1
|
Chen Y, Tilves C, Bohn B, Doyon M, Bouchard L, Perron P, Guerin R, Masse E, Hivert MF, Mueller NT. Gut microbiota and microbial metabolites are associated with body composition in 5-year-old children: A cross-sectional study in the Gen3G cohort. Pediatr Obes 2025; 20:e70007. [PMID: 40059505 PMCID: PMC12058418 DOI: 10.1111/ijpo.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 05/08/2025]
Abstract
OBJECTIVE To examine gut microbiota diversity, composition and metabolites in relation to overall mass (OM), fat mass (FM) and lean soft tissue mass (LSTM) measured by dual x-ray absorptiometry (DXA) in 5-year-old children. METHODS Mothers of the Gen3G cohort were enrolled prenatally in 2010-2013 in Quebec, Canada; 153 children from the cohort had data on gut microbiota and DXA scans at 5-6.4 years of age, and 140 also had plasma metabolite data. We characterized gut microbiota by 16S rRNA Illumina sequencing and metabolites by untargeted multiplatform mass spectrometry. We examined associations of microbial alpha diversity, beta diversity, composition (amplicon sequence variants; ASVs) and metabolites (microbial metabolites) with DXA measures, adjusting for age, sex, diet and drinking water. RESULTS Of the 153 children, 43.1% were female, and 96.1% self-identified as white. The median BMI was the 52nd percentile. Microbial richness (alpha diversity) was positively associated with OM, FM and LSTM. Of the 542 ASVs tested, 7 were associated with OM, 5 with FM and 4 with LSTM. One Veillonella ASV and two Blautia ASVs were significantly associated with all outcomes. Among 278 microbial metabolites, no metabolites were associated with FM, while glycoursodeoxycholate was associated with OM, and glycoursodeoxycholate, 3-hydroxybutyrate and gamma-glutamylalanine were associated with LSTM. CONCLUSIONS In 5-year-old children, gut microbiota alpha diversity, richness and specific gut microbes were associated with OM, FM and LSTM. Many of the associations followed a similar pattern for FM and LSTM, suggesting they may not be specific to adiposity but rather reflect overall growth.
Collapse
Affiliation(s)
- Yingan Chen
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado, Aurora, Colorado, USA
| | - Curtis Tilves
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado, Aurora, Colorado, USA
| | - Bruno Bohn
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado, Aurora, Colorado, USA
| | - Myriam Doyon
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Quebec, Canada
| | - Luigi Bouchard
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Quebec, Canada
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Quebec, Canada
- Department of Medical Biology, CIUSSS-SLSJ, Quebec, Canada
| | - Patrice Perron
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Quebec, Canada
- Department of Medicine, Université de Sherbrooke, Quebec, Canada
| | - Renee Guerin
- Department of Medical Biology, CIUSSS-SLSJ, Quebec, Canada
| | - Eric Masse
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Quebec, Canada
| | - Marie-France Hivert
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Quebec, Canada
- Department of Medicine, Université de Sherbrooke, Quebec, Canada
- Division of Chronic Disease Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, Massachusetts, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Noel T Mueller
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado, Aurora, Colorado, USA
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
2
|
Deslande M, Puig-Castellvi F, Castro-Dionicio I, Pacheco-Tapia R, Raverdy V, Caiazzo R, Lassailly G, Leloire A, Andrikopoulos P, Kahoul Y, Zaïbi N, Toussaint B, Oger F, Gambardella N, Lefebvre P, Derhourhi M, Amanzougarene S, Staels B, Pattou F, Froguel P, Bonnefond A, Dumas ME. Intrahepatic levels of microbiome-derived hippurate associates with improved metabolic dysfunction-associated steatotic liver disease. Mol Metab 2025; 92:102090. [PMID: 39746606 PMCID: PMC11772989 DOI: 10.1016/j.molmet.2024.102090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/04/2025] Open
Abstract
OBJECTIVE Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterised by lipid accumulation in the liver and is often associated with obesity and type 2 diabetes. The gut microbiome recently emerged as a significant player in liver metabolism and health. Hippurate, a host-microbial co-metabolite has been associated with human gut microbial gene richness and with metabolic health. However, its role on liver metabolism and homeostasis is poorly understood. METHODS We characterised liver biospies from 318 patients with obesity using RNAseq and metabolomics in liver and plasma to derive associations among hepatic hippurate, hepatic gene expression and MASLD and phenotypes. To test a potential beneficial role for hippurate in hepatic insulin resistance, we profile the metabolome of (IHH) using ultra-high-performance liquid chromatography coupled to high-resolution tandem mass spectrometry (UHPLC-MS/MS), and characterised intracellular triglyceride accumulation and glucose internalisation after a 24 h insulin exposure. RESULTS We first report significant associations among MASLD traits, plasma and hepatic hippurate. Further analysis of the hepatic transcriptome shows that liver and plasma hippurate are inversely associated with MASLD, implicating lipid metabolism and regulation of inflammatory responses pathways. Hippurate treatment inhibits lipid accumulation and rescues insulin resistance induced by 24-hour chronic insulin in IHH. Hippurate also improves hepatocyte metabolic profiles by increasing the abundance of metabolites involved in energy homeostasis that are depleted by chronic insulin treatment while decreasing those involved in inflammation. CONCLUSIONS Altogether, our results further highlight hippurate as a mechanistic marker of metabolic health, by its ability to improve metabolic homeostasis as a postbiotic candidate.
