-765 is characterized as the most downregulated miRNA in UCEC, and there is a negative correlation between miR-765 and Proteolipid protein 2 (PLP2) in UCEC lesion. Estrogen significantly down-regulates miR-765 level, and facilitates the development of UCEC by estrogen receptor (ER) β. Mechanistically, this process is mediated through the miRNAs (e.g., miR-3584-5p, miR-7-5p, miR-150-5p, and miR-124-3p) cluster-controlled regulation of the PLP2, which further regulates Ki-67 and multiple epithelial-mesenchymal transition (EMT)-related molecules (e.g, E-cadherin and Vimentin) in a Notch signaling pathway-dependent manner. Interestingly, the selective ER degrader Fulvestrant alleviates estrogen-mediated miR-765/PLP2 expression regulation and UCEC development in ERβ-dependent and -independent manners. Additionally, CD45RO-CD8+ T cell-derived exosomes release more miR-765 than that from CD45RO+CD8+ T cells. In therapeutic studies, these exosomes limit estrogen-driven disease development via regulation of the miR-765/PLP2 axis. Conclusions: This observation reveals novel molecular mechanisms underlying estrogen signaling and CD8+ T cell-released exosomes in UCEC development, and provides a potential therapeutic strategy for UCEC patients with aberrant ERβ/miR-765/PLP2/Notch signaling axis.
Collapse
Affiliation(s)
- Wen-Jie Zhou
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jie Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100, Haining Road, Shanghai 200080, People's Republic of China
| | - Feng Xie
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
| | - Jiang-Nan Wu
- Clinical Epidemiology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, People's Republic of China
| | - Jiang-Feng Ye
- Division of Obstetrics and Gynecology, KK Women's and Children's Hospital, 229899, Singapore
| | - Jian Wang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
| | - Ke Wu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100, Haining Road, Shanghai 200080, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, 200080, People's Republic of China
| |
Collapse
|
15
|
Pardo A, Selman M. The Interplay of the Genetic Architecture, Aging, and Environmental Factors in the Pathogenesis of Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2021; 64:163-172. [PMID: 32946290 DOI: 10.1165/rcmb.2020-0373ps] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic fibrosing lung disease of indeterminate etiology and limited therapeutic options. The initiation, development, and progression of IPF are influenced by genetic predisposition, aging, and host and environmental factors, but the magnitude of the contribution of each of them and the sequence of the pathogenic events are uncertain. Current evidence indicates that accumulated environmental exposures in a genetically predisposed individual, usually over 60 years of age, leads to phenotypic and functional alterations of the lung epithelium. Aberrant activation of epithelial cells results, through a complex release of numerous mediators, in the local expansion of peculiar subsets of aggressive fibroblasts and myofibroblasts, which are crucial effector cells of fibrotic remodeling and loss of the normal lung architecture and function. Progressive increase of the mechanical stiffness activates cell-autonomous and matrix-dependent processes contributing to the perpetuation of the fibrotic response. This Perspective provides an integral overview of the major risk factors underpinning the pathogenesis of IPF, including gene variants, aging alterations, environmental factors, host risk factors, and epigenetic reprogramming.
Collapse
Affiliation(s)
- Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, Mexico; and
| | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," México City, Mexico
| |
Collapse
|
16
|
Fels JA, Casalena GA, Manfredi G. Sex and oestrogen receptor β have modest effects on gene expression in the mouse brain posterior cortex. Endocrinol Diabetes Metab 2021; 4:e00191. [PMID: 33532622 PMCID: PMC7831211 DOI: 10.1002/edm2.191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/12/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction Sex differences in brain cortical function affect cognition, behaviour and susceptibility to neural diseases, but the molecular basis of sexual dimorphism in cortical function is still largely unknown. Oestrogen and oestrogen receptors (ERs), specifically ERβ, the most abundant ER in the cortex, may play a role in determining sex differences in gene expression, which could underlie functional sex differences. However, further investigation is needed to address brain region specificity of the effects of sex and ERβ on gene expression. The goal of this study was to investigate sex differences in gene expression in the mouse posterior cortex, where sex differences in transcription have never been examined, and to determine how genetic ablation of ERβ affects transcription. Methods In this study, we performed unbiased transcriptomics on RNA from the posterior cortex of adult wild-type and ERβ knockout mice (n = 4/sex/genotype). We used unbiased clustering to analyse whole-transcriptome changes between the groups. We also performed differential expression analysis on the data using DESeq2 to identify specific changes in gene expression. Results We found only 27 significantly differentially expressed genes (DEGs) in wild-type (WT) males vs females, of which 17 were autosomal genes. Interestingly, in ERβKO males vs females all the autosomal DEGs were lost. Gene Ontology analysis of the subset of DEGs with sex differences only in the WT cortex revealed a significant enrichment of genes annotated with the function 'cation channel activity'. Moreover, within each sex we found only a few DEGs in ERβKO vs WT mice (8 and 5 in males and females, respectively). Conclusions Overall, our results suggest that in the adult mouse posterior cortex there are surprisingly few sex differences in gene expression, and those that exist are mainly related to cation channel activity. Additionally, they indicate that brain region-specific functional effects of ERβ may be largely post-transcriptional.
Collapse
Affiliation(s)
- Jasmine A. Fels
- Feil Family Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | | | - Giovanni Manfredi
- Feil Family Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
17
|
Selective activation of the estrogen receptor-β by the polysaccharide from Cynanchum wilfordii alleviates menopausal syndrome in ovariectomized mice. Int J Biol Macromol 2020; 165:1029-1037. [PMID: 32991896 DOI: 10.1016/j.ijbiomac.2020.09.165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/11/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022]
Abstract
The menopausal syndrome caused by rapid changes in hormone levels greatly influences the quality of life of women. Though hormone replacement therapy (HRT) is widely used to treat the menopausal syndrome, it exhibits many side effects, including the risk of thrombosis, cardiovascular diseases, and increased incidence of breast cancer; thus, diversifying the interest for phytotherapy-based materials as alternatives to HRT. Here, we isolated a crude polysaccharide fraction (CWPF) from Cynanchum wilfordii root that alleviated the ovariectomy-induced uterine atrophy and bone loss without changes in plasma estradiol concentration in mice. Increased plasma levels of follicle-stimulating hormone (FSH), alkaline phosphatase (ALP), osteocalcin (OC) in ovariectomized mice were also reduced to normal levels by CWPF administration. We found that the inhibitory effects of CWPF on menopausal symptoms were mediated by the estrogen receptor β (ER-β) specific activation, not ER-α. Moreover, CWPF treatment suppressed the phosphorylation of Akt, suggesting that CWPF alleviates post-menopausal symptoms by regulating ER-β related Akt signaling pathway. These results demonstrate that the polysaccharides corresponding to CWPF among the water-soluble extracts of CW could be used as a beneficial herbal alternative for the development of therapeutic agents to prevent menopausal syndrome in women.
Collapse
|
18
|
Montesi SB, Fisher JH, Martinez FJ, Selman M, Pardo A, Johannson KA. Update in Interstitial Lung Disease 2019. Am J Respir Crit Care Med 2020; 202:500-507. [PMID: 32412784 DOI: 10.1164/rccm.202002-0360up] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Sydney B Montesi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jolene H Fisher
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Mexico City, Mexico
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico; and
| | - Kerri A Johannson
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
19
|
Vahidinia Z, Karimian M, Joghataei MT. Neurosteroids and their receptors in ischemic stroke: From molecular mechanisms to therapeutic opportunities. Pharmacol Res 2020; 160:105163. [DOI: 10.1016/j.phrs.2020.105163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 01/09/2023]
|
20
|
Pandey A, Khan HR, Alex NS, Puttaraju M, Chandrasekaran TT, Rudraiah M. Under-carboxylated osteocalcin regulates glucose and lipid metabolism during pregnancy and lactation in rats. J Endocrinol Invest 2020; 43:1081-1095. [PMID: 32056149 DOI: 10.1007/s40618-020-01195-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Under-carboxylated osteocalcin (UcOC), a bone-released hormone is suggested to regulate energy metabolism. Pregnancy and lactation physiological conditions that require high levels of energy. The current study attempts to examine whether UcOC is involved in regulating energy metabolism during these conditions using adult Wistar rats. METHODS AND RESULTS Insulin tolerance tests indicated insulin resistance during late pregnancy (day 19 of pregnancy; P19) and insulin sensitivity during early lactation (day 6 of lactation; L6). Gene expression analyses suggested that muscle glucose metabolism was downregulated during P19 and enhanced during L6. Concomitantly, circulatory UcOC levels were lower during pregnancy but higher during early lactation; the rise in UcOC levels was tightly linked to the lactation process. Altering endogenous UcOC levels pharmacologically with warfarin and alendronate in P19 and L6 rats changed whole-body insulin response and muscle glucose transporter (Glut4) expression. Glut4 expression can be increased by either UcOC or estrogen receptors (ERs), both of which act independent of each other. A high fat diet decreased UcOC levels and insulin sensitivity in lactating rats, suggesting that diet can compromise UcOC-established energy homeostasis. Gene expression of lipid metabolism markers and triglyceride levels suggested that UcOC suppression during early pregnancy is an essential step in maternal lipid storage. CONCLUSION Taken together, we found that UcOC plays an important role in energy homeostasis via regulation of glucose and lipid metabolism during pregnancy and lactation.
