1
|
Tian Y, Li XT, Liu JR, Cheng J, Gao A, Yang NY, Li Z, Guo KX, Zhang W, Wen HT, Li ZL, Gu QS, Hong X, Liu XY. A general copper-catalysed enantioconvergent C(sp 3)-S cross-coupling via biomimetic radical homolytic substitution. Nat Chem 2024; 16:466-475. [PMID: 38057367 DOI: 10.1038/s41557-023-01385-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/24/2023] [Indexed: 12/08/2023]
Abstract
Although α-chiral C(sp3)-S bonds are of enormous importance in organic synthesis and related areas, the transition-metal-catalysed enantioselective C(sp3)-S bond construction still represents an underdeveloped domain probably due to the difficult heterolytic metal-sulfur bond cleavage and notorious catalyst-poisoning capability of sulfur nucleophiles. Here we demonstrate the use of chiral tridentate anionic ligands in combination with Cu(I) catalysts to enable a biomimetic enantioconvergent radical C(sp3)-S cross-coupling reaction of both racemic secondary and tertiary alkyl halides with highly transformable sulfur nucleophiles. This protocol not only exhibits a broad substrate scope with high enantioselectivity but also provides universal access to a range of useful α-chiral alkyl organosulfur compounds with different sulfur oxidation states, thus providing a complementary approach to known asymmetric C(sp3)-S bond formation methods. Mechanistic results support a biomimetic radical homolytic substitution pathway for the critical C(sp3)-S bond formation step.
Collapse
Affiliation(s)
- Yu Tian
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, China
| | - Xi-Tao Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Ji-Ren Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Jian Cheng
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Ang Gao
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Ning-Yuan Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Zhuang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Kai-Xin Guo
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Wei Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Han-Tao Wen
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China.
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
2
|
Patra R, Mondal S, Sarma D. Thiol and thioether-based metal-organic frameworks: synthesis, structure, and multifaceted applications. Dalton Trans 2023; 52:17623-17655. [PMID: 37961841 DOI: 10.1039/d3dt02884d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Metal-organic frameworks (MOFs) are unique hybrid porous materials formed by combining metal ions or clusters with organic ligands. Thiol and thioether-based MOFs belong to a specific category of MOFs where one or many thiols or thioether groups are present in organic linkers. Depending on the linkers, thiol-thioether MOFs can be divided into three categories: (i) MOFs where both thiol or thioether groups are part of the carboxylic acid ligands, (ii) MOFs where only thiol or thioether groups are present in the organic linker, and (iii) MOFs where both thiol or thioether groups are part of azolate-containing linkers. MOFs containing thiol-thioether-based acid ligands are synthesized through two primary approaches; one is by utilizing thiol and thioether-based carboxylic acid ligands where the bonding pattern of ligands with metal ions plays a vital role in MOF formation (HSAB principle). MOFs synthesized by this approach can be structurally differentiated into two categories: structures without common structural motifs and structures with common structural motifs (related to UiO-66, UiO-67, UiO-68, MIL-53, NU-1100, etc.). The second approach to synthesize thiol and thioether-based MOFs is indirect methods, where thiol or thioether functionality is introduced in MOFs by techniques like post-synthetic modifications (PSM), post-synthetic exchange (PSE) and by forming composite materials. Generally, MOFs containing only thiol-thioether-based ligands are synthesized by interfacial assisted synthesis, forming two-dimensional sheet frameworks, and show significantly high conductivity. A limited study has been done on MOFs containing thiol-thioether-based azolate ligands where both nitrogen- and sulfur-containing functionality are present in the MOF frameworks. These materials exhibit intriguing properties stemming from the interplay between metal centres, organic ligands, and sulfur functionality. As a result, they offer great potential for multifaceted applications, ranging from catalysis, sensing, and conductivity, to adsorption. This perspective is organised through an introduction, schematic representations, and tabular data of the reported thiol and thioether MOFs and concluded with future directions.
Collapse
Affiliation(s)
- Rajesh Patra
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| | - Sumit Mondal
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| | - Debajit Sarma
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| |
Collapse
|
3
|
Sun TT, Man RJ, Shi JY, Wang X, Zhao M, Hu HY, Wang CY. A selective fluorescent probe for hydrogen sulfide from a series of flavone derivatives and intracellular imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122840. [PMID: 37196554 DOI: 10.1016/j.saa.2023.122840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 05/19/2023]
Abstract
In this work, through the orthogonal design of two fluorophores and two recognition groups, a series of fluorescent probes were developed from the flavone derivatives for hydrogen sulfide (H2S). The probe FlaN-DN stood out from the primarily screening on the selectivity and response intensities. It could respond to H2S with both the chromogenic and fluorescent signals. Among the recent reported probes for the H2S detection, FlaN-DN indicated the most highlighted advantages including the rapid response (within 200 s) and the high response multiplication (over 100 folds). FlaN-DN was sensitive to the pH condition, thus could be applied to distinguish the cancer micro-environment. Moreover, FlaN-DN suggested practical capabilities including a wide linear range (0-400 μM), a relatively high sensitivity (limit of detection 0.13 μM), and high selectivity towards H2S. As a low cytotoxic probe, FlaN-DN achieved the imaging in living HeLa cells. FlaN-DN could detect the endogenous generation H2S and visualize the dose-dependent responses to the exogenous H2S level. This work provided a typical case of natural-sourced derivatives as functional implements, which might inspire the future investigations.
Collapse
Affiliation(s)
- Ting-Ting Sun
- Jinhua Advanced Research Institute, Jinhua 321019, China
| | - Ruo-Jun Man
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning 530008, China.
| | - Jing-Yi Shi
- Jinhua Advanced Research Institute, Jinhua 321019, China
| | - Xiao Wang
- Jinhua Advanced Research Institute, Jinhua 321019, China
| | - Min Zhao
- Jinhua Advanced Research Institute, Jinhua 321019, China; School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Hong-Yu Hu
- Xingzhi College, Zhejiang Normal University, Lanxi 321100, Zhejiang, China.
| | - Chao-Yue Wang
- Jinhua Advanced Research Institute, Jinhua 321019, China.
| |
Collapse
|
4
|
Fan PH, Geng Y, Romo AJ, Zhong A, Zhang J, Yeh YC, Lee YH, Liu HW. Two Radical SAM Enzymes Are Necessary and Sufficient for the In Vitro Production of the Oxetane Nucleoside Antiviral Agent Albucidin. Angew Chem Int Ed Engl 2022; 61:e202210362. [PMID: 36064953 PMCID: PMC9561071 DOI: 10.1002/anie.202210362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 11/09/2022]
Abstract
Oxetanocin A and albucidin are two oxetane natural products. While the biosynthesis of oxetanocin A has been described, less is known about albucidin. In this work, the albucidin biosynthetic gene cluster is identified in Streptomyces. Heterologous expression in a nonproducing strain demonstrates that the genes alsA and alsB are necessary and sufficient for albucidin biosynthesis confirming a previous study (Myronovskyi et al. Microorganisms 2020, 8, 237). A two-step construction of albucidin 4'-phosphate from 2'-deoxyadenosine monophosphate (2'-dAMP) is shown to be catalyzed in vitro by the cobalamin dependent radical S-adenosyl-l-methionine (SAM) enzyme AlsB, which catalyzes a ring contraction, and the radical SAM enzyme AlsA, which catalyzes elimination of a one-carbon fragment. Isotope labelling studies show that AlsB catalysis begins with stereospecific H-atom transfer of the C2'-pro-R hydrogen from 2'-dAMP to 5'-deoxyadenosine, and that the eliminated one-carbon fragment originates from C3' of 2'-dAMP.