Collapse
Affiliation(s)
- Maxime Deslande
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France
| | - Francesc Puig-Castellvi
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France; Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, United Kingdom
| | - Inés Castro-Dionicio
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France; Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, United Kingdom
| | - Romina Pacheco-Tapia
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France; Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, United Kingdom
| | - Violeta Raverdy
- INSERM U1190, Institut Pasteur de Lille, University of Lille, Lille University Hospital, 59045, Lille, France
| | - Robert Caiazzo
- INSERM U1190, Institut Pasteur de Lille, University of Lille, Lille University Hospital, 59045, Lille, France
| | - Guillaume Lassailly
- INSERM U1011 Institut Pasteur de Lille, University of Lille, Lille University Hospital, 59045, Lille, France
| | - Audrey Leloire
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France
| | - Petros Andrikopoulos
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, United Kingdom
| | - Yasmina Kahoul
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France
| | - Nawel Zaïbi
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France
| | - Bénédicte Toussaint
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France
| | - Frédérik Oger
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France
| | - Nicolas Gambardella
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France
| | - Philippe Lefebvre
- INSERM U1011 Institut Pasteur de Lille, University of Lille, Lille University Hospital, 59045, Lille, France
| | - Mehdi Derhourhi
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France
| | - Souhila Amanzougarene
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France
| | - Bart Staels
- INSERM U1011 Institut Pasteur de Lille, University of Lille, Lille University Hospital, 59045, Lille, France
| | - François Pattou
- INSERM U1190, Institut Pasteur de Lille, University of Lille, Lille University Hospital, 59045, Lille, France
| | - Philippe Froguel
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France; Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, United Kingdom
| | - Amélie Bonnefond
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France; Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, United Kingdom
| | - Marc-Emmanuel Dumas
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France; Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, United Kingdom; The Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montréal, H3A 0G1, Canada.
| |
Collapse
|
3
|
K K V, P R A, Rao BK, Ballal M, Dutta B, R VL, Bhat RG. GC-MS quantification of fecal short-chain fatty acids and spectrophotometric detection of indole: Do rectal swabs produce comparable results as stool samples? - A pilot study. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9923. [PMID: 39394907 DOI: 10.1002/rcm.9923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/20/2024] [Accepted: 09/16/2024] [Indexed: 10/14/2024]
Abstract
RATIONALE The exploration of the gut microbiome and related metabolites holds an exciting future in health science. The challenges associated with fecal sample testing are proper sample collection, sterile transportation, optimal transport conditions, and processing as all these factors could potentially change the microbiome composition, further exacerbated by the patient's customary discomfort regarding feces samples. The study aimed to compare the usage of rectal swabs and stool samples for short-chain fatty acid estimation using gas chromatography-mass spectrometry (GC-MS) and indole estimation using spectrophotometry. METHOD From May 2022 to June 2022, three women were recruited from the Department of Obstetrics and Gynecology (OBG) in a secondary care hospital in coastal Karnataka. During their clinical visit, a rectal swab was collected, and the stool sample was transported to the hospital from the patient's home in sterile containers provided. After the extraction, short-chain fatty acids (acetate, propionate, and butyrate) were quantified using GC-MS. The fecal indole concentration was determined using a hydroxylamine-based assay. RESULTS The GC-MS analysis failed to detect the concentrations of short-chain fatty acids in rectal swab samples. Indole concentrations in stool and swab samples were significantly different. CONCLUSION The study's findings do not support the use of rectal swabs to analyze gut metabolites.
