1
|
Neale I, Reddy C, Tan ZY, Li B, Nag PP, Park J, Park J, Carey KL, Graham DB, Xavier RJ. Small-molecule probe for IBD risk variant GPR65 I231L alters cytokine signaling networks through positive allosteric modulation. SCIENCE ADVANCES 2024; 10:eadn2339. [PMID: 39028811 PMCID: PMC11259170 DOI: 10.1126/sciadv.adn2339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/13/2024] [Indexed: 07/21/2024]
Abstract
The proton-sensing heterotrimeric guanine nucleotide-binding protein-coupled receptor GPR65 is expressed in immune cells and regulates tissue homeostasis in response to decreased extracellular pH, which occurs in the context of inflammation and tumorigenesis. Genome-wide association studies linked GPR65 to several autoimmune and inflammatory diseases such as multiple sclerosis and inflammatory bowel disease (IBD). The loss-of-function GPR65 I231L IBD risk variant alters cellular metabolism, impairs protective tissue functions, and increases proinflammatory cytokine production. Hypothesizing that a small molecule designed to potentiate GPR65 at subphysiological pH could decrease inflammatory responses, we found positive allosteric modulators of GPR65 that engage and activate both human and mouse orthologs of the receptor. We observed that the chemical probe BRD5075 alters cytokine and chemokine programs in dendritic cells, establishing that immune signaling can be modulated by targeting GPR65. Our investigation offers improved chemical probes to further interrogate the biology of human GPR65 and its clinically relevant genetic variants.
Collapse
Affiliation(s)
- Ilona Neale
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Clark Reddy
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zher Yin Tan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Bihua Li
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Partha P. Nag
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joshua Park
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jihye Park
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Daniel B. Graham
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ramnik J. Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
2
|
Yoshida Y, Fukuoka K, Sakugawa M, Kurogi M, Hamamura K, Hamasaki K, Tsurusaki F, Sotono K, Nishi T, Fukuda T, Kumamoto T, Oyama K, Ogino T, Tsuruta A, Mayanagi K, Yamashita T, Fuchino H, Kawahara N, Yoshimatsu K, Kawakami H, Koyanagi S, Matsunaga N, Ohdo S. Inhibition of G protein-coupled receptor 68 using homoharringtonine attenuates chronic kidney disease-associated cardiac impairment. Transl Res 2024; 269:31-46. [PMID: 38401836 DOI: 10.1016/j.trsl.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/22/2023] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Chronic kidney disease (CKD) induces cardiac inflammation and fibrosis and reduces survival. We previously demonstrated that G protein-coupled receptor 68 (GPR68) promotes cardiac inflammation and fibrosis in mice with 5/6 nephrectomy (5/6Nx) and patients with CKD. However, no method of GPR68 inhibition has been found that has potential for therapeutic application. Here, we report that Cephalotaxus harringtonia var. nana extract and homoharringtonine ameliorate cardiac inflammation and fibrosis under CKD by suppressing GPR68 function. Reagents that inhibit the function of GPR68 were explored by high-throughput screening using a medicinal plant extract library (8,008 species), and we identified an extract from Cephalotaxus harringtonia var. nana as a GPR68 inhibitor that suppresses inflammatory cytokine production in a GPR68 expression-dependent manner. Consumption of the extract inhibited inflammatory cytokine expression and cardiac fibrosis and improved the decreased survival attributable to 5/6Nx. Additionally, homoharringtonine, a cephalotaxane compound characteristic of C. harringtonia, inhibited inflammatory cytokine production. Homoharringtonine administration in drinking water alleviated cardiac fibrosis and improved heart failure and survival in 5/6Nx mice. A previously unknown effect of C. harringtonia extract and homoharringtonine was revealed in which GPR68-dependent inflammation and cardiac dysfunction were suppressed. Utilizing these compounds could represent a new strategy for treating GPR68-associated diseases, including CKD.
Collapse
Affiliation(s)
- Yuya Yoshida
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Kohei Fukuoka
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Miyu Sakugawa
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Masayuki Kurogi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Kengo Hamamura
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Keika Hamasaki
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Fumiaki Tsurusaki
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Kurumi Sotono
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Takumi Nishi
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Taiki Fukuda
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Taisei Kumamoto
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Kosuke Oyama
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Takashi Ogino
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Akito Tsuruta
- Department of Glocal Healthcare Science, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Kouta Mayanagi
- Department of Drug Discovery Structural Biology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomohiro Yamashita
- Department of Drug Discovery Structural Biology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroyuki Fuchino
- Tsukuba Division, Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| | - Nobuo Kawahara
- Tsukuba Division, Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan; The Kochi Prefectural Makino Botanical Garden, 4200-6, Godaisan, Kochi 781-8125, Japan
| | - Kayo Yoshimatsu
- Tsukuba Division, Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| | - Hitomi Kawakami
- Tsukuba Division, Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| | - Satoru Koyanagi
- Department of Glocal Healthcare Science, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Naoya Matsunaga
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| | - Shigehiro Ohdo
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
3
|
Janicot R, Maziarz M, Park JC, Zhao J, Luebbers A, Green E, Philibert CE, Zhang H, Layne MD, Wu JC, Garcia-Marcos M. Direct interrogation of context-dependent GPCR activity with a universal biosensor platform. Cell 2024; 187:1527-1546.e25. [PMID: 38412860 PMCID: PMC10947893 DOI: 10.1016/j.cell.2024.01.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/04/2023] [Accepted: 01/18/2024] [Indexed: 02/29/2024]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of druggable proteins encoded in the human genome, but progress in understanding and targeting them is hindered by the lack of tools to reliably measure their nuanced behavior in physiologically relevant contexts. Here, we developed a collection of compact ONE vector G-protein Optical (ONE-GO) biosensor constructs as a scalable platform that can be conveniently deployed to measure G-protein activation by virtually any GPCR with high fidelity even when expressed endogenously in primary cells. By characterizing dozens of GPCRs across many cell types like primary cardiovascular cells or neurons, we revealed insights into the molecular basis for G-protein coupling selectivity of GPCRs, pharmacogenomic profiles of anti-psychotics on naturally occurring GPCR variants, and G-protein subtype signaling bias by endogenous GPCRs depending on cell type or upon inducing disease-like states. In summary, this open-source platform makes the direct interrogation of context-dependent GPCR activity broadly accessible.
Collapse
Affiliation(s)
- Remi Janicot
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Marcin Maziarz
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Jong-Chan Park
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Jingyi Zhao
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Alex Luebbers
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Elena Green
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Clementine Eva Philibert
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Hao Zhang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mathew D Layne
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; Department of Biology, College of Arts & Sciences, Boston University, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Anversa RG, Maddern XJ, Lawrence AJ, Walker LC. Orphan peptide and G protein-coupled receptor signalling in alcohol use disorder. Br J Pharmacol 2024; 181:595-609. [PMID: 38073127 PMCID: PMC10953447 DOI: 10.1111/bph.16301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
Neuropeptides and G protein-coupled receptors (GPCRs) have long been, and continue to be, one of the most popular target classes for drug discovery in CNS disorders, including alcohol use disorder (AUD). Yet, orphaned neuropeptide systems and receptors (oGPCR), which have no known cognate receptor or ligand, remain understudied in drug discovery and development. Orphan neuropeptides and oGPCRs are abundantly expressed within the brain and represent an unprecedented opportunity to address brain function and may hold potential as novel treatments for disease. Here, we describe the current literature regarding orphaned neuropeptides and oGPCRs implicated in AUD. Specifically, in this review, we focus on the orphaned neuropeptide cocaine- and amphetamine-regulated transcript (CART), and several oGPCRs that have been directly implicated in AUD (GPR6, GPR26, GPR88, GPR139, GPR158) and discuss their potential and pitfalls as novel treatments, and progress in identifying their cognate receptors or ligands.
Collapse
Affiliation(s)
- Roberta Goncalves Anversa
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| | - Xavier J. Maddern
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| | - Andrew J. Lawrence
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| | - Leigh C. Walker
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| |
Collapse
|
5
|
Majumdar S, Chiu YT, Pickett JE, Roth BL. Illuminating the understudied GPCR-ome. Drug Discov Today 2024; 29:103848. [PMID: 38052317 DOI: 10.1016/j.drudis.2023.103848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
G-protein-coupled receptors (GPCRs) are the target of >30% of approved drugs. Despite their popularity, many of the >800 human GPCRs remain understudied. The Illuminating the Druggable Genome (IDG) project has generated many tools leading to important insights into the function and druggability of these so-called 'dark' receptors. These tools include assays, such as PRESTO-TANGO and TRUPATH, billions of small molecules made available via the ZINC virtual library, solved orphan GPCR structures, GPCR knock-in mice, and more. Together, these tools are illuminating the remaining 'dark' GPCRs.
Collapse
Affiliation(s)
- Sreeparna Majumdar
- Department of Pharmacology, UNC Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Yi-Ting Chiu
- Department of Pharmacology, UNC Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Julie E Pickett
- Department of Pharmacology, UNC Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Bryan L Roth
- Department of Pharmacology, UNC Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Li H, Sun X, Cui W, Xu M, Dong J, Ekundayo BE, Ni D, Rao Z, Guo L, Stahlberg H, Yuan S, Vogel H. Computational drug development for membrane protein targets. Nat Biotechnol 2024; 42:229-242. [PMID: 38361054 DOI: 10.1038/s41587-023-01987-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 09/13/2023] [Indexed: 02/17/2024]
Abstract
The application of computational biology in drug development for membrane protein targets has experienced a boost from recent developments in deep learning-driven structure prediction, increased speed and resolution of structure elucidation, machine learning structure-based design and the evaluation of big data. Recent protein structure predictions based on machine learning tools have delivered surprisingly reliable results for water-soluble and membrane proteins but have limitations for development of drugs that target membrane proteins. Structural transitions of membrane proteins have a central role during transmembrane signaling and are often influenced by therapeutic compounds. Resolving the structural and functional basis of dynamic transmembrane signaling networks, especially within the native membrane or cellular environment, remains a central challenge for drug development. Tackling this challenge will require an interplay between experimental and computational tools, such as super-resolution optical microscopy for quantification of the molecular interactions of cellular signaling networks and their modulation by potential drugs, cryo-electron microscopy for determination of the structural transitions of proteins in native cell membranes and entire cells, and computational tools for data analysis and prediction of the structure and function of cellular signaling networks, as well as generation of promising drug candidates.