Collapse
Affiliation(s)
- Po-Hsun Fan
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yujie Geng
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Anthony J. Romo
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Aoshu Zhong
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jiawei Zhang
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yu-Cheng Yeh
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yu-Hsuan Lee
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hung-wen Liu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Chatterjee S, Hausinger RP. Sulfur incorporation into biomolecules: recent advances. Crit Rev Biochem Mol Biol 2022; 57:461-476. [PMID: 36403141 PMCID: PMC10192010 DOI: 10.1080/10409238.2022.2141678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/05/2022] [Accepted: 10/26/2022] [Indexed: 11/21/2022]
Abstract
Sulfur is an essential element for a variety of cellular constituents in all living organisms and adds considerable functionality to a wide range of biomolecules. The pathways for incorporating sulfur into central metabolites of the cell such as cysteine, methionine, cystathionine, and homocysteine have long been established. Furthermore, the importance of persulfide intermediates during the biosynthesis of thionucleotide-containing tRNAs, iron-sulfur clusters, thiamin diphosphate, and the molybdenum cofactor are well known. This review briefly surveys these topics while emphasizing more recent aspects of sulfur metabolism that involve unconventional biosynthetic pathways. Sacrificial sulfur transfers from protein cysteinyl side chains to precursors of thiamin and the nickel-pincer nucleotide (NPN) cofactor are described. Newer aspects of synthesis for lipoic acid, biotin, and other compounds are summarized, focusing on the requisite iron-sulfur cluster destruction. Sulfur transfers by using a noncore sulfide ligand bound to a [4Fe-4S] cluster are highlighted for generating certain thioamides and for alternative biosynthetic pathways of thionucleotides and the NPN cofactor. Thioamide formation by activating an amide oxygen atom via phosphorylation also is illustrated. The discussion of these topics stresses the chemical reaction mechanisms of the transformations and generally avoids comments on the gene/protein nomenclature or the sources of the enzymes. This work sets the stage for future efforts to decipher the diverse mechanisms of sulfur incorporation into biological molecules.
Collapse
Affiliation(s)
- Shramana Chatterjee
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Robert P. Hausinger
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
6
|
Fan PH, Geng Y, Romo AJ, Zhong A, Zhang J, Yeh YC, Lee YH, Liu HW. Two Radical SAM Enzymes Are Necessary and Sufficient for the In Vitro Production of the Oxetane Nucleoside Antiviral Agent Albucidin. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Po-Hsun Fan
- The University of Texas at Austin Chemistry The University of Texas at Austin 78712-1139 Austin UNITED STATES
| | - Yujie Geng
- The University of Texas at Austin College of Pharmacy College of Pharmacy 78712-1139 Austin UNITED STATES
| | - Anthony J Romo
- The University of Texas at Austin College of Pharmacy College of Pharmacy 78712-1139 Austin UNITED STATES
| | - Aoshu Zhong
- The University of Texas at Austin College of Pharmacy College of Pharmacy 78712-1139 Austin UNITED STATES
| | - Jiawei Zhang
- The University of Texas at Austin Chemistry The University of Texas at Austin 78712-1139 Austin UNITED STATES
| | - Yu-Cheng Yeh
- UT Austin: The University of Texas at Austin Chemistry The University of Texas at Austin 78712-1139 Austin UNITED STATES
| | - Yu-Hsuan Lee
- UT Austin: The University of Texas at Austin Chemistry The University of Texas at Austin 78712-1139 Austin UNITED STATES
| | - Hung-wen Liu
- University of Texas at Austin Phar-Med Chem/3.206 1 University Station A1935PHR 3.206B 78712-0128 Austin UNITED STATES
| |
Collapse
|
7
|
Sinner EK, Li R, Marous DR, Townsend CA. ThnL, a B12-dependent radical S-adenosylmethionine enzyme, catalyzes thioether bond formation in carbapenem biosynthesis. Proc Natl Acad Sci U S A 2022; 119:e2206494119. [PMID: 35969793 PMCID: PMC9407657 DOI: 10.1073/pnas.2206494119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
Complex carbapenems are important clinical antibiotics used to treat recalcitrant infections. Their biosynthetic gene clusters contain three essential B12-dependent radical S-adenosylmethionine (rSAM) enzymes. The majority of characterized enzymes in this subfamily catalyze methyl transfer, but only one is required to sequentially install all methionine-derived carbons in complex carbapenems. Therefore, it is probable that the other two rSAM enzymes have noncanonical functions. Through a series of fermentation and in vitro experiments, we show that ThnL uses radical SAM chemistry to catalyze thioether bond formation between C2 of a carbapenam precursor and pantetheine, uniting initial bicycle assembly common to all carbapenems with later tailoring events unique to complex carbapenems. ThnL also catalyzes reversible thiol/disulfide redox on pantetheine. Neither of these functions has been observed previously in a B12-dependent radical SAM enzyme. ThnL expands the known activity of this subclass of enzymes beyond carbon-carbon bond formation or rearrangement. It is also the only radical SAM enzyme currently known to catalyze carbon-sulfur bond formation with only an rSAM Fe-S cluster and no additional auxiliary clusters.
Collapse
Affiliation(s)
- Erica K. Sinner
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| | - Rongfeng Li
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| | - Daniel R. Marous
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| | - Craig A. Townsend
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
8
|
Boswinkle K, McKinney J, Allen KD. Highlighting the Unique Roles of Radical S-Adenosylmethionine Enzymes in Methanogenic Archaea. J Bacteriol 2022; 204:e0019722. [PMID: 35880875 PMCID: PMC9380564 DOI: 10.1128/jb.00197-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Radical S-adenosylmethionine (SAM) enzymes catalyze an impressive variety of difficult biochemical reactions in various pathways across all domains of life. These metalloenzymes employ a reduced [4Fe-4S] cluster and SAM to generate a highly reactive 5'-deoxyadenosyl radical that is capable of initiating catalysis on otherwise unreactive substrates. Interestingly, the genomes of methanogenic archaea encode many unique radical SAM enzymes with underexplored or completely unknown functions. These organisms are responsible for the yearly production of nearly 1 billion tons of methane, a potent greenhouse gas as well as a valuable energy source. Thus, understanding the details of methanogenic metabolism and elucidating the functions of essential enzymes in these organisms can provide insights into strategies to decrease greenhouse gas emissions as well as inform advances in bioenergy production processes. This minireview provides an overview of the current state of the field regarding the functions of radical SAM enzymes in methanogens and discusses gaps in knowledge that should be addressed.
Collapse
Affiliation(s)
- Kaleb Boswinkle
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Justin McKinney
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Kylie D. Allen
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
9
|
Jiao J, Xiao F, Wang C, Zhang Z. Iodine-Promoted Metal-Free Cyclization and O/S Exchange of Acrylamides with Thiuram: One-Step Synthesis of Quinolino-2-thiones. J Org Chem 2022; 87:4965-4970. [DOI: 10.1021/acs.joc.1c03030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jing Jiao
- School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Fangtao Xiao
- School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Cheng Wang
- School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhipeng Zhang
- School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
10
|
Huang Q, Peng X, Li H, He H, Liu L. Visible-Light-Induced, Graphene Oxide-Promoted C3-Chalcogenylation of Indoles Strategy under Transition-Metal-Free Conditions. Molecules 2022; 27:772. [PMID: 35164036 PMCID: PMC8839487 DOI: 10.3390/molecules27030772] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
An efficient and general method for the synthesis of 3-sulfenylindoles and 3-selenylindoles employing visible-light irradiation with graphene oxide as a promoter at room temperature has been achieved. The reaction features are high yields, simple operation, metal-free and iodine-free conditions, an easy-to-handle oxidant, and gram-scalable synthesis. This simple protocol allows one to access a wide range of 3-arylthioindoles, 3-arylselenylindoles, and even 3-thiocyanatoindoles with good to excellent yields.
Collapse
Affiliation(s)
- Qing Huang
- Department of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (Q.H.); (H.L.)
| | - Xiangjun Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmaceutical Science of Gannan Medical University, Ganzhou 341000, China;
| | - Hong Li
- Department of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (Q.H.); (H.L.)
| | - Haiping He
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmaceutical Science of Gannan Medical University, Ganzhou 341000, China;
| | - Liangxian Liu
- Department of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (Q.H.); (H.L.)
| |
Collapse
|
11
|
Fu L, Wang J, Chen X, Shi T, Shao Z, Chen J, Tian C, Zhou Z, Zhu H, Zhang J. [4+2]-Annulation of prop-2-ynylsulfonium salts and N-substituted pyrrole-2-carboxaldehydes: access to indolizines containing a thioether group. NEW J CHEM 2022. [DOI: 10.1039/d1nj04079k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[4+2]-Annulation of prop-2-ynylsulfonium salts and N-substituted pyrrole-2-carboxaldehydes to generate indolizines containing a thioether group.