Collapse
Affiliation(s)
- Vineetha K K
- Department of Obstetrics and Gynecology, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Archana P R
- Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Bhamini Krishna Rao
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mamatha Ballal
- Division of Enteric Diseases and Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Babi Dutta
- Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vani Lakshmi R
- Department of Data Science, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rajeshwari G Bhat
- Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
4
|
Yang J, Cassaday J, Wyche TP, Squadroni B, Newhard W, Trinh H, Cabral D, Hett E, Sana TR, Lee K, Kasper S. A perfusion host-microbe bioreactor (HMB) system that captures dynamic interactions of secreted metabolites between epithelial cells cocultured with a human gut anaerobe. Biotechnol Bioeng 2024; 121:2691-2705. [PMID: 38715197 DOI: 10.1002/bit.28730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/18/2024] [Accepted: 04/18/2024] [Indexed: 08/15/2024]
Abstract
The human microbiota impacts a variety of diseases and responses to therapeutics. Due to a lack of robust in vitro models, detailed mechanistic explanations of host-microbiota interactions cannot often be recapitulated. We describe the design and development of a novel, versatile and modular in vitro system that enables indirect coculture of human epithelial cells with anaerobic bacteria for the characterization of host-microbe secreted metabolite interactions. This system was designed to compartmentalize anaerobes and human cells in separate chambers conducive to each organism's requisite cell growth conditions. Using perfusion, fluidic mixing, and automated sample collection, the cells continuously received fresh media, while in contact with their corresponding compartments conditioned supernatant. Supernatants from each chamber were collected in a cell-free time-resolved fashion. The system sustained low oxygen conditions in the anaerobic chamber, while also supporting the growth of a representative anaerobe (Bacteroides thetaiotaomicron) and a human colonic epithelial cell line (Caco-2) in the aerobic chamber. Caco-2 global gene expression changes in response to coculture with B. thetaiotaomicron was characterized using RNA sequencing. Extensive, targeted metabolomics analysis of over 150 central carbon metabolites was performed on the serially collected supernatants. We observed broad metabolite changes in host-microbe coculture, compared to respective mono-culture controls. These effects were dependent both on sampling time and the compartment probed (apical vs. basolateral). Coculturing resulted in the depletion of several important metabolites, including guanine, uridine 5'-monophosphate, asparagine, and thiamine. Additionally, while Caco-2 cells cultured alone predominantly affected the basolateral metabolite milieu, increased abundance of 2,3-dihydroxyisovalerate and thymine on the basolateral side, occurred when the cells were cocultured with B. thetaiotaomicron. Thus, our system can capture the dynamic, competitive and cooperative processes between host cells and gut microbes.