Collapse
Affiliation(s)
- Haijian Li
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
| | - Xiaolin Sun
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
| | - Wenqiang Cui
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Marc Xu
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junlin Dong
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Babatunde Edukpe Ekundayo
- Laboratory of Biological Electron Microscopy, IPHYS, SB, EPFL and Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Dongchun Ni
- Laboratory of Biological Electron Microscopy, IPHYS, SB, EPFL and Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Zhili Rao
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
| | - Liwei Guo
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
| | - Henning Stahlberg
- Laboratory of Biological Electron Microscopy, IPHYS, SB, EPFL and Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Shuguang Yuan
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China.
| | - Horst Vogel
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China.
- Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
7
|
Janicot R, Maziarz M, Park JC, Luebbers A, Green E, Zhao J, Philibert C, Zhang H, Layne MD, Wu JC, Garcia-Marcos M. Direct interrogation of context-dependent GPCR activity with a universal biosensor platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573921. [PMID: 38260348 PMCID: PMC10802303 DOI: 10.1101/2024.01.02.573921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of druggable proteins in the human genome, but progress in understanding and targeting them is hindered by the lack of tools to reliably measure their nuanced behavior in physiologically-relevant contexts. Here, we developed a collection of compact ONE vector G-protein Optical (ONE-GO) biosensor constructs as a scalable platform that can be conveniently deployed to measure G-protein activation by virtually any GPCR with high fidelity even when expressed endogenously in primary cells. By characterizing dozens of GPCRs across many cell types like primary cardiovascular cells or neurons, we revealed new insights into the molecular basis for G-protein coupling selectivity of GPCRs, pharmacogenomic profiles of anti-psychotics on naturally-occurring GPCR variants, and G-protein subtype signaling bias by endogenous GPCRs depending on cell type or upon inducing disease-like states. In summary, this open-source platform makes the direct interrogation of context-dependent GPCR activity broadly accessible.
Collapse
Affiliation(s)
- Remi Janicot
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Marcin Maziarz
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Jong-Chan Park
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Alex Luebbers
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Elena Green
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Jingyi Zhao
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Clementine Philibert
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Hao Zhang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mathew D. Layne
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
- Department of Biology, College of Arts & Sciences, Boston University, Boston, MA 02115, USA
| |
Collapse
|
8
|
Pillaiyar T, Wozniak M, Abboud D, Rasch A, Liebing AD, Poso A, Kronenberger T, Stäubert C, Laufer SA, Hanson J. Development of Ligands for the Super Conserved Orphan G Protein-Coupled Receptor GPR27 with Improved Efficacy and Potency. J Med Chem 2023; 66:17118-17137. [PMID: 38060818 DOI: 10.1021/acs.jmedchem.3c02030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The orphan G protein-coupled receptor GPR27 appears to play a role in insulin production, secretion, lipid metabolism, neuronal plasticity, and l-lactate homeostasis. However, investigations on the function of GPR27 are impaired by the lack of potent and efficacious agonists. We describe herein the development of di- and trisubstituted benzamide derivatives 4a-e, 7a-z, and 7aa-ai, which display GPR27-specific activity in a β-arrestin 2 recruitment-based assay. Highlighted compounds are PT-91 (7p: pEC50 6.15; Emax 100%) and 7ab (pEC50 6.56; Emax 99%). A putative binding mode was revealed by the docking studies of 7p and 7ab with a GPR27 homology model. The novel active compounds exhibited no GPR27-mediated activation of G proteins, indicating that the receptor may possess an atypical profile. Compound 7p displays high metabolic stability and brain exposure in mice. Thus, 7p represents a novel tool to investigate the elusive pharmacology of GPR27 and assess its potential as a drug target.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Monika Wozniak
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, B-4000 Liège, Belgium
| | - Dayana Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, B-4000 Liège, Belgium
| | - Alexander Rasch
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Aenne-Dorothea Liebing
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Antti Poso
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Claudia Stäubert
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Stefan A Laufer
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, B-4000 Liège, Belgium
- Laboratory of Medicinal Chemistry, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
9
|
Morales Rodríguez LM, Crilly SE, Rowe JB, Isom DG, Puthenveedu MA. Location-biased activation of the proton-sensor GPR65 is uncoupled from receptor trafficking. Proc Natl Acad Sci U S A 2023; 120:e2302823120. [PMID: 37722051 PMCID: PMC10523530 DOI: 10.1073/pnas.2302823120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/07/2023] [Indexed: 09/20/2023] Open
Abstract
The canonical view of G protein-coupled receptor (GPCR) function is that receptor trafficking is tightly coupled to signaling. GPCRs remain on the plasma membrane (PM) at the cell surface until they are activated, after which they are desensitized and internalized into endosomal compartments. This canonical view presents an interesting context for proton-sensing GPCRs because they are more likely to be activated in acidic endosomal compartments than at the PM. Here, we show that the trafficking of the prototypical proton-sensor GPR65 is fully uncoupled from signaling, unlike that of other known mammalian GPCRs. GPR65 internalizes and localizes to early and late endosomes, from where they signal at steady state, irrespective of extracellular pH. Acidic extracellular environments stimulate receptor signaling at the PM in a dose-dependent manner, although endosomal GPR65 is still required for a full signaling response. Receptor mutants that were incapable of activating cAMP trafficked normally, internalize and localize to endosomal compartments. Our results show that GPR65 is constitutively active in endosomes, and suggest a model where changes in extracellular pH reprograms the spatial pattern of receptor signaling and biases the location of signaling to the cell surface.
Collapse
Affiliation(s)
| | - Stephanie E. Crilly
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI48109
| | - Jacob B. Rowe
- The Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL33136
| | - Daniel G. Isom
- The Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL33136
- Institute for Data Science and Computing, University of Miami Miller School of Medicine, Miami, FL33136
| | - Manojkumar A. Puthenveedu
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI48109
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI48109
| |
Collapse
|
10
|
Beets I, Zels S, Vandewyer E, Demeulemeester J, Caers J, Baytemur E, Courtney A, Golinelli L, Hasakioğulları İ, Schafer WR, Vértes PE, Mirabeau O, Schoofs L. System-wide mapping of peptide-GPCR interactions in C. elegans. Cell Rep 2023; 42:113058. [PMID: 37656621 PMCID: PMC7615250 DOI: 10.1016/j.celrep.2023.113058] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/19/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
Neuropeptides and peptide hormones are ancient, widespread signaling molecules that underpin almost all brain functions. They constitute a broad ligand-receptor network, mainly by binding to G protein-coupled receptors (GPCRs). However, the organization of the peptidergic network and roles of many peptides remain elusive, as our insight into peptide-receptor interactions is limited and many peptide GPCRs are still orphan receptors. Here we report a genome-wide peptide-GPCR interaction map in Caenorhabditis elegans. By reverse pharmacology screening of over 55,384 possible interactions, we identify 461 cognate peptide-GPCR couples that uncover a broad signaling network with specific and complex combinatorial interactions encoded across and within single peptidergic genes. These interactions provide insights into peptide functions and evolution. Combining our dataset with phylogenetic analysis supports peptide-receptor co-evolution and conservation of at least 14 bilaterian peptidergic systems in C. elegans. This resource lays a foundation for system-wide analysis of the peptidergic network.
Collapse
Affiliation(s)
- Isabel Beets
- Department of Biology, KU Leuven, 3000 Leuven, Belgium.
| | - Sven Zels
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | | | - Jonas Demeulemeester
- The Francis Crick Institute, London NW1 1AT, UK; VIB - KU Leuven Center for Cancer Biology, 3000 Leuven, Belgium; Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Jelle Caers
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Esra Baytemur
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Amy Courtney
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Petra E Vértes
- Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Olivier Mirabeau
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Inserm U1224, Brain-Immune Communication Lab, 75015 Paris, France
| | | |
Collapse
|
11
|
Schmitz GP, Roth BL. G protein-coupled receptors as targets for transformative neuropsychiatric therapeutics. Am J Physiol Cell Physiol 2023; 325:C17-C28. [PMID: 37067459 PMCID: PMC10281788 DOI: 10.1152/ajpcell.00397.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of druggable genes in the human genome. Even though perhaps 30% of approved medications target GPCRs, they interact with only a small number of them. Here, we consider whether there might be new opportunities for transformative therapeutics for neuropsychiatric disorders by specifically targeting both known and understudied GPCRs. Using psychedelic drugs that target serotonin receptors as an example, we show how recent insights into the structure, function, signaling, and cell biology of these receptors have led to potentially novel therapeutics. We next focus on the possibility that nonpsychedelic 5-HT2A receptor agonists might prove to be safe and rapidly acting antidepressants. Finally, we examine understudied and orphan GPCRs using the MRGPR family of receptors as an example.
Collapse
Affiliation(s)
- Gavin P Schmitz
- Department of Pharmacology, UNC Chapel Hill Medical School, Chapel Hill, North Carolina, United States
| | - Bryan L Roth
- Department of Pharmacology, UNC Chapel Hill Medical School, Chapel Hill, North Carolina, United States
| |
Collapse
|
12
|
Fakhar AZ, Liu J, Pajerowska-Mukhtar KM, Mukhtar MS. The Lost and Found: Unraveling the Functions of Orphan Genes. J Dev Biol 2023; 11:27. [PMID: 37367481 PMCID: PMC10299390 DOI: 10.3390/jdb11020027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Orphan Genes (OGs) are a mysterious class of genes that have recently gained significant attention. Despite lacking a clear evolutionary history, they are found in nearly all living organisms, from bacteria to humans, and they play important roles in diverse biological processes. The discovery of OGs was first made through comparative genomics followed by the identification of unique genes across different species. OGs tend to be more prevalent in species with larger genomes, such as plants and animals, and their evolutionary origins remain unclear but potentially arise from gene duplication, horizontal gene transfer (HGT), or de novo origination. Although their precise function is not well understood, OGs have been implicated in crucial biological processes such as development, metabolism, and stress responses. To better understand their significance, researchers are using a variety of approaches, including transcriptomics, functional genomics, and molecular biology. This review offers a comprehensive overview of the current knowledge of OGs in all domains of life, highlighting the possible role of dark transcriptomics in their evolution. More research is needed to fully comprehend the role of OGs in biology and their impact on various biological processes.