Collapse
Affiliation(s)
- A Pandey
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - H R Khan
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - N S Alex
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - M Puttaraju
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - T T Chandrasekaran
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - M Rudraiah
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
21
|
Jin J, Wu P, Zhang X, Li D, Wong WL, Lu YJ, Sun N, Zhang K. Understanding the interaction of estrogenic ligands with estrogen receptors: a survey of the functional and binding kinetic studies. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2020; 38:142-168. [PMID: 32500833 DOI: 10.1080/26896583.2020.1761204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The investigation of estrogen actions and their interaction characteristics with estrogen receptors (ERs) to induce unique functional features inside cells have allowed us to understand better the regulation of many vital physiological and cellular processes in humans. The biological effects of estrogenic ligands or compounds are mediated via estrogen receptors that act as the ligand-activated transcription factors. Therefore, the study on ligand-ER interaction properties and mechanism of ligand-ER complexes binding to specific estrogen response elements located in the promoters of target genes are very critical to realize the complicated biological process regulated by the endogenous estrogens. Several reviews have provided comprehensive and updated information on the influence of estrogen receptors in health and disease. However, the mechanism of estrogen-ERs binding and affinity aspects at molecular level is relatively under-investigated. This review thus aims to shed light on the significance of the binding kinetics of ligand-ER interactions because the information provide great assistance to define how a ligand or a drug can communicate with physiology to produce a desired therapeutic response. In addition, the most frequently used methodologies for the binding kinetic study are highlighted over the last decade.
Collapse
Affiliation(s)
- Jingwei Jin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, P.R. China and International Healthcare Innovation Institute (Jiangmen), Jiangmen, P.R. China
- Institute of Natural Medicine and Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, P. R. China
| | - Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, P.R. China and International Healthcare Innovation Institute (Jiangmen), Jiangmen, P.R. China
| | - Xinyue Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, P.R. China and International Healthcare Innovation Institute (Jiangmen), Jiangmen, P.R. China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, P.R. China and International Healthcare Innovation Institute (Jiangmen), Jiangmen, P.R. China
| | - Wing-Leung Wong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, P.R. China and International Healthcare Innovation Institute (Jiangmen), Jiangmen, P.R. China
| | - Yu-Jing Lu
- Institute of Natural Medicine and Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, P. R. China
| | - Ning Sun
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, P.R. China and International Healthcare Innovation Institute (Jiangmen), Jiangmen, P.R. China
| |
Collapse
|
22
|
Gender Predilection in Sporadic Parathyroid Adenomas. Int J Mol Sci 2020; 21:ijms21082964. [PMID: 32331456 PMCID: PMC7216151 DOI: 10.3390/ijms21082964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 01/10/2023] Open
Abstract
Primary hyperparathyroidism is a common endocrinopathy that is mainly caused by benign parathyroid adenomas. The frequency, clinical presentation and complications of the disease show significant differences between genders, with the majority of cases being reported in postmenopausal women. Due to this gender predilection, several studies have investigated the role of sex hormones in the pathogenesis of the disease and their potential use as targets for optimal and gender-specific management. Epigenetic mechanisms that regulate gene transcription may also contribute to these differences between genders. In this review, we outline what is currently known regarding the role of sex hormones and the recent data on the role of non-coding RNAs in the differences between genders in primary hyperparathyroidism due to sporadic parathyroid adenomas.
Collapse
|
23
|
Kasoha M, Dernektsi C, Seibold A, Bohle RM, Takacs Z, Ioan-Iulian I, Solomayer EF, Juhasz-Böss I. Crosstalk of estrogen receptors and Wnt/β-catenin signaling in endometrial cancer. J Cancer Res Clin Oncol 2020; 146:315-327. [PMID: 31865530 DOI: 10.1007/s00432-019-03114-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 01/01/2023]
Abstract
PURPOSE To investigate the interaction between Wnt/β-catenin and estrogen signaling pathways in endometrial cancer (EC). METHODS 119 women were involved in this study, including 65 women with histologically confirmed EC and 54 healthy women as a control group. Serum protein levels of Dkk1 were measured using ELISA. Protein expression levels of Dkk1, β-catenin, ER-β isoforms (β1, β2, β5), and ER-α were tested in paraffin-embedded tissues using IHC. Gene expression levels of Dkk1, CTNNB, ESR1, and ESR2 were tested in fresh tumorous and normal endometrium tissues using RT-PCR. RESULTS EC patients had significantly higher serum levels of Dkk1 protein compared with healthy women. Dkk1 and β-catenin showed different expression pattern in tumor cells compared to it in normal cells at the protein level but not at the gene level. Protein expression levels of ERβ2 and ERα were significantly lower in tumor cells compared with tumor-adjacent normal cells. Increased protein expression levels of ERα were associated with favorable clinicopathological features and better overall survival rate (OS). Protein expression levels of ERα were correlated with protein expression levels of Dkk1 and cytoplasmic β-catenin. The association between ERα expression levels and OS was no more significant when tested in regard to Dkk1- and cytoplasmic β-catenin expression levels. CONCLUSIONS Our data demonstrated that Wnt/β-catenin and estrogen signaling systems are dysregulated in EC showing; for the first time, a potential crosstalk between certain components of these two pathways, which in turn has affected the specificity of these molecules in disease characteristics. Understanding the signaling networks in EC is crucial in designing clinical trials to evaluate the efficacy of molecular-targeted agents and providing more successful therapies in the future.
Collapse
Affiliation(s)
- Mariz Kasoha
- Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, 66421, Homburg, Saar, Germany.
| | - Chrisoula Dernektsi
- Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, 66421, Homburg, Saar, Germany
| | - Anita Seibold
- Institute of General and Special Pathology, University Medical School of Saarland, 66421, Homburg, Saar, Germany
| | - Rainer M Bohle
- Institute of General and Special Pathology, University Medical School of Saarland, 66421, Homburg, Saar, Germany
| | - Zoltan Takacs
- Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, 66421, Homburg, Saar, Germany
| | - Iordache Ioan-Iulian
- Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, 66421, Homburg, Saar, Germany
| | - Erich-Franz Solomayer
- Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, 66421, Homburg, Saar, Germany
| | - Ingolf Juhasz-Böss
- Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, 66421, Homburg, Saar, Germany
| |
Collapse
|
24
|
Akula SM, Candido S, Abrams SL, Steelman LS, Lertpiriyapong K, Cocco L, Ramazzotti G, Ratti S, Follo MY, Martelli AM, Murata RM, Rosalen PL, Bueno-Silva B, Matias de Alencar S, Falasca M, Montalto G, Cervello M, Notarbartolo M, Gizak A, Rakus D, Libra M, McCubrey JA. Abilities of β-Estradiol to interact with chemotherapeutic drugs, signal transduction inhibitors and nutraceuticals and alter the proliferation of pancreatic cancer cells. Adv Biol Regul 2020; 75:100672. [PMID: 31685431 DOI: 10.1016/j.jbior.2019.100672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Improving the effects of chemotherapy and reducing the side effects are important goals in cancer research. Various approaches have been examined to enhance the effectiveness of chemotherapy. For example, signal transduction inhibitors or hormonal based approaches have been included with chemo- or radio-therapy. MIA-PaCa-2 and BxPC-3 pancreatic ductal adenocarcinoma (PDAC) cells both express the estrogen receptor (ER). The effects of β-estradiol on the growth of PDAC cells has not been examined yet the ER is expressed in PDAC cells. We have examined the effects of combining β-estradiol with chemotherapeutic drugs, signal transcription inhibitors, natural products and nutraceuticals on PDAC. In most cases, inclusion of β-estradiol with chemotherapeutic drugs increased chemosensitivity. These results indicate some approaches involving β-estradiol which may be used to increase the effectiveness of chemotherapeutic and other drugs on the growth of PDAC.