Collapse
Affiliation(s)
- Jingyun Yang
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, USA
| | | | | | | | | | - Huong Trinh
- Merck & Co., Inc., West Point, Pennsylvania, USA
| | | | - Erik Hett
- Merck & Co., Inc., Cambridge, Massachusetts, USA
| | | | - Kyongbum Lee
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, USA
| | | |
Collapse
|
5
|
Gazerani P, Papetti L, Dalkara T, Cook CL, Webster C, Bai J. The Brain, the Eating Plate, and the Gut Microbiome: Partners in Migraine Pathogenesis. Nutrients 2024; 16:2222. [PMID: 39064664 PMCID: PMC11280178 DOI: 10.3390/nu16142222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
This review summarizes the relationship between diet, the gut microbiome, and migraine. Key findings reveal that certain dietary factors, such as caffeine and alcohol, can trigger migraine, while nutrients like magnesium and riboflavin may help alleviate migraine symptoms. The gut microbiome, through its influence on neuroinflammation (e.g., vagus nerve and cytokines), gut-brain signaling (e.g., gamma-aminobutyric acid), and metabolic function (e.g., short-chain fatty acids), plays a crucial role in migraine susceptibility. Migraine can also alter eating behaviors, leading to poor nutritional choices and further exacerbating the condition. Individual variability in diet and microbiome composition highlights the need for personalized dietary and prebiotic interventions. Epidemiological and clinical data support the effectiveness of tailored nutritional approaches, such as elimination diets and the inclusion of beneficial nutrients, in managing migraine. More work is needed to confirm the role of prebiotics, probiotics, and potentially fecal microbiome translation in the management of migraine. Future research should focus on large-scale studies to elucidate the underlying mechanisms of bidirectional interaction between diet and migraine and develop evidence-based clinical guidelines. Integrating dietary management, gut health optimization, and lifestyle modifications can potentially offer a holistic approach to reducing migraine frequency and severity, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Parisa Gazerani
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, 0130 Oslo, Norway
- Department of Health Science & Technology, Faculty of Medicine, Aalborg University, 9260 Gistrup, Denmark
| | - Laura Papetti
- Developmental Neurology, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio 4, 00165 Rome, Italy;
| | - Turgay Dalkara
- Departments of Neuroscience and Molecular Biology and Genetics, Bilkent University, Ankara 06800, Turkey;
| | - Calli Leighann Cook
- Emory Brain Health Center, General Neurology, Atlanta, GA 30329, USA;
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA; (C.W.); (J.B.)
| | - Caitlin Webster
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA; (C.W.); (J.B.)
| | - Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA; (C.W.); (J.B.)
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Bahitham W, Alghamdi S, Omer I, Alsudais A, Hakeem I, Alghamdi A, Abualnaja R, Sanai FM, Rosado AS, Sergi CM. Double Trouble: How Microbiome Dysbiosis and Mitochondrial Dysfunction Drive Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis. Biomedicines 2024; 12:550. [PMID: 38540163 PMCID: PMC10967987 DOI: 10.3390/biomedicines12030550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 11/22/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are closely related liver conditions that have become more prevalent globally. This review examines the intricate interplay between microbiome dysbiosis and mitochondrial dysfunction in the development of NAFLD and NASH. The combination of these two factors creates a synergistic situation referred to as "double trouble", which promotes the accumulation of lipids in the liver and the subsequent progression from simple steatosis (NAFLD) to inflammation (NASH). Microbiome dysbiosis, characterized by changes in the composition of gut microbes and increased intestinal permeability, contributes to the movement of bacterial products into the liver. It triggers metabolic disturbances and has anti-inflammatory effects. Understanding the complex relationship between microbiome dysbiosis and mitochondrial dysfunction in the development of NAFLD and NASH is crucial for advancing innovative therapeutic approaches that target these underlying mechanisms.
Collapse
Affiliation(s)
- Wesam Bahitham
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia; (W.B.); (S.A.); (I.O.); (A.A.); (I.H.); (A.A.); (R.A.)
- Bioscience, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Siraj Alghamdi
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia; (W.B.); (S.A.); (I.O.); (A.A.); (I.H.); (A.A.); (R.A.)
| | - Ibrahim Omer
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia; (W.B.); (S.A.); (I.O.); (A.A.); (I.H.); (A.A.); (R.A.)
| | - Ali Alsudais
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia; (W.B.); (S.A.); (I.O.); (A.A.); (I.H.); (A.A.); (R.A.)
| | - Ilana Hakeem
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia; (W.B.); (S.A.); (I.O.); (A.A.); (I.H.); (A.A.); (R.A.)
| | - Arwa Alghamdi
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia; (W.B.); (S.A.); (I.O.); (A.A.); (I.H.); (A.A.); (R.A.)
