1
|
De Keyser P, Kalichuk V, Zögg T, Wohlkönig A, Schenck S, Brunner J, Pardon E, Steyaert J. A biosensor-based phage display selection method for automated, high-throughput Nanobody discovery. Biosens Bioelectron 2025; 271:116951. [PMID: 39631210 DOI: 10.1016/j.bios.2024.116951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Biopanning methods to select target-specific Nanobodies® (Nbs) involve presenting the antigen, immobilized on plastic plates or magnetic beads, to Nb libraries displayed on phage. Most routines are operator-dependent, labor-intensive and often material- and time-consuming. Here we validate an improved panning strategy that uses biosensors to present the antigen to phage-displayed Nbs in a well. The use of automated Octet biolayer interferometry sensors (Sartorius) enables high throughput and precise control over each step. By playing with association and dissociation times and buffer composition, one can efficiently decrease the background of aspecific and low-affinity Nbs, reducing the rounds of panning needed for the enrichment of high-affinity binders. Octet panning also enables the use of unpurified target proteins and unpurified phage from a bacterial culture supernatant. Additionally, downscaling to a 384-well format significantly reduces the amount of protein required. Moreover, enrichment of binders can be quantified by monitoring phage binding to the target by interferometry, omitting additional phage titration steps. Routinely, up to three rounds of Octet panning can be performed in only five days to deliver target-specific binders, ready for screening and characterization using the same Octet instrument.
Collapse
Affiliation(s)
- Phebe De Keyser
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2-building E, 1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Valentina Kalichuk
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2-building E, 1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Thomas Zögg
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2-building E, 1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Alexandre Wohlkönig
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2-building E, 1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Stephan Schenck
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2-building E, 1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Janine Brunner
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2-building E, 1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Els Pardon
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2-building E, 1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2-building E, 1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
2
|
El Salamouni NS, Cater JH, Spenkelink LM, Yu H. Nanobody engineering: computational modelling and design for biomedical and therapeutic applications. FEBS Open Bio 2025; 15:236-253. [PMID: 38898362 PMCID: PMC11788755 DOI: 10.1002/2211-5463.13850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/25/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
Nanobodies, the smallest functional antibody fragment derived from camelid heavy-chain-only antibodies, have emerged as powerful tools for diverse biomedical applications. In this comprehensive review, we discuss the structural characteristics, functional properties, and computational approaches driving the design and optimisation of synthetic nanobodies. We explore their unique antigen-binding domains, highlighting the critical role of complementarity-determining regions in target recognition and specificity. This review further underscores the advantages of nanobodies over conventional antibodies from a biosynthesis perspective, including their small size, stability, and solubility, which make them ideal candidates for economical antigen capture in diagnostics, therapeutics, and biosensing. We discuss the recent advancements in computational methods for nanobody modelling, epitope prediction, and affinity maturation, shedding light on their intricate antigen-binding mechanisms and conformational dynamics. Finally, we examine a direct example of how computational design strategies were implemented for improving a nanobody-based immunosensor, known as a Quenchbody. Through combining experimental findings and computational insights, this review elucidates the transformative impact of nanobodies in biotechnology and biomedical research, offering a roadmap for future advancements and applications in healthcare and diagnostics.
Collapse
Affiliation(s)
- Nehad S. El Salamouni
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongAustralia
| | - Jordan H. Cater
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongAustralia
| | - Lisanne M. Spenkelink
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongAustralia
| | - Haibo Yu
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongAustralia
- ARC Centre of Excellence in Quantum BiotechnologyUniversity of WollongongAustralia
| |
Collapse
|
3
|
Alexander E, Leong KW. Discovery of nanobodies: a comprehensive review of their applications and potential over the past five years. J Nanobiotechnology 2024; 22:661. [PMID: 39455963 PMCID: PMC11515141 DOI: 10.1186/s12951-024-02900-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Nanobodies (Nbs) are antibody fragments derived from heavy-chain-only IgG antibodies found in the Camelidae family as well as cartilaginous fish. Their unique structural and functional properties, such as their small size, the ability to be engineered for high antigen-binding affinity, stability under extreme conditions, and ease of production, have made them promising tools for diagnostics and therapeutics. This potential was realized in 2018 with the approval of caplacizumab, the world's first Nb-based drug. Currently, Nbs are being investigated in clinical trials for a broad range of treatments, including targeted therapies against PDL1 and Epidermal Growth Factor Receptor (EGFR), cardiovascular diseases, inflammatory conditions, and neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. They are also being studied for their potential for detecting and imaging autoimmune conditions and infectious diseases such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A variety of methods are now available to generate target-specific Nbs quickly and efficiently at low costs, increasing their accessibility. This article examines these diverse applications of Nbs and their promising roles. Only the most recent articles published in the last five years have been used to summarize the most advanced developments in the field.
Collapse
Affiliation(s)
- Elena Alexander
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| |
Collapse
|
4
|
Bagchi A, Stayrook SE, Xenaki KT, Starbird CA, Doulkeridou S, El Khoulati R, Roovers RC, Schmitz KR, van Bergen En Henegouwen PMP, Ferguson KM. Structural insights into the role and targeting of EGFRvIII. Structure 2024; 32:1367-1380.e6. [PMID: 38908376 PMCID: PMC11380598 DOI: 10.1016/j.str.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/06/2024] [Accepted: 05/28/2024] [Indexed: 06/24/2024]
Abstract
The epidermal growth factor receptor (EGFR) is a well-known oncogenic driver in lung and other cancers. In glioblastoma multiforme (GBM), the EGFR deletion variant III (EGFRvIII) is frequently found alongside EGFR amplification. Agents targeting the EGFR axis have shown limited clinical benefits in GBM and the role of EGFRvIII in GBM is poorly understood. To shed light on the role of EGFRvIII and its potential as a therapeutic target, we determined X-ray crystal structures of a monomeric EGFRvIII extracellular region (ECR). The EGFRvIII ECR resembles the unliganded conformation of EGFR, including the orientation of the C-terminal region of domain II. Domain II is mostly disordered, but the ECR structure is compact. We selected a nanobody with preferential binding to EGFRvIII relative to EGFR and structurally defined an epitope on domain IV that is occluded in the unliganded intact EGFR. These findings suggest new avenues for EGFRvIII targeting in GBM.
Collapse
Affiliation(s)
- Atrish Bagchi
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven E Stayrook
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Katerina T Xenaki
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584CH, the Netherlands
| | - Chrystal A Starbird
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Sofia Doulkeridou
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584CH, the Netherlands
| | - Rachid El Khoulati
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584CH, the Netherlands
| | - Rob C Roovers
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584CH, the Netherlands
| | - Karl R Schmitz
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Paul M P van Bergen En Henegouwen
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584CH, the Netherlands
| | - Kathryn M Ferguson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA.
| |
Collapse
|
5
|
Dmitriev OY, Patry J. Structure and mechanism of the human copper transporting ATPases: Fitting the pieces into a moving puzzle. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184306. [PMID: 38408697 DOI: 10.1016/j.bbamem.2024.184306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/07/2024] [Accepted: 02/18/2024] [Indexed: 02/28/2024]
Abstract
Human copper transporters ATP7B and ATP7A deliver copper to biosynthetic pathways and maintain copper homeostasis in the cell. These enzymes combine several challenges for structural biology because they are large low abundance membrane proteins with many highly mobile domains and long disordered loops. No method has yet succeeded in solving the structure of the complete fully functional protein. Still, X-ray crystallography, Cryo-EM and NMR helped to piece together a structure based model of the enzyme activity and regulation by copper. We review the structures of ATP7B and ATP7A with an emphasis on the mechanistic insights into the unique aspects of the transport function and regulation of the human copper ATPases that have emerged from more than twenty years of research.
Collapse
Affiliation(s)
- Oleg Y Dmitriev
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Jaala Patry
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
6
|
Nikkhoi SK, Heydarzadeh H, Vandavasi VG, Yang G, Louro P, Polunas M, Owji H, Hatefi A. A high affinity and specificity anti-HER2 single-domain antibody (VHH) that targets trastuzumab's epitope with versatile biochemical, biological, and medical applications. Immunol Res 2024; 72:103-118. [PMID: 37632647 PMCID: PMC10842867 DOI: 10.1007/s12026-023-09418-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/19/2023] [Indexed: 08/28/2023]
Abstract
In the past decade, various single-domain antibodies from llamas, also known as VHH or nanobody, have been discovered with applications in tumor imaging and cancer therapy. However, the potential application of anti-HER2 VHHs as a diagnostic tool suitable for ELISA, flow cytometry, cell imaging, bispecific antibody engineering, and immunohistochemistry has not been fully elucidated. To investigate this potential, HER2 antigen was expressed in HEK293 F cells, purified, and used to immunize llama. Using phage display, anti-HER2 VHHs with high affinity and specificity were isolated, sequenced, and constructed with a Histag and c-Myc tag. The constructed anti-HER2 VHHs were then expressed in E. coli, purified, and evaluated for their use in ELISA, flow cytometry, cell imaging, and immunohistochemistry. The affinities of the anti-HER2 VHHs toward the HER2 antigen were determined using biolayer interferometry. Furthermore, the binding sites of the anti-HER2 VHHs were evaluated by epitope mapping and in silico modeling and docking. Here, we report the sequence of an anti-HER2 VHH with high affinity (sub-nanomolar), specificity, and selectivity. This VHH binds to the same epitope as trastuzumab and can be utilized to generate bispecific antibodies or used as a diagnostic tool to differentiate HER2+ from HER2- antigens on plates, cells, and tissues. This discovery has broad applications in biochemical, biological, and medical sciences.