Collapse
Affiliation(s)
- Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy; Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA
| | - Kvin Lertpiriyapong
- Center of Comparative Medicine and Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine and the Hospital for Special Surgery, New York City, New York, USA
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Matilde Y Follo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Ramiro M Murata
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA; Department of Foundational Sciences, School of Dental Medicine, East Carolina University, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Bruno Bueno-Silva
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil; Dental Research Division, Guarulhos University, Guarulhos, Brazil
| | | | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy & Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, Western Australia, 6102, Australia
| | - Giuseppe Montalto
- Dipartimento di Promozione Della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza (PROMISE), University of Palermo, Palermo, Italy; Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Monica Notarbartolo
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Palermo, Italy
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy; Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
25
|
Abstract
In aerobes, oxygen is essential for maintenance of life. However, incomplete reduction of oxygen leads to generation of reactive oxygen species. These oxidants oxidise biological macromolecules present in their vicinity and thereby impair cellular functions causing oxidative stress (OS). Aerobes have evolved both enzymatic and nonenzymatic antioxidant defences to protect themselves from OS. Although hormones as means of biological coordination involve in regulation of physiological activities of tissues by regulating metabolism, any change in their normal titre leads to pathophysiological states. While, hormones such as melatonin, insulin, oestrogen, progesterone display antioxidant features, thyroid hormone, corticosteroids and catecholamines elicit free radical generation and OS, and the role of testosterone in inducing OS is debateable. This review is an attempt to understand the impact of free radical generation and cross talk between the hormones modulating antioxidant defence system under various pathophysiological conditions.
Collapse
Affiliation(s)
- Gagan B N Chainy
- Department of Biotechnology, Utkal University, Bhubaneswar, India
| | | |
Collapse
|
26
|
Impact of quercetin on tight junctional proteins and BDNF signaling molecules in hippocampus of PCBs-exposed rats. Interdiscip Toxicol 2019; 11:294-305. [PMID: 31762681 PMCID: PMC6853011 DOI: 10.2478/intox-2018-0029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 02/06/2018] [Indexed: 12/26/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) consist of a range of toxic substances which are directly proportional to carcinogenesis and tumor-promoting factors as well as having neurotoxic properties. Reactive oxygen species, which are produced from PCBs, alter blood–brain barrier (BBB) integrity, which is paralleled by cytoskeletal rearrangements and redistribution and disappearance of tight junction proteins (TJPs) like claudin-5 and occludin. Brain-derived neurotrophic factor (BDNF), plays an important role in the maintenance, survival of neurons and synaptic plasticity. It is predominant in the hippocampal areas vital to learning, memory and higher thinking. Quercetin, a flavonoid, had drawn attention to its neurodefensive property. The study is to assess the role of quercetin on serum PCB, estradiol and testosterone levels and mRNA expressions of estrogen receptor α and β, TJPs and BDNF signaling molecules on the hippocampus of PCBs-exposed rats. Rats were divided into 4 groups of 6 each. Group I rats were intraperitoneally (i.p.) administered corn oil (vehicle). Group II received quercetin 50 mg/kg/bwt (gavage). Group III received PCBs (Aroclor 1254) at 2 mg/kg bwt (i.p). Group IV received quercetin 50 mg/kg bwt (gavage) simultaneously with PCBs 2 mg/kg bwt (i.p.). The treatment was given daily for 30 days. The rats were euthanized 24 h after the experimental period. Blood was collected for quantification of serum PCBs estradiol and testosterone. The hippocampus was dissected and processed for PCR and Western blot; serum PCB was observed in PCB treated animals, simultaneously quercetin treated animals showed PCB metabolites. Serum testosterone and estradiol were decreased after PCB exposure. Quercetin supplementation brought back normal levels. mRNA expressions of estrogen α and β were decreased in the hippocampus of PCB treated rats. TJPS and BDNF signalling molecules were decreased in hippocampus of PCB treated rats. Quercetin supplementation retrieved all the parameters. Quercetin alone treated animals showed no alteration. Thus in PCB caused neurotoxicity, quercetin protects and prevents neuronal damage in the hippocampus.
Collapse
|
27
|
Giovannelli P, Di Donato M, Galasso G, Di Zazzo E, Medici N, Bilancio A, Migliaccio A, Castoria G. Breast cancer stem cells: The role of sex steroid receptors. World J Stem Cells 2019; 11:594-603. [PMID: 31616537 PMCID: PMC6789191 DOI: 10.4252/wjsc.v11.i9.594] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/06/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is the most common cancer among women, and current available therapies often have high success rates. Nevertheless, BC might acquire drug resistance and sometimes relapse. Current knowledge about the most aggressive forms of BC points to the role of specific cells with stem properties located within BC, the so-called “BC stem cells” (BCSCs). The role of BCSCs in cancer formation, growth, invasiveness, therapy resistance and tumor recurrence is becoming increasingly clear. The growth and metastatic properties of BCSCs are regulated by different pathways, which are only partially known. Sex steroid receptors (SSRs), which are involved in BC etiology and progression, promote BCSC proliferation, dedifferentiation and migration. However, in the literature, there is incomplete information about their roles. Particularly, there are contrasting conclusions about the expression and role of the classical BC hormonal biomarkers, such as estrogen receptor alpha (ERα), together with scant, albeit promising information concerning ER beta (ERβ) and androgen receptor (AR) properties that control different transduction pathways in BCSCs. In this review, we will discuss the role that SRs expressed in BCSCs play to BC progression and recurrence and how these findings have opened new therapeutic possibilities.
Collapse
Affiliation(s)
- Pia Giovannelli
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Naples 80138, Italy
| | - Marzia Di Donato
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Naples 80138, Italy
| | - Giovanni Galasso
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Naples 80138, Italy
| | - Erika Di Zazzo
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Naples 80138, Italy
| | - Nicola Medici
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Naples 80138, Italy
| | - Antonio Bilancio
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Naples 80138, Italy
| | - Antimo Migliaccio
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Naples 80138, Italy
| | - Gabriella Castoria
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Naples 80138, Italy
| |
Collapse
|
28
|
Feng Y, Peng Z, Liu W, Yang Z, Shang J, Cui L, Duan F. Evaluation of the epidemiological and prognosis significance of ESR2 rs3020450 polymorphism in ovarian cancer. Gene 2019; 710:316-323. [PMID: 31200086 DOI: 10.1016/j.gene.2019.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 12/15/2022]
Abstract
AIM To investigate the correlation between the polymorphism of estrogen receptor β gene (ESR2) rs3020450 and cancer susceptibility, and explore the epidemiological significance and the effect of ESR2 expression levels on the prognosis of ovarian cancer. METHODS Based on meta-analysis the association between ESR2 rs3020450 polymorphism and cancer susceptibility was estimated and a case-control design was used to verify this result in ovarian cancer. The epidemiological effect of ESR2 rs3020450 polymorphism was assessed by attributable risk percentage (ARP) and population attributable risk percentage (PARP). Kaplan Meier plotters were used to evaluate overall survival (OS) and progression-free survival (PFS) in ovarian cancer patients and GEPIA for the differential expression of ESR2 levels in ovarian cancer and adjacent normal tissues. RESULTS The pooled analysis indicated no significant correlation between the ESR2 rs3020450 polymorphism and the cancer susceptibility. In the stratified analysis by cancer types, significantly decreased risk was found in ovarian cancer (AG vs GG: OR = 0.73, 95%CI: 0.53-0.97, P = 0.03). Unconditional logistic regression results of case-control study in ovarian cancer observed significant differences in all comparisons (AG vs GG: OR = 0.81, 95%CI: 0.62-0.98, P = 0.04; AA vs GG: OR = 0.63, 95%CI: 0.42-0.92, P = 0.01 and AG + AA vs GG: OR = 0.73, 95%CI: 0.53-0.96, P < 0.001). Based on meta-analysis and case-control pooled results, ARP and PARP were evaluated respectively in allele (21.95% and7.97%), heterozygote (36.99% and 12.11%) and dominant model (36.84% and 12.97%) of rs3020450 polymorphism in ovarian cancer. The expression levels of ESR2 in normal tissues was significantly higher than that in cancer tissues (OV, Median, 4.7:0.21), and significant correlations were observed between high ESR2 expression levels and long OS (HR = 0.80, 95%CI: 0.70-0.92, P = 0.002) and PFS (HR = 0.767, 95%Cl: 0.67-0.88, P < 0.001). CONCLUSION Our results indicated that ESR2 rs3020450 polymorphism was associated with ovarian cancer risk from epidemiological perspective, and high ESR2 expression levels was associated with long survival in patients with ovarian cancer.