Collapse
Affiliation(s)
- Liping Fu
- Department of Pharmacy, Shaoxing TCM Hospital Affiliated to Zhejiang Chinese Medical University, Shaoxing, Zhejiang 312000, P. R. China
| | - Jing Wang
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, P. R. China
| | - Xiaojuan Chen
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, P. R. China
| | - Tao Shi
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, P. R. China
| | - Zhanying Shao
- Zhejiang Yongtai Technology Co., Ltd, Taizhou, Zhejiang 317016, P. R. China
| | - Jinbai Chen
- Department of Pharmacy, Shaoxing TCM Hospital Affiliated to Zhejiang Chinese Medical University, Shaoxing, Zhejiang 312000, P. R. China
| | - Chongmei Tian
- Department of Pharmacy, Shaoxing TCM Hospital Affiliated to Zhejiang Chinese Medical University, Shaoxing, Zhejiang 312000, P. R. China
| | - Zhongdong Zhou
- Department of Pharmacy, Shaoxing TCM Hospital Affiliated to Zhejiang Chinese Medical University, Shaoxing, Zhejiang 312000, P. R. China
| | - Huajian Zhu
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, P. R. China
| | - Jiankang Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, P. R. China
| |
Collapse
|
12
|
Shahbazi M, Tohidfar M, Azimzadeh Irani M. Identification of the key functional genes in salt-stress tolerance of Cyanobacterium Phormidium tenue using in silico analysis. 3 Biotech 2021; 11:503. [PMID: 34881166 PMCID: PMC8602552 DOI: 10.1007/s13205-021-03050-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022] Open
Abstract
The development of artificial biocrust using cyanobacterium Phormidium tenue has been suggested as an effective strategy to prevent soil degradation. Here, a combination of in silico approaches with growth rate, photosynthetic pigment, morphology, and transcript analysis was used to identify specific genes and their protein products in response to 500 mM NaCl in P. tenue. The results show that 500 mM NaCl induces the expression of genes encoding glycerol-3-phosphate dehydrogenase (glpD) as a Flavoprotein, ribosomal protein S12 methylthiotransferase (rimO), and a hypothetical protein (sll0939). The constructed co-expression network revealed a group of abiotic stress-responsive genes. Using the Basic Local Alignment Search Tool (BLAST), the homologous proteins of rimO, glpD, and sll0939 were identified in the P. tenue genome. Encoded proteins of glpD, rimO, and DUF1622 genes, respectively, contain (DAO and DAO C), (UPF0004, Radical SAM and TRAM 2), and (DUF1622) domains. The predicted ligand included 22B and MG for DUF1622, FS5 for rimO, and FAD for glpD protein. There was no direct disruption in ligand-binding sites of these proteins by Na+, Cl-, or NaCl. The growth rate, photosynthetic pigment, and morphology of P. tenue were investigated, and the result showed an acceptable tolerance rate of this microorganism under salt stress. The quantitative real-time polymerase chain reaction (qRT-PCR) results revealed the up-regulation of glpD, rimO, and DUF1622 genes under salt stress. This is the first report on computational and experimental analyses of the glpD, rimO, and DUF1622 genes in P. tenue under salt stress to the best of our knowledge. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03050-w.
Collapse
Affiliation(s)
- Mehrdad Shahbazi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Masoud Tohidfar
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Maryam Azimzadeh Irani
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, 1983969411 Tehran, Iran
| |
Collapse
|
13
|
Ma ST, Zhu XX, Xu JY, Li Y, Zhang XM, Feng CT, Yan Y. Iodide-promoted transformations of imidazopyridines into sulfur-bridged imidazopyridines or 1,2,4-thiadiazoles. Chem Commun (Camb) 2021; 57:5338-5341. [PMID: 33928973 DOI: 10.1039/d1cc01044a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A NaI-promoted sequential double carbon-sulfur bond formation was developed to afford sulfur-bridged imidazopyridines, using Deoxofluor as the sulfur source and requiring only 15 min at room temperature. Using this process, imidazo[1,5-a]pyridines could also be transformed to 1,2,4-thiadiazoles in the presence of ammonium salt with the formation of both carbon-sulfur and nitrogen-sulfur bonds. This mechanistically unique method is distinguished by its wide substrate scope, lack of requirement for transition metals and mild conditions.
Collapse
Affiliation(s)
- Shi-Tang Ma
- Life and Health College, Anhui Science and Technology University, Fengyang, 233100, China and School of Chemical Engineering, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Xiao-Xiao Zhu
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Jing-Yu Xu
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Ying Li
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Xiao-Mei Zhang
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Cheng-Tao Feng
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Yizhe Yan
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, 450000, China.
| |
Collapse
|
14
|
Yang X, DeLaney CR, Burns KT, Elrod LC, Mo W, Naumann H, Bhuvanesh N, Hall MB, Darensbourg MY. Self-Assembled Nickel-4 Supramolecular Squares and Assays for HER Electrocatalysts Derived Therefrom. Inorg Chem 2021; 60:7051-7061. [PMID: 33891813 DOI: 10.1021/acs.inorgchem.0c03613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Solid-state structures find a self-assembled tetrameric nickel cage with carboxylate linkages, [Ni(N2S'O)I(CH3CN)]4 ([Ni-I]40), resulting from sulfur acetylation by sodium iodoacetate of an [NiN2S]22+ dimer in acetonitrile. Various synthetic routes to the tetramer, best described from XRD as a molecular square, were discovered to generate the hexacoordinate nickel units ligated by N2Sthioether, iodide, and two carboxylate oxygens, one of which is the bridge from the adjacent nickel unit in [Ni-I]40. Removal of the four iodides by silver ion precipitation yields an analogous species but with an additional vacant coordination site, [Ni-Solv]+, a cation but with coordinated solvent molecules. This also recrystallizes as the tetramer [Ni-Solv]44+. In solution, dissociation into the (presumed) monomer occurs, with coordinating solvents occupying the vacant site [Ni(N2S'O)I(solv)]0, ([Ni-I]0). Hydrodynamic radii determined from 1H DOSY NMR data suggest that monomeric units are present as well in CD2Cl2. Evans method magnetism values are consistent with triplet spin states in polar solvents; however, in CD2Cl2 solutions no paramagnetism is evident. The abilities of [Ni-I]40 and [Ni-Solv]44+ to serve as sources of electrocatalysts, or precatalysts, for the hydrogen evolution reaction (HER) were explored. Cyclic voltammetry responses and bulk coulometry with gas chromatographic analysis demonstrated that a stronger acid, trifluoroacetic acid, as a proton source resulted in H2 production from both electroprecatalysts; however, electrocatalysis developed primarily from uncharacterized deposits on the electrode. With acetic acid as a proton source, the major contribution to the HER is from homogeneous electrocatalysis. Overpotentials of 490 mV were obtained for both the solution-phase [Ni-I]0 and [Ni-Solv]+. While the electrocatalyst derived from [Ni-Solv]+ has a substantially higher TOF (102 s-1) than [Ni-I]0 (19 s-1), it has a shorter catalytically active lifespan (4 h) in comparison to [Ni-I]0 (>18 h).
Collapse
Affiliation(s)
- Xuemei Yang
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Christopher R DeLaney
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Kyle T Burns
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Lindy C Elrod
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Wenting Mo
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Haley Naumann
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Nattamai Bhuvanesh
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Michael B Hall
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Marcetta Y Darensbourg
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| |
Collapse
|
15
|
Qin Y, Sun R, Gianoulis NP, Nocera DG. Photoredox Nickel-Catalyzed C–S Cross-Coupling: Mechanism, Kinetics, and Generalization. J Am Chem Soc 2021; 143:2005-2015. [DOI: 10.1021/jacs.0c11937] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yangzhong Qin
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Rui Sun
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Nikolas P. Gianoulis
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
16
|
Rapid SERS Detection of Thiol-Containing Natural Products in Culturing Complex. Int J Anal Chem 2020; 2020:9271236. [PMID: 32802063 PMCID: PMC7416272 DOI: 10.1155/2020/9271236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 11/22/2022] Open
Abstract
Thiol-containing natural products possess a wide range of bioactivities. The burst of synthetic biology technology facilitates the discovery of new thiol-containing active ingredients. Herein, we report a sensitive, quick, and robust surface-enhanced Raman scattering technology for specific and multiplex detection of thiol-containing compounds without purification requirements and also indicating the thiols with different chemical environments. Using this platform, we successfully demonstrated the simultaneous detection of thiol-containing compounds from as low as 1 μM of analytes spiked in complex culture matrices.