Collapse
Affiliation(s)
- Shahryar Khoshtinat Nikkhoi
- Department of Pharmaceutics, Rutgers University, Room 222, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Hediyeh Heydarzadeh
- Department of Pharmaceutics, Rutgers University, Room 222, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Venu Gopal Vandavasi
- Department of Chemistry, Biophysics Core Facility, Princeton University, Princeton, NJ, 08544, USA
| | - Ge Yang
- Department of Pharmaceutics, Rutgers University, Room 222, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Pedro Louro
- Rutgers Research Pathology Services, Rutgers University, Piscataway, NJ, 08854, USA
| | - Marianne Polunas
- Rutgers Research Pathology Services, Rutgers University, Piscataway, NJ, 08854, USA
| | - Hajar Owji
- Department of Pharmaceutics, Rutgers University, Room 222, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Arash Hatefi
- Department of Pharmaceutics, Rutgers University, Room 222, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
- Cancer Pharmacology Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
7
|
Tawfeeq C, Song J, Khaniya U, Madej T, Wang J, Youkharibache P, Abrol R. Towards a structural and functional analysis of the immunoglobulin-fold proteome. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 138:135-178. [PMID: 38220423 DOI: 10.1016/bs.apcsb.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The immunoglobulin fold (Ig fold) domain is a super-secondary structural motif consisting of a sandwich with two layers of β-sheets that is present in many proteins with very diverse biological functions covering a wide range of physiological processes. This domain presents a modular architecture built with β strands connected by variable length loops that has a highly conserved structural core of four β-strands and quite variable β-sheet extensions in the two sandwich layers that enable both divergent and convergent evolutionary mechanisms in the known Ig fold proteome. The central role of this Ig fold's structural plasticity in the evolutionary success of antibodies in our immune system is well established. Nature has also utilized this Ig fold in all domains of life in many different physiological contexts that go way beyond the immune system. Here we will present a structural and functional overview of the utilization of the Ig fold in different biological processes and in different cellular contexts to highlight some of the innumerable ways that this structural motif can interact in multidomain proteins to enable their diversity of functions. This includes shareable specific protein structure visualizations behind those functions that serve as starting points for further explorations of the biomolecular interactions spanning the Ig fold proteome. This overview also highlights how this Ig fold is being utilized through natural adaptation, engineering, and even building from scratch for a range of biotechnological applications.
Collapse
Affiliation(s)
- Caesar Tawfeeq
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, United States
| | - James Song
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Umesh Khaniya
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Thomas Madej
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Jiyao Wang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Philippe Youkharibache
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, United States.
| | - Ravinder Abrol
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, United States.
| |
Collapse
|
8
|
Frecot DI, Froehlich T, Rothbauer U. 30 years of nanobodies - an ongoing success story of small binders in biological research. J Cell Sci 2023; 136:jcs261395. [PMID: 37937477 DOI: 10.1242/jcs.261395] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
A milestone in the field of recombinant binding molecules was achieved 30 years ago with the discovery of single-domain antibodies from which antigen-binding variable domains, better known as nanobodies (Nbs), can be derived. Being only one tenth the size of conventional antibodies, Nbs feature high affinity and specificity, while being highly stable and soluble. In addition, they display accessibility to cryptic sites, low off-target accumulation and deep tissue penetration. Efficient selection methods, such as (semi-)synthetic/naïve or immunized cDNA libraries and display technologies, have facilitated the isolation of Nbs against diverse targets, and their single-gene format enables easy functionalization and high-yield production. This Review highlights recent advances in Nb applications in various areas of biological research, including structural biology, proteomics and high-resolution and in vivo imaging. In addition, we provide insights into intracellular applications of Nbs, such as live-cell imaging, biosensors and targeted protein degradation.
Collapse
Affiliation(s)
- Desiree I Frecot
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Reutlingen, Germany
| | - Theresa Froehlich
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| |
Collapse
|
9
|
Hu Y, Zhang C, Lin J, Wang Y, Wu S, Sun Y, Zhang B, Lv H, Ji X, Lu Y, Wang S. Selection of specific nanobodies against peanut allergen through unbiased immunization strategy and the developed immuno-assay. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Sanjanwala D, Patravale V. Aptamers and nanobodies as alternatives to antibodies for ligand-targeted drug delivery in cancer. Drug Discov Today 2023; 28:103550. [PMID: 36906220 DOI: 10.1016/j.drudis.2023.103550] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/18/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Targeted drug delivery (TDD) is the selective delivery of a therapeutic agent specifically to the site of action to avoid adverse effects and systemic toxicity and to reduce the dose required. Ligand TDD or active TDD involves using a ligand-drug conjugate comprising a targeting ligand linked to an active drug moiety that can either be free or encapsulated within a nanocarrier (NC). Aptamers are single-stranded oligonucleotides that bind to specific biomacromolecules because of their 3D conformation. Nanobodies are the variable domains of unique heavy chain-only antibodies (HcAbs) produced by animals of the Camelidae family. Both these types of ligand are smaller than antibodies and have been used to efficiently target drugs to particular tissues or cells. In this review, we describe the applications of aptamers and nanobodies as ligands for TDD, their advantages and disadvantages compared with antibodies, and the various modalities for targeting cancers using these ligands. Teaser: Aptamers and nanobodies are macromolecular ligands that can actively chaperone drug molecules to particular cancerous cells or tissues in the body to target their pharmacological effects and improve their therapeutic index and safety.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400 019, Maharashtra, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400 019, Maharashtra, India.
| |
Collapse
|
11
|
Modular Site-Specific Conjugation of Nanobodies Using Two Co-Associating Tags. Int J Mol Sci 2022; 23:ijms232214405. [PMID: 36430882 PMCID: PMC9696751 DOI: 10.3390/ijms232214405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The homogeneous labeling of antibodies and their fragments is a critical step for the generation of robust probes used in immuno-detection applications. To date, numerous chemical, genetic and peptide-based site-specific coupling methods have been developed. Among these methods, co-assembling peptide-tags is one of the most straightforward and versatile solutions. Here, we describe site-specific labeling of nanobodies through the use of two co-associating peptides tags, E3 and K3, originating from the tetramerization domain of p53. These E3 and K3-tags provide a simple and robust method for associating stoichiometric amount of VHH and fluorescent probes, either fluorescent proteins or fluorochromes, at specific positions. As a proof of concept, a nanobody targeting the human epidermal growth factor receptor 2 (HER2), the nano-HER2 was genetically fused to the E3 and associated with different fluorescent K3-derivates. Entities were produced separately in Escherichia coli in soluble forms at high yields and co-assembled in vitro. These molecular probes present high binding specificity on HER2-overexpressing cells in flow-cytometry with relative binding constants in the low nanomolar range and are stable enough to stain HER2-receptor on living cells followed detection using fluorescent confocal microscopy. Altogether, our results demonstrate that the non-covalent conjugation method using these two co-associating peptides can be easily implemented for the modular engineering of molecular probes for cell immuno-staining.
Collapse
|
12
|
A comprehensive review on different approaches for tumor targeting using nanocarriers and recent developments with special focus on multifunctional approaches. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00583-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
13
|
Fan W, Ji P, Sun X, Kong M, Zhou N, Zhang Q, Wang Y, Liu Q, Li X, Zhou EM, Zhao Q, Sun Y. Screening and identification of nucleocapsid protein-nanobodies that inhibited Newcastle disease virus replication in DF-1 cells. Front Microbiol 2022; 13:956561. [PMID: 36051768 PMCID: PMC9426676 DOI: 10.3389/fmicb.2022.956561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Newcastle disease (ND) is an acute and highly contagious infectious disease found in poultry. Although commercial ND virus (NDV) vaccines are universally used, some case reports persistently documented vaccination failure. Therefore, novel strategies are still required to control the occurrence of the disease in chickens. Recently, nanobodies (Nbs), which have the advantages of small molecular weight and low production costs, have been shown to be promising therapeutics against viral infection. In the present study, a total of 16 Nbs against NDV nucleocapsid protein (NP) were screened from two libraries against NDV using phage display technology. Of the 16 screened Nbs, eight were prevented from binding to NDV NP protein through administering positive chicken sera for anti-NDV antibodies, indicating that the epitopes recognized by these eight Nbs were able to induce the immune response after the chickens were infected with NDV stock. Subsequently, transfection assay, construction of recombinant DF-1 cells capable of expressing different nanobodies and viral inhibition assay were used to screen the nanobodies inhibiting NDV replication. The results demonstrated that Nb18, Nb30, and Nb88 significantly inhibited the replication of Class I and different genotypes of Class II NDV strains in DF-1 cells when they were expressed in the cytoplasm. Collectively, these nanobodies provided new tools for researching the functions of NDV NP protein and may be used as a novel strategy for designing drugs against NDV infection in chickens.
Collapse
Affiliation(s)
- Wenqi Fan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Pinpin Ji
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Xuwen Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Min Kong
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Ning Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Qiang Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Ying Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Qianqian Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Xiaoxuan Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
- *Correspondence: Yani Sun,
| |
Collapse
|
14
|
Markússon S, Hallin EI, Bustad HJ, Raasakka A, Xu J, Muruganandam G, Loris R, Martinez A, Bramham CR, Kursula P. High-affinity anti-Arc nanobodies provide tools for structural and functional studies. PLoS One 2022; 17:e0269281. [PMID: 35671319 PMCID: PMC9173642 DOI: 10.1371/journal.pone.0269281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/17/2022] [Indexed: 11/19/2022] Open
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) is a multidomain protein of retroviral origin with a vital role in the regulation of synaptic plasticity and memory formation in mammals. However, the mechanistic and structural basis of Arc function is poorly understood. Arc has an N-terminal domain (NTD) involved in membrane binding and a C-terminal domain (CTD) that binds postsynaptic protein ligands. In addition, the NTD and CTD both function in Arc oligomerisation, including assembly of retrovirus-like capsids involved in intercellular signalling. To obtain new tools for studies on Arc structure and function, we produced and characterised six high-affinity anti-Arc nanobodies (Nb). The CTD of rat and human Arc were both crystallised in ternary complexes with two Nbs. One Nb bound deep into the stargazin-binding pocket of Arc CTD and suggested competitive binding with Arc ligand peptides. The crystallisation of the human Arc CTD in two different conformations, accompanied by SAXS data and molecular dynamics simulations, paints a dynamic picture of the mammalian Arc CTD. The collapsed conformation closely resembles Drosophila Arc in capsids, suggesting that we have trapped a capsid-like conformation of the human Arc CTD. Our data obtained with the help of anti-Arc Nbs suggest that structural dynamics of the CTD and dimerisation of the NTD may promote the formation of capsids. Taken together, the recombinant high-affinity anti-Arc Nbs are versatile tools that can be further developed for studying mammalian Arc structure and function, as well as mechanisms of Arc capsid formation, both in vitro and in vivo. For example, the Nbs could serve as a genetically encoded tools for inhibition of endogenous Arc interactions in the study of neuronal function and plasticity.