Collapse
Affiliation(s)
| | | | | | - M. Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294, USA
| |
Collapse
|
13
|
Mollaei P, Barati Farimani A. Activity Map and Transition Pathways of G Protein-Coupled Receptor Revealed by Machine Learning. J Chem Inf Model 2023; 63:2296-2304. [PMID: 37036101 PMCID: PMC10131220 DOI: 10.1021/acs.jcim.3c00032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 04/11/2023]
Abstract
Approximately, one-third of all U.S. Food and Drug Administration approved drugs target G protein-coupled receptors (GPCRs). However, more knowledge of protein structure-activity correlation is required to improve the efficacy of the drugs targeting GPCRs. In this study, we developed a machine learning model to predict the activation state and activity level of the receptors with high prediction accuracy. Furthermore, we applied this model to thousands of molecular dynamics trajectories to correlate residue-level conformational changes of a GPCR to its activity level. Finally, the most probable transition pathway between activation states of a receptor can be identified using the state-activity information. In addition, with this model, we can associate the contribution of each amino acid to the activation process. Using this method, we can design drugs that mainly target principal amino acids driving the transition between activation states of GPCRs. Our advanced method is generalizable to all GPCR classes and provides mechanistic insight into the activation mechanism in the receptors.
Collapse
Affiliation(s)
- Parisa Mollaei
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Amir Barati Farimani
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Machine
Learning Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
14
|
Rodríguez LMM, Crilly SE, Rowe JB, Isom DG, Puthenveedu MA. Compartment-Specific Activation of the Proton-Sensor GPR65 is Uncoupled from Receptor Trafficking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.18.533272. [PMID: 36993269 PMCID: PMC10055196 DOI: 10.1101/2023.03.18.533272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The canonical view of G protein-coupled receptor (GPCR) function is that receptor trafficking is tightly coupled to signaling. GPCRs remain on the plasma membrane (PM) at the cell surface until they are activated, after which they are desensitized and internalized into endosomal compartments. This canonical view presents an interesting context for proton-sensing GPCRs because they are more likely to be activated in acidic endosomal compartments than at the PM. Here we show that the trafficking of the prototypical proton-sensor GPR65 is fully uncoupled from signaling, unlike that of other known mammalian GPCRs. GPR65 internalized and localized to early and late endosomes, from where they signal at steady state, irrespective of extracellular pH. Acidic extracellular environments stimulated receptor signaling at the PM in a dose-dependent manner, although endosomal GPR65 was still required for a full signaling response. Receptor mutants that were incapable of activating cAMP trafficked normally, internalized, and localized to endosomal compartments. Our results show that GPR65 is constitutively active in endosomes, and suggest a model where changes in extracellular pH reprograms the spatial pattern of receptor signaling and biases the location of signaling to the cell surface.
Collapse
Affiliation(s)
| | - Stephanie E. Crilly
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, United States
| | - Jacob B. Rowe
- The Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Daniel G. Isom
- The Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Institute for Data Science and Computing, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Manojkumar A. Puthenveedu
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, United States
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
15
|
Stäubert C, Wozniak M, Dupuis N, Laschet C, Pillaiyar T, Hanson J. Superconserved receptors expressed in the brain: Expression, function, motifs and evolution of an orphan receptor family. Pharmacol Ther 2022; 240:108217. [PMID: 35644261 DOI: 10.1016/j.pharmthera.2022.108217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/14/2022]
Abstract
GPR27, GPR85 and GPR173 constitute a small family of G protein-coupled receptors (GPCR) that share the distinctive characteristics of being highly conserved throughout vertebrate evolution and predominantly expressed in the brain. Accordingly, they have been coined as "Superconserved Receptors Expressed in the Brain" (SREB), although their expression profile is more complex than what was originally thought. SREBs have no known validated endogenous ligands and are thus labeled as "orphan" receptors. The investigation of this particular category of uncharacterized receptors holds great promise both in terms of physiology and drug development. In the largest GPCR family, the Rhodopsin-like or Class A, around 100 receptors are considered orphans. Because GPCRs are the most successful source of drug targets, the discovery of a novel function or ligand most likely will lead to significant breakthroughs for the discovery of innovative therapies. The high level of conservation is one of the characteristic features of the SREBs. We propose herein a detailed analysis of the putative evolutionary origin of this family. We highlight the properties that distinguish SREBs from other rhodopsin-like GPCRs. We present the current evidence for these receptors downstream signaling pathways and functions. We discuss the pharmacological challenge for the identification of natural or synthetic ligands of orphan receptors like SREBs. The different SREB-related scientific questions are presented with a highlight on what should be addressed in the near future, including the confirmation of published evidence and their validation as drug targets. In particular, we discuss in which pathological conditions these receptors may be of great relevance to solve unmet medical needs.
Collapse
Affiliation(s)
- Claudia Stäubert
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany.
| | - Monika Wozniak
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Nadine Dupuis
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Céline Laschet
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium; Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium.
| |
Collapse
|
16
|
Chen G, Wang X, Liao Q, Ge Y, Jiao H, Chen Q, Liu Y, Lyu W, Zhu L, van Zundert GCP, Robertson MJ, Skiniotis G, Du Y, Hu H, Ye RD. Structural basis for recognition of N-formyl peptides as pathogen-associated molecular patterns. Nat Commun 2022; 13:5232. [PMID: 36064945 PMCID: PMC9445081 DOI: 10.1038/s41467-022-32822-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
The formyl peptide receptor 1 (FPR1) is primarily responsible for detection of short peptides bearing N-formylated methionine (fMet) that are characteristic of protein synthesis in bacteria and mitochondria. As a result, FPR1 is critical to phagocyte migration and activation in bacterial infection, tissue injury and inflammation. How FPR1 distinguishes between formyl peptides and non-formyl peptides remains elusive. Here we report cryo-EM structures of human FPR1-Gi protein complex bound to S. aureus-derived peptide fMet-Ile-Phe-Leu (fMIFL) and E. coli-derived peptide fMet-Leu-Phe (fMLF). Both structures of FPR1 adopt an active conformation and exhibit a binding pocket containing the R2015.38XXXR2055.42 (RGIIR) motif for formyl group interaction and receptor activation. This motif works together with D1063.33 for hydrogen bond formation with the N-formyl group and with fMet, a model supported by MD simulation and functional assays of mutant receptors with key residues for recognition substituted by alanine. The cryo-EM model of agonist-bound FPR1 provides a structural basis for recognition of bacteria-derived chemotactic peptides with potential applications in developing FPR1-targeting agents.
Collapse
Affiliation(s)
- Geng Chen
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Xiankun Wang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Qiwen Liao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Yunjun Ge
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
- School of Life Sciences, University of Science and Technology of China, Anhui, 230026, China
| | - Haizhan Jiao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
- School of Life Sciences, University of Science and Technology of China, Anhui, 230026, China
| | - Qiang Chen
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Yezhou Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518055, China
| | - Wenping Lyu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | | | - Michael J Robertson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| | - Hongli Hu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| | - Richard D Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| |
Collapse
|
17
|
Wingler LM, Feld AP. Nanobodies as Probes and Modulators of Cardiovascular G Protein-Coupled Receptors. J Cardiovasc Pharmacol 2022; 80:342-353. [PMID: 34840268 DOI: 10.1097/fjc.0000000000001185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/06/2021] [Indexed: 01/31/2023]
Abstract
ABSTRACT Understanding the activation of G protein-coupled receptors (GPCRs) is of paramount importance to the field of cardiovascular medicine due to the critical physiological roles of these receptors and their prominence as drug targets. Although many cardiovascular GPCRs have been extensively studied as model receptors for decades, new complexities in their regulation continue to emerge. As a result, there is an ongoing need to develop novel approaches to monitor and to modulate GPCR activation. In less than a decade, nanobodies, or recombinant single-domain antibody fragments from camelids, have become indispensable tools for interrogating GPCRs both in purified systems and in living cells. Nanobodies have gained traction rapidly due to their biochemical tractability and their ability to recognize defined states of native proteins. Here, we review how nanobodies have been adopted to elucidate the structure, pharmacology, and signaling of cardiovascular GPCRs, resolving long-standing mysteries and revealing unexpected mechanisms. We also discuss how advancing technologies to discover nanobodies with tailored specificities may expand the impact of these tools for both basic science and therapeutic applications.
Collapse
Affiliation(s)
- Laura M Wingler
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | | |
Collapse
|
18
|
Levit Kaplan A, Strachan RT, Braz JM, Craik V, Slocum S, Mangano T, Amabo V, O'Donnell H, Lak P, Basbaum AI, Roth BL, Shoichet BK. Structure-Based Design of a Chemical Probe Set for the 5-HT 5A Serotonin Receptor. J Med Chem 2022; 65:4201-4217. [PMID: 35195401 DOI: 10.1021/acs.jmedchem.1c02031] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The 5-HT5A receptor (5-HT5AR), for which no selective agonists and a few antagonists exist, remains the least understood serotonin receptor. A single commercial antagonist, SB-699551, has been widely used to investigate the 5-HT5AR function in neurological disorders, including pain, but this molecule has substantial liabilities as a chemical probe. Accordingly, we sought to develop an internally controlled probe set. Docking over 6 million molecules against a 5-HT5AR homology model identified 5 mid-μM ligands, one of which was optimized to UCSF678, a 42 nM arrestin-biased partial agonist at the 5-HT5AR with a more restricted off-target profile and decreased assay liabilities versus SB-699551. Site-directed mutagenesis supported the docked pose of UCSF678. Surprisingly, analogs of UCSF678 that lost the 5-HT5AR activity revealed that 5-HT5AR engagement is nonessential for alleviating pain, contrary to studies with less-selective ligands. UCSF678 and analogs constitute a selective probe set with which to study the function of the 5-HT5AR.
Collapse
Affiliation(s)
- Anat Levit Kaplan
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States
| | - Ryan T Strachan
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Joao M Braz
- Department of Anatomy, University of California, San Francisco, San Francisco, California 94143, United States
| | - Veronica Craik
- Department of Anatomy, University of California, San Francisco, San Francisco, California 94143, United States
| | - Samuel Slocum
- National Institute of Mental Health Psychoactive Drug Screening Program, School of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Thomas Mangano
- National Institute of Mental Health Psychoactive Drug Screening Program, School of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Vanessa Amabo
- National Institute of Mental Health Psychoactive Drug Screening Program, School of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Henry O'Donnell
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States
| | - Parnian Lak
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States
| | - Allan I Basbaum
- Department of Anatomy, University of California, San Francisco, San Francisco, California 94143, United States
| | - Bryan L Roth
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27514, United States.,National Institute of Mental Health Psychoactive Drug Screening Program, School of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27514, United States.,Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
19
|
Pharmaceutical therapeutics for articular regeneration and restoration: state-of-the-art technology for screening small molecular drugs. Cell Mol Life Sci 2021; 78:8127-8155. [PMID: 34783870 PMCID: PMC8593173 DOI: 10.1007/s00018-021-03983-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/20/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023]
Abstract
Articular cartilage damage caused by sports injury or osteoarthritis (OA) has gained increased attention as a worldwide health burden. Pharmaceutical treatments are considered cost-effective means of promoting cartilage regeneration, but are limited by their inability to generate sufficient functional chondrocytes and modify disease progression. Small molecular chemical compounds are an abundant source of new pharmaceutical therapeutics for cartilage regeneration, as they have advantages in design, fabrication, and application, and, when used in combination, act as powerful tools for manipulating cellular fate. In this review, we present current achievements in the development of small molecular drugs for cartilage regeneration, particularly in the fields of chondrocyte generation and reversion of chondrocyte degenerative phenotypes. Several clinically or preclinically available small molecules, which have been shown to facilitate chondrogenesis, chondrocyte dedifferentiation, and cellular reprogramming, and subsequently ameliorate cartilage degeneration by targeting inflammation, matrix degradation, metabolism, and epigenetics, are summarized. Notably, this review introduces essential parameters for high-throughput screening strategies, including models of different chondrogenic cell sources, phenotype readout methodologies, and transferable advanced systems from other fields. Overall, this review provides new insights into future pharmaceutical therapies for cartilage regeneration.