Collapse
|
17
|
Lajis AFB. Biomanufacturing process for the production of bacteriocins from Bacillaceae family. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-0295-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AbstractMembers of Bacillaceae family are of major interest in medical industry due to vast antimicrobial peptides they produce as therapeutic agents. For decades, synthetic and natural occurring antibiotics have been used to treat infectious diseases, but heavy dependence on these drugs has led to significant drawbacks which propel continuous development of new antibiotics generation. Recent findings have shown several bacteriocins of Bacillaceae as promising alternatives to the conventional drugs to combat the emergence of new drug-resistant pathogens. In this present review, Bacillaceae bacteriocins’ classification such as lantibiotics and thiazole/oxazole-modified microcins as well as their biochemical characterization such as sensitivity to enzymes, temperature, pH and chemicals are described. This article enlightens on the medical application of several Bacillaceae bacteriocins emphasizing those that underwent and on-going preclinical trials. This review also discusses the development of Bacillaceae bacteriocins production, focusing strains selection and fermentation factors such as inocula size, medium (carbon, nitrogen, minerals sources), temperature, pH, agitation and aeration rate, dissolved oxygen tension (DOT), fermentation time, inducers and mode of operation via various statistical methods for their optimization. It also highlights recent advance in the production of bioengineered and recombinant bacteriocins in bioreactors system which are rarely disclosed in literature.
Collapse
|
18
|
Zhang B, Arcinas AJ, Radle MI, Silakov A, Booker SJ, Krebs C. First Step in Catalysis of the Radical S-Adenosylmethionine Methylthiotransferase MiaB Yields an Intermediate with a [3Fe-4S] 0-Like Auxiliary Cluster. J Am Chem Soc 2020; 142:1911-1924. [PMID: 31899624 PMCID: PMC7008301 DOI: 10.1021/jacs.9b11093] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The enzyme MiaB catalyzes the attachment of a methylthio (-SCH3) group at the C2 position of N6-(isopentenyl)adenosine (i6A) in the final step of the biosynthesis of the hypermodified tRNA nucleotide 2-methythio-N6-(isopentenyl)adenosine (ms2i6A). MiaB belongs to the expanding subgroup of enzymes of the radical S-adenosylmethionine (SAM) superfamily that harbor one or more auxiliary [4Fe-4S] clusters in addition to the [4Fe-4S] cluster that all family members require for the reductive cleavage of SAM to afford the common 5'-deoxyadenosyl 5'-radical (5'-dA•) intermediate. While the role of the radical SAM cluster in generating the 5'-dA• is well understood, the detailed role of the auxiliary cluster, which is essential for MiaB catalysis, remains unclear. It has been proposed that the auxiliary cluster may serve as a coordination site for exogenously derived sulfur destined for attachment to the substrate or that the cluster itself provides the sulfur atom and is sacrificed during turnover. In this work, we report spectroscopic and biochemical evidence that the auxiliary [4Fe-4S]2+ cluster in Bacteroides thetaiotaomicron (Bt) MiaB is converted to a [3Fe-4S]0-like cluster during the methylation step of catalysis. Mössbauer characterization of the MiaB [3Fe-4S]0-like cluster revealed unusual spectroscopic properties compared to those of other well-characterized cuboidal [3Fe-4S]0 clusters. Specifically, the Fe sites of the mixed-valent moiety do not have identical Mössbauer parameters. Our results support a mechanism where the auxiliary [4Fe-4S] cluster is the direct sulfur source during catalysis.
Collapse
|
19
|
Liu C, Peng X, Hu D, Shi F, Huang P, Luo J, Liu Q, Liu L. The direct C3 chalcogenylation of indolines using a graphene-oxide-promoted and visible-light-induced synergistic effect. NEW J CHEM 2020. [DOI: 10.1039/d0nj00747a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A green methodology for the construction of carbon–chalcogen (S and Se) bonds via a GO-promoted and metal-free light-induced synergistic effect is demonstrated.
Collapse
Affiliation(s)
- Chunping Liu
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Xiangjun Peng
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Dan Hu
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Feng Shi
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Panpan Huang
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Juanjuan Luo
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Qian Liu
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Liangxian Liu
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| |
Collapse
|
20
|
Lipoic Acid Synergizes with Antineoplastic Drugs in Colorectal Cancer by Targeting p53 for Proteasomal Degradation. Cells 2019; 8:cells8080794. [PMID: 31366086 PMCID: PMC6721634 DOI: 10.3390/cells8080794] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/17/2019] [Accepted: 07/20/2019] [Indexed: 12/14/2022] Open
Abstract
Lipoic acid (LA) is a redox-active disulphide compound, which functions as a pivotal co-factor for mitochondrial oxidative decarboxylation. LA and chemical derivatives were shown to target mitochondria in cancer cells with altered energy metabolism, thereby inducing cell death. In this study, the impact of LA on the tumor suppressor protein p53 was analyzed in various colorectal cancer (CRC) cell lines, with a focus on the mechanisms driving p53 degradation. First, LA was demonstrated to trigger the depletion of both wildtype and mutant p53 protein in all CRC cells tested without influencing its gene expression and preceded LA-triggered cytotoxicity. Depletion of p53 coincided with a moderate, LA-dependent ROS production, but was not rescued by antioxidant treatment. LA induced the autophagy receptor p62 and differentially modulated autophagosome formation in CRC cells. However, p53 degradation was not mediated via autophagy as shown by chemical inhibition and genetic abrogation of autophagy. LA treatment also stabilized and activated the transcription factor Nrf2 in CRC cells, which was however dispensable for p53 degradation. Mechanistically, p53 was found to be readily ubiquitinylated and degraded by the proteasomal machinery following LA treatment, which did not involve the E3 ubiquitin ligase MDM2. Intriguingly, the combination of LA and anticancer drugs (doxorubicin, 5-fluorouracil) attenuated p53-mediated stabilization of p21 and resulted in synergistic killing in CRC cells in a p53-dependant manner.
Collapse
|
21
|
Leisinger F, Burn R, Meury M, Lukat P, Seebeck FP. Structural and Mechanistic Basis for Anaerobic Ergothioneine Biosynthesis. J Am Chem Soc 2019; 141:6906-6914. [DOI: 10.1021/jacs.8b12596] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Florian Leisinger
- Department for Chemistry, University of Basel, Mattenstrasse 24a, BPR 1002, 4056, Basel, Switzerland
| | - Reto Burn
- Department for Chemistry, University of Basel, Mattenstrasse 24a, BPR 1002, 4056, Basel, Switzerland
| | - Marcel Meury
- Department for Chemistry, University of Basel, Mattenstrasse 24a, BPR 1002, 4056, Basel, Switzerland
| | - Peer Lukat
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Florian P. Seebeck
- Department for Chemistry, University of Basel, Mattenstrasse 24a, BPR 1002, 4056, Basel, Switzerland
| |
Collapse
|
22
|
Gao YC, Huang ZB, Xu L, Li ZD, Lai ZS, Tang RY. Iodine-promoted radical alkyl sulfuration of imidazopyridines with dialkyl azo compounds and elemental sulfur. Org Biomol Chem 2019; 17:2279-2286. [PMID: 30724304 DOI: 10.1039/c8ob03191f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dialkyl azo compounds were found to be effective alkyl radical sources for direct alkyl sulfuration with imidazopyridines using elemental sulfur under metal-free conditions. Iodine, an inexpensive and mild reagent, could promote alkyl sulfuration. A variety of quaternary cyanoalkyl radicals were successfully coupled with elemental sulfur. A subsequent C-H sulfuration of imidazopyridines afforded a diverse array of imidazopyridine derivatives bearing cyanoalkylthio groups. The cyano group could be modified and further underwent condensation with 2-aminothiazole to afford an interesting heterocyclic amide. Control experiments showed that iodine could greatly suppress the self-coupling of cyanoalkyl radicals, thus making the sulfuration proceed smoothly.