Collapse
Affiliation(s)
| | - Erik I. Hallin
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ju Xu
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Gopinath Muruganandam
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Department of Bioengineering Sciences, Structural Biology Brussels, Vrije Universiteit Brussel, Brussel, Belgium
| | - Remy Loris
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Department of Bioengineering Sciences, Structural Biology Brussels, Vrije Universiteit Brussel, Brussel, Belgium
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
- * E-mail:
| |
Collapse
|
15
|
Camelid Single-Domain Antibodies: Promises and Challenges as Lifesaving Treatments. Int J Mol Sci 2022; 23:ijms23095009. [PMID: 35563400 PMCID: PMC9100996 DOI: 10.3390/ijms23095009] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/07/2023] Open
Abstract
Since the discovery of camelid heavy-chain antibodies in 1993, there has been tremendous excitement for these antibody domains (VHHs/sdAbs/nanobodies) as research tools, diagnostics, and therapeutics. Commercially, several patents were granted to pioneering research groups in Belgium and the Netherlands between 1996–2001. Ablynx was established in 2001 with the aim of exploring the therapeutic applications and development of nanobody drugs. Extensive efforts over two decades at Ablynx led to the first approved nanobody drug, caplacizumab (Cablivi) by the EMA and FDA (2018–2019) for the treatment of rare blood clotting disorders in adults with acquired thrombotic thrombocytopenic purpura (TPP). The relatively long development time between camelid sdAb discovery and their entry into the market reflects the novelty of the approach, together with intellectual property restrictions and freedom-to-operate issues. The approval of the first sdAb drug, together with the expiration of key patents, may open a new horizon for the emergence of camelid sdAbs as mainstream biotherapeutics in the years to come. It remains to be seen if nanobody-based drugs will be cheaper than traditional antibodies. In this review, I provide critical perspectives on camelid sdAbs and present the promises and challenges to their widespread adoption as diagnostic and therapeutic agents.
Collapse
|
16
|
Marino M, Holt MG. AAV Vector-Mediated Antibody Delivery (A-MAD) in the Central Nervous System. Front Neurol 2022; 13:870799. [PMID: 35493843 PMCID: PMC9039256 DOI: 10.3389/fneur.2022.870799] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
In the last four decades, monoclonal antibodies and their derivatives have emerged as a powerful class of therapeutics, largely due to their exquisite targeting specificity. Several clinical areas, most notably oncology and autoimmune disorders, have seen the successful introduction of monoclonal-based therapeutics. However, their adoption for treatment of Central Nervous System diseases has been comparatively slow, largely due to issues of efficient delivery resulting from limited permeability of the Blood Brain Barrier. Nevertheless, CNS diseases are becoming increasingly prevalent as societies age, accounting for ~6.5 million fatalities worldwide per year. Therefore, harnessing the full therapeutic potential of monoclonal antibodies (and their derivatives) in this clinical area has become a priority. Adeno-associated virus-based vectors (AAVs) are a potential solution to this problem. Preclinical studies have shown that AAV vector-mediated antibody delivery provides protection against a broad range of peripheral diseases, such as the human immunodeficiency virus (HIV), influenza and malaria. The parallel identification and optimization of AAV vector platforms which cross the Blood Brain Barrier with high efficiency, widely transducing the Central Nervous System and allowing high levels of local transgene production, has now opened a number of interesting scenarios for the development of AAV vector-mediated antibody delivery strategies to target Central Nervous System proteinopathies.
Collapse
Affiliation(s)
- Marika Marino
- Laboratory of Glia Biology, VIB-KU Leuven, Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Matthew G. Holt
- Laboratory of Glia Biology, VIB-KU Leuven, Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
- Synapse Biology Group, Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- *Correspondence: Matthew G. Holt
| |
Collapse
|
17
|
Marino M, Zhou L, Rincon MY, Callaerts-Vegh Z, Verhaert J, Wahis J, Creemers E, Yshii L, Wierda K, Saito T, Marneffe C, Voytyuk I, Wouters Y, Dewilde M, Duqué SI, Vincke C, Levites Y, Golde TE, Saido TC, Muyldermans S, Liston A, De Strooper B, Holt MG. AAV-mediated delivery of an anti-BACE1 VHH alleviates pathology in an Alzheimer's disease model. EMBO Mol Med 2022; 14:e09824. [PMID: 35352880 PMCID: PMC8988209 DOI: 10.15252/emmm.201809824] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/18/2023] Open
Abstract
Single domain antibodies (VHHs) are potentially disruptive therapeutics, with important biological value for treatment of several diseases, including neurological disorders. However, VHHs have not been widely used in the central nervous system (CNS), largely because of their restricted blood-brain barrier (BBB) penetration. Here, we propose a gene transfer strategy based on BBB-crossing Adeno-associated virus (AAV)-based vectors to deliver VHH directly into the CNS. As a proof-of-concept, we explored the potential of AAV-delivered VHH to inhibit BACE1, a well-characterized target in Alzheimer's disease. First, we generated a panel of VHHs targeting BACE1, one of which, VHH-B9, shows high selectivity for BACE1 and efficacy in lowering BACE1 activity in vitro. We further demonstrate that a single systemic dose of AAV-VHH-B9 produces positive long-term (12 months plus) effects on amyloid load, neuroinflammation, synaptic function, and cognitive performance, in the AppNL-G-F Alzheimer's disease mouse model. These results constitute a novel therapeutic approach forneurodegenerative diseases, which is applicable to a range of CNS disease targets.
Collapse
Affiliation(s)
- Marika Marino
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Lujia Zhou
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Melvin Y Rincon
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Jens Verhaert
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Jérôme Wahis
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Eline Creemers
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium.,Electrophysiology Expertise Unit, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Lidia Yshii
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Keimpe Wierda
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium.,Electrophysiology Expertise Unit, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Catherine Marneffe
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Iryna Voytyuk
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Yessica Wouters
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Maarten Dewilde
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Sandra I Duqué
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Cécile Vincke
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yona Levites
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Todd E Golde
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako-shi, Japan
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Adrian Liston
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Immunology Programme, The Babraham Institute, Cambridge, UK
| | - Bart De Strooper
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium.,UK Dementia Research institute at UCL, London, UK.,Leuven Brain Institute, Leuven, Belgium
| | - Matthew G Holt
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium.,Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| |
Collapse
|
18
|
Sim D, Brothers MC, Slocik JM, Islam AE, Maruyama B, Grigsby CC, Naik RR, Kim SS. Biomarkers and Detection Platforms for Human Health and Performance Monitoring: A Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104426. [PMID: 35023321 PMCID: PMC8895156 DOI: 10.1002/advs.202104426] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/19/2021] [Indexed: 05/04/2023]
Abstract
Human health and performance monitoring (HHPM) is imperative to provide information necessary for protecting, sustaining, evaluating, and improving personnel in various occupational sectors, such as industry, academy, sports, recreation, and military. While various commercially wearable sensors are on the market with their capability of "quantitative assessments" on human health, physical, and psychological states, their sensing is mostly based on physical traits, and thus lacks precision in HHPM. Minimally or noninvasive biomarkers detectable from the human body, such as body fluid (e.g., sweat, tear, urine, and interstitial fluid), exhaled breath, and skin surface, can provide abundant additional information to the HHPM. Detecting these biomarkers with novel or existing sensor technologies is emerging as critical human monitoring research. This review provides a broad perspective on the state of the art biosensor technologies for HHPM, including the list of biomarkers and their physiochemical/physical characteristics, fundamental sensing principles, and high-performance sensing transducers. Further, this paper expands to the additional scope on the key technical challenges in applying the current HHPM system to the real field.
Collapse
Affiliation(s)
- Daniel Sim
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
- Research Associateship Program (RAP)the National Academies of Sciences, Engineering and MedicineWashingtonDC20001USA
- Integrative Health & Performance Sciences DivisionUES Inc.DaytonOH45432USA
| | - Michael C. Brothers
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
- Integrative Health & Performance Sciences DivisionUES Inc.DaytonOH45432USA
| | - Joseph M. Slocik
- Air Force Research LaboratoryMaterials and Manufacturing DirectorateWright‐Patterson Air Force BaseOH 45433USA
| | - Ahmad E. Islam
- Air Force Research LaboratorySensors DirectorateWright‐Patterson Air Force BaseOH 45433USA
| | - Benji Maruyama
- Air Force Research LaboratoryMaterials and Manufacturing DirectorateWright‐Patterson Air Force BaseOH 45433USA
| | - Claude C. Grigsby
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
| | - Rajesh R. Naik
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
| | - Steve S. Kim
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
| |
Collapse
|
19
|
Liu B, Yang D. Easily Established and Multifunctional Synthetic Nanobody Libraries as Research Tools. Int J Mol Sci 2022; 23:ijms23031482. [PMID: 35163405 PMCID: PMC8835997 DOI: 10.3390/ijms23031482] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Nanobodies, or VHHs, refer to the antigen-binding domain of heavy-chain antibodies (HCAbs) from camelids. They have been widely used as research tools for protein purification and structure determination due to their small size, high specificity, and high stability, overcoming limitations with conventional antibody fragments. However, animal immunization and subsequent retrieval of antigen-specific nanobodies are expensive and complicated. Construction of synthetic nanobody libraries using DNA oligonucleotides is a cost-effective alternative for immunization libraries and shows great potential in identifying antigen-specific or even conformation-specific nanobodies. This review summarizes and analyses synthetic nanobody libraries in the current literature, including library design and biopanning methods, and further discusses applications of antigen-specific nanobodies obtained from synthetic libraries to research.
Collapse
|
20
|
Müntener T, Joss D, Häussinger D, Hiller S. Pseudocontact Shifts in Biomolecular NMR Spectroscopy. Chem Rev 2022; 122:9422-9467. [PMID: 35005884 DOI: 10.1021/acs.chemrev.1c00796] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Paramagnetic centers in biomolecules, such as specific metal ions that are bound to a protein, affect the nuclei in their surrounding in various ways. One of these effects is the pseudocontact shift (PCS), which leads to strong chemical shift perturbations of nuclear spins, with a remarkably long range of 50 Å and beyond. The PCS in solution NMR is an effect originating from the anisotropic part of the dipole-dipole interaction between the magnetic momentum of unpaired electrons and nuclear spins. The PCS contains spatial information that can be exploited in multiple ways to characterize structure, function, and dynamics of biomacromolecules. It can be used to refine structures, magnify effects of dynamics, help resonance assignments, allows for an intermolecular positioning system, and gives structural information in sensitivity-limited situations where all other methods fail. Here, we review applications of the PCS in biomolecular solution NMR spectroscopy, starting from early works on natural metalloproteins, following the development of non-natural tags to chelate and attach lanthanoid ions to any biomolecular target to advanced applications on large biomolecular complexes and inside living cells. We thus hope to not only highlight past applications but also shed light on the tremendous potential the PCS has in structural biology.