Collapse
|
20
|
Conley JM, Sun H, Ayers KL, Zhu H, Chen R, Shen M, Hall MD, Ren H. Human GPR17 missense variants identified in metabolic disease patients have distinct downstream signaling profiles. J Biol Chem 2021; 297:100881. [PMID: 34144038 PMCID: PMC8267566 DOI: 10.1016/j.jbc.2021.100881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
GPR17 is a G-protein-coupled receptor (GPCR) implicated in the regulation of glucose metabolism and energy homeostasis. Such evidence is primarily drawn from mouse knockout studies and suggests GPR17 as a potential novel therapeutic target for the treatment of metabolic diseases. However, links between human GPR17 genetic variants, downstream cellular signaling, and metabolic diseases have yet to be reported. Here, we analyzed GPR17 coding sequences from control and disease cohorts consisting of individuals with adverse clinical metabolic deficits including severe insulin resistance, hypercholesterolemia, and obesity. We identified 18 nonsynonymous GPR17 variants, including eight variants that were exclusive to the disease cohort. We characterized the protein expression levels, membrane localization, and downstream signaling profiles of nine GPR17 variants (F43L, V96M, V103M, D105N, A131T, G136S, R248Q, R301H, and G354V). These nine GPR17 variants had similar protein expression and subcellular localization as wild-type GPR17; however, they showed diverse downstream signaling profiles. GPR17-G136S lost the capacity for agonist-mediated cAMP, Ca2+, and β-arrestin signaling. GPR17-V96M retained cAMP inhibition similar to GPR17-WT, but showed impaired Ca2+ and β-arrestin signaling. GPR17-D105N displayed impaired cAMP and Ca2+ signaling, but unaffected agonist-stimulated β-arrestin recruitment. The identification and functional profiling of naturally occurring human GPR17 variants from individuals with metabolic diseases revealed receptor variants with diverse signaling profiles, including differential signaling perturbations that resulted in GPCR signaling bias. Our findings provide a framework for structure–function relationship studies of GPR17 signaling and metabolic disease.
Collapse
Affiliation(s)
- Jason M Conley
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hongmao Sun
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Kristin L Ayers
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Sema4, a Mount Sinai venture, Stamford, Connecticut, USA
| | - Hu Zhu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Rong Chen
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Sema4, a Mount Sinai venture, Stamford, Connecticut, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Hongxia Ren
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
21
|
Zhu S, Wu M, Huang Z, An J. Trends in application of advancing computational approaches in GPCR ligand discovery. Exp Biol Med (Maywood) 2021; 246:1011-1024. [PMID: 33641446 PMCID: PMC8113737 DOI: 10.1177/1535370221993422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) comprise the most important superfamily of protein targets in current ligand discovery and drug development. GPCRs are integral membrane proteins that play key roles in various cellular signaling processes. Therefore, GPCR signaling pathways are closely associated with numerous diseases, including cancer and several neurological, immunological, and hematological disorders. Computer-aided drug design (CADD) can expedite the process of GPCR drug discovery and potentially reduce the actual cost of research and development. Increasing knowledge of biological structures, as well as improvements on computer power and algorithms, have led to unprecedented use of CADD for the discovery of novel GPCR modulators. Similarly, machine learning approaches are now widely applied in various fields of drug target research. This review briefly summarizes the application of rising CADD methodologies, as well as novel machine learning techniques, in GPCR structural studies and bioligand discovery in the past few years. Recent novel computational strategies and feasible workflows are updated, and representative cases addressing challenging issues on olfactory receptors, biased agonism, and drug-induced cardiotoxic effects are highlighted to provide insights into future GPCR drug discovery.
Collapse
Affiliation(s)
- Siyu Zhu
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
- Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen 518172, China
| | - Meixian Wu
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Ziwei Huang
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
- Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen 518172, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jing An
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
22
|
Costanzi E, Simioni C, Conti I, Laface I, Varano G, Brenna C, Neri LM. Two neuroendocrine G protein-coupled receptor molecules, somatostatin and melatonin: Physiology of signal transduction and therapeutic perspectives. J Cell Physiol 2020; 236:2505-2518. [PMID: 32989768 DOI: 10.1002/jcp.30062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
Recent studies have shown that G protein-coupled receptors (GPCRs), the largest signal-conveying receptor family, are targets for mutations occurring frequently in different cancer types. GPCR alterations associated with cancer development represent significant challenges for the discovery and the advancement of targeted therapeutics. Among the different molecules that can activate GPCRs, we focused on two molecules that exert their biological actions regulating many typical features of tumorigenesis such as cellular proliferation, survival, and invasion: somatostatin and melatonin. The modulation of signaling pathways, that involves these two molecules, opens an interesting scenario for cancer therapy, with the opportunity to act at different molecular levels. Therefore, the aim of this review is the analysis of the biological activity and the therapeutic potential of somatostatin and melatonin, displaying a high affinity for GPCRs, that interfere with cancer development and maintenance.
Collapse
Affiliation(s)
- Eva Costanzi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Carolina Simioni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA)-Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| | - Ilaria Conti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Ilaria Laface
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Gabriele Varano
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Cinzia Brenna
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA)-Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| |
Collapse
|
23
|
Foster SR, Hauser AS, Vedel L, Strachan RT, Huang XP, Gavin AC, Shah SD, Nayak AP, Haugaard-Kedström LM, Penn RB, Roth BL, Bräuner-Osborne H, Gloriam DE. Discovery of Human Signaling Systems: Pairing Peptides to G Protein-Coupled Receptors. Cell 2020; 179:895-908.e21. [PMID: 31675498 PMCID: PMC6838683 DOI: 10.1016/j.cell.2019.10.010] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 08/18/2019] [Accepted: 10/08/2019] [Indexed: 01/18/2023]
Abstract
The peptidergic system is the most abundant network of ligand-receptor-mediated signaling in humans. However, the physiological roles remain elusive for numerous peptides and more than 100 G protein-coupled receptors (GPCRs). Here we report the pairing of cognate peptides and receptors. Integrating comparative genomics across 313 species and bioinformatics on all protein sequences and structures of human class A GPCRs, we identify universal characteristics that uncover additional potential peptidergic signaling systems. Using three orthogonal biochemical assays, we pair 17 proposed endogenous ligands with five orphan GPCRs that are associated with diseases, including genetic, neoplastic, nervous and reproductive system disorders. We also identify additional peptides for nine receptors with recognized ligands and pathophysiological roles. This integrated computational and multifaceted experimental approach expands the peptide-GPCR network and opens the way for studies to elucidate the roles of these signaling systems in human physiology and disease. Video Abstract
Universal characteristics enabled prediction of peptide ligands and receptors Multifaceted screening enabled detection of pathway- and assay-dependent responses Peptide ligands discovered for BB3, GPR1, GPR15, GPR55, and GPR68 Each signaling system is a link to human physiology and is associated with disease
Collapse
Affiliation(s)
- Simon R Foster
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Line Vedel
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Ryan T Strachan
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Xi-Ping Huang
- Department of Pharmacology, School of Medicine, and the Division of Medicinal Chemistry and Chemical Biology, Eshelman School of Pharmacy, and the NIMH Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ariana C Gavin
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Sushrut D Shah
- Department of Medicine, Center for Translational Medicine and Division of Pulmonary, Allergy and Critical Care Medicine; Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ajay P Nayak
- Department of Medicine, Center for Translational Medicine and Division of Pulmonary, Allergy and Critical Care Medicine; Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Linda M Haugaard-Kedström
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Raymond B Penn
- Department of Medicine, Center for Translational Medicine and Division of Pulmonary, Allergy and Critical Care Medicine; Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Pharmacology, School of Medicine, and the Division of Medicinal Chemistry and Chemical Biology, Eshelman School of Pharmacy, and the NIMH Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
24
|
Abstract
The transient receptor potential vanilloid 1 (TRPV1) is densely expressed in spinal sensory neurons as well as in cranial sensory neurons, including their central terminal endings. Recent work in the less familiar cranial sensory neurons, despite their many similarities with spinal sensory neurons, suggest that TRPV1 acts as a calcium channel to release a discrete population of synaptic vesicles. The modular and independent regulation of release offers new questions about nanodomain organization of release and selective actions of G protein–coupled receptors.
Collapse
Affiliation(s)
- Michael C. Andresen
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
25
|
Dershem R, Metpally RPR, Jeffreys K, Krishnamurthy S, Smelser DT, Hershfinkel M, Carey DJ, Robishaw JD, Breitwieser GE. Rare-variant pathogenicity triage and inclusion of synonymous variants improves analysis of disease associations of orphan G protein-coupled receptors. J Biol Chem 2019; 294:18109-18121. [PMID: 31628190 DOI: 10.1074/jbc.ra119.009253] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/08/2019] [Indexed: 02/02/2023] Open
Abstract
The pace of deorphanization of G protein-coupled receptors (GPCRs) has slowed, and new approaches are required. Small molecule targeting of orphan GPCRs can potentially be of clinical benefit even if the endogenous receptor ligand has not been identified. Many GPCRs lack common variants that lead to reproducible genome-wide disease associations, and rare-variant approaches have emerged as a viable alternative to identify disease associations for such genes. Therefore, our goal was to prioritize orphan GPCRs by determining their associations with human diseases in a large clinical population. We used sequence kernel association tests to assess the disease associations of 85 orphan or understudied GPCRs in an unselected cohort of 51,289 individuals. Using rare loss-of-function variants, missense variants predicted to be pathogenic or likely pathogenic, and a subset of rare synonymous variants that cause large changes in local codon bias as independent data sets, we found strong, phenome-wide disease associations shared by two or more variant categories for 39% of the GPCRs. To validate the bioinformatics and sequence kernel association test analyses, we functionally characterized rare missense and synonymous variants of GPR39, a family A GPCR, revealing altered expression or Zn2+-mediated signaling for members of both variant classes. These results support the utility of rare variant analyses for identifying disease associations for GPCRs that lack impactful common variants. We highlight the importance of rare synonymous variants in human physiology and argue for their routine inclusion in any comprehensive analysis of genomic variants as potential causes of disease.