Collapse
Affiliation(s)
- Yong-Chao Gao
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | | | | | | | | | | |
Collapse
|
23
|
Barr I, Stich TA, Gizzi A, Grove T, Bonanno JB, Latham JA, Chung T, Wilmot CM, Britt RD, Almo SC, Klinman JP. X-ray and EPR Characterization of the Auxiliary Fe-S Clusters in the Radical SAM Enzyme PqqE. Biochemistry 2018; 57:1306-1315. [PMID: 29405700 PMCID: PMC5905707 DOI: 10.1021/acs.biochem.7b01097] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Radical SAM (RS) enzyme PqqE catalyzes the first step in the biosynthesis of the bacterial cofactor pyrroloquinoline quinone, forming a new carbon-carbon bond between two side chains within the ribosomally synthesized peptide substrate PqqA. In addition to the active site RS 4Fe-4S cluster, PqqE is predicted to have two auxiliary Fe-S clusters, like the other members of the SPASM domain family. Here we identify these sites and examine their structure using a combination of X-ray crystallography and Mössbauer and electron paramagnetic resonance (EPR) spectroscopies. X-ray crystallography allows us to identify the ligands to each of the two auxiliary clusters at the C-terminal region of the protein. The auxiliary cluster nearest the RS site (AuxI) is in the form of a 2Fe-2S cluster ligated by four cysteines, an Fe-S center not seen previously in other SPASM domain proteins; this assignment is further supported by Mössbauer and EPR spectroscopies. The second, more remote cluster (AuxII) is a 4Fe-4S center that is ligated by three cysteine residues and one aspartate residue. In addition, we examined the roles these ligands play in catalysis by the RS and AuxII clusters using site-directed mutagenesis coupled with EPR spectroscopy. Lastly, we discuss the possible functional consequences that these unique AuxI and AuxII clusters may have in catalysis for PqqE and how these may extend to additional RS enzymes catalyzing the post-translational modification of ribosomally encoded peptides.
Collapse
Affiliation(s)
- Ian Barr
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
| | - Troy A. Stich
- Department of Chemistry, University of California, Davis, California 95695, United States
| | - Anthony Gizzi
- Department of Biochemistry, Albert Einstein School of Medicine, Bronx, NY 10461, United States
| | - Tyler Grove
- Department of Biochemistry, Albert Einstein School of Medicine, Bronx, NY 10461, United States
| | - Jeffrey B. Bonanno
- Department of Biochemistry, Albert Einstein School of Medicine, Bronx, NY 10461, United States
| | - John A. Latham
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
| | - Tyler Chung
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
| | - Carrie M. Wilmot
- Department of Biochemistry, Molecular Biology, and Biophysics, and The Biotechnology Institute, University of Minnesota, St. Paul, MN 55108, United States
| | - R. David Britt
- Department of Chemistry, University of California, Davis, California 95695, United States
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein School of Medicine, Bronx, NY 10461, United States
| | - Judith P. Klinman
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| |
Collapse
|
24
|
Zhang JR, Zhan LZ, Wei L, Ning YY, Zhong XL, Lai JX, Xu L, Tang RY. Metal-Free Thiolation of Imidazopyridines with Functionalized Haloalkanes Using Elemental Sulfur. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701190] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jun-Rong Zhang
- Department of Applied Chemistry, College of Materials and Energy; South China Agricultural University; Guangzhou 510642 People's Republic of China
| | - Ling-Zhi Zhan
- Department of Applied Chemistry, College of Materials and Energy; South China Agricultural University; Guangzhou 510642 People's Republic of China
| | - Liang Wei
- Department of Applied Chemistry, College of Materials and Energy; South China Agricultural University; Guangzhou 510642 People's Republic of China
| | - Yun-Yun Ning
- Department of Applied Chemistry, College of Materials and Energy; South China Agricultural University; Guangzhou 510642 People's Republic of China
| | - Xiao-Lin Zhong
- Department of Applied Chemistry, College of Materials and Energy; South China Agricultural University; Guangzhou 510642 People's Republic of China
| | - Jing-Xiong Lai
- Department of Applied Chemistry, College of Materials and Energy; South China Agricultural University; Guangzhou 510642 People's Republic of China
| | - Li Xu
- Department of Applied Chemistry, College of Materials and Energy; South China Agricultural University; Guangzhou 510642 People's Republic of China
| | - Ri-Yuan Tang
- Department of Applied Chemistry, College of Materials and Energy; South China Agricultural University; Guangzhou 510642 People's Republic of China
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education; South China Agricultural University; Guangzhou 510642 People's Republic of China
| |
Collapse
|
25
|
Feng C, Peng Y, Ding G, Li X, Cui C, Yan Y. Catalyst and additive-free regioselective oxidative C–H thio/selenocyanation of arenes and heteroarenes with elemental sulfur/selenium and TMSCN. Chem Commun (Camb) 2018; 54:13367-13370. [DOI: 10.1039/c8cc07905f] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Elemental sulfur/selenium and TMSCN act as a novel combined thio/selenocyanation source for direct oxidative C–H thio/selenocyanation of (hetero)arenes under catalyst-free and additive-free conditions.
Collapse
Affiliation(s)
- Chengtao Feng
- School of Chemical Engineering
- Anhui University of Science and Technology
- Huainan
- P. R. China
| | - Ya Peng
- School of Chemical Engineering
- Anhui University of Science and Technology
- Huainan
- P. R. China
| | - Guangrong Ding
- School of Chemical Engineering
- Anhui University of Science and Technology
- Huainan
- P. R. China
| | - Xiangxiao Li
- School of Chemical Engineering
- Anhui University of Science and Technology
- Huainan
- P. R. China
| | - Chang Cui
- School of Food and Biological Engineering
- Zhengzhou University of Light Industry
- Zhengzhou
- P. R. China
| | - Yizhe Yan
- School of Food and Biological Engineering
- Zhengzhou University of Light Industry
- Zhengzhou
- P. R. China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control
| |
Collapse
|
26
|
Identification of the Radical SAM Enzymes Involved in the Biosynthesis of Methanopterin and Coenzyme F 420 in Methanogens. Methods Enzymol 2018; 606:461-483. [DOI: 10.1016/bs.mie.2018.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Wei W, Wang L, Yue H, Jiang YY, Yang D. Catalyst-free synthesis of α-thioacrylic acids via cascade thiolation and 1,4-aryl migration of aryl alkynoates at room temperature. Org Biomol Chem 2018; 16:8379-8383. [DOI: 10.1039/c8ob01349g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A simple and facile catalyst-free strategy has been developed for the synthesis of α-thioacrylic acids from readily-available aryl alkynoates and thiols at room temperature under air.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao
- P. R. China
| | - Leilei Wang
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- China
| | - Huilan Yue
- Key Laboratory of Tibetan Medicine Research
- Northwest Institute of Plateau Biology
- Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research
- Qinghai 810008
- China
| | - Yuan-Ye Jiang
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- China
| | - Daoshan Yang
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao
- P. R. China
| |
Collapse
|
28
|
Medina Munoz M, Pollio AR, White HL, Rio RV. Into the Wild: Parallel Transcriptomics of the Tsetse-Wigglesworthia Mutualism within Kenyan Populations. Genome Biol Evol 2017; 9:2276-2291. [PMID: 28934375 PMCID: PMC5601960 DOI: 10.1093/gbe/evx175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2017] [Indexed: 12/16/2022] Open
Abstract
Tsetse flies (Diptera: Glossinidae) have medical significance as the obligate vectors of African trypanosomes. In addition, tsetse harbor a simple gut microbiota. A predominant gut microbiota member, the Gammaproteobacterium Wigglesworthia spp., has coevolved with tsetse for a significant portion of Glossina radiation proving critical to tsetse fitness. Although multiple roles have been described for Wigglesworthia within colony flies, little research has been dedicated towards functional characterization within wild tsetse. Here, dual RNA-Seq was performed to characterize the tsetse-Wigglesworthia symbiosis within flies captured in Nguruman, Kenya. A significant correlation in Gene Ontology (GO) distribution between tsetse and Wigglesworthia was observed, with homogeneous enrichment in metabolic and transport categories, likely supporting a hallmark of the symbiosis-bidirectional metabolic exchange. Within field flies, highly transcribed Wigglesworthia loci included those involved in B vitamin synthesis and in substrate translocation, including amino acid transporters and multidrug efflux pumps, providing a molecular means for interaction. The universal expression of several Wigglesworthia and G. pallidipes orthologs, putatively involved in nutrient provisioning and resource allocation, was confirmed in sister tsetse species. These transcriptional profiles varied through host age and mating status likely addressing varying symbiont demands and also confirming their global importance within Glossina. This study, not only supports symbiont nutrient provisioning roles, but also serves as a foundation for insight into novel roles and molecular mechanisms associated with vector-microbiota interactions. The role of symbiont B vitamin provisioning towards impacting host epigenetics is discussed. Knowledge of vector-microbiota interactions may lead to the discovery of novel targets in pest control.