Collapse
Affiliation(s)
- Thomas Müntener
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Daniel Joss
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| |
Collapse
|
21
|
Enhancing the detection sensitivity of nanobody against aflatoxin B 1 through structure-guided modification. Int J Biol Macromol 2022; 194:188-197. [PMID: 34863829 DOI: 10.1016/j.ijbiomac.2021.11.182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/24/2022]
Abstract
Nanobodies (Nbs) have shown great potential in immunodetection of small-molecule contaminants in food and environmental monitoring. However, the limited knowledge of the mechanism of Nbs binding to small molecules has hampered the development of high-affinity Nbs and assay improvement. We previously reported two homologous nanobodies Nb26 and Nb28 specific to aflatoxin B1 (AFB1), with the former exhibiting higher sensitivity in ELISA. Herein, Nb26 was selected as the model antibody to resolve its solution nuclear magnetic resonance (NMR) structure, and investigate its AFB1 recognition mechanism. The results revealed that Nb26 exhibits a typical immunoglobulin fold and its AFB1-binding interface is uniquely located in complementarity-determining region 3 (CDR3) and framework region 2 (FR2). This finding was applied to improve the binding activity of Nb28 against AFB1 by constructing two Nb28-based mutants A50V and S102D, resulting in 2.3- and 3.3-fold sensitivity enhancement over the wild type, respectively. This study develops an NMR-based strategy to analyze the underlying mechanism of Nb against AFB1, and successfully generated two site-modified Nbs with improved detection sensitivity. It is believed that this work could greatly expand the applications of Nbs by providing a way to enhance the binding activity.
Collapse
|
22
|
Asaadi Y, Jouneghani FF, Janani S, Rahbarizadeh F. A comprehensive comparison between camelid nanobodies and single chain variable fragments. Biomark Res 2021; 9:87. [PMID: 34863296 PMCID: PMC8642758 DOI: 10.1186/s40364-021-00332-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
By the emergence of recombinant DNA technology, many antibody fragments have been developed devoid of undesired properties of natural immunoglobulins. Among them, camelid heavy-chain variable domains (VHHs) and single-chain variable fragments (scFvs) are the most favored ones. While scFv is used widely in various applications, camelid antibodies (VHHs) can serve as an alternative because of their superior chemical and physical properties such as higher solubility, stability, smaller size, and lower production cost. Here, these two counterparts are compared in structure and properties to identify which one is more suitable for each of their various therapeutic, diagnosis, and research applications.
Collapse
Affiliation(s)
- Yasaman Asaadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Fazlollahi Jouneghani
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Sara Janani
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
23
|
Llauger G, Monti D, Adúriz M, Romão E, Dumón AD, Mattio MF, Wigdorovitz A, Muyldermans S, Vincke C, Parreño V, Del Vas M. Development of Nanobodies against Mal de Río Cuarto virus major viroplasm protein P9-1 for diagnostic sandwich ELISA and immunodetection. Sci Rep 2021; 11:20013. [PMID: 34625580 PMCID: PMC8501053 DOI: 10.1038/s41598-021-99275-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023] Open
Abstract
Mal de Río Cuarto virus (MRCV) is a member of the genus Fijivirus of the family Reoviridae that causes a devastating disease in maize and is persistently and propagatively transmitted by planthopper vectors. Virus replication and assembly occur within viroplasms formed by viral and host proteins. This work describes the isolation and characterization of llama-derived Nanobodies (Nbs) recognizing the major viral viroplasm component, P9-1. Specific Nbs were selected against recombinant P9-1, with affinities in the nanomolar range as measured by surface plasmon resonance. Three selected Nbs were fused to alkaline phosphatase and eGFP to develop a sandwich ELISA test which showed a high diagnostic sensitivity (99.12%, 95% CI 95.21-99.98) and specificity (100%, 95% CI 96.31-100) and a detection limit of 0.236 ng/ml. Interestingly, these Nanobodies recognized different P9-1 conformations and were successfully employed to detect P9-1 in pull-down assays of infected maize extracts. Finally, we demonstrated that fusions of the Nbs to eGFP and RFP allowed the immunodetection of virus present in phloem cells of leaf thin sections. The Nbs developed in this work will aid the study of MRCV epidemiology, assist maize breeding programs, and be valuable tools to boost fundamental research on viroplasm structure and maturation.
Collapse
Affiliation(s)
- Gabriela Llauger
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA INTA, UEDD INTA/CONICET, Buenos Aires, Argentina
| | - Demián Monti
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA INTA, UEDD INTA/CONICET, Buenos Aires, Argentina
| | - Matías Adúriz
- INCUINTA, Instituto de Virología e Innovaciones Tecnológicas (IVIT), CICVyA INTA, UEDD INTA/CONICET, Buenos Aires, Argentina
| | - Ema Romão
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Analía Delina Dumón
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Unidad de Fitopatología y Modelización Agrícola (UFYMA), Córdoba, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA), Centro de Investigaciones Agropecuarias (CIAP), Instituto de Patología Vegetal (IPAVE), Córdoba, Argentina
| | - María Fernanda Mattio
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Unidad de Fitopatología y Modelización Agrícola (UFYMA), Córdoba, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA), Centro de Investigaciones Agropecuarias (CIAP), Instituto de Patología Vegetal (IPAVE), Córdoba, Argentina
| | - Andrés Wigdorovitz
- INCUINTA, Instituto de Virología e Innovaciones Tecnológicas (IVIT), CICVyA INTA, UEDD INTA/CONICET, Buenos Aires, Argentina
| | - Serge Muyldermans
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, People's Republic of China
| | - Cécile Vincke
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Viviana Parreño
- INCUINTA, Instituto de Virología e Innovaciones Tecnológicas (IVIT), CICVyA INTA, UEDD INTA/CONICET, Buenos Aires, Argentina
| | - Mariana Del Vas
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA INTA, UEDD INTA/CONICET, Buenos Aires, Argentina.
| |
Collapse
|
24
|
Kim EJ. Advances in Strategies and Tools Available for Interrogation of Protein O-GlcNAcylation. Chembiochem 2021; 22:3010-3026. [PMID: 34101962 DOI: 10.1002/cbic.202100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/08/2021] [Indexed: 11/08/2022]
Abstract
The attachment of a single O-linked β-N-acetylglucosamine (O-GlcNAc) to serine and threonine residues of numerous proteins in the nucleus, cytoplasm, and mitochondria is a reversible post-translational modification (PTM) and plays an important role as a regulator of various cellular processes in both healthy and disease states. Advances in strategies and tools that allow for the detection of dynamic O-GlcNAcylation on cellular proteins have helped to enhance our initial and ongoing understanding of its dynamic effects on cellular stimuli and given insights into its link to the pathogenesis of several chronic diseases. Furthermore, chemical genetic strategies and related tools have been successfully applied to a myriad of biological systems with a new level of spatiotemporal and molecular precision. These strategies have started to be used in studying and controlling O-GlcNAcylation both in vivo and in vitro. In this minireview, overviews of recent advances in molecular tools being applied to the detection and identification of O-GlcNAcylation on cellular proteins as well as on individual proteins are provided. In addition, chemical genetic strategies that have already been applied or are potentially usable in O-GlcNAc functional are also discussed.
Collapse
Affiliation(s)
- Eun Ju Kim
- Daegu University, Gyeongsan-Si, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
25
|
Scarrone M, González-Techera A, Alvez-Rosado R, Delfin-Riela T, Modernell Á, González-Sapienza G, Lassabe G. Development of anti-human IgM nanobodies as universal reagents for general immunodiagnostics. N Biotechnol 2021; 64:9-16. [PMID: 33984500 DOI: 10.1016/j.nbt.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/09/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
Nanobodies are the smallest antibody fragments which bind to antigens with high affinity and specificity. Due to their outstanding physicochemical stability, simplicity and cost-effective production, nanobodies have become powerful agents in therapeutic and diagnostic applications. In this work, the advantages of nanobodies were exploited to develop generic and standardized anti-human IgM reagents for serology and IgM+ B-cell analysis. Selection of anti-IgM nanobodies was carried out by evaluating their yields, stability, binding kinetics and cross-reactivity with other Ig isotypes. High affinity nanobodies were selected with dissociation constants (KDs) in the nM range and high sensitivities for detection of total IgM by ELISA. The nanobodies also proved to be useful for capturing IgM in the serodiagnosis of an acute infection as demonstrated by detection of specific IgM in sera of dengue virus patients. Finally, due to the lack of an Fc region, the selected nanobodies do not require Fc receptor blocking steps, facilitating the immunophenotyping of IgM+ cells by flow cytometry, an important means of diagnosis of immunodeficiencies and B-cell lymphoproliferative disorders. This work describes versatile anti-IgM nanobodies that, due to their recombinant nature and ease of reproduction at low cost, may represent an advantageous alternative to conventional anti-IgM antibodies in research and diagnosis.