Collapse
Affiliation(s)
- Yajing Feng
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China; Department of Nosocomial Infection Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Peng
- Department of Infectious Disease, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Weigang Liu
- Medical Record Statistics Office, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Zhongyu Yang
- The Ohio State University College of Art and Science, Columbus, OH, USA
| | - Jia Shang
- Department of Infectious Disease, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Liuxin Cui
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| | - Fujiao Duan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China; Medical Research Office, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
29
|
Lee SR, Park YJ, Han YB, Lee JC, Lee S, Park HJ, Lee HJ, Kim KH. Isoamericanoic Acid B from Acer tegmentosum as a Potential Phytoestrogen. Nutrients 2018; 10:nu10121915. [PMID: 30518114 PMCID: PMC6315828 DOI: 10.3390/nu10121915] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/20/2018] [Accepted: 11/28/2018] [Indexed: 12/25/2022] Open
Abstract
Phytoestrogens derived from plants have attracted the attention of the general public and the medical community due to their potentially beneficial role in relieving menopausal symptoms. The deciduous tree Acer tegmentosum Maxim (Aceraceae) has long been utilized in Korean folk medicine to alleviate many physiological disorders, including abscesses, surgical bleeding, and liver diseases. In order to explore structurally and/or biologically new constituents from Korean medicinal plants, a comprehensive phytochemical study was carried out on the bark of A. tegmentosum. One new phenolic compound with a 1,4-benzodioxane scaffold, isoamericanoic acid B (1), as well as with nine known phenolic compounds (2–10), were successfully isolated from the aqueous extracts of the bark of A. tegmentosum. A detailed analysis using 1D and 2D NMR spectroscopy, electronic circular dichroism (ECD) spectral data, and LC/MS afforded the unambiguous structural determination of all isolated compounds, including the new compound 1. In addition, compounds 2, 4, 5, and 9 were isolated and identified from the bark of A. tegmentosum for the first time. All isolated compounds were tested for their estrogenic activities using an MCF-7 BUS cell proliferation assay, which revealed that compounds 1, 2, and 10 showed moderate estrogenic activity. To study the mechanism of this estrogenic effect, a docking simulation of compound 1, which showed the best estrogenic activity, was conducted with estrogen receptor (ER) -α and ER-β, which revealed that it interacts with the key residues of ER-α and ER-β. In addition, compound 1 had slightly higher affinity for ER-β than ER-α in the calculated Gibbs free energy for 1:ER-α and 1:ER-β. Thus, the present experimental evidence demonstrated that active compound 1 from A. tegmentosum could be a promising phytoestrogen for the development of natural estrogen supplements.
Collapse
Affiliation(s)
- Seoung Rak Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| | - Yong Joo Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| | - Yu Bin Han
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| | - Joo Chan Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| | - Seulah Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| | - Hyun-Ju Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| | - Hae-Jeung Lee
- Department of Food and Nutrition, Gachon University, Seongnam 13120, Korea.
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
30
|
Troisi R, Bjørge T, Gissler M, Grotmol T, Kitahara CM, Sæther SMM, Ording AG, Sköld C, Sørensen HT, Trabert B, Glimelius I. The role of pregnancy, perinatal factors and hormones in maternal cancer risk: a review of the evidence. J Intern Med 2018; 283:430-445. [PMID: 29476569 PMCID: PMC6688839 DOI: 10.1111/joim.12747] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An understanding of the origin of cancer is critical for cancer prevention and treatment. Complex biological mechanisms promote carcinogenesis, and there is increasing evidence that pregnancy-related exposures influence foetal growth cell division and organ functioning and may have a long-lasting impact on health and disease susceptibility in the mothers and offspring. Nulliparity is an established risk factor for breast, ovarian, endometrial and possibly pancreatic cancer, whilst the risk of kidney cancer is elevated in parous compared with nulliparous women. For breast, endometrial and ovarian cancer, each pregnancy provides an additional risk reduction. The associations of parity with thyroid and colorectal cancers are uncertain. The timing of reproductive events is also recognized to be important. Older age at first birth is associated with an increased risk of breast cancer, and older age at last birth is associated with a reduced risk of endometrial cancer. The risks of breast and endometrial cancers increase with younger age at menarche and older age at menopause. The mechanisms, and hormone profiles, that underlie alterations in maternal cancer risk are not fully understood and may differ by malignancy. Linking health registries and pooling of data in the Nordic countries have provided opportunities to conduct epidemiologic research of pregnancy exposures and subsequent cancer. We review the maternal risk of several malignancies, including those with a well-known hormonal aetiology and those with less established relationships. The tendency for women to have fewer pregnancies and at later ages, together with the age-dependent increase in the incidence of most malignancies, is expected to affect the incidence of pregnancy-associated cancer.
Collapse
Affiliation(s)
- Rebecca Troisi
- Division of Cancer Epidemiology and Biostatistics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Tone Bjørge
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Cancer Registry of Norway, Oslo, Norway
| | - Mika Gissler
- Information Services Department, National Institute for Health and Welfare (THL), Helsinki, Finland
- Department of Neurobiology, Care Sciences and Society, Division of Family Medicine, Karolinska Institute, Stockholm, Sweden
| | | | - Cari M. Kitahara
- Division of Cancer Epidemiology and Biostatistics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | | | - Anne Gulbech Ording
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Camilla Sköld
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Henrik Toft Sørensen
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Britton Trabert
- Division of Cancer Epidemiology and Biostatistics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Ingrid Glimelius
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Medicine, Clinical Epidemiology Unit, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
31
|
Jaiswal B, Gupta A. Modulation of Nuclear Receptor Function by Chromatin Modifying Factor TIP60. Endocrinology 2018; 159:2199-2215. [PMID: 29420715 DOI: 10.1210/en.2017-03190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/31/2018] [Indexed: 02/07/2023]
Abstract
Nuclear receptors (NRs) are transcription factors that bind to specific DNA sequences known as hormone response elements located upstream of their target genes. Transcriptional activity of NRs can be modulated by binding of the compatible ligand and transient interaction with cellular coregulators, functioning either as coactivators or as corepressors. Many coactivator proteins possess intrinsic histone acetyltransferase (HAT) activity that catalyzes the acetylation of specific lysine residues in histone tails and loosens the histone-DNA interaction, thereby facilitating access of transcriptional factors to the regulatory sequences of the DNA. Tat interactive protein 60 (TIP60), a member of the Mof-Ybf2-Sas2-TIP60 family of HAT protein, is a multifunctional coregulator that controls a number of physiological processes including apoptosis, DNA damage repair, and transcriptional regulation. Over the last two decades or so, TIP60 has been extensively studied for its role as NR coregulator, controlling various aspect of steroid receptor functions. The aim of this review is to summarize the findings on the role of TIP60 as a coregulator for different classes of NRs and its overall functional implications. We also discuss the latest studies linking TIP60 to NR-associated metabolic disorders and cancers for its potential use as a therapeutic drug target in future.