Collapse
Affiliation(s)
- Miguel Medina Munoz
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV
| | - Adam R. Pollio
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV
| | - Hunter L. White
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV
| | - Rita V.M. Rio
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV
| |
Collapse
|
29
|
Grove TL, Himes PM, Hwang S, Yumerefendi H, Bonanno JB, Kuhlman B, Almo SC, Bowers AA. Structural Insights into Thioether Bond Formation in the Biosynthesis of Sactipeptides. J Am Chem Soc 2017; 139:11734-11744. [PMID: 28704043 PMCID: PMC6443407 DOI: 10.1021/jacs.7b01283] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Sactipeptides are ribosomally synthesized peptides that contain a characteristic thioether bridge (sactionine bond) that is installed posttranslationally and is absolutely required for their antibiotic activity. Sactipeptide biosynthesis requires a unique family of radical SAM enzymes, which contain multiple [4Fe-4S] clusters, to form the requisite thioether bridge between a cysteine and the α-carbon of an opposing amino acid through radical-based chemistry. Here we present the structure of the sactionine bond-forming enzyme CteB, from Clostridium thermocellum ATCC 27405, with both SAM and an N-terminal fragment of its peptidyl-substrate at 2.04 Å resolution. CteB has the (β/α)6-TIM barrel fold that is characteristic of radical SAM enzymes, as well as a C-terminal SPASM domain that contains two auxiliary [4Fe-4S] clusters. Importantly, one [4Fe-4S] cluster in the SPASM domain exhibits an open coordination site in absence of peptide substrate, which is coordinated by a peptidyl-cysteine residue in the bound state. The crystal structure of CteB also reveals an accessory N-terminal domain that has high structural similarity to a recently discovered motif present in several enzymes that act on ribosomally synthesized and post-translationally modified peptides (RiPPs), known as a RiPP precursor peptide recognition element (RRE). This crystal structure is the first of a sactionine bond forming enzyme and sheds light on structures and mechanisms of other members of this class such as AlbA or ThnB.
Collapse
Affiliation(s)
- Tyler L. Grove
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Paul M. Himes
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Sungwon Hwang
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Hayretin Yumerefendi
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeffrey B. Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Albert A Bowers
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
30
|
|
31
|
Dunbar KL, Scharf DH, Litomska A, Hertweck C. Enzymatic Carbon-Sulfur Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5521-5577. [PMID: 28418240 DOI: 10.1021/acs.chemrev.6b00697] [Citation(s) in RCA: 381] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sulfur plays a critical role for the development and maintenance of life on earth, which is reflected by the wealth of primary metabolites, macromolecules, and cofactors bearing this element. Whereas a large body of knowledge has existed for sulfur trafficking in primary metabolism, the secondary metabolism involving sulfur has long been neglected. Yet, diverse sulfur functionalities have a major impact on the biological activities of natural products. Recent research at the genetic, biochemical, and chemical levels has unearthed a broad range of enzymes, sulfur shuttles, and chemical mechanisms for generating carbon-sulfur bonds. This Review will give the first systematic overview on enzymes catalyzing the formation of organosulfur natural products.
Collapse
Affiliation(s)
- Kyle L Dunbar
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Daniel H Scharf
- Life Sciences Institute, University of Michigan , 210 Washtenaw Avenue, Ann Arbor, Michigan 48109-2216, United States
| | - Agnieszka Litomska
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany.,Friedrich Schiller University , 07743 Jena, Germany
| |
Collapse
|
32
|
Mulliez E, Duarte V, Arragain S, Fontecave M, Atta M. On the Role of Additional [4Fe-4S] Clusters with a Free Coordination Site in Radical-SAM Enzymes. Front Chem 2017; 5:17. [PMID: 28361051 PMCID: PMC5352715 DOI: 10.3389/fchem.2017.00017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/03/2017] [Indexed: 11/13/2022] Open
Abstract
The canonical CysXXXCysXXCys motif is the hallmark of the Radical-SAM superfamily. This motif is responsible for the ligation of a [4Fe-4S] cluster containing a free coordination site available for SAM binding. The five enzymes MoaA, TYW1, MiaB, RimO and LipA contain in addition a second [4Fe-4S] cluster itself bound to three other cysteines and thus also displaying a potentially free coordination site. This review article summarizes recent important achievements obtained on these five enzymes with the main focus to delineate the role of this additional [4Fe-4S] cluster in catalysis.
Collapse
Affiliation(s)
- Etienne Mulliez
- Biosciences and Biotechnology Institute of Grenoble, Laboratoire de Chimie et Biologie des Métaux, UMR 5249 CEA-Centre National de la Recherche Scientifique-UGA Grenoble, France
| | - Victor Duarte
- Biosciences and Biotechnology Institute of Grenoble, Laboratoire de Chimie et Biologie des Métaux, UMR 5249 CEA-Centre National de la Recherche Scientifique-UGA Grenoble, France
| | - Simon Arragain
- Laboratoire de Chimie des Processus Biologiques, UMR 8229, Collége de France-Centre National de la Recherche Scientifique-Université P. et M. Curie Paris, France
| | - Marc Fontecave
- Biosciences and Biotechnology Institute of Grenoble, Laboratoire de Chimie et Biologie des Métaux, UMR 5249 CEA-Centre National de la Recherche Scientifique-UGAGrenoble, France; Laboratoire de Chimie des Processus Biologiques, UMR 8229, Collége de France-Centre National de la Recherche Scientifique-Université P. et M. CurieParis, France
| | - Mohamed Atta
- Biosciences and Biotechnology Institute of Grenoble, Laboratoire de Chimie et Biologie des Métaux, UMR 5249 CEA-Centre National de la Recherche Scientifique-UGA Grenoble, France
| |
Collapse
|
33
|
Zhang JR, Liao YY, Deng JC, Feng KY, Zhang M, Ning YY, Lin ZW, Tang RY. Oxidative dual C–H thiolation of imidazopyridines with ethers or alkanes using elemental sulphur. Chem Commun (Camb) 2017. [DOI: 10.1039/c7cc03940a] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Dual C–H thiolation reactions using elemental sulphur remain a challenge.
Collapse
Affiliation(s)
- Jun-Rong Zhang
- Department of Applied Chemistry
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
| | - Yan-Yan Liao
- Department of Applied Chemistry
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
| | - Jian-Chao Deng
- Department of Applied Chemistry
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
| | - Kai-Ying Feng
- Department of Applied Chemistry
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
| | - Min Zhang
- Department of Applied Chemistry
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
| | - Yun-Yun Ning
- Department of Applied Chemistry
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
| | - Zi-Wei Lin
- Department of Applied Chemistry
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
| | - Ri-Yuan Tang
- Department of Applied Chemistry
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
| |
Collapse
|
34
|
Shi J, Cao X, Chen Y, Cronan JE, Guo Z. An Atypical α/β-Hydrolase Fold Revealed in the Crystal Structure of Pimeloyl-Acyl Carrier Protein Methyl Esterase BioG from Haemophilus influenzae. Biochemistry 2016; 55:6705-6717. [PMID: 27933801 DOI: 10.1021/acs.biochem.6b00818] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pimeloyl-acyl carrier protein (ACP) methyl esterase is an α/β-hydrolase that catalyzes the last biosynthetic step of pimeloyl-ACP, a key intermediate in biotin biosynthesis. Intriguingly, multiple nonhomologous isofunctional forms of this enzyme that lack significant sequence identity are present in diverse bacteria. One such esterase, Escherichia coli BioH, has been shown to be a typical α/β-hydrolase fold enzyme. To gain further insights into the role of this step in biotin biosynthesis, we have determined the crystal structure of another widely distributed pimeloyl-ACP methyl esterase, Haemophilus influenzae BioG, at 1.26 Å. The BioG structure is similar to the BioH structure and is composed of an α-helical lid domain and a core domain that contains a central seven-stranded β-pleated sheet. However, four of the six α-helices that flank both sides of the BioH core β-sheet are replaced with long loops in BioG, thus forming an unusual α/β-hydrolase fold. This structural variation results in a significantly decreased thermal stability of the enzyme. Nevertheless, the lid domain and the residues at the lid-core interface are well conserved between BioH and BioG, in which an analogous hydrophobic pocket for pimelate binding as well as similar ionic interactions with the ACP moiety are retained. Biochemical characterization of site-directed mutants of the residues hypothesized to interact with the ACP moiety supports a similar substrate interaction mode for the two enzymes. Consequently, these enzymes package the identical catalytic function under a considerably different protein surface.