Collapse
Affiliation(s)
- Martina Scarrone
- Department of Immunology, DEPBIO, Faculty of Chemistry, Hygiene Institute, UDELAR, Av. A. Navarro 3051, 11600, Montevideo, Uruguay
| | - Andrés González-Techera
- Department of Immunology, DEPBIO, Faculty of Chemistry, Hygiene Institute, UDELAR, Av. A. Navarro 3051, 11600, Montevideo, Uruguay
| | - Romina Alvez-Rosado
- Department of Immunology, DEPBIO, Faculty of Chemistry, Hygiene Institute, UDELAR, Av. A. Navarro 3051, 11600, Montevideo, Uruguay
| | - Triana Delfin-Riela
- Department of Immunology, DEPBIO, Faculty of Chemistry, Hygiene Institute, UDELAR, Av. A. Navarro 3051, 11600, Montevideo, Uruguay
| | | | - Gualberto González-Sapienza
- Department of Immunology, DEPBIO, Faculty of Chemistry, Hygiene Institute, UDELAR, Av. A. Navarro 3051, 11600, Montevideo, Uruguay.
| | - Gabriel Lassabe
- Department of Immunology, DEPBIO, Faculty of Chemistry, Hygiene Institute, UDELAR, Av. A. Navarro 3051, 11600, Montevideo, Uruguay.
| |
Collapse
|
26
|
Simões B, Guedens WJ, Keene C, Kubiak-Ossowska K, Mulheran P, Kotowska AM, Scurr DJ, Alexander MR, Broisat A, Johnson S, Muyldermans S, Devoogdt N, Adriaensens P, Mendes PM. Direct Immobilization of Engineered Nanobodies on Gold Sensors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17353-17360. [PMID: 33845569 PMCID: PMC8153533 DOI: 10.1021/acsami.1c02280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/25/2021] [Indexed: 05/25/2023]
Abstract
Single-domain antibodies, known as nanobodies, have great potential as biorecognition elements for sensors because of their small size, affinity, specificity, and robustness. However, facile and efficient methods of nanobody immobilization are sought that retain their maximum functionality. Herein, we describe the direct immobilization of nanobodies on gold sensors by exploiting a modified cysteine strategically positioned at the C-terminal end of the nanobody. The experimental data based on secondary ion mass spectrometry, circular dichroism, and surface plasmon resonance, taken together with a detailed computational work (molecular dynamics simulations), support the formation of stable and well-oriented nanobody monolayers. Furthermore, the nanobody structure and activity is preserved, wherein the nanobody is immobilized at a high density (approximately 1 nanobody per 13 nm2). The strategy for the spontaneous nanobody self-assembly is simple and effective and possesses exceptional potential to be used in numerous sensing platforms, ranging from clinical diagnosis to environmental monitoring.
Collapse
Affiliation(s)
- Bárbara Simões
- School
of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Wanda J. Guedens
- Institute
for Materials Research (IMO), Hasselt University, BE-3590 Diepenbeek, Belgium
| | - Charlie Keene
- School
of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | - Paul Mulheran
- Department
of Chemical & Process Engineering, University
of Strathclyde, Glasgow G1 1XQ, United Kingdom
| | - Anna M. Kotowska
- School
of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - David J. Scurr
- School
of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Morgan R Alexander
- School
of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Alexis Broisat
- Laboratory
of Bioclinical Radiopharmaceutics, Université
Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB, 38000 Grenoble, France
| | - Steven Johnson
- Department
of Electronic Engineering, University of
York, York YO19 5DD, United Kingdom
| | - Serge Muyldermans
- Cellular
and Molecular Immunology laboratory, Vrije
Universiteit Brussel (VUB), BE-1050 Brussels, Belgium
| | - Nick Devoogdt
- In
vivo Cellular and Molecular Imaging laboratory, Vrije Universiteit Brussel (VUB), BE-1090 Brussels, Belgium
| | - Peter Adriaensens
- Institute
for Materials Research (IMO), Hasselt University, BE-3590 Diepenbeek, Belgium
| | - Paula M. Mendes
- School
of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
27
|
Ubbiali D, Orlando M, Kovačič M, Iacobucci C, Semrau MS, Bajc G, Fortuna S, Ilc G, Medagli B, Oloketuyi S, Storici P, Sinz A, Grandori R, de Marco A. An anti-HER2 nanobody binds to its antigen HER2 via two independent paratopes. Int J Biol Macromol 2021; 182:502-511. [PMID: 33848543 DOI: 10.1016/j.ijbiomac.2021.04.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/10/2021] [Accepted: 04/05/2021] [Indexed: 01/02/2023]
Abstract
High-resolution structural data of complexes between antibodies and membrane receptors still represent a demanding task. In this study, we used complementary sets of experimental data to obtain a structural model of the complex formed by the human epidermal growth factor receptor 2 (HER2) and its specific nanobody A10. First we identified by NMR the residues that bind or rearrange as a consequence of the complex formation. In parallel, the complex was cross-linked, digested and the resulting peptides were characterized by mass-spectrometry to define maximal distance restraints between HER2 and A10 amino acids in their complex. These independent datasets guided a docking process, refined by molecular dynamics simulations, to develop a model of the complex and estimate per-residue free-energy contributions. Such a model explains the experimental data and identifies a second, non-canonical paratope, located in the region opposite to the conventional nanobody paratope, formed by the hypervariable loop regions LH1 and LH3. Both paratopes contributed substantially to the overall affinity by binding to independent HER2 epitopes. Nanobody mutants with substitution of key interaction residues, as indicated by the model, possess significantly lower affinity for HER2. This is the first described case of a "natural" biparatopic nanobody, directly selected by in-vitro panning.
Collapse
Affiliation(s)
- Daniele Ubbiali
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Marco Orlando
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100 Varese, Italy
| | - Matic Kovačič
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Claudio Iacobucci
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Marta S Semrau
- Structural Biology Lab, Elettra Sincrotrone Trieste S.C.p.A., 34149, Basovizza, Trieste, Italy; CIBIO, Centre for Integrative Biology, University of Trento, via Sommarive 9, Povo 38123, Italy
| | - Gregor Bajc
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Sara Fortuna
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Gregor Ilc
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Barbara Medagli
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Sandra Oloketuyi
- Lab of Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, 5000 Rožna Dolina, Nova Gorica, Slovenia
| | - Paola Storici
- Structural Biology Lab, Elettra Sincrotrone Trieste S.C.p.A., 34149, Basovizza, Trieste, Italy
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Ario de Marco
- Lab of Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, 5000 Rožna Dolina, Nova Gorica, Slovenia.
| |
Collapse
|
28
|
Uhlemann EME, Yu CH, Patry J, Dolgova N, Lutsenko S, Muyldermans S, Dmitriev OY. Nanobodies against the metal binding domains of ATP7B as tools to study copper transport in the cell. Metallomics 2020; 12:1941-1950. [PMID: 33094790 DOI: 10.1039/d0mt00191k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanobodies are genetically engineered single domain antibodies derived from the unusual heavy-chain only antibodies found in llamas and camels. The small size of the nanobodies and flexible selection schemes make them uniquely versatile tools for protein biochemistry and cell biology. We have developed a panel of nanobodies against the metal binding domains of the human copper transporter ATP7B, a multidomain membrane protein with a complex regulation of enzymatic activity and intracellular localization. To enable the use of the nanobodies as tools to investigate copper transport in the cell, we characterized their binding sites and affinity by isothermal titration calorimetry and NMR. We have identified nanobodies against each of the first four metal binding domains of ATP7B, with a wide affinity range, as evidenced by dissociation constants from below 10-9 to 10-6 M. We found both the inhibitory and activating nanobodies among those tested. The diverse properties of the nanobodies make the panel useful for the structural studies of ATP7B, immunoaffinity purification of the protein, modulation of its activity in the cell, protein dynamics studies, and as mimics of copper chaperone ATOX1, the natural interaction partner of ATP7B.
Collapse
Affiliation(s)
- Eva-Maria E Uhlemann
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.
| | | | | | | | | | | | | |
Collapse
|
29
|
Yu S, Xiong G, Zhao S, Tang Y, Tang H, Wang K, Liu H, Lan K, Bi X, Duan S. Nanobodies targeting immune checkpoint molecules for tumor immunotherapy and immunoimaging (Review). Int J Mol Med 2020; 47:444-454. [PMID: 33416134 PMCID: PMC7797440 DOI: 10.3892/ijmm.2020.4817] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
The immune checkpoint blockade is an effective strategy to enhance the anti-tumor T cell effector activity, thus becoming one of the most promising immunotherapeutic strategies in the history of cancer treatment. Several immune checkpoint inhibitor have been approved by the FDA, such as anti-CTLA-4, anti-PD-1, anti-PD-L1 monoclonal antibodies. Most tumor patients benefitted from these antibodies, but some of the patients did not respond to them. To increase the effectiveness of immunotherapy, including immune checkpoint blockade therapies, miniaturization of antibodies has been introduced. A single-domain antibody, also known as nanobody, is an attractive reagent for immunotherapy and immunoimaging thanks to its unique structural characteristic consisting of a variable region of a single heavy chain antibody. This structure confers to the nanobody a light molecular weight, making it smaller than conventional antibodies, although remaining able to bind to a specific antigen. Therefore, this review summarizes the production of nanobodies targeting immune checkpoint molecules and the application of nanobodies targeting immune checkpoint molecules in immunotherapy and immunoimaging.
Collapse
Affiliation(s)
- Sheng Yu
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Gui Xiong
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Shimei Zhao
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Yanbo Tang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545001, P.R. China
| | - Hua Tang
- Department of Clinical Laboratory, The Second Clinical Medical College of Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545006, P.R. China
| | - Kaili Wang
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Hongjing Liu
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Ke Lan
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Xiongjie Bi
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545001, P.R. China
| | - Siliang Duan
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| |
Collapse
|
30
|
Abstract
Unique, functional, homodimeric heavy chain-only antibodies, devoid of light chains, are circulating in the blood of Camelidae. These antibodies recognize their cognate antigen via one single domain, known as VHH or Nanobody. This serendipitous discovery made three decades ago has stimulated a growing number of researchers to generate highly specific Nanobodies against a myriad of targets. The small size, strict monomeric state, robustness, and easy tailoring of these Nanobodies have inspired many groups to design innovative Nanobody-based multi-domain constructs to explore novel applications. As such, Nanobodies have been employed as an exquisite research tool in structural, cell, and developmental biology. Furthermore, Nanobodies have demonstrated their benefit for more sensitive diagnostic tests. Finally, several Nanobody-based constructs have been designed to develop new therapeutic products.
Collapse
Affiliation(s)
- Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium; .,Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, Liaoning, People's Republic of China
| |
Collapse
|
31
|
Allosteric modulation of the GTPase activity of a bacterial LRRK2 homolog by conformation-specific Nanobodies. Biochem J 2020; 477:1203-1218. [PMID: 32167135 PMCID: PMC7135905 DOI: 10.1042/bcj20190843] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 01/02/2023]
Abstract
Mutations in the Parkinson's disease (PD)-associated protein leucine-rich repeat kinase 2 (LRRK2) commonly lead to a reduction of GTPase activity and increase in kinase activity. Therefore, strategies for drug development have mainly been focusing on the design of LRRK2 kinase inhibitors. We recently showed that the central RocCOR domains (Roc: Ras of complex proteins; COR: C-terminal of Roc) of a bacterial LRRK2 homolog cycle between a dimeric and monomeric form concomitant with GTP binding and hydrolysis. PD-associated mutations can slow down GTP hydrolysis by stabilizing the protein in its dimeric form. Here, we report the identification of two Nanobodies (NbRoco1 and NbRoco2) that bind the bacterial Roco protein (CtRoco) in a conformation-specific way, with a preference for the GTP-bound state. NbRoco1 considerably increases the GTP turnover rate of CtRoco and reverts the decrease in GTPase activity caused by a PD-analogous mutation. We show that NbRoco1 exerts its effect by allosterically interfering with the CtRoco dimer–monomer cycle through the destabilization of the dimeric form. Hence, we provide the first proof of principle that allosteric modulation of the RocCOR dimer–monomer cycle can alter its GTPase activity, which might present a potential novel strategy to overcome the effect of LRRK2 PD mutations.