Collapse
Affiliation(s)
- Bharti Jaiswal
- Department of Life Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| | - Ashish Gupta
- Department of Life Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
32
|
Wang Z, Kanda S, Shimono T, Enkh-Undraa D, Nishiyama T. The in vitro estrogenic activity of the crude drugs found in Japanese herbal medicines prescribed for menopausal syndrome was enhanced by combining them. Altern Ther Health Med 2018; 18:107. [PMID: 29566679 PMCID: PMC5865359 DOI: 10.1186/s12906-018-2170-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 03/15/2018] [Indexed: 01/28/2023]
Abstract
BACKGROUND Japanese herbal medicines can be used as alternatives to estrogen therapy and are sometimes prescribed for menopausal syndrome because they have fewer side effects and are associated with better compliance than estrogen therapy, but little is known about the pharmacological mechanisms of such treatments. This study aimed to explore the mechanisms responsible for the estrogen-like effects of five widely prescribed Japanese herbal medicines (unkeito, kamishoyosan, nyoshinsan, keishibukuryogan, and tokishakuyakusan). METHODS We evaluated the estrogenic activity of these five Japanese herbal medicines and their metabolites using an estrogen receptor (ER)-dependent cell proliferation bioassay and an ER-dependent reporter assay. We also investigated the estrogenic activity of the crude drugs within the medicines and attempted to detect inter-crude drug synergistic effects using the ER-dependent reporter assay. RESULTS We found that unkeito, kamishoyosan, and nyoshinsan exhibited estrogenic activity, and they displayed stronger estrogenic activity after being metabolized. Then, we focused on investigating the estrogenic activity of the crude drugs present within unkeito. We found that glycyrrhizae radix, cinnamomi cortex, evodiae fructus, and zingiberis rhizoma demonstrated ERβ-dependent estrogenic activity. The combined use of evodiae fructus and glycyrrhizae radix, or evodiae fructus and cinnamomi cortex produced synergistic ERβ-dependent estrogenic activity. CONCLUSION It was suggested that unkeito, kamishoyosan, and nyoshinsan exert estrogenic activity, and hence, might be useful for treating menopausal syndrome. Furthermore, synergistic estrogenic effects were detected between some of the crude drugs present within unkeito.
Collapse
|
33
|
Zhang B, Zhang CG, Ji LH, Zhao G, Wu ZY. Estrogen receptor β selective agonist ameliorates liver cirrhosis in rats by inhibiting the activation and proliferation of hepatic stellate cells. J Gastroenterol Hepatol 2018; 33:747-755. [PMID: 28884481 DOI: 10.1111/jgh.13976] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 08/27/2017] [Accepted: 08/28/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM The aim of this study is to explore the roles of estrogen receptor (ER) subtypes and corresponding agonists/antagonists on the development of cirrhosis and activation and proliferation of hepatic stellate cells (HSCs). METHODS Carbon tetrachloride (CCl4 )-induced cirrhotic ovariectomized rats were administered non-selective ER agonist (β-estradiol, E2), ER selective agonists (ERα agonist, propylpyrazoletriol; ERβ agonist, diarylpropionitrile [DPN]; and G-protein-coupled ER [GPER] agonist, G1), or E2 + ER selective antagonists (ERα antagonist, MPP; ERβ antagonist, PHTPP; and GPER antagonist, G15) for 12 weeks. The expression of the three ER subtypes in livers and HSCs and the effects of the drugs on hepatic fibrosis, isolated HSCs, and uteri were evaluated. RESULTS Selective ER agonists/antagonists had various effects on CCl4 -induced cirrhosis. The cirrhotic rats in the CCl4 + E2, CCl4 + DPN, CCl4 + E2 + MPP, and CCl4 + E2 + G15 groups presented reduced fibrosis scores, compared with those in the CCl4 group. The cirrhotic rats in the E2 + PHTPP group presented increased fibrosis scores that similar to those in the CCl4 group. The ovariectomized rats had enlarged uteri with increased uterus indexes after E2 administration; however, the proliferative effects of E2 were partially blocked by MPP or G15, but not PHTPP. In the in vitro study, DPN attenuated the transformation of quiescent HSCs to activated phenotype, suppressed collagen I, and α-smooth muscle actin expression. DPN also suppressed platelet-derived growth factor-induced proliferation in cultured HSCs, which was reversed by PHTPP. CONCLUSIONS The antifibrogenic effects of estrogen were mediated by ERβ but not ERα or GPER. The ERβ selective agonist exerted a fibrosuppressive effect by inhibiting the activation and proliferation of HSCs, but did not induce uterine hyperplasia.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng-Gang Zhang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin-Hua Ji
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Zhao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Yong Wu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
34
|
He H, Sinha I, Fan R, Haldosen LA, Yan F, Zhao C, Dahlman-Wright K. c-Jun/AP-1 overexpression reprograms ERα signaling related to tamoxifen response in ERα-positive breast cancer. Oncogene 2018; 37:2586-2600. [DOI: 10.1038/s41388-018-0165-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 12/20/2022]
|
35
|
Kim CK, Torcaso A, Asimes A, Chung WCJ, Pak TR. Structural and functional characteristics of oestrogen receptor β splice variants: Implications for the ageing brain. J Neuroendocrinol 2018; 30:10.1111/jne.12488. [PMID: 28514502 PMCID: PMC5693782 DOI: 10.1111/jne.12488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/07/2017] [Accepted: 05/13/2017] [Indexed: 01/21/2023]
Abstract
Oestrogen receptor (ER)β is a multifunctional nuclear receptor that mediates the actions of oestrogenic compounds. Despite its well defined role in mediating the actions of oestrogens, a substantial body of evidence demonstrates that ERβ has a broad range of physiological functions independent of those normally attributed to oestrogen signalling. These functions can partly be achieved by the activity of several alternatively spliced isoforms that have been identified for ERβ. This short review describes structural differences between the ERβ splice variants that are known to be translated into proteins. Moreover, we discuss how these alternative structures contribute to functional differences in the context of both healthy and pathological conditions. Our review also describes the principal factors that regulate alternative RNA splicing. The alternatively spliced isoforms of ERβ are differentially expressed according to brain region, age and hormonal milieu, emphasising the likelihood that there are precise cell-specific mechanisms regulating ERβ alternative splicing. However, despite these correlative data, the molecular factors regulating alternative ERβ splicing in the brain remain unknown. We also review the basic mechanisms that regulate alternative RNA splicing and use that framework to make logical predictions about ERβ alternative splicing in the brain.
Collapse
Affiliation(s)
- C K Kim
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - A Torcaso
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - A Asimes
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - W C J Chung
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - T R Pak
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
36
|
|
37
|
Miller MM, McMullen PD, Andersen ME, Clewell RA. Multiple receptors shape the estrogen response pathway and are critical considerations for the future of in vitro-based risk assessment efforts. Crit Rev Toxicol 2017; 47:564-580. [DOI: 10.1080/10408444.2017.1289150] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Rumi MAK, Singh P, Roby KF, Zhao X, Iqbal K, Ratri A, Lei T, Cui W, Borosha S, Dhakal P, Kubota K, Chakraborty D, Vivian JL, Wolfe MW, Soares MJ. Defining the Role of Estrogen Receptor β in the Regulation of Female Fertility. Endocrinology 2017; 158:2330-2343. [PMID: 28520870 PMCID: PMC5505218 DOI: 10.1210/en.2016-1916] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/11/2017] [Indexed: 01/23/2023]
Abstract
Estrogens are essential hormones for the regulation of fertility. Cellular responses to estrogens are mediated by estrogen receptor α (ESR1) and estrogen receptor β (ESR2). In mouse and rat models, disruption of Esr1 causes infertility in both males and females. However, the role of ESR2 in reproductive function remains undecided because of a wide variation in phenotypic observations among Esr2-mutant mouse strains. Regulatory pathways independent of ESR2 binding to its cognate DNA response element have also been implicated in ESR2 signaling. To clarify the regulatory roles of ESR2, we generated two mutant rat models: one with a null mutation (exon 3 deletion, Esr2ΔE3) and the other with an inframe deletion selectively disrupting the DNA binding domain (exon 4 deletion, Esr2ΔE4). In both models, we observed that ESR2-mutant males were fertile. ESR2-mutant females exhibited regular estrous cycles and could be inseminated by wild-type (WT) males but did not become pregnant or pseudopregnant. Esr2-mutant ovaries were small and differed from WT ovaries by their absence of corpora lutea, despite the presence of follicles at various stages of development. Esr2ΔE3- and Esr2ΔE4-mutant females exhibited attenuated preovulatory gonadotropin surges and did not ovulate in response to a gonadotropin regimen effective in WT rats. Similarities of reproductive deficits in Esr2ΔE3 and Esr2ΔE4 mutants suggest that DNA binding-dependent transcriptional function of ESR2 is critical for preovulatory follicle maturation and ovulation. Overall, the findings indicate that neuroendocrine and ovarian deficits are linked to infertility observed in Esr2-mutant rats.