| | - Reema Abualnaja
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia; (W.B.); (S.A.); (I.O.); (A.A.); (I.H.); (A.A.); (R.A.)
| | - Faisal M. Sanai
- Gastroenterology Unit, Department of Medicine, King Abdulaziz Medical City, Jeddah 21423, Saudi Arabia;
| | - Alexandre S. Rosado
- Bioscience, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Consolato M. Sergi
- Anatomic Pathology, Children’s Hospital of Eastern Ontario (CHEO), University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada
| |
Collapse
|
7
|
Kim CS. Roles of Diet-Associated Gut Microbial Metabolites on Brain Health: Cell-to-Cell Interactions between Gut Bacteria and the Central Nervous System. Adv Nutr 2024; 15:100136. [PMID: 38436218 PMCID: PMC10694655 DOI: 10.1016/j.advnut.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/21/2023] [Accepted: 10/26/2023] [Indexed: 03/05/2024] Open
Abstract
Gut microbiota have crucial effects on brain function via the gut-brain axis. Growing evidence suggests that this interaction is mediated by signaling molecules derived from dietary components metabolized by the intestinal microbiota. Although recent studies have provided a substantial understanding of the cell-specific effects of gut microbial molecules in gut microbiome-brain research, further validation is needed. This review presents recent findings on gut microbiota-derived dietary metabolites that enter the systemic circulation and influence the cell-to-cell interactions between gut microbes and cells in the central nervous system (CNS), particularly microglia, astrocytes, and neuronal cells, ultimately affecting cognitive function, mood, and behavior. Specifically, this review highlights the roles of metabolites produced by the gut microbiota via dietary component transformation, including short-chain fatty acids, tryptophan metabolites, and bile acid metabolites, in promoting the function and maturation of brain cells and suppressing inflammatory signals in the CNS. We also discuss future directions for gut microbiome-brain research, focusing on diet-induced microbial metabolite-based therapies as possible novel approaches to mental health treatment.
Collapse
Affiliation(s)
- Chong-Su Kim
- Department of Food and Nutrition, College of Natural Information Sciences, Dongduk Women's University, Seoul 02748, Republic of Korea.
| |
Collapse
|
8
|
Rushing BR, Thessen AE, Soliman GA, Ramesh A, Sumner SCJ. The Exposome and Nutritional Pharmacology and Toxicology: A New Application for Metabolomics. EXPOSOME 2023; 3:osad008. [PMID: 38766521 PMCID: PMC11101153 DOI: 10.1093/exposome/osad008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The exposome refers to all of the internal and external life-long exposures that an individual experiences. These exposures, either acute or chronic, are associated with changes in metabolism that will positively or negatively influence the health and well-being of individuals. Nutrients and other dietary compounds modulate similar biochemical processes and have the potential in some cases to counteract the negative effects of exposures or enhance their beneficial effects. We present herein the concept of Nutritional Pharmacology/Toxicology which uses high-information metabolomics workflows to identify metabolic targets associated with exposures. Using this information, nutritional interventions can be designed toward those targets to mitigate adverse effects or enhance positive effects. We also discuss the potential for this approach in precision nutrition where nutrients/diet can be used to target gene-environment interactions and other subpopulation characteristics. Deriving these "nutrient cocktails" presents an opportunity to modify the effects of exposures for more beneficial outcomes in public health.