Collapse
|
32
|
Abstract
Today, bio-medical efforts are entering the subcellular level, which is witnessed with the fast-developing fields of nanomedicine, nanodiagnostics and nanotherapy in conjunction with the implementation of nanoparticles for disease prevention, diagnosis, therapy and follow-up. Nanoparticles or nanocontainers offer advantages including high sensitivity, lower toxicity and improved safety—characteristics that are especially valued in the oncology field. Cancer cells develop and proliferate in complex microenvironments leading to heterogeneous diseases, often with a fatal outcome for the patient. Although antibody-based therapy is widely used in the clinical care of patients with solid tumours, its efficiency definitely needs improvement. Limitations of antibodies result mainly from their big size and poor penetration in solid tissues. Nanobodies are a novel and unique class of antigen-binding fragments, derived from naturally occurring heavy-chain-only antibodies present in the serum of camelids. Their superior properties such as small size, high stability, strong antigen-binding affinity, water solubility and natural origin make them suitable for development into next-generation biodrugs. Less than 30 years after the discovery of functional heavy-chain-only antibodies, the nanobody derivatives are already extensively used by the biotechnology research community. Moreover, a number of nanobodies are under clinical investigation for a wide spectrum of human diseases including inflammation, breast cancer, brain tumours, lung diseases and infectious diseases. Recently, caplacizumab, a bivalent nanobody, received approval from the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA) for treatment of patients with thrombotic thrombocytopenic purpura.
Collapse
Affiliation(s)
- Ivana Jovčevska
- Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
33
|
See K, Kadonosono T, Ota Y, Miyamoto K, Yimchuen W, Kizaka-Kondoh S. Reconstitution of an Anti-HER2 Antibody Paratope by Grafting Dual CDR-Derived Peptides onto a Small Protein Scaffold. Biotechnol J 2020; 15:e2000078. [PMID: 32975036 DOI: 10.1002/biot.202000078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/14/2020] [Indexed: 12/20/2022]
Abstract
Target-binding small proteins are promising alternatives to conventional monoclonal antibodies (mAbs), offering advantages in terms of tissue penetration and manufacturing costs. Recently, a design strategy to create small proteins called fluctuation-regulated affinity proteins (FLAPs) consisting of a structurally immobilized peptide from the complementarity-determining region (CDR) loops of mAbs (CDR-derived peptide) and a protein scaffold was developed. Because mAb paratopes are usually composed of multiple CDRs, FLAPs with multiple binding peptides may have an enhanced target-binding capability. Here, a strategy to create FLAPs bearing dual CDR-derived peptides (D-FLAPs) using the anti-human epithelial growth factor receptor type 2 (HER2) mAb trastuzumab as a basis is developed. Computationally selected CDR-derived peptides are first grafted onto two adjacent loops of the fibronectin type III domain (FN3) scaffold, yielding 80 D-FLAP candidates. After computational screening based on their similarity to the parental mAb with regard to the conformation of paratope residues, two candidates are selected. After further evaluation with ELISA, one D-FLAP with HYTTPP and GDGFYA peptides from CDR-L3 and CDR-H3 of the parental mAb, respectively, is found to bind HER2 with a dissociation constant of 58 nm. This method applies to various mAb drugs and allows the rational design of small protein alternatives.
Collapse
Affiliation(s)
- Kyra See
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Tetsuya Kadonosono
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Yumi Ota
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Kotaro Miyamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Wanaporn Yimchuen
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Shinae Kizaka-Kondoh
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| |
Collapse
|
34
|
Lameris R, Shahine A, Pellicci DG, Uldrich AP, Gras S, Le Nours J, Groen RWJ, Vree J, Reddiex SJJ, Quiñones-Parra SM, Richardson SK, Howell AR, Zweegman S, Godfrey DI, de Gruijl TD, Rossjohn J, van der Vliet HJ. A single-domain bispecific antibody targeting CD1d and the NKT T-cell receptor induces a potent antitumor response. ACTA ACUST UNITED AC 2020; 1:1054-1065. [DOI: 10.1038/s43018-020-00111-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/05/2020] [Indexed: 12/29/2022]
|
35
|
Ramirez DH, Aonbangkhen C, Wu HY, Naftaly JA, Tang S, O’Meara TR, Woo CM. Engineering a Proximity-Directed O-GlcNAc Transferase for Selective Protein O-GlcNAcylation in Cells. ACS Chem Biol 2020; 15:1059-1066. [PMID: 32119511 DOI: 10.1021/acschembio.0c00074] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is a monosaccharide that plays an essential role in cellular signaling throughout the nucleocytoplasmic proteome of eukaryotic cells. Strategies for selectively increasing O-GlcNAc levels on a target protein in cells would accelerate studies of this essential modification. Here, we report a generalizable strategy for introducing O-GlcNAc into selected target proteins in cells using a nanobody as a proximity-directing agent fused to O-GlcNAc transferase (OGT). Fusion of a nanobody that recognizes GFP (nGFP) or a nanobody that recognizes the four-amino acid sequence EPEA (nEPEA) to OGT yielded nanobody-OGT constructs that selectively delivered O-GlcNAc to a series of tagged target proteins (e.g., JunB, cJun, and Nup62). Truncation of the tetratricopeptide repeat domain as in OGT(4) increased selectivity for the target protein through the nanobody by reducing global elevation of O-GlcNAc levels in the cell. Quantitative chemical proteomics confirmed the increase in O-GlcNAc to the target protein by nanobody-OGT(4). Glycoproteomics revealed that nanobody-OGT(4) or full-length OGT produced a similar glycosite profile on the target protein JunB and Nup62. Finally, we demonstrate the ability to selectively target endogenous α-synuclein for O-GlcNAcylation in HEK293T cells. These first proximity-directed OGT constructs provide a flexible strategy for targeting additional proteins and a template for further engineering of OGT and the O-GlcNAc proteome in the future. The use of a nanobody to redirect OGT substrate selection for glycosylation of desired proteins in cells may further constitute a generalizable strategy for controlling a broader array of post-translational modifications in cells.
Collapse
Affiliation(s)
- Daniel H. Ramirez
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Chanat Aonbangkhen
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Hung-Yi Wu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Jeffrey A. Naftaly
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Stephanie Tang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Timothy R. O’Meara
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Christina M. Woo
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
36
|
Noordin R, Yunus MH, Tan Farrizam SN, Arifin N. Serodiagnostic methods for diagnosing larval toxocariasis. ADVANCES IN PARASITOLOGY 2020; 109:131-152. [PMID: 32381194 DOI: 10.1016/bs.apar.2020.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Toxocariasis is a human infection primarily caused by larvae of Toxocara canis from dogs, and also by T. cati from cats. Children have a more significant risk of acquiring the infection due to their closer contact with pets, and greater chances of ingesting soil. Diagnosis of toxocariasis is based on clinical, epidemiological, and serological data. Indirect IgG ELISA is a widely used serodiagnostic method for toxocariasis, with native T. canis TES most commonly used as the antigen. Western blots, using the same antigen, can be used to confirm positive ELISA findings to reduce false-positive results. Improvements in Toxocara serodiagnosis include the use of recombinant TES antigens, simpler and more rapid assay formats, and IgG4 subclass detection. Also, incorporation of recombinant T. cati TES protein increases the diagnostic sensitivity. Development of antigen detection tests using polyclonal and monoclonal antibodies, nanobodies, or aptamers can complement the antibody detection assays, and enhance the effectiveness of the serodiagnosis.
Collapse
Affiliation(s)
- Rahmah Noordin
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, Pulau Pinang, Malaysia.
| | - Muhammad Hafiznur Yunus
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, Pulau Pinang, Malaysia
| | - Siti Naqiuyah Tan Farrizam
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, Pulau Pinang, Malaysia
| | - Norsyahida Arifin
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, Pulau Pinang, Malaysia
| |
Collapse
|
37
|
Duan H, Ma Z, Xu L, Zhang A, Li Z, Xiao S. A novel intracellularly expressed NS5B-specific nanobody suppresses bovine viral diarrhea virus replication. Vet Microbiol 2019; 240:108449. [PMID: 31836380 PMCID: PMC7117317 DOI: 10.1016/j.vetmic.2019.108449] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/29/2019] [Accepted: 10/06/2019] [Indexed: 12/16/2022]
Abstract
BVDV NS5B-specific nanobodies were identified. NS5B-specific nanobody Nb1 suppresses BVDV infection and replication. Nb1 interacts with NS5B protein during BVDV infection.
Bovine viral diarrhea virus (BVDV) infection causes significant economic losses to the cattle industry worldwide and still represents a huge pressure on agricultural production. Thus, the development of novel anti-BVDV strategies are urgently needed. The nonstructural protein 5 (NS5B) of BVDV is essential for viral replication. Further, the camel single-domain antibody (nanobody) represents a promising antiviral approach with the advantages of small size, stable structure, high specificity and solubility, and the recognition of specific epitopes. However, no NS5B-specific nanobodies against BVDV have been reported. In this study, NS5B-specific nanobodies were isolated from a phage display library of variable domains of Camellidae heavy chain-only antibodies (VHHs). Further, an MDBK cell line stably expressing Nb1 was established to explore antiviral activity. Results showed that Nb1 could markedly suppress BVDV replication and interact with the BVDV NS5B protein. This suggests that nanobodies have potential for the development of novel antiviral drugs against BVDV infection.