Collapse
Affiliation(s)
- M. A. Karim Rumi
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Prabhakar Singh
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Katherine F. Roby
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Xiao Zhao
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Khursheed Iqbal
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Anamika Ratri
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Tianhua Lei
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Wei Cui
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Shaon Borosha
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Pramod Dhakal
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Kaiyu Kubota
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Damayanti Chakraborty
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Jay L. Vivian
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Michael W. Wolfe
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Michael J. Soares
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
39
|
Batova A, Altomare D, Creek KE, Naviaux RK, Wang L, Li K, Green E, Williams R, Naviaux JC, Diccianni M, Yu AL. Englerin A induces an acute inflammatory response and reveals lipid metabolism and ER stress as targetable vulnerabilities in renal cell carcinoma. PLoS One 2017; 12:e0172632. [PMID: 28296891 PMCID: PMC5351975 DOI: 10.1371/journal.pone.0172632] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/06/2017] [Indexed: 12/14/2022] Open
Abstract
Renal cell carcinoma (RCC) is among the top ten most common forms of cancer and is the most common malignancy of the kidney. Clear cell renal carcinoma (cc-RCC), the most common type of RCC, is one of the most refractory cancers with an incidence that is on the rise. Screening of plant extracts in search of new anti-cancer agents resulted in the discovery of englerin A, a guaiane sesquiterpene with potent cytotoxicity against renal cancer cells and a small subset of other cancer cells. Though a few cellular targets have been identified for englerin A, it is still not clear what mechanisms account for the cytotoxicity of englerin A in RCC, which occurs at concentrations well below those used to engage the targets previously identified. Unlike any prior study, the current study used a systems biology approach to explore the mechanism(s) of action of englerin A. Metabolomics analyses indicated that englerin A profoundly altered lipid metabolism by 24 h in cc-RCC cell lines and generated significant levels of ceramides that were highly toxic to these cells. Microarray analyses determined that englerin A induced ER stress signaling and an acute inflammatory response, which was confirmed by quantitative PCR and Western Blot analyses. Additionally, fluorescence confocal microscopy revealed that englerin A at 25 nM disrupted the morphology of the ER confirming the deleterious effect of englerin A on the ER. Collectively, our findings suggest that cc-RCC is highly sensitive to disruptions in lipid metabolism and ER stress and that these vulnerabilities can be targeted for the treatment of cc-RCC and possibly other lipid storing cancers. Furthermore, our results suggest that ceramides may be a mediator of some of the actions of englerin A. Lastly, the acute inflammatory response induced by englerin A may mediate anti-tumor immunity.
Collapse
Affiliation(s)
- Ayse Batova
- Department of Pediatrics, University of California, San Diego, California, United States of America
- * E-mail:
| | - Diego Altomare
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States of America
| | - Kim E. Creek
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States of America
| | - Robert K. Naviaux
- Department of Pediatrics, University of California, San Diego, California, United States of America
- The Mitochondrial and Metabolic Disease Center, Department of Pathology, University of California, San Diego, San Diego, California, United States of America
- Department of Medicine, University of California, San Diego, California, United States of America
| | - Lin Wang
- The Mitochondrial and Metabolic Disease Center, Department of Pathology, University of California, San Diego, San Diego, California, United States of America
| | - Kefeng Li
- The Mitochondrial and Metabolic Disease Center, Department of Pathology, University of California, San Diego, San Diego, California, United States of America
| | - Erica Green
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States of America
| | - Richard Williams
- Department of Pediatrics, University of California, San Diego, California, United States of America
| | - Jane C. Naviaux
- The Mitochondrial and Metabolic Disease Center, Department of Pathology, University of California, San Diego, San Diego, California, United States of America
| | - Mitchell Diccianni
- Department of Pediatrics, University of California, San Diego, California, United States of America
| | - Alice L. Yu
- Department of Pediatrics, University of California, San Diego, California, United States of America
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| |
Collapse
|
40
|
Yaşar P, Ayaz G, User SD, Güpür G, Muyan M. Molecular mechanism of estrogen-estrogen receptor signaling. Reprod Med Biol 2016; 16:4-20. [PMID: 29259445 PMCID: PMC5715874 DOI: 10.1002/rmb2.12006] [Citation(s) in RCA: 294] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/16/2016] [Indexed: 02/06/2023] Open
Abstract
17β‐Estradiol (E2), as the main circulating estrogen hormone, regulates many tissue and organ functions in physiology. The effects of E2 on cells are mediated by the transcription factors and estrogen receptor (ER)α and ERβ that are encoded by distinct genes. Localized at the peri‐membrane, mitochondria, and the nucleus of cells that are dependent on estrogen target tissues, the ERs share similar, as well as distinct, regulatory potentials. Different intracellular localizations of the ERs result in dynamically integrated and finely tuned E2 signaling cascades that orchestrate cellular growth, differentiation, and death. The deregulation of E2–ER signaling plays a critical role in the initiation and progression of target tissue malignancies. A better understanding of the complex regulatory mechanisms that underlie ER actions in response to E2 therefore holds a critical trajectory for the development of novel prognostic and therapeutic approaches with substantial impacts on the systemic management of target tissue diseases.
Collapse
Affiliation(s)
- Pelin Yaşar
- Department of Biological Sciences Middle East Technical University Ankara Turkey
| | - Gamze Ayaz
- Department of Biological Sciences Middle East Technical University Ankara Turkey
| | - Sırma Damla User
- Department of Biological Sciences Middle East Technical University Ankara Turkey
| | - Gizem Güpür
- Department of Biological Sciences Middle East Technical University Ankara Turkey.,Present address: Cell and Molecular Biology Program Duke University Durham North Carolina USA
| | - Mesut Muyan
- Department of Biological Sciences Middle East Technical University Ankara Turkey
| |
Collapse
|
41
|
Luo R, Fang D, Chu P, Wu H, Zhang Z, Tang Z. Multiple molecular targets in breast cancer therapy by betulinic acid. Biomed Pharmacother 2016; 84:1321-1330. [DOI: 10.1016/j.biopha.2016.10.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 01/11/2023] Open
|
42
|
Reproductive history and risk of colorectal adenocarcinoma in parous women: a Nordic population-based case-control study. Br J Cancer 2016; 115:1416-1420. [PMID: 27701386 PMCID: PMC5129816 DOI: 10.1038/bjc.2016.315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 08/19/2016] [Accepted: 09/06/2016] [Indexed: 12/14/2022] Open
Abstract
Background: Data are conflicting regarding the role of endogenous sex hormones in colorectal carcinogenesis. In this large population-based study, we pooled data from birth and cancer registries in four Nordic countries, to evaluate the risk of colorectal adenocarcinoma in relation to women's reproductive history. Methods: We conducted a population-based case–control study among women registered in Nordic birth registries. The study included colorectal adenocarcinoma cases diagnosed in Denmark, Finland, Norway, and Sweden during 1967–2013 and up to 10 matched controls per case, in total 22 185 cases and 220 246 controls. Odds ratios (ORs) with 95% confidence intervals (95% CIs) were derived from conditional logistic regression models. We had limited information available on possible confounders. Results: We found no evidence for associations between colorectal adenocarcinoma and parity, age at first and last birth, and time since first and last birth. The risk estimates were also close to unity for specific cancer subsites (proximal and distal colon and rectum). As well, when the analyses were stratified on menopausal status, parity, and mother's year of birth, no indication of associations was found. Conclusions: In this large, Nordic population-based study, no evidence for associations was found between women's reproductive history and colorectal adenocarcinoma in parous women.