Collapse
Affiliation(s)
- Ridge Dershem
- Department of Molecular and Functional Genomics, Geisinger, Weis Center for Research, Danville, Pennsylvania 17822
| | - Raghu P R Metpally
- Department of Molecular and Functional Genomics, Geisinger, Weis Center for Research, Danville, Pennsylvania 17822
| | - Kirk Jeffreys
- Department of Molecular and Functional Genomics, Geisinger, Weis Center for Research, Danville, Pennsylvania 17822
| | - Sarathbabu Krishnamurthy
- Department of Molecular and Functional Genomics, Geisinger, Weis Center for Research, Danville, Pennsylvania 17822
| | - Diane T Smelser
- Department of Molecular and Functional Genomics, Geisinger, Weis Center for Research, Danville, Pennsylvania 17822
| | - Michal Hershfinkel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 Israel
| | -
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591
| | - David J Carey
- Department of Molecular and Functional Genomics, Geisinger, Weis Center for Research, Danville, Pennsylvania 17822
| | - Janet D Robishaw
- Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida 33431
| | - Gerda E Breitwieser
- Department of Molecular and Functional Genomics, Geisinger, Weis Center for Research, Danville, Pennsylvania 17822.
| |
Collapse
|
26
|
Zou Y, Ewalt J, Ng HL. Recent Insights from Molecular Dynamics Simulations for G Protein-Coupled Receptor Drug Discovery. Int J Mol Sci 2019; 20:E4237. [PMID: 31470676 PMCID: PMC6747122 DOI: 10.3390/ijms20174237] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are critical drug targets. GPCRs convey signals from the extracellular to the intracellular environment through G proteins. Some ligands that bind to GPCRs activate different downstream signaling pathways. G protein activation, or -arrestin biased signaling, involves ligands binding to receptors and stabilizing conformations that trigger a specific pathway. -arrestin biased signaling has become a hot target for structure-based drug discovery. However, challenges include that there are few crystal structures available in the Protein Data Bank and that GPCRs are highly dynamic. Hence, molecular dynamics (MD) simulations are especially valuable for obtaining detailed mechanistic information, including identification of allosteric sites and understanding modulators' interactions with receptors and ligands. Here, we highlight recent MD simulation studies and enhanced sampling methods used to study biased G protein-coupled receptor signaling and their conformational dynamics as well as applications to drug discovery.
Collapse
Affiliation(s)
- Ye Zou
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - John Ewalt
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Ho-Leung Ng
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
27
|
Fawley JA, Andresen MC. Distinct Calcium Sources Define Compartmentalized Synaptic Signaling Domains. Neuroscientist 2019; 25:408-419. [PMID: 31375041 DOI: 10.1177/1073858419863771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Nervous system communication relies on neurotransmitter release for synaptic transmission between neurons. Neurotransmitter is contained within vesicles in presynaptic terminals and intraterminal calcium governs the fundamental step of their release into the synaptic cleft. Despite a common dependence on calcium, synaptic transmission and its modulation varies highly across the nervous system. The precise mechanisms that underlie this heterogeneity, however, remain unclear. The present review highlights recent data that reveal vesicles sourced from separate pools define discrete modes of release. A rich diversity of regulatory machinery may further distinguish the different forms of vesicle release, including presynaptic proteins involved in trafficking, alignment, and exocytosis. These multiple vesicle release mechanisms and vesicle pools likely depend on the arrangement of vesicles in relation to specific calcium entry pathways that create compartmentalized spheres of calcium influence (i.e., domains). This diversity permits release specialization. This review details examples of how individual neurons rely on multiple calcium sources and unique regulatory schemes to provide differential release and discrete modulation of neurotransmitter release from specific vesicle pools-as part of network signal integration.
Collapse
Affiliation(s)
- Jessica A Fawley
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, USA
| | - Michael C Andresen
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
28
|
Molecular pharmacology of metabotropic receptors targeted by neuropsychiatric drugs. Nat Struct Mol Biol 2019; 26:535-544. [PMID: 31270468 DOI: 10.1038/s41594-019-0252-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/15/2019] [Indexed: 12/30/2022]
Abstract
Metabotropic receptors are responsible for so-called 'slow synaptic transmission' and mediate the effects of hundreds of peptide and non-peptide neurotransmitters and neuromodulators. Over the past decade or so, a revolution in membrane-protein structural determination has clarified the molecular determinants responsible for the actions of these receptors. This Review focuses on the G protein-coupled receptors (GPCRs) that are targets of neuropsychiatric drugs and shows how insights into the structure and function of these important synaptic proteins are accelerating understanding of their actions. Notably, elucidating the structure and function of GPCRs should enhance the structure-guided discovery of novel chemical tools with which to manipulate and understand these synaptic proteins.
Collapse
|
29
|
Li F, Jiang X, Luo LL, Xu YM, Huang XX, Huang C, Zhang Y. A piggyBac-based TANGO GFP assay for high throughput screening of GPCR ligands in live cells. Cell Commun Signal 2019; 17:49. [PMID: 31122241 PMCID: PMC6533772 DOI: 10.1186/s12964-019-0359-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/01/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND GPCRs are considered essential for various physiological processes and have been the most productive drug targets. Therefore, development of the methods of GPCR ligands screening is a high priority for pharmaceutical industries and research institutions. METHODS We developed a potential method (piggyBac-TANGO) based on the TANGO and PRESTO-TANGO assays. The system was optimized with a piggyBac transposon as a transgene vehicle, and eGFP was used as a reporter instead of luciferase. The assay was validated in the HEK 293T and U87-MG cell lines and antagonist activities of the compounds were assessed. The transgene copy number and long-term stability were evaluated by qPCR. Then, we performed a DRD2-targeted screening for natural products using the piggyBac-TANGO assay. RESULTS The validation assay showed that using the piggyBac transposon as a transgene vehicle produced high signal-to-background ratio and stable readout confirmed by investigation of the transgene copy number and long-term stability. Use of eGFP instead of luciferase as a reporter enabled to create a high throughput system suitable for live cells. Moreover, the piggyBac-TANGO assay permitted versatile detection of antagonist activity of compounds and was not limited to a particular cell type. With the use of the piggyBac-TANGO assay, we have successfully identified a novel agonist of DRD2. CONCLUSION Thus, the results indicate that the piggyBac-TANGO method is a user-friendly, robust and imaging-based assay that provides a novel approach to high throughput GPCR-targeted ligand screening and drug development.
Collapse
Affiliation(s)
- Fei Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xi Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling-Ling Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yue-Ming Xu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Xing-Xu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
30
|
Advantages and shortcomings of cell-based electrical impedance measurements as a GPCR drug discovery tool. Biosens Bioelectron 2019; 137:33-44. [PMID: 31077988 DOI: 10.1016/j.bios.2019.04.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/05/2019] [Accepted: 04/20/2019] [Indexed: 12/13/2022]
Abstract
G Protein-Coupled Receptors (GPCRs) transduce extracellular signals and activate intracellular pathways, usually through activating associated G proteins. Due to their involvement in many human diseases, they are recognized worldwide as valuable drug targets. Many experimental approaches help identify small molecules that target GPCRs, including in vitro cell-based reporter assays and binding studies. Most cell-based assays use one signaling pathway or reporter as an assay readout. Moreover, they often require cell labeling or the integration of reporter systems. Over the last decades, cell-based electrical impedance biosensors have been explored for drug discovery. This label-free method holds many advantages over other cellular assays in GPCR research. The technology requires no cell manipulation and offers real-time kinetic measurements of receptor-mediated cellular changes. Instead of measuring the activity of a single reporter, the impedance readout includes information on multiple signaling events. This is beneficial when screening for ligands targeting orphan GPCRs since the signaling cascade(s) of the majority of these receptors are unknown. Due to its sensitivity, the method also applies to cellular models more relevant to disease, including patient-derived cell cultures. Despite its advantages, remaining issues regarding data comparability and interpretability has limited implementation of cell-based electrical impedance (CEI) in drug discovery. Future optimization must include both full exploitation of CEI response data using various ways of analysis as well as further exploration of its potential to detect biased activities early on in drug discovery. Here, we review the contribution of CEI technology to GPCR research, discuss its comparative benefits, and provide recommendations.
Collapse
|
31
|
Affiliation(s)
- Kimberly D Barnash
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
32
|
Di Pizio A, Behrens M, Krautwurst D. Beyond the Flavour: The Potential Druggability of Chemosensory G Protein-Coupled Receptors. Int J Mol Sci 2019; 20:E1402. [PMID: 30897734 PMCID: PMC6471708 DOI: 10.3390/ijms20061402] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 12/21/2022] Open
Abstract
G protein-coupled receptors (GPCRs) belong to the largest class of drug targets. Approximately half of the members of the human GPCR superfamily are chemosensory receptors, including odorant receptors (ORs), trace amine-associated receptors (TAARs), bitter taste receptors (TAS2Rs), sweet and umami taste receptors (TAS1Rs). Interestingly, these chemosensory GPCRs (csGPCRs) are expressed in several tissues of the body where they are supposed to play a role in biological functions other than chemosensation. Despite their abundance and physiological/pathological relevance, the druggability of csGPCRs has been suggested but not fully characterized. Here, we aim to explore the potential of targeting csGPCRs to treat diseases by reviewing the current knowledge of csGPCRs expressed throughout the body and by analysing the chemical space and the drug-likeness of flavour molecules.