Collapse
Affiliation(s)
- Hong Duan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Zhiqian Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Lele Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Angke Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Zhiwei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Shuqi Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
38
|
Li D, Ji F, Huang C, Jia L. High Expression Achievement of Active and Robust Anti-β2 microglobulin Nanobodies via E.coli Hosts Selection. Molecules 2019; 24:molecules24162860. [PMID: 31394739 PMCID: PMC6720793 DOI: 10.3390/molecules24162860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022] Open
Abstract
Nanobodies (VHHs) overcome many of the drawbacks of conventional antibodies, and the related technologies represent state-of-the-art and advanced applications in scientific research, pharmaceuticals, and therapies. In terms of productivity and economic cost, the cytoplasmic expression of VHHs in Escherichia coli (E. coli) is a good process for their recombinant production. The cytoplasmic environment of the host is critical to the affinity and stability of the recombinant VHHs in soluble form, yet the effects have not been studied. For this purpose, recombinant anti-β2 microglobulin VHHs were constructed and expressed in four commercialized E. coli hosts, including BL21 (DE3), Rosetta-gami B (DE3) pLysS, Origami 2 (DE3) and SHuffle T7 Express. The results showed that anti-β2 microglobulin (β2MG) VHHs expressed in different hosts exhibited distinctive differences in the affinity and structural characteristics. The VHHs expressed in Rosetta-gami B (DE3) pLysS possessed not only the greatest affinity of (equilibrium dissociation constant) KD = 4.68 × 10−8 M but also the highest yields compared with the VHHs expressed in BL21 (DE3), Origami 2 (DE3) and SHuffle T7 Express. In addition, the VHHs expressed in Rosetta-gami B (DE3) pLysS were more stable than the VHHs expressed in the rest three hosts. Thus far, we have successfully realized the high expression of the active and robust anti-β2MG VHHs in Rosetta-gami B (DE3) pLysS. The underlying principle of our study is able to guide the expression strategies of nanobodies on the context of industrial large-scale production.
Collapse
Affiliation(s)
- Da Li
- Liaoning Key Laboratory of Molecular Recognition and imaging, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116023, China
| | - Fangling Ji
- Liaoning Key Laboratory of Molecular Recognition and imaging, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116023, China
| | - Chundong Huang
- Liaoning Key Laboratory of Molecular Recognition and imaging, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116023, China
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and imaging, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116023, China.
| |
Collapse
|
39
|
Kaur H, Hartmann JB, Jakob RP, Zahn M, Zimmermann I, Maier T, Seeger MA, Hiller S. Identification of conformation-selective nanobodies against the membrane protein insertase BamA by an integrated structural biology approach. JOURNAL OF BIOMOLECULAR NMR 2019; 73:375-384. [PMID: 31073665 DOI: 10.1007/s10858-019-00250-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
The insertase BamA is an essential protein of the bacterial outer membrane. Its 16-stranded transmembrane β-barrel contains a lateral gate as a key functional element. This gate is formed by the C-terminal half of the last β-strand. The BamA barrel was previously found to sample different conformations in aqueous solution, as well as different gate-open, gate-closed, and collapsed conformations in X-ray crystallography and cryo-electron microscopy structures. Here, we report the successful identification of conformation-selective nanobodies that stabilize BamA in specific conformations. While the initial candidate generation and selection protocol was based on established alpaca immunization and phage display selection procedures, the final selection of nanobodies was enhanced by a solution NMR-based screening step to shortlist the targets for crystallization. In this way, three crystal structures of BamA-nanobody complexes were efficiently obtained, showing two types of nanobodies that indeed stabilized BamA in two different conformations, i.e., with open and closed lateral gate, respectively. Then, by correlating the structural data with high resolution NMR spectra, we could for the first time assign the BamA conformational solution ensemble to defined structural states. The new nanobodies will be valuable tools towards understanding the client insertion mechanism of BamA and towards developing improved antibiotics.
Collapse
Affiliation(s)
- Hundeep Kaur
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | | | - Roman P Jakob
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Michael Zahn
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Iwan Zimmermann
- Institute of Medical Microbiology, University of Zurich, 8006, Zurich, Switzerland
| | - Timm Maier
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, 8006, Zurich, Switzerland
| | | |
Collapse
|
40
|
Abstract
Camelid-derived nanobodies are versatile tools for research, diagnostics, and therapeutics. Certain nanobodies can function as intrabodies and bind antigens within the eukaryotic cytosol. This capability is valuable for the development of intracellular probes and targeted gene therapies. Consequently, many attempts have been made to produce nanobodies that are intracellularly stable and resistant to aggregation. Pursuit of these intrabodies generally focuses on library design or nanobody selection method. Recent variations of library design have yielded diverse libraries capable of producing nanobodies against a wide variety of antigens. Novel screening methods have also been developed, yielding nanobodies with high affinity for intracellular antigens. These screening techniques can have advantages over phage display methods when nanobodies against intracellular antigens must be rapidly produced. Some intracellular screening methods convey the additional advantage of selecting for other desired intrabody characteristics, such as antiviral action or conditional stability. This review summarizes the recent developments in both library design and selection methods aimed at producing intrabodies.
Collapse
Affiliation(s)
- James Woods
- 1 Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| |
Collapse
|
41
|
Cella F, Siciliano V. Protein-based parts and devices that respond to intracellular and extracellular signals in mammalian cells. Curr Opin Chem Biol 2019; 52:47-53. [PMID: 31158655 DOI: 10.1016/j.cbpa.2019.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/14/2019] [Accepted: 04/15/2019] [Indexed: 01/07/2023]
Abstract
Synthetic biology aims to rewire cellular activities and functionality by implementing genetic circuits with high biocomputing capabilities. Recent efforts led to the development of smart sensing interfaces which integrate multiple inputs to activate desired outputs in a highly specific and sensitive manner. In this review, we highlight protein-based interfaces that sense intracellular or extracellular cues providing information about dynamic environmental changes and cellular state. We will also discuss different mechanisms of regulation of gene expression connected to the sensors to develop diagnostic and therapeutic devices. We conclude discussing challenges and opportunities for biomedical applications of synthetic mammalian protein-based devices.
Collapse
Affiliation(s)
- Federica Cella
- Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci, Naples, Italy; University of Genoa, Genoa, Italy
| | - Velia Siciliano
- Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci, Naples, Italy.
| |
Collapse
|
42
|
Morales-Yanez FJ, Sariego I, Vincke C, Hassanzadeh-Ghassabeh G, Polman K, Muyldermans S. An innovative approach in the detection of Toxocara canis excretory/secretory antigens using specific nanobodies. Int J Parasitol 2019; 49:635-645. [PMID: 31150611 DOI: 10.1016/j.ijpara.2019.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/13/2019] [Accepted: 03/11/2019] [Indexed: 10/26/2022]
Abstract
Human toxocariasis is a zoonosis resulting from the migration of larval stages of the dog parasite Toxocara canis into the human paratenic host. Despite its well-known limitations, serology remains the most important tool to diagnose the disease. Our objective was to employ camelid single domain antibody fragments also known as nanobodies (Nbs) for a specific and sensitive detection of Toxocara canis excretory/secretory (TES) antigens. From an alpaca immune Nb library, we retrieved different Nbs with specificity for TES antigens. Based on ELISA experiments, these Nbs did not show any cross-reactivity with Ascaris lumbricoides, Ascaris suum, Pseudoterranova decipiens, Anisakis simplex and Angiostrongylus cantonensis larval antigens. Western blot and immunocapturing revealed that Nbs 1TCE39, 1TCE52 and 2TCE49 recognise shared epitopes on different components of TES antigen. The presence of disulphide bonds in the target antigen seems to be essential for recognition of the epitopes by these three Nbs. Three separate sandwich ELISA formats, using monovalent and bivalent Nbs, were assessed to maximise the detection of TES antigens in solution. The combination of biotinylated, bivalent Nb 2TCE49 on a streptavidin pre-coated plate to capture TES antigens, and Nb 1TCE39 chemically coupled to horseradish peroxidase for detection of the captured TES antigens, yielded the most sensitive ELISA with a limit of detection of 0.650 ng/ml of TES antigen, spiked in serum. Moreover, the assay was able to detect TES antigens in sera from mice, taken 3 days after the animals were experimentally infected with T. canis. The specific characteristics of Nbs make this ELISA not only a promising tool for the detection of TES antigens in clinical samples, but also for a detailed structural and functional study of TES antigens.
Collapse
Affiliation(s)
- Francisco J Morales-Yanez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Department of Biomedical Sciences, Unit of Medical Helminthology, Institute of Tropical Medicine, Antwerp, Belgium.
| | - Idalia Sariego
- Institute of Tropical Medicine "Pedro Kourí", Havana, Cuba
| | - Cécile Vincke
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Katja Polman
- Department of Biomedical Sciences, Unit of Medical Helminthology, Institute of Tropical Medicine, Antwerp, Belgium; Department of Health Sciences, Section Infectious Diseases, VU University Amsterdam, The Netherlands
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
43
|
Traub LM. A nanobody-based molecular toolkit provides new mechanistic insight into clathrin-coat initiation. eLife 2019; 8:e41768. [PMID: 31038455 PMCID: PMC6524969 DOI: 10.7554/elife.41768] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 04/24/2019] [Indexed: 12/21/2022] Open
Abstract
Besides AP-2 and clathrin triskelia, clathrin coat inception depends on a group of early-arriving proteins including Fcho1/2 and Eps15/R. Using genome-edited cells, we described the role of the unstructured Fcho linker in stable AP-2 membrane deposition. Here, expanding this strategy in combination with a new set of llama nanobodies against EPS15 shows an FCHO1/2-EPS15/R partnership plays a decisive role in coat initiation. A nanobody containing an Asn-Pro-Phe peptide within the complementarity-determining region 3 loop is a function-blocking pseudoligand for tandem EPS15/R EH domains. Yet, in living cells, EH domains gathered at clathrin-coated structures are poorly accessible, indicating residence by endogenous NPF-bearing partners. Forcibly sequestering cytosolic EPS15 in genome-edited cells with nanobodies tethered to early endosomes or mitochondria changes the subcellular location and availability of EPS15. This combined approach has strong effects on clathrin coat structure and function by dictating the stability of AP-2 assemblies at the plasma membrane.