Collapse
Affiliation(s)
- Jie Shi
- Department of Chemistry and State Key Lab for Molecular Neuroscience, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong SAR, China
| | | | - Yaozong Chen
- Department of Chemistry and State Key Lab for Molecular Neuroscience, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong SAR, China
| | | | - Zhihong Guo
- Department of Chemistry and State Key Lab for Molecular Neuroscience, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
35
|
Maiocco SJ, Arcinas AJ, Landgraf BJ, Lee KH, Booker SJ, Elliott SJ. Transformations of the FeS Clusters of the Methylthiotransferases MiaB and RimO, Detected by Direct Electrochemistry. Biochemistry 2016; 55:5531-5536. [PMID: 27598886 PMCID: PMC5461913 DOI: 10.1021/acs.biochem.6b00670] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The methylthiotransferases (MTTases) represent a subfamily of the S-adenosylmethionine (AdoMet) radical superfamily of enzymes that catalyze the attachment of a methylthioether (-SCH3) moiety on unactivated carbon centers. These enzymes contain two [4Fe-4S] clusters, one of which participates in the reductive fragmentation of AdoMet to generate a 5'-deoxyadenosyl 5'-radical and the other of which, termed the auxiliary cluster, is believed to play a central role in constructing the methylthio group and attaching it to the substrate. Because the redox properties of the bound cofactors within the AdoMet radical superfamily are so poorly understood, we have examined two MTTases in parallel, MiaB and RimO, using protein electrochemistry. We resolve the redox potentials of each [4Fe-4S] cluster, show that the auxiliary cluster has a potential higher than that of the AdoMet-binding cluster, and demonstrate that upon incubation of either enzyme with AdoMet, a unique low-potential state of the enzyme emerges. Our results are consistent with a mechanism whereby the auxiliary cluster is transiently methylated during substrate methylthiolation.
Collapse
Affiliation(s)
- Stephanie J Maiocco
- Department of Chemistry, Boston University , 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | | | | | | | | | - Sean J Elliott
- Department of Chemistry, Boston University , 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
36
|
Ji X, Li Y, Xie L, Lu H, Ding W, Zhang Q. Expanding Radical SAM Chemistry by Using Radical Addition Reactions and SAM Analogues. Angew Chem Int Ed Engl 2016; 55:11845-8. [DOI: 10.1002/anie.201605917] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/11/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Xinjian Ji
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations; School of Life Sciences; Lanzhou University; Lanzhou 730000 China
- Department of Chemistry; Fudan University; Shanghai 200433 China
| | - Yongzhen Li
- Department of Chemistry; Fudan University; Shanghai 200433 China
| | - Liqi Xie
- Department of Chemistry; Fudan University; Shanghai 200433 China
| | - Haojie Lu
- Department of Chemistry; Fudan University; Shanghai 200433 China
| | - Wei Ding
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations; School of Life Sciences; Lanzhou University; Lanzhou 730000 China
| | - Qi Zhang
- Department of Chemistry; Fudan University; Shanghai 200433 China
| |
Collapse
|
37
|
Ji X, Li Y, Xie L, Lu H, Ding W, Zhang Q. Expanding Radical SAM Chemistry by Using Radical Addition Reactions and SAM Analogues. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Xinjian Ji
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations; School of Life Sciences; Lanzhou University; Lanzhou 730000 China
- Department of Chemistry; Fudan University; Shanghai 200433 China
| | - Yongzhen Li
- Department of Chemistry; Fudan University; Shanghai 200433 China
| | - Liqi Xie
- Department of Chemistry; Fudan University; Shanghai 200433 China
| | - Haojie Lu
- Department of Chemistry; Fudan University; Shanghai 200433 China
| | - Wei Ding
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations; School of Life Sciences; Lanzhou University; Lanzhou 730000 China
| | - Qi Zhang
- Department of Chemistry; Fudan University; Shanghai 200433 China
| |
Collapse
|
38
|
Ding W, Ji X, Li Y, Zhang Q. Catalytic Promiscuity of the Radical S-adenosyl-L-methionine Enzyme NosL. Front Chem 2016; 4:27. [PMID: 27446906 PMCID: PMC4916742 DOI: 10.3389/fchem.2016.00027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/09/2016] [Indexed: 12/19/2022] Open
Abstract
Catalytic promiscuity plays a key role in enzyme evolution and the acquisition of novel biological functions. Because of the high reactivity of radical species, in our view enzymes involving radical-mediated mechanisms could intrinsically be more prone to catalytic promiscuity. This mini-review summarizes the recent advances in the study of NosL, a radical S-adenosyl-L-methionine (SAM)-dependent L-tryptophan (L-Trp) lyase. We demonstrate here the interesting chemistry and remarkable catalytic promiscuity of NosL, and attempt to highlight the high evolvability of radical SAM enzymes and the potential to engineer these enzymes for novel and improved activities.
Collapse
Affiliation(s)
- Wei Ding
- Department of Chemistry, Fudan University Shanghai, China
| | - Xinjian Ji
- Department of Chemistry, Fudan University Shanghai, China
| | - Yongzhen Li
- Department of Chemistry, Fudan University Shanghai, China
| | - Qi Zhang
- Department of Chemistry, Fudan University Shanghai, China
| |
Collapse
|
39
|
Himes PM, Allen SE, Hwang S, Bowers AA. Production of Sactipeptides in Escherichia coli: Probing the Substrate Promiscuity of Subtilosin A Biosynthesis. ACS Chem Biol 2016; 11:1737-44. [PMID: 27019323 DOI: 10.1021/acschembio.6b00042] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sactipeptides are peptide-derived natural products that are processed by remarkable, radical-mediated cysteine sulfur to α-carbon coupling reactions. The resulting sactionine thioether linkages give rise to the unique defined structures and concomitant biological activities of sactipeptides. An E. coli heterologous expression system, based on the biosynthesis of one such sactipeptide, subtilosin A, is described and this expression system is exploited to probe the promiscuity of the subtilosin A sactionine bond-forming enzyme, AlbA. These efforts allowed the facile expression and isolation of a small library of mutant sactipeptides based on the subtilosin A precursor peptide, demonstrating broad substrate promiscuity where none was previously known. Importantly, we show that the positions of the sactionine linkages can be moved, giving rise to new, unnatural sactipeptide structures. E. coli heterologous expression also allowed incorporation of unnatural amino acids into sactipeptides by means of amber-suppression technology, potentially opening up new chemistry and new applications for unnatural sactipeptides.
Collapse
Affiliation(s)
- Paul M. Himes
- Division of Chemical Biology
and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, United States
| | - Scott E. Allen
- Division of Chemical Biology
and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, United States
| | - Sungwon Hwang
- Division of Chemical Biology
and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, United States
| | - Albert A. Bowers
- Division of Chemical Biology
and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, United States
| |
Collapse
|
40
|
Lv M, Ji X, Zhao J, Li Y, Zhang C, Su L, Ding W, Deng Z, Yu Y, Zhang Q. Characterization of a C3 Deoxygenation Pathway Reveals a Key Branch Point in Aminoglycoside Biosynthesis. J Am Chem Soc 2016; 138:6427-35. [PMID: 27120352 DOI: 10.1021/jacs.6b02221] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Apramycin is a clinically interesting aminoglycoside antibiotic (AGA) containing a highly unique bicyclic octose moiety, and this octose is deoxygenated at the C3 position. Although the biosynthetic pathways for most 2-deoxystreptamine-containing AGAs have been well characterized, the pathway for apramycin biosynthesis, including the C3 deoxygenation process, has long remained unknown. Here we report detailed investigation of apramycin biosynthesis by a series of genetic, biochemical and bioinformatical studies. We show that AprD4 is a novel radical S-adenosyl-l-methionine (SAM) enzyme, which uses a noncanonical CX3CX3C motif for binding of a [4Fe-4S] cluster and catalyzes the dehydration of paromamine, a pseudodisaccharide intermediate in apramycin biosynthesis. We also show that AprD3 is an NADPH-dependent reductase that catalyzes the reduction of the dehydrated product from AprD4-catalyzed reaction to generate lividamine, a C3' deoxygenated product of paromamine. AprD4 and AprD3 do not form a tight catalytic complex, as shown by protein complex immunoprecipitation and other assays. The AprD4/AprD3 enzyme system acts on different pseudodisaccharide substrates but does not catalyze the deoxygenation of oxyapramycin, an apramycin analogue containing a C3 hydroxyl group on the octose moiety, suggesting that oxyapramycin and apramycin are partitioned into two parallel pathways at an early biosynthetic stage. Functional dissection of the C6 dehydrogenase AprQ shows the crosstalk between different AGA biosynthetic gene clusters from the apramycin producer Streptomyces tenebrarius, and reveals the remarkable catalytic versatility of AprQ. Our study highlights the intriguing chemistry in apramycin biosynthesis and nature's ingenuity in combinatorial biosynthesis of natural products.