Collapse
Affiliation(s)
- Antonella Di Pizio
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, 85354, Germany.
| | - Maik Behrens
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, 85354, Germany.
| | - Dietmar Krautwurst
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, 85354, Germany.
| |
Collapse
|
33
|
Wold EA, Chen J, Cunningham KA, Zhou J. Allosteric Modulation of Class A GPCRs: Targets, Agents, and Emerging Concepts. J Med Chem 2019; 62:88-127. [PMID: 30106578 PMCID: PMC6556150 DOI: 10.1021/acs.jmedchem.8b00875] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
G-protein-coupled receptors (GPCRs) have been tractable drug targets for decades with over one-third of currently marketed drugs targeting GPCRs. Of these, the class A GPCR superfamily is highly represented, and continued drug discovery for this family of receptors may provide novel therapeutics for a vast range of diseases. GPCR allosteric modulation is an innovative targeting approach that broadens the available small molecule toolbox and is proving to be a viable drug discovery strategy, as evidenced by recent FDA approvals and clinical trials. Numerous class A GPCR allosteric modulators have been discovered recently, and emerging trends such as the availability of GPCR crystal structures, diverse functional assays, and structure-based computational approaches are improving optimization and development. This Perspective provides an update on allosterically targeted class A GPCRs and their disease indications and the medicinal chemistry approaches toward novel allosteric modulators and highlights emerging trends and opportunities in the field.
Collapse
Affiliation(s)
- Eric A. Wold
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department of Pharmacology and Toxicology, Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jianping Chen
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department of Pharmacology and Toxicology, Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Kathryn A. Cunningham
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department of Pharmacology and Toxicology, Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jia Zhou
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department of Pharmacology and Toxicology, Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
34
|
Laschet C, Dupuis N, Hanson J. A dynamic and screening-compatible nanoluciferase-based complementation assay enables profiling of individual GPCR-G protein interactions. J Biol Chem 2018; 294:4079-4090. [PMID: 30593506 DOI: 10.1074/jbc.ra118.006231] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/27/2018] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are currently the target of more than 30% of the marketed medicines. However, there is an important medical need for ligands with improved pharmacological activities on validated drug targets. Moreover, most of these ligands remain poorly characterized, notably because of a lack of pharmacological tools. Thus, there is an important demand for innovative assays that can detect and drive the design of compounds with novel or improved pharmacological properties. In particular, a functional and screening-compatible GPCR-G protein interaction assay is still unavailable. Here, we report on a nanoluciferase-based complementation technique to detect ligands that promote a GPCR-G protein interaction. We demonstrate that our system can be used to profile compounds with regard to the G proteins they activate through a given GPCR. Furthermore, we established a proof of applicability of screening for distinct G proteins on dopamine receptor D2 whose differential coupling to Gαi/o family members has been extensively studied. In a D2-Gαi1 versus D2-Gαo screening, we retrieved five agonists that are currently being used in antiparkinsonian medications. We determined that in this assay, piribedil and pergolide are full agonists for the recruitment of Gαi1 but are partial agonists for Gαo, that the agonist activity of ropinirole is biased in favor of Gαi1 recruitment, and that the agonist activity of apomorphine is biased for Gαo We propose that this newly developed assay could be used to develop molecules that selectively modulate a particular G protein pathway.
Collapse
Affiliation(s)
- Céline Laschet
- From the Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège and
| | - Nadine Dupuis
- From the Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège and
| | - Julien Hanson
- From the Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège and .,the Laboratory of Medicinal Chemistry, CIRM-Drug Target and Lead Discovery, University of Liège, Liège CHU, B34 (+4), B-4000 Liège, Belgium
| |
Collapse
|
35
|
Paik YK, Lane L, Kawamura T, Chen YJ, Cho JY, LaBaer J, Yoo JS, Domont G, Corrales F, Omenn GS, Archakov A, Encarnación-Guevara S, Lui S, Salekdeh GH, Cho JY, Kim CY, Overall CM. Launching the C-HPP neXt-CP50 Pilot Project for Functional Characterization of Identified Proteins with No Known Function. J Proteome Res 2018; 17:4042-4050. [PMID: 30269496 PMCID: PMC6693327 DOI: 10.1021/acs.jproteome.8b00383] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An important goal of the Human Proteome Organization (HUPO) Chromosome-centric Human Proteome Project (C-HPP) is to correctly define the number of canonical proteins encoded by their cognate open reading frames on each chromosome in the human genome. When identified with high confidence of protein evidence (PE), such proteins are termed PE1 proteins in the online database resource, neXtProt. However, proteins that have not been identified unequivocally at the protein level but that have other evidence suggestive of their existence (PE2-4) are termed missing proteins (MPs). The number of MPs has been reduced from 5511 in 2012 to 2186 in 2018 (neXtProt 2018-01-17 release). Although the annotation of the human proteome has made significant progress, the "parts list" alone does not inform function. Indeed, 1937 proteins representing ∼10% of the human proteome have no function either annotated from experimental characterization or predicted by homology to other proteins. Specifically, these 1937 "dark proteins" of the so-called dark proteome are composed of 1260 functionally uncharacterized but identified PE1 proteins, designated as uPE1, plus 677 MPs from categories PE2-PE4, which also have no known or predicted function and are termed uMPs. At the HUPO-2017 Annual Meeting, the C-HPP officially adopted the uPE1 pilot initiative, with 14 participating international teams later committing to demonstrate the feasibility of the functional characterization of large numbers of dark proteins (CP), starting first with 50 uPE1 proteins, in a stepwise chromosome-centric organizational manner. The second aim of the feasibility phase to characterize protein (CP) functions of 50 uPE1 proteins, termed the neXt-CP50 initiative, is to utilize a variety of approaches and workflows according to individual team expertise, interest, and resources so as to enable the C-HPP to recommend experimentally proven workflows to the proteome community within 3 years. The results from this pilot will not only be the cornerstone of a larger characterization initiative but also enhance understanding of the human proteome and integrated cellular networks for the discovery of new mechanisms of pathology, mechanistically informative biomarkers, and rational drug targets.
Collapse
Affiliation(s)
- Young-Ki Paik
- Yonsei Proteome Research Center and Department of Integrative Omics, Yonsei University, Sudaemoon-ku, Seoul, Korea
| | - Lydie Lane
- CALIPHO group, Swiss Institute of Bioinformatics & Department of Microbiology and Molecular medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Takeshi Kawamura
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Bunkyo-Ku, Tokyo 113-0032 Japan
| | - Yu-Ju Chen
- Institute of Chemistry Academia Sinica, 128 Academia Road Sec. 2, Nankang Taipei 115 Taiwan
| | - Je-Yoel Cho
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul University, 1 Gwanak-, Gwanak-gu, 151-742 Seoul, South Korea
| | - Joshua LaBaer
- McAllister Ave. Arizona State University, Tempe, Arizona, 85287-5001, USA
| | - Jong Shin Yoo
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Ochang, Korea
| | - Gilberto Domont
- Federal University of Rio de Janeiro Institute of Chemistry, Rio de Janeiro, RJ Brazil
| | - Fernando Corrales
- Functional Proteomics Laboratory National Center of Biotechnology, CSIC 28049 Madrid, Spain
| | - Gilbert S. Omenn
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109-2218, United States
| | | | | | - Siqi Lui
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, 1665659911, Tehran, Iran
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Jin-Young Cho
- Yonsei Proteome Research Center and Department of Integrative Omics, Yonsei University, Sudaemoon-ku, Seoul, Korea
| | - Chae-Yeon Kim
- Yonsei Proteome Research Center and Department of Integrative Omics, Yonsei University, Sudaemoon-ku, Seoul, Korea
| | - Christopher M. Overall
- Centre for Blood Research, Departments of Oral Biological & Medical Sciences, and Biochemistry & Molecular Biology, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| |
Collapse
|
36
|
Morfa CJ, Bassoni D, Szabo A, McAnally D, Sharir H, Hood BL, Vasile S, Wehrman T, Lamerdin J, Smith LH. A Pharmacochaperone-Based High-Throughput Screening Assay for the Discovery of Chemical Probes of Orphan Receptors. Assay Drug Dev Technol 2018; 16:384-396. [PMID: 30251873 DOI: 10.1089/adt.2018.868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) have varying and diverse physiological roles, transmitting signals from a range of stimuli, including light, chemicals, peptides, and mechanical forces. More than 130 GPCRs are orphan receptors (i.e., their endogenous ligands are unknown), representing a large untapped reservoir of potential therapeutic targets for pharmaceutical intervention in a variety of diseases. Current deorphanization approaches are slow, laborious, and usually require some in-depth knowledge about the receptor pharmacology. In this study we describe a cell-based assay to identify small molecule probes of orphan receptors that requires no a priori knowledge of receptor pharmacology. Built upon the concept of pharmacochaperones, where cell-permeable small molecules facilitate the trafficking of mutant receptors to the plasma membrane, the simple and robust technology is readily accessible by most laboratories and is amenable to high-throughput screening. The assay consists of a target harboring a synthetic point mutation that causes retention of the target in the endoplasmic reticulum. Coupled with a beta-galactosidase enzyme-fragment complementation reporter system, the assay identifies compounds that act as pharmacochaperones causing forward trafficking of the mutant GPCR. The assay can identify compounds with varying mechanisms of action including agonists and antagonists. A universal positive control compound circumvents the need for a target-specific ligand. The veracity of the approach is demonstrated using the beta-2-adrenergic receptor. Together with other existing assay technologies to validate the signaling pathways and the specificity of ligands identified, this pharmacochaperone-based approach can accelerate the identification of ligands for these potentially therapeutically useful receptors.
Collapse
Affiliation(s)
- Camilo J Morfa
- 1 Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
| | | | - Andras Szabo
- 1 Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
| | - Danielle McAnally
- 1 Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
| | - Haleli Sharir
- 1 Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
| | - Becky L Hood
- 1 Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
| | - Stefan Vasile
- 1 Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
| | - Tom Wehrman
- 2 Eurofins DiscoverX Corporation , Fremont, California
| | - Jane Lamerdin
- 2 Eurofins DiscoverX Corporation , Fremont, California
| | - Layton H Smith
- 1 Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
| |
Collapse
|
37
|
Expression map of 78 brain-expressed mouse orphan GPCRs provides a translational resource for neuropsychiatric research. Commun Biol 2018; 1:102. [PMID: 30271982 PMCID: PMC6123746 DOI: 10.1038/s42003-018-0106-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/06/2018] [Indexed: 12/26/2022] Open
Abstract
Orphan G-protein-coupled receptors (oGPCRs) possess untapped potential for drug discovery. In the brain, oGPCRs are generally expressed at low abundance and their function is understudied. Expression profiling is an essential step to position oGPCRs in brain function and disease, however public databases provide only partial information. Here, we fine-map expression of 78 brain-oGPCRs in the mouse, using customized probes in both standard and supersensitive in situ hybridization. Images are available at http://ogpcr-neuromap.douglas.qc.ca. This searchable database contains over 8000 coronal brain sections across 1350 slides, providing the first public mapping resource dedicated to oGPCRs. Analysis with public mouse (60 oGPCRs) and human (56 oGPCRs) genome-wide datasets identifies 25 oGPCRs with potential to address emotional and/or cognitive dimensions of psychiatric conditions. We probe their expression in postmortem human brains using nanoString, and included data in the resource. Correlating human with mouse datasets reveals excellent suitability of mouse models for oGPCRs in neuropsychiatric research. Aliza Ehrlich et al. report the fine-mapping of orphan GPCR (oGPCR) transcripts in the mouse brain using in situ hybridization and provide a public resource for data mining. The authors also mapped 25 selected oGPCRs in human brains, identifying oGPCRs with high correlation between species and potential roles in neuropsychiatric disorders.