Collapse
Affiliation(s)
- Linton M Traub
- Department of Cell Biology, School of MedicineUniversity of PittsburghPittsburghUnited States
| |
Collapse
|
44
|
Brothers MC, DeBrosse M, Grigsby CC, Naik RR, Hussain SM, Heikenfeld J, Kim SS. Achievements and Challenges for Real-Time Sensing of Analytes in Sweat within Wearable Platforms. Acc Chem Res 2019; 52:297-306. [PMID: 30688433 DOI: 10.1021/acs.accounts.8b00555] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Physiological sensors in a wearable form have rapidly emerged on the market due to technological breakthroughs and have become nearly ubiquitous with the Apple Watch, FitBit, and other wearable devices. While these wearables mostly monitor simple biometric signatures, new devices that can report on the human readiness level through sensing molecular biomarkers are critical to optimizing the human factor in both commercial sectors and the Department of Defense. The military is particularly interested in real-time, wearable, minimally invasive monitoring of fatigue and human performance to improve the readiness and performance of the war fighter. However, very few devices have ventured into the realm of reporting directly on biomarkers of interest. Primarily this is because of the difficulties of sampling biological fluids in real-time and providing accurate readouts using highly selective and sensitive sensors. When additional restrictions to only use sweat, an excretory fluid, are enforced to minimize invasiveness, the demands on sensors becomes even greater due to the dilution of the biomarkers of interest, as well as variability in salinity, pH, and other physicochemical variables which directly impact the read-out of real-time biosensors. This Account will provide a synopsis not only on exemplary demonstrations and technological achievements toward implementation of real-time, wearable sweat sensors but also on defining problems that still remain toward implementation in wearable devices that can detect molecular biomarkers for real world applications. First, the authors describe the composition of minimally invasive biofluids and then identify what biomarkers are of interest as biophysical indicators. This Account then reviews demonstrated techniques for extracting biofluids from the site of generation and transport to the sensor developed by the authors. Included in this discussion is a detailed description on biosensing recognition elements and transducers developed by the authors to enable generation of selective electrochemical sensing platforms. The authors also discuss ongoing efforts to identify biorecognition elements and the chemistries necessary to enable high affinity, selective biorecognition elements. Finally, this Account presents the requirements for wearable, real-time sensors to be (1) highly stable, (2) portable, (3) reagentless, (4) continuous, and (5) responsive in real-time, before delving into specific methodologies to sense classes of biomarkers that have been explored by academia, government laboratories, and industry. Each platform has its areas of greatest utility, but also come with corresponding weaknesses: (1) ion selective electrodes are robust and have been demonstrated in wearables but are limited to detection of ions, (2) enzymatic sensors enable indirect detection of metabolites and have been demonstrated in wearables, but the compounds that can be detected are limited to a subset of small molecules and the sensors are sensitive to flow, (3) impedance-based sensors can detect a wide range of compounds but require further research and development for deployment in wearables. In conclusion, while substantial progress has been made toward wearable molecular biosensors, substantial barriers remain and need to be solved to enable deployment of minimally invasive, wearable biomarker monitoring devices that can accurately report on psychophysiological status.
Collapse
Affiliation(s)
- Michael C. Brothers
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
- UES Inc., Dayton, Ohio 45432, United States
| | - Madeleine DeBrosse
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio 45221, United States
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee 37830, United States
| | - Claude C. Grigsby
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Rajesh R. Naik
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Saber M. Hussain
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Jason Heikenfeld
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Steve S. Kim
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| |
Collapse
|
45
|
Challenges in the Structural-Functional Characterization of Multidomain, Partially Disordered Proteins CBP and p300: Preparing Native Proteins and Developing Nanobody Tools. Methods Enzymol 2018; 611:607-675. [PMID: 30471702 DOI: 10.1016/bs.mie.2018.09.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The structural and functional characterization of large multidomain signaling proteins containing long disordered linker regions represents special methodological and conceptual challenges. These proteins show extreme structural heterogeneity and have complex posttranslational modification patterns, due to which traditional structural biology techniques provide results that are often difficult to interpret. As demonstrated through the example of two such multidomain proteins, CREB-binding protein (CBP) and its paralogue, p300, even the expression and purification of such proteins are compromised by their extreme proteolytic sensitivity and structural heterogeneity. In this chapter, we describe the effective expression of CBP and p300 in a eukaryotic host, Sf9 insect cells, followed by their tandem affinity purification based on two terminal tags to ensure their structural integrity. The major focus of this chapter is on the development of novel accessory tools, single-domain camelid antibodies (nanobodies), for structural-functional characterization. Specific nanobodies against full-length CBP and p300 can specifically target their different regions and can be used for their marking, labeling, and structural stabilization in a broad range of in vitro and in vivo studies. Here, we describe four high-affinity nanobodies binding to the KIX and the HAT domains, either mimicking known interacting partners or revealing new functionally relevant conformations. As immunization of llamas results in nanobody libraries with a great sequence variation, deep sequencing and interaction analysis with different regions of the proteins provide a novel approach toward developing a panel of specific nanobodies.
Collapse
|
46
|
A Two-Step Approach for the Design and Generation of Nanobodies. Int J Mol Sci 2018; 19:ijms19113444. [PMID: 30400198 PMCID: PMC6274671 DOI: 10.3390/ijms19113444] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/29/2022] Open
Abstract
Nanobodies, the smallest possible antibody format, have become of considerable interest for biotechnological and immunotherapeutic applications. They show excellent robustness, are non-immunogenic in humans, and can easily be engineered and produced in prokaryotic hosts. Traditionally, nanobodies are selected from camelid immune libraries involving the maintenance and treatment of animals. Recent advances have involved the generation of nanobodies from naïve or synthetic libraries. However, such approaches demand large library sizes and sophisticated selection procedures. Here, we propose an alternative, two-step approach for the design and generation of nanobodies. In a first step, complementarity-determining regions (CDRs) are grafted from conventional antibody formats onto nanobody frameworks, generating weak antigen binders. In a second step, the weak binders serve as templates to design focused synthetic phage libraries for affinity maturation. We validated this approach by grafting toxin- and hapten-specific CDRs onto frameworks derived from variable domains of camelid heavy-chain-only antibodies (VHH). We then affinity matured the hapten binder via panning of a synthetic phage library. We suggest that this strategy can complement existing immune, naïve, and synthetic library based methods, requiring neither animal experiments, nor large libraries, nor sophisticated selection protocols.
Collapse
|
47
|
Bellani MA, Huang J, Paramasivam M, Pokharel D, Gichimu J, Zhang J, Seidman MM. Imaging cellular responses to antigen tagged DNA damage. DNA Repair (Amst) 2018; 71:183-189. [PMID: 30166246 PMCID: PMC6340790 DOI: 10.1016/j.dnarep.2018.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Repair pathways of covalent DNA damage are understood in considerable detail due to decades of brilliant biochemical studies by many investigators. An important feature of these experiments is the defined adduct location on oligonucleotide or plasmid substrates that are incubated with purified proteins or cell free extracts. With some exceptions, this certainty is lost when the inquiry shifts to the response of living mammalian cells to the same adducts in genomic DNA. This reflects the limitation of assays, such as those based on immunofluorescence, that are widely used to follow responding proteins in cells exposed to a DNA reactive compound. The lack of effective reagents for adduct detection means that the proximity between responding proteins and an adduct must be assumed. Since these assumptions can be incorrect, models based on in vitro systems may fail to account for observations made in vivo. Here we discuss the use of a detection tag to address the problem of lesion location, as illustrated by our recent work on replication dependent and independent responses to interstrand crosslinks.
Collapse
Affiliation(s)
- Marina A Bellani
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Jing Huang
- Institute of Chemical Biology and Nanomedicine, College of Biology, Hunan University, Changsha, 410082, China
| | - Manikandan Paramasivam
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Durga Pokharel
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Julia Gichimu
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Jing Zhang
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States.
| |
Collapse
|
48
|
Jaykumar AB, Caceres PS, Ortiz PA. Single-molecule labeling for studying trafficking of renal transporters. Am J Physiol Renal Physiol 2018; 315:F1243-F1249. [PMID: 30043625 DOI: 10.1152/ajprenal.00082.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability to detect and track single molecules presents the advantage of visualizing the complex behavior of transmembrane proteins with a time and space resolution that would otherwise be lost with traditional labeling and biochemical techniques. Development of new imaging probes has provided a robust method to study their trafficking and surface dynamics. This mini-review focuses on the current technology available for single-molecule labeling of transmembrane proteins, their advantages, and limitations. We also discuss the application of these techniques to the study of renal transporter trafficking in light of recent research.
Collapse
Affiliation(s)
- Ankita Bachhawat Jaykumar
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine , Detroit, Michigan
| | - Paulo S Caceres
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| | - Pablo A Ortiz
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine , Detroit, Michigan
| |
Collapse
|
49
|
Zhang T, Cheng X, Yu D, Lin F, Hou N, Cheng X, Hao S, Wei J, Ma L, Fu Y, Ma Y, Ren L, Han H, Yu S, Yang X, Zhao Y. Genetic Removal of the CH1 Exon Enables the Production of Heavy Chain-Only IgG in Mice. Front Immunol 2018; 9:2202. [PMID: 30319646 PMCID: PMC6167435 DOI: 10.3389/fimmu.2018.02202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 09/05/2018] [Indexed: 11/29/2022] Open
Abstract
Nano-antibodies possess great potential in many applications. However, they are naturally derived from heavy chain-only antibodies (HcAbs), which lack light chains and the CH1 domain, and are only found in camelids and sharks. In this study, we investigated whether the precise genetic removal of the CH1 exon of the γ1 gene enabled the production of a functional heavy chain-only IgG1 in mice. IgG1 heavy chain dimers lacking associated light chains were detected in the sera of the genetically modified mice. However, the genetic modification led to decreased expression of IgG1 but increased expression of other IgG subclasses. The genetically modified mice showed a weaker immune response to specific antigens compared with wild type mice. Using a phage-display approach, antigen-specific, single domain VH antibodies could be screened from the mice but exhibited much weaker antigen binding affinity than the conventional monoclonal antibodies. Although the strategy was only partially successful, this study confirms the feasibility of producing desirable nano-bodies with appropriate genetic modifications in mice.
Collapse
Affiliation(s)
- Tianyi Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Xueqian Cheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Di Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Fuyu Lin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Ning Hou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Xuan Cheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Shanshan Hao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Jingjing Wei
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Li Ma
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Yanbin Fu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Yonghe Ma
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Liming Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Haitang Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Shuyang Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
50
|
Mohamad A, Teo H, Keasberry NA, Ahmed MU. Recent developments in colorimetric immunoassays using nanozymes and plasmonic nanoparticles. Crit Rev Biotechnol 2018; 39:50-66. [DOI: 10.1080/07388551.2018.1496063] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Azureen Mohamad
- Biosensors and Biotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, Brunei
| | - Huisian Teo
- Biosensors and Biotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, Brunei
| | - Natasha Ann Keasberry
- Biosensors and Biotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, Brunei
| | - Minhaz Uddin Ahmed
- Biosensors and Biotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, Brunei
| |
Collapse
|