Collapse
|
43
|
Lau KM, To KF. Importance of Estrogenic Signaling and Its Mediated Receptors in Prostate Cancer. Int J Mol Sci 2016; 17:E1434. [PMID: 27589731 PMCID: PMC5037713 DOI: 10.3390/ijms17091434] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/16/2016] [Accepted: 08/23/2016] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) treatment was first established by Huggins and Hodges in 1941, primarily described as androgen deprivation via interference of testicular androgen production. The disease remains incurable with relapse of hormone-refractory cancer after treatments. Epidemiological and clinical studies disclosed the importance of estrogens in PCa. Discovery of estrogen receptor ERβ prompted direct estrogenic actions, in conjunction with ERα, on PCa cells. Mechanistically, ERs upon ligand binding transactivate target genes at consensus genomic sites via interactions with various transcriptional co-regulators to mold estrogenic signaling. With animal models, Noble revealed estrogen dependencies of PCa, providing insight into potential uses of antiestrogens in the treatment. Subsequently, various clinical trials were conducted and molecular and functional consequences of antiestrogen treatment in PCa were delineated. Besides, estrogens can also trigger rapid non-genomic signaling responses initiated at the plasma membrane, at least partially via an orphan G-protein-coupled receptor GPR30. Activation of GPR30 significantly inhibited in vitro and in vivo PCa cell growth and the underlying mechanism was elucidated. Currently, molecular networks of estrogenic and antiestrogenic signaling via ERα, ERβ and GPR30 in PCa have not been fully deciphered. This crucial information could be beneficial to further developments of effective estrogen- and antiestrogen-based therapy for PCa patients.
Collapse
Affiliation(s)
- Kin-Mang Lau
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in Southern China, and Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China.
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in Southern China, and Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
44
|
Zhang CG, Zhang B, Deng WS, Duan M, Chen W, Wu ZY. Role of estrogen receptor β selective agonist in ameliorating portal hypertension in rats with CCl 4-induced liver cirrhosis. World J Gastroenterol 2016; 22:4484-4500. [PMID: 27182159 PMCID: PMC4858631 DOI: 10.3748/wjg.v22.i18.4484] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/27/2016] [Accepted: 03/18/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of diarylpropionitrile (DPN), a selective agonist of estrogen receptor β (ERβ), in liver cirrhosis with portal hypertension (PHT) and isolated hepatic stellate cells (HSCs).
METHODS: Female Sprague-Dawley rats were ovariectomized (OVX), and liver cirrhosis with PHT was induced by CCl4 injection. DPN and PHTPP, the selective ERβ agonist and antagonist, were used as drug interventions. Liver fibrosis was assessed by hematoxylin and eosin (HE) and Masson’s trichrome staining and by analyzing smooth muscle actin expression. Hemodynamic parameters were determined in vivo using colored microspheres technique. Protein expression and phosphorylation were determined by immunohistochemical staining and Western blot analysis. Messenger RNA levels were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Collagen gel contraction assay was performed using gel lattices containing HSCs treated with DPN, PHTPP, or Y-27632 prior to ET-1 addition.
RESULTS: Treatment with DPN in vivo greatly lowered portal pressure and improved hemodynamic parameters without affecting mean arterial pressure, which was associated with the attenuation of liver fibrosis and intrahepatic vascular resistance (IHVR). In CCl4-treated rat livers, DPN significantly decreased the expression of RhoA and ROCK II, and even suppressed ROCK II activity. Moreover, DPN remarkedly increased the levels of endothelial nitric oxide synthase (eNOS) and phosphorylated eNOS, and promoted the activities of protein kinase G (PKG), which is an NO effector in the liver. Furthermore, DPN reduced the contractility of activated HSCs in the 3-dimensional stress-relaxed collagen lattices, and decreased the ROCK II activity in activated HSCs. Finally, in vivo/in vitro experiments demonstrated that MLC activity was inhibited by DPN.
CONCLUSION: For OVX rats with liver cirrhosis, DPN suppressed liver RhoA/ROCK signal, facilitated NO/PKG pathways, and decreased IHVR, giving rise to reduced portal pressure. Therefore, DPN represents a relevant treatment choice against PHT in cirrhotic patients, especially postmenopausal women.
Collapse
|
45
|
Voutsadakis IA. Epithelial-Mesenchymal Transition (EMT) and Regulation of EMT Factors by Steroid Nuclear Receptors in Breast Cancer: A Review and in Silico Investigation. J Clin Med 2016; 5:E11. [PMID: 26797644 PMCID: PMC4730136 DOI: 10.3390/jcm5010011] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 12/23/2015] [Accepted: 12/30/2015] [Indexed: 12/20/2022] Open
Abstract
Steroid Nuclear Receptors (SNRs) are transcription factors of the nuclear receptor super-family. Estrogen Receptor (ERα) is the best-studied and has a seminal role in the clinic both as a prognostic marker but also as a predictor of response to anti-estrogenic therapies. Progesterone Receptor (PR) is also used in the clinic but with a more debatable prognostic role and the role of the four other SNRs, ERβ, Androgen Receptor (AR), Glucocorticoid Receptor (GR) and Mineralocorticoid Receptor (MR), is starting only to be appreciated. ERα, but also to a certain degree the other SNRs, have been reported to be involved in virtually every cancer-enabling process, both promoting and impeding carcinogenesis. Epithelial-Mesenchymal Transition (EMT) and the reverse Mesenchymal Epithelial Transition (MET) are such carcinogenesis-enabling processes with important roles in invasion and metastasis initiation but also establishment of tumor in the metastatic site. EMT is governed by several signal transduction pathways culminating in core transcription factors of the process, such as Snail, Slug, ZEB1 and ZEB2, and Twist, among others. This paper will discuss direct regulation of these core transcription factors by SNRs in breast cancer. Interrogation of publicly available databases for binding sites of SNRs on promoters of core EMT factors will also be included in an attempt to fill gaps where other experimental data are not available.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Division of Medical Oncology, Department of Internal Medicine, Sault Area Hospital, Sault Ste Marie, ON P6B 0A8, Canada.
- Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, QC P3E 2C6, Canada.
| |
Collapse
|
46
|
SILVEIRA VRS, PIGOSSI SC, SCAREL-CAMINAGA RM, CIRELLI JA, RÊGO R, NOGUEIRA NAP. Analysis of polymorphisms in Interleukin 10, NOS2A, and ESR2 genes in chronic and aggressive periodontitis. Braz Oral Res 2016; 30:e105. [DOI: 10.1590/1807-3107bor-2016.vol30.0105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 07/08/2016] [Indexed: 11/22/2022] Open
|
47
|
Sołtysik K, Czekaj P. ERα36--Another piece of the estrogen puzzle. Eur J Cell Biol 2015; 94:611-25. [PMID: 26522827 DOI: 10.1016/j.ejcb.2015.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 09/03/2015] [Accepted: 10/09/2015] [Indexed: 12/22/2022] Open
Abstract
Although the nuclear action of estrogen receptors (ER) is a well-known fact, evidence supporting membrane estrogen receptors is steadily accumulating. New ER variants of unrecognized function have been discovered. ERα is a product of the ESR1 gene. It serves not only as a template for the full-length 66kDa protein, but also for smaller isoforms which exist as independent receptors. The recently discovered ERα36 (36kDa), consisting of 310 amino acids of total 595 ERα66 protein residues, is an example of that group. The transcription initiation site is identified in the first intron of the ESR1 gene. C-Terminal 27 amino acids are encoded by previously unknown exon 9. The presence of this unique C-terminal sequence creates an opportunity for the production of selective antibodies. ERα36 has been shown to have a high affinity to the cell membrane and as much as 90% of the protein can be bound with it. Post-translational palmitoylation is suspected to play a crucial role in ERα36 anchoring to the cell membrane. In silico analysis suggests the existence of a potential transmembrane domain in ERα36. ERα36 was found in most cells of animals at various ages, but its exact physiological function remains to be fully elucidated. It seems that cells traditionally considered as being deprived of ER are able to respond to hormonal stimulation via the ERα36 receptor. Moreover, ERα36 displays unique pharmacological properties and its action may be behind antiestrogen resistance. The use of ERα36 in cancer diagnosis gives rise to great expectations.