Collapse
|
38
|
Abstract
Serotonin (5-hydroxytryptamine, 5-HT)2A receptor agonists have recently emerged as promising new treatment options for a variety of disorders. The recent success of these agonists, also known as psychedelics, like psilocybin for the treatment of anxiety, depression, obsessive-compulsive disorder (OCD), and addiction, has ushered in a renaissance in the way these compounds are perceived in the medical community and populace at large. One emerging therapeutic area that holds significant promise is their use as anti-inflammatory agents. Activation of 5-HT2A receptors produces potent anti-inflammatory effects in animal models of human inflammatory disorders at sub-behavioural levels. This review discusses the role of the 5-HT2A receptor in the inflammatory response, as well as highlight studies using the 5-HT2A agonist (R)-2,5-dimethoxy-4-iodoamphetamine [(R)-DOI] to treat inflammation in cellular and animal models. It also examines potential mechanisms by which 5-HT2A agonists produce their therapeutic effects. Overall, psychedelics regulate inflammatory pathways via novel mechanisms, and may represent a new and exciting treatment strategy for several inflammatory disorders.
Collapse
Affiliation(s)
- Thomas W Flanagan
- a Department of Pharmacology and Experimental Therapeutics , Louisiana State University Health Sciences Center , New Orleans , LA , USA
| | - Charles D Nichols
- a Department of Pharmacology and Experimental Therapeutics , Louisiana State University Health Sciences Center , New Orleans , LA , USA
| |
Collapse
|
39
|
Sloop KW, Briere DA, Emmerson PJ, Willard FS. Beyond Glucagon-like Peptide-1: Is G-Protein Coupled Receptor Polypharmacology the Path Forward to Treating Metabolic Diseases? ACS Pharmacol Transl Sci 2018; 1:3-11. [PMID: 32219200 DOI: 10.1021/acsptsci.8b00009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Indexed: 12/28/2022]
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is a class B G-protein coupled receptor (GPCR) that has proven to be an effective target for developing medicines that treat type 2 diabetes mellitus (T2DM). GLP-1R agonists improve T2DM by enhancing glucose-stimulated insulin secretion, delaying gastric transit, decreasing glucagon levels, and reducing body weight due to anorexigenic actions. The therapeutic successes of these agents helped inspire the design of new multifunctional molecules that are GLP-1R agonists but also activate receptors linked to pathways that enhance insulin sensitization and/or energy expenditure. Herein, these agents are discussed in the context of polypharmacological approaches that may enable even further improvement in treatment outcomes. Moreover, we revisit classical polypharmaceutical GPCR approaches and how they may be utilized for treatment of T2DM. To determine optimal combination regimens, changes in drug discovery practices are likely needed because compensatory mechanisms appear to underlie progression of T2DM and limit the ability of current therapies to induce disease regression or remission.
Collapse
Affiliation(s)
- Kyle W Sloop
- Diabetes and Complications and Quantitative Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Daniel A Briere
- Diabetes and Complications and Quantitative Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Paul J Emmerson
- Diabetes and Complications and Quantitative Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Francis S Willard
- Diabetes and Complications and Quantitative Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| |
Collapse
|
40
|
Miller RE, Block JA, Malfait AM. What is new in pain modification in osteoarthritis? Rheumatology (Oxford) 2018; 57:iv99-iv107. [PMID: 29361112 PMCID: PMC5905627 DOI: 10.1093/rheumatology/kex522] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/06/2017] [Indexed: 12/31/2022] Open
Abstract
There is a big need for the development of novel therapies for the safe management of chronic pain associated with OA. Here we reviewed PubMed (2015 onward) and ClinicalTrials.gov for ongoing and recently completed trials where pain in OA is the primary outcome measure. Three broad categories were identified: biological therapies, small molecules and cryoneurolysis. The most promising new strategy is blockade of nerve growth factor with antibodies. Two anti-nerve growth factor antibodies, tanuzemab and fasinumab, are in active development after the 2010 hold on trials was lifted in 2015. In addition, several active clinical trials are testing distinct mechanism-based interventions, including cytokine inhibition, selective μ, δ or κ opioid receptor agonists, zoledronate and intra-articular capsaicin. In addition to pharmacological approaches, cryoneurolytic strategies that directly target peripheral nerves may play a role in OA pain management, but efficacy profiles and long-term effects of such treatments need more study. Clearly, the therapeutic landscape for OA pain is rapidly expanding. Since symptomatic OA is a heterogeneous disease, the challenge will be to identify patients that will benefit the most from specific approaches.
Collapse
Affiliation(s)
- Rachel E Miller
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
| | - Joel A Block
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
| | - Anne-Marie Malfait
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
41
|
Oprea TI, Bologa CG, Brunak S, Campbell A, Gan GN, Gaulton A, Gomez SM, Guha R, Hersey A, Holmes J, Jadhav A, Jensen LJ, Johnson GL, Karlson A, Leach AR, Ma’ayan A, Malovannaya A, Mani S, Mathias SL, McManus MT, Meehan TF, von Mering C, Muthas D, Nguyen DT, Overington JP, Papadatos G, Qin J, Reich C, Roth BL, Schürer SC, Simeonov A, Sklar LA, Southall N, Tomita S, Tudose I, Ursu O, Vidovic D, Waller A, Westergaard D, Yang JJ, Zahoránszky-Köhalmi G. Unexplored therapeutic opportunities in the human genome. Nat Rev Drug Discov 2018; 17:317-332. [PMID: 29472638 PMCID: PMC6339563 DOI: 10.1038/nrd.2018.14] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A large proportion of biomedical research and the development of therapeutics is focused on a small fraction of the human genome. In a strategic effort to map the knowledge gaps around proteins encoded by the human genome and to promote the exploration of currently understudied, but potentially druggable, proteins, the US National Institutes of Health launched the Illuminating the Druggable Genome (IDG) initiative in 2014. In this article, we discuss how the systematic collection and processing of a wide array of genomic, proteomic, chemical and disease-related resource data by the IDG Knowledge Management Center have enabled the development of evidence-based criteria for tracking the target development level (TDL) of human proteins, which indicates a substantial knowledge deficit for approximately one out of three proteins in the human proteome. We then present spotlights on the TDL categories as well as key drug target classes, including G protein-coupled receptors, protein kinases and ion channels, which illustrate the nature of the unexplored opportunities for biomedical research and therapeutic development.
Collapse
Affiliation(s)
- Tudor I. Oprea
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
- UNM Comprehensive Cancer Center, Albuquerque, NM, USA
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cristian G. Bologa
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Anna Gaulton
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Shawn M. Gomez
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Rajarshi Guha
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - Anne Hersey
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Jayme Holmes
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gary L. Johnson
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Anneli Karlson
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
- Present addresses: SciBite Limited, BioData Innovation Centre, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Andrew R. Leach
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Avi Ma’ayan
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Subramani Mani
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Stephen L. Mathias
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | | | - Terrence F. Meehan
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Daniel Muthas
- Respiratory, Inflammation and Autoimmunity Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca R&D Gothenburg, Mölndal, Sweden
| | - Dac-Trung Nguyen
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - John P. Overington
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
- Medicines Discovery Catapult, Alderley Edge, UK
| | - George Papadatos
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
- GlaxoSmithKline, Stevenage, UK
| | - Jun Qin
- Baylor College of Medicine, Houston, TX, USA
| | | | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Stephan C. Schürer
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - Larry A. Sklar
- UNM Comprehensive Cancer Center, Albuquerque, NM, USA
- Center for Molecular Discovery, University of New Mexico Cancer Center, University of New Mexico, Albuquerque, NM, USA
- Department of Pathology, University of New Mexico, Albuquerque, NM, USA
| | - Noel Southall
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - Susumu Tomita
- Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Ilinca Tudose
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
- Google Germany GmbH, München, Germany
| | - Oleg Ursu
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Dušica Vidovic
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Anna Waller
- Center for Molecular Discovery, University of New Mexico Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - David Westergaard
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jeremy J. Yang
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Gergely Zahoránszky-Köhalmi
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
- NIH-NCATS, Rockville, MD, USA
| |
Collapse
|
42
|
Schöneberg T, Meister J, Knierim AB, Schulz A. The G protein-coupled receptor GPR34 - The past 20 years of a grownup. Pharmacol Ther 2018; 189:71-88. [PMID: 29684466 DOI: 10.1016/j.pharmthera.2018.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Research on GPR34, which was discovered in 1999 as an orphan G protein-coupled receptor of the rhodopsin-like class, disclosed its physiologic relevance only piece by piece. Being present in all recent vertebrate genomes analyzed so far it seems to improve the fitness of species although it is not essential for life and reproduction as GPR34-deficient mice demonstrate. However, closer inspection of macrophages and microglia, where it is mainly expressed, revealed its relevance in immune cell function. Recent data clearly demonstrate that GPR34 function is required to arrest microglia in the M0 homeostatic non-phagocytic phenotype. Herein, we summarize the current knowledge on its evolution, genomic and structural organization, physiology, pharmacology and relevance in human diseases including neurodegenerative diseases and cancer, which accumulated over the last 20 years.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany.
| | - Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Alexander Bernd Knierim
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; Leipzig University Medical Center, IFB AdiposityDiseases, 04103 Leipzig, Germany
| | - Angela Schulz
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
43
|
Mani T, Bourguinat C, Prichard RK. G-protein-coupled receptor genes of Dirofilaria immitis. Mol Biochem Parasitol 2018; 222:6-13. [PMID: 29625152 DOI: 10.1016/j.molbiopara.2018.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/28/2018] [Accepted: 04/02/2018] [Indexed: 12/27/2022]
Abstract
The diversity and uniqueness of nematode heterotrimeric G-protein-coupled receptors (GPCRs) provides impetus for identifying ligands that can be used as therapeutics for treating diseases caused by parasitic nematode infections. In human medicine, GPCRs have represented the largest group of 'drugable' targets exploited in the market today. In the filarial nematode Dirofilaria immitis, which causes heartworm disease, the macrocyclic lactones (ML) have been used as the sole preventatives for more than 25 years and now there is confirmed ML resistance in this parasite. A novel anthelmintic emodepside, with antifilarial activity, can act on a GPCR. In view of the ML resistance, there is an urgent need to identify new drug targets and GPCRs of D. immitis may be promising receptors. Knowledge of polymorphism within the GPCR superfamily is of interest. A total of 127 GPCR genes have been identified, so far, in the genome of D. immitis. Whole genome sequencing data from four ML susceptible and four ML loss of efficacy populations was used to identify 393 polymorphic loci in 35 D. immitis GPCR genes. Out of 57 SNPs in exonic regions, 36 of them caused a change in an amino acid, out of which 2 changed the predicted secondary structure of the protein. Knowledge about GPCR genes and their polymorphism is valuable information for drug design processes. Further studies need to be carried out to more fully understand the implications of each of the SNPs identified by this study.