Collapse
Affiliation(s)
- Meinan Lv
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University , Wuhan, 430071, China
| | - Xinjian Ji
- Department of Chemistry, Fudan University , Shanghai, 200433, China
| | - Junfeng Zhao
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University , Wuhan, 430071, China.,Department of Chemistry, Fudan University , Shanghai, 200433, China
| | - Yongzhen Li
- Department of Chemistry, Fudan University , Shanghai, 200433, China
| | - Chen Zhang
- Department of Chemistry, Fudan University , Shanghai, 200433, China
| | - Li Su
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University , Wuhan, 430071, China
| | - Wei Ding
- Department of Chemistry, Fudan University , Shanghai, 200433, China
| | - Zixin Deng
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University , Wuhan, 430071, China
| | - Yi Yu
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University , Wuhan, 430071, China
| | - Qi Zhang
- Department of Chemistry, Fudan University , Shanghai, 200433, China
| |
Collapse
|
41
|
Ding W, Li Q, Jia Y, Ji X, Qianzhu H, Zhang Q. Emerging Diversity of the Cobalamin-Dependent Methyltransferases Involving Radical-Based Mechanisms. Chembiochem 2016; 17:1191-7. [PMID: 27028019 DOI: 10.1002/cbic.201600107] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Indexed: 11/10/2022]
Abstract
Cobalamins comprise a group of cobalt-containing organometallic cofactors that play important roles in cellular metabolism. Although many cobalamin-dependent methyltransferases (e.g., methionine synthase MetH) have been extensively studied, a new group of methyltransferases that are cobalamin-dependent and utilize radical chemistry in catalysis is just beginning to be appreciated. In this Concept article, we summarize recent advances in the understanding of the radical-based and cobalamin-dependent methyltransferases and discuss the functional and mechanistic diversity of this emerging class of enzymes.
Collapse
Affiliation(s)
- Wei Ding
- Key Laboratory of Cell Activities and Stress Adaptations, (Ministry of Education), School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Qien Li
- Key Laboratory of Cell Activities and Stress Adaptations, (Ministry of Education), School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Youli Jia
- Key Laboratory of Cell Activities and Stress Adaptations, (Ministry of Education), School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Xinjian Ji
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Haocheng Qianzhu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
42
|
Rohac R, Amara P, Benjdia A, Martin L, Ruffié P, Favier A, Berteau O, Mouesca JM, Fontecilla-Camps JC, Nicolet Y. Carbon–sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE. Nat Chem 2016; 8:491-500. [DOI: 10.1038/nchem.2490] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 02/25/2016] [Indexed: 11/09/2022]
|
43
|
Dörsam B, Fahrer J. The disulfide compound α-lipoic acid and its derivatives: A novel class of anticancer agents targeting mitochondria. Cancer Lett 2015; 371:12-9. [PMID: 26604131 DOI: 10.1016/j.canlet.2015.11.019] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 01/20/2023]
Abstract
The endogenous disulfide α-lipoic acid (LA) is an essential mitochondrial co-factor. In addition, LA and its reduced counterpart dihydro lipoic acid form a potent redox couple with antioxidative functions, for which it is used as dietary supplement and therapeutic. Recently, it has gained attention due to its cytotoxic effects in cancer cells, which is the key aspect of this review. We initially recapitulate the dietary occurrence, gastrointestinal absorption and pharmacokinetics of LA, illustrating its diverse antioxidative mechanisms. We then focus on its mode of action in cancer cells, in which it triggers primarily the mitochondrial pathway of apoptosis, whereas non-transformed primary cells are hardly affected. Furthermore, LA impairs oncogenic signaling and displays anti-metastatic potential. Novel LA derivatives such as CPI-613, which target mitochondrial energy metabolism, are described and recent pre-clinical studies are presented, which demonstrate that LA and its derivatives exert antitumor activity in vivo. Finally, we highlight clinical studies currently performed with the LA analog CPI-613. In summary, LA and its derivatives are promising candidates to complement the arsenal of established anticancer drugs due to their mitochondria-targeted mode of action and non-genotoxic properties.
Collapse
Affiliation(s)
- Bastian Dörsam
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Jörg Fahrer
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany.
| |
Collapse
|
44
|
Ji X, Li Y, Ding W, Zhang Q. Substrate-Tuned Catalysis of the RadicalS-Adenosyl-L-Methionine Enzyme NosL Involved in Nosiheptide Biosynthesis. Angew Chem Int Ed Engl 2015; 54:9021-4. [DOI: 10.1002/anie.201503976] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Indexed: 12/23/2022]
|
45
|
Ji X, Li Y, Ding W, Zhang Q. Substrate-Tuned Catalysis of the RadicalS-Adenosyl-L-Methionine Enzyme NosL Involved in Nosiheptide Biosynthesis. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503976] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
46
|
Mehta AP, Abdelwahed SH, Mahanta N, Fedoseyenko D, Philmus B, Cooper LE, Liu Y, Jhulki I, Ealick SE, Begley TP. Radical S-adenosylmethionine (SAM) enzymes in cofactor biosynthesis: a treasure trove of complex organic radical rearrangement reactions. J Biol Chem 2014; 290:3980-6. [PMID: 25477515 DOI: 10.1074/jbc.r114.623793] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this minireview, we describe the radical S-adenosylmethionine enzymes involved in the biosynthesis of thiamin, menaquinone, molybdopterin, coenzyme F420, and heme. Our focus is on the remarkably complex organic rearrangements involved, many of which have no precedent in organic or biological chemistry.
Collapse
Affiliation(s)
- Angad P Mehta
- From the Department of Chemistry, Texas A&M University, College Station, Texas 77843 and
| | - Sameh H Abdelwahed
- From the Department of Chemistry, Texas A&M University, College Station, Texas 77843 and
| | - Nilkamal Mahanta
- From the Department of Chemistry, Texas A&M University, College Station, Texas 77843 and
| | - Dmytro Fedoseyenko
- From the Department of Chemistry, Texas A&M University, College Station, Texas 77843 and
| | - Benjamin Philmus
- From the Department of Chemistry, Texas A&M University, College Station, Texas 77843 and
| | - Lisa E Cooper
- From the Department of Chemistry, Texas A&M University, College Station, Texas 77843 and
| | - Yiquan Liu
- From the Department of Chemistry, Texas A&M University, College Station, Texas 77843 and
| | - Isita Jhulki
- From the Department of Chemistry, Texas A&M University, College Station, Texas 77843 and
| | - Steven E Ealick
- the Department of Chemistry, Cornell University, Ithaca, New York 14850
| | - Tadhg P Begley
- From the Department of Chemistry, Texas A&M University, College Station, Texas 77843 and
| |
Collapse
|
47
|
Banerjee R. Introduction to the thematic minireview series on radical S-adenosylmethionine (SAM) enzymes. J Biol Chem 2014; 290:3962-3. [PMID: 25477525 DOI: 10.1074/jbc.r114.630251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the early days, radical enzyme reactions that use S-adenosylmethionine (SAM) coordinated to an Fe-S cluster, which Perry Frey described as a "poor man's coenzyme B12," were believed to be relatively rare chemical curiosities. Today, bioinformatics analyses have revealed the wide prevalence and sheer numbers of radical SAM enzymes, conferring superfamily status. In this thematic minireview series, the JBC presents six articles on radical SAM enzymes that accomplish wide-ranging chemical transformations. We learn that despite the diversity of the reactions catalyzed, family members share some common structural and mechanistic themes. Still in its infancy, continued explorations promise to be fertile grounds for discoveries that will undoubtedly further broaden our understanding of the catalytic repertoire and deepen our understanding of the chemical strategies used by radical SAM enzymes.
Collapse
Affiliation(s)
- Ruma Banerjee
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
| |
Collapse
|