Collapse
Affiliation(s)
- Kamil Sołtysik
- Students Scientific Society, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Piotr Czekaj
- Department of Cytophysiology, Chair of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland.
| |
Collapse
|
48
|
Musumeci G, Castrogiovanni P, Szychlinska MA, Aiello FC, Vecchio GM, Salvatorelli L, Magro G, Imbesi R. Mammary gland: From embryogenesis to adult life. Acta Histochem 2015; 117:379-85. [PMID: 25800977 DOI: 10.1016/j.acthis.2015.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/03/2015] [Accepted: 02/19/2015] [Indexed: 12/13/2022]
Abstract
The aim of this review is to focus on the molecular factors that ensure the optimal development and maintenance of the mammary gland thanks to their integration and coordination. The development of the mammary gland is supported, not only by endocrine signals, but also by regulatory molecules, which are able to integrate signals from the surrounding microenvironment. A major role is certainly played by homeotic genes, but their incorrect expression during the spatiotemporal regulation of proliferative, functional and differentiation cycles of the mammary gland, may result in the onset of neoplastic processes. Attention is directed also to the endocrine aspects and sexual dimorphism of mammary gland development, as well as the role played by ovarian steroids and their receptors in adult life.
Collapse
Affiliation(s)
- Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy.
| | - Marta Anna Szychlinska
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Flavia Concetta Aiello
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Giada Maria Vecchio
- Department of Medical and Surgical Sciences and Advanced Technologies, G.F. Ingrassia, Azienda Ospedaliero - Universitaria "Policlinico-Vittorio Emanuele", Anatomic Pathology Section, University of Catania, Catania, Italy
| | - Lucia Salvatorelli
- Department of Medical and Surgical Sciences and Advanced Technologies, G.F. Ingrassia, Azienda Ospedaliero - Universitaria "Policlinico-Vittorio Emanuele", Anatomic Pathology Section, University of Catania, Catania, Italy
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies, G.F. Ingrassia, Azienda Ospedaliero - Universitaria "Policlinico-Vittorio Emanuele", Anatomic Pathology Section, University of Catania, Catania, Italy
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| |
Collapse
|
49
|
Kusch A, Schmidt M, Gürgen D, Postpieszala D, Catar R, Hegner B, Davidson MM, Mahmoodzadeh S, Dragun D. 17ß-Estradiol regulates mTORC2 sensitivity to rapamycin in adaptive cardiac remodeling. PLoS One 2015; 10:e0123385. [PMID: 25880554 PMCID: PMC4399939 DOI: 10.1371/journal.pone.0123385] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/18/2015] [Indexed: 11/19/2022] Open
Abstract
Adaptive cardiac remodeling is characterized by enhanced signaling of mTORC2 downstream kinase Akt. In females, 17ß-estradiol (E2), as well as Akt contribute essentially to sex-related premenopausal cardioprotection. Pharmacologic mTOR targeting with rapamycin is increasingly used for various clinical indications, yet burdened with clinical heterogeneity in therapy responses. The drug inhibits mTORC1 and less-so mTORC2. In male rodents, rapamycin decreases maladaptive cardiac hypertrophy whereas it leads to detrimental dilative cardiomyopathy in females. We hypothesized that mTOR inhibition could interfere with 17β-estradiol (E2)-mediated sexual dimorphism and adaptive cell growth and tested responses in murine female hearts and cultured female cardiomyocytes. Under physiological in vivo conditions, rapamycin compromised mTORC2 function only in female, but not in male murine hearts. In cultured female cardiomyocytes, rapamycin impaired simultaneously IGF-1 induced activation of both mTOR signaling branches, mTORC1 and mTORC2 only in presence of E2. Use of specific estrogen receptor (ER)α- and ERβ-agonists indicated involvement of both estrogen receptors (ER) in rapamycin effects on mTORC1 and mTORC2. Classical feedback mechanisms common in tumour cells with upregulation of PI3K signaling were not involved. E2 effect on Akt-pS473 downregulation by rapamycin was independent of ERK as shown by sequential mTOR and MEK-inhibition. Furthermore, regulatory mTORC2 complex defining component rictor phosphorylation at Ser1235, known to interfere with Akt-substrate binding to mTORC2, was not altered. Functionally, rapamycin significantly reduced trophic effect of E2 on cell size. In addition, cardiomyocytes with reduced Akt-pS473 under rapamycin treatment displayed decreased SERCA2A mRNA and protein expression suggesting negative functional consequences on cardiomyocyte contractility. Rictor silencing confirmed regulation of SERCA2A expression by mTORC2 in E2-cultured female cardiomyocytes. These data highlight a novel modulatory function of E2 on rapamycin effect on mTORC2 in female cardiomyocytes and regulation of SERCA2A expression by mTORC2. Conceivably, rapamycin abrogates the premenopausal “female advantage”.
Collapse
Affiliation(s)
- Angelika Kusch
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
- Center for Cardiovascular Research, Charité, Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| | - Maria Schmidt
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
| | - Dennis Gürgen
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
- Center for Cardiovascular Research, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Postpieszala
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
| | - Rusan Catar
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
- Center for Cardiovascular Research, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Björn Hegner
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
- Center for Cardiovascular Research, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Merci M. Davidson
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Shokoufeh Mahmoodzadeh
- Center for Cardiovascular Research, Charité, Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Duska Dragun
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
- Center for Cardiovascular Research, Charité, Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
50
|
Stellato C, Nassa G, Tarallo R, Giurato G, Ravo M, Rizzo F, Marchese G, Alexandrova E, Cordella A, Baumann M, Nyman TA, Weisz A, Ambrosino C. Identification of cytoplasmic proteins interacting with unliganded estrogen receptor α and β in human breast cancer cells. Proteomics 2015; 15:1801-7. [PMID: 25604459 DOI: 10.1002/pmic.201400404] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/29/2014] [Accepted: 01/16/2015] [Indexed: 01/15/2023]
Abstract
Estrogen receptor subtypes (ERα and ERβ) are transcription factors sharing a similar structure but exerting opposite roles in breast cancer cells. Besides the well-characterized genomic actions of nuclear ERs upon ligand binding, specific actions of ligand-free ERs in the cytoplasm also affect cellular functions. The identification of cytoplasmic interaction partners of unliganded ERα and ERβ may help characterize the molecular basis of the extra-nuclear mechanism of action of these receptors, revealing novel mechanisms to explain their role in breast cancer response or resistance to endocrine therapy. To this aim, cytoplasmic extracts from human breast cancer MCF-7 cells stably expressing tandem affinity purification-tagged ERα and ERβ and maintained in estrogen-free medium were subject to affinity-purification and MS analysis, leading to the identification of 84 and 142 proteins associated with unliganded ERα and ERβ, respectively. Functional analyses of ER subtype-specific interactomes revealed significant differences in the molecular pathways targeted by each receptor in the cytoplasm. This work, reporting the first identification of the unliganded ERα and ERβ cytoplasmic interactomes in breast cancer cells, provides novel experimental evidence on the nongenomic effects of ERs in the absence of hormonal stimulus. All MS data have been deposited in the ProteomeXchange with identifier PXD001202 (http://proteomecentral.proteomexchange.org/dataset/PXD001202).
Collapse
Affiliation(s)
- Claudia Stellato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Salerno, Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Salerno, Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Salerno, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Salerno, Italy
| | - Maria Ravo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Salerno, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Salerno, Italy
| | - Giovanna Marchese
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Salerno, Italy
| | - Elena Alexandrova
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Salerno, Italy
| | | | - Marc Baumann
- Protein Chemistry Unit, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Tuula A Nyman
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Salerno, Italy
| | - Concetta Ambrosino
- Department of Biological and Environmental Sciences, University of Sannio, Benevento, Italy
| |
Collapse
|