Collapse
Affiliation(s)
- Thangadurai Mani
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Catherine Bourguinat
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Roger K Prichard
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| |
Collapse
|
44
|
Sloop KW, Emmerson PJ, Statnick MA, Willard FS. The current state of GPCR-based drug discovery to treat metabolic disease. Br J Pharmacol 2018; 175:4060-4071. [PMID: 29394497 DOI: 10.1111/bph.14157] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/14/2017] [Accepted: 01/19/2018] [Indexed: 02/06/2023] Open
Abstract
One approach of modern drug discovery is to identify agents that enhance or diminish signal transduction cascades in various cell types and tissues by modulating the activity of GPCRs. This strategy has resulted in the development of new medicines to treat many conditions, including cardiovascular disease, psychiatric disorders, HIV/AIDS, certain forms of cancer and Type 2 diabetes mellitus (T2DM). These successes justify further pursuit of GPCRs as disease targets and provide key learning that should help guide identifying future therapeutic agents. This report reviews the current landscape of GPCR drug discovery with emphasis on efforts aimed at developing new molecules for treating T2DM and obesity. We analyse historical efforts to generate GPCR-based drugs to treat metabolic disease in terms of causal factors leading to success and failure in this endeavour. LINKED ARTICLES This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.
Collapse
Affiliation(s)
- Kyle W Sloop
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Paul J Emmerson
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Michael A Statnick
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Francis S Willard
- Quantitative Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| |
Collapse
|
45
|
Mangini M, Iaccino E, Mosca MG, Mimmi S, D'Angelo R, Quinto I, Scala G, Mariggiò S. Peptide-guided targeting of GPR55 for anti-cancer therapy. Oncotarget 2018; 8:5179-5195. [PMID: 28029647 PMCID: PMC5354900 DOI: 10.18632/oncotarget.14121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022] Open
Abstract
Expression of the lysophosphatidylinositol receptor GPR55 correlates with invasive potential of metastatic cells and bone metastasis formation of different types of tumors. These findings suggest a role for GPR55 signaling in cancer progression, including in lymphoproliferative diseases. Here, we screened a M13-phage-displayed random library using the bait of HEK293 cells that heterologously expressed full-length HA-GPR55. We selected a set of phagotopes that carried 7-mer insert peptides flanked by a pair of cysteine residues, which resulted in cyclized peptides. Sequencing of selected phagotopes dictated the primary structure for the synthetic FITC-labeled peptide P1, which was analyzed for binding specificity to immunoprecipitated HA-GPR55, and to endogenously expressed GPR55, using cells interfered or not for GPR55, as well as for co-localization imaging with HA-GPR55 at the membrane level. The peptide P1 stimulated GPR55 endocytosis and inhibited GPR55-dependent proliferation of EHEB and DeFew cells, two human B-lymphoblastoid cell lines. Our data support the potential therapeutic application of peptide ligands of GPR55 for targeting and inhibiting growth of neoplastic cells, which overexpress GPR55 and are dependent on GPR55 signaling for their proliferation.
Collapse
Affiliation(s)
- Maria Mangini
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | | | - Selena Mimmi
- Department of Experimental and Clinical Medicine, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | - Rosa D'Angelo
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Ileana Quinto
- Department of Experimental and Clinical Medicine, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | - Giuseppe Scala
- Department of Experimental and Clinical Medicine, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | - Stefania Mariggiò
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| |
Collapse
|
46
|
The G protein-coupled receptors deorphanization landscape. Biochem Pharmacol 2018; 153:62-74. [PMID: 29454621 DOI: 10.1016/j.bcp.2018.02.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/13/2018] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) are usually highlighted as being both the largest family of membrane proteins and the most productive source of drug targets. However, most of the GPCRs are understudied and hence cannot be used immediately for innovative therapeutic strategies. Besides, there are still around 100 orphan receptors, with no described endogenous ligand and no clearly defined function. The race to discover new ligands for these elusive receptors seems to be less intense than before. Here, we present an update of the various strategies employed to assign a function to these receptors and to discover new ligands. We focus on the recent advances in the identification of endogenous ligands with a detailed description of newly deorphanized receptors. Replication being a key parameter in these endeavors, we also discuss the latest controversies about problematic ligand-receptor pairings. In this context, we propose several recommendations in order to strengthen the reporting of new ligand-receptor pairs.
Collapse
|
47
|
Vass M, Kooistra AJ, Verhoeven S, Gloriam D, de Esch IJP, de Graaf C. A Structural Framework for GPCR Chemogenomics: What's In a Residue Number? Methods Mol Biol 2018; 1705:73-113. [PMID: 29188559 DOI: 10.1007/978-1-4939-7465-8_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The recent surge of crystal structures of G protein-coupled receptors (GPCRs), as well as comprehensive collections of sequence, structural, ligand bioactivity, and mutation data, has enabled the development of integrated chemogenomics workflows for this important target family. This chapter will focus on cross-family and cross-class studies of GPCRs that have pinpointed the need for, and the implementation of, a generic numbering scheme for referring to specific structural elements of GPCRs. Sequence- and structure-based numbering schemes for different receptor classes will be introduced and the remaining caveats will be discussed. The use of these numbering schemes has facilitated many chemogenomics studies such as consensus binding site definition, binding site comparison, ligand repurposing (e.g. for orphan receptors), sequence-based pharmacophore generation for homology modeling or virtual screening, and class-wide chemogenomics studies of GPCRs.
Collapse
Affiliation(s)
- Márton Vass
- Department of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV, Amsterdam, The Netherlands
| | - Albert J Kooistra
- Department of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV, Amsterdam, The Netherlands
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Stefan Verhoeven
- Netherlands eScience Center, 1098 XG, Amsterdam, The Netherlands
| | - David Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Iwan J P de Esch
- Department of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV, Amsterdam, The Netherlands
| | - Chris de Graaf
- Department of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
48
|
Kono M, Conlon EG, Lux SY, Yanagida K, Hla T, Proia RL. Bioluminescence imaging of G protein-coupled receptor activation in living mice. Nat Commun 2017; 8:1163. [PMID: 29079828 PMCID: PMC5660082 DOI: 10.1038/s41467-017-01340-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/06/2017] [Indexed: 01/04/2023] Open
Abstract
G protein-coupled receptors (GPCRs), a superfamily of cell-surface receptors involved in virtually all physiological processes, are the major target class for approved drugs. Imaging GPCR activation in real time in living animals would provide a powerful way to study their role in biology and disease. Here, we describe a mouse model that enables the bioluminescent detection of GPCR activation in real time by utilizing the clinically important GPCR, sphingosine-1-phosphate receptor 1 (S1P1). A synthetic S1P1 signaling pathway, designed to report the interaction between S1P1 and β-arrestin2 via the firefly split luciferase fragment complementation system, is genetically encoded in these mice. Upon receptor activation and subsequent β-arrestin2 recruitment, an active luciferase enzyme complex is produced, which can be detected by in vivo bioluminescence imaging. This imaging strategy reveals the dynamics and spatial specificity of S1P1 activation in normal and pathophysiologic contexts in vivo and can be applied to other GPCRs. G protein-coupled receptors are involved in numerous physiological functions, thus, they represent potential pharmaceutical targets. Here Kono et al. describe a new mouse model to image GPCR activation in real-time by exploiting firefly split luciferase fragment complementation that can be detected by bioluminescence imaging.
Collapse
Affiliation(s)
- Mari Kono
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA
| | - Elizabeth G Conlon
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA
| | - Samantha Y Lux
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA
| | - Keisuke Yanagida
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Richard L Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
49
|
Discovery of new GPCR ligands to illuminate new biology. Nat Chem Biol 2017; 13:1143-1151. [PMID: 29045379 DOI: 10.1038/nchembio.2490] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 08/30/2017] [Indexed: 12/12/2022]
Abstract
Although a plurality of drugs target G-protein-coupled receptors (GPCRs), most have emerged from classical medicinal chemistry and pharmacology programs and resemble one another structurally and functionally. Though effective, these drugs are often promiscuous. With the realization that GPCRs signal via multiple pathways, and with the emergence of crystal structures for this family of proteins, there is an opportunity to target GPCRs with new chemotypes and confer new signaling modalities. We consider structure-based and physical screening methods that have led to the discovery of new reagents, focusing particularly on the former. We illustrate their use against previously untargeted or orphan GPCRs, against allosteric sites, and against classical orthosteric sites that selectively activate one downstream pathway over others. The ligands that emerge are often chemically novel, which can lead to new biological effects.
Collapse
|
50
|
Abstract
The adhesion G protein-coupled receptors (aGPCRs) are an evolutionarily ancient family of receptors that play key roles in many different physiological processes. These receptors are notable for their exceptionally long ectodomains, which span several hundred to several thousand amino acids and contain various adhesion-related domains, as well as a GPCR autoproteolysis-inducing (GAIN) domain. The GAIN domain is conserved throughout almost the entire family and undergoes autoproteolysis to cleave the receptors into two noncovalently-associated protomers. Recent studies have revealed that the signaling activity of aGPCRs is largely determined by changes in the interactions among these protomers. We review recent advances in understanding aGPCR activation mechanisms and discuss the physiological roles and pharmacological properties of aGPCRs, with an eye toward the potential utility of these receptors as drug targets.
Collapse
Affiliation(s)
- Ryan H Purcell
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, 30322, USA;
| | - Randy A Hall
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, 30322, USA;
| |
Collapse
|