Collapse
Affiliation(s)
- Blake R. Rushing
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anne E Thessen
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ghada A. Soliman
- Department of Environmental, Occupational and Geospatial Health Sciences, City University of New York-Graduate School of Public Health and Health Policy, New York, NY, USA
| | - Aramandla Ramesh
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, Meharry Medical College, Nashville, TN, USA
| | - Susan CJ Sumner
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Beretta S, Apparicio M, Toniollo GH, Cardozo MV. The importance of the intestinal microbiota in humans and dogs in the neonatal period. Anim Reprod 2023; 20:e20230082. [PMID: 38026003 PMCID: PMC10681130 DOI: 10.1590/1984-3143-ar2023-0082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/01/2023] [Indexed: 12/01/2023] Open
Abstract
The neonatal period represents a critical stage for the establishment and development of the gut microbiota, which profoundly influences the future health trajectory of individuals. This review examines the importance of intestinal microbiota in humans and dogs, aiming to elucidate the distinct characteristics and variations in the composition between these two species. In humans, the intestinal microbiota contributes to several crucial physiological processes, including digestion, nutrient absorption, immune system development, and modulation of host metabolism. Dysbiosis, an imbalance or disruption of the gut microbial community, has been linked to various disorders, such as inflammatory bowel disease, obesity, and even neurological conditions. Furthermore, recent research has unveiled the profound influence of the gut-brain axis, emphasizing the bidirectional communication between the gut microbiota and the central nervous system, impacting cognitive function and mental health. Similarly, alterations in the canine intestinal microbiota have been associated with gastrointestinal disorders, including chronic enteropathy, such as inflammatory bowel disease, food allergies, and ulcerative histiocytic colitis. However, our understanding of the intricacies and functional significance of the intestinal microbiota in dogs remains limited. Understanding the complex dynamics of the intestinal microbiota in both humans and dogs is crucial for devising effective strategies to promote health and manage disease. Moreover, exploring the similarities and differences in the gut microbial composition between these two species can facilitate translational research, potentially leading to innovative therapeutic interventions and strategies to enhance the well-being of both humans and dogs.
Collapse
Affiliation(s)
- Samara Beretta
- Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brasil
| | - Maricy Apparicio
- Departamento de Cirurgia Veterinária e Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
| | - Gilson Hélio Toniollo
- Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brasil
| | - Marita Vedovelli Cardozo
- Laboratório de Fisiologia de Microorganismos, Departamento de Ciências Biomédicas e Saúde, Universidade do Estado de Minas Gerais (UEMG), Passos, MG, Brasil
| |
Collapse
|
10
|
Yarur AJ, Bruss A, Moosreiner A, Beniwal-Patel P, Nunez L, Berens B, Colombel JF, Targan SR, Fox C, Melmed GY, Abreu MT, Deepak P. Higher Intra-Abdominal Visceral Adipose Tissue Mass Is Associated With Lower Rates of Clinical and Endoscopic Remission in Patients With Inflammatory Bowel Diseases Initiating Biologic Therapy: Results of the Constellation Study. Gastroenterology 2023; 165:963-975.e5. [PMID: 37499955 PMCID: PMC10589067 DOI: 10.1053/j.gastro.2023.06.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND & AIMS We sought to assess the association between intra-abdominal visceral adipose tissue (IA-VAT) and response to 3 different biologic drugs in patients with inflammatory bowel disease (IBD) and to investigate its effects on inflammatory cytokine expression, pharmacokinetics, and intestinal microbiota. METHODS We prospectively enrolled subjects with active IBD initiating infliximab, vedolizumab, or ustekinumab and a healthy control group. Baseline body composition (including IA-VAT as percent of total body mass [IA-VAT%]) was measured using GE iDXA scan. Primary outcome was corticosteroid- free deep remission at weeks 14-16, defined as Harvey Bradshaw Index <5 for Crohn's disease and partial Mayo score <2 for ulcerative colitis, with a normal C-reactive protein and fecal calprotectin. Secondary outcomes were corticosteroid-free deep remission and endoscopic remission (Endoscopic Mayo Score ≤1 in ulcerative colitis or Simple Endoscopic Score for Crohn's disease ≤2) at weeks 30-46. RESULTS A total of 141 patients with IBD and 51 healthy controls were included. No differences in body composition parameters were seen between the IBD and healthy control cohorts. Patients with higher IA-VAT% were less likely to achieve corticosteroid-free deep remission (P < .001) or endoscopic remission (P = .02) vs those with lower IA-VAT%. Furthermore, nonresponders with high IA-VAT% had significantly higher serum interleukin-6 and tumor necrosis factor at baseline compared with responders and patients with low IA-VAT%. Drug pharmacokinetic properties and microbiota diversity were similar when comparing high and low IA-VAT% groups. CONCLUSIONS Higher IA-VAT% was independently associated with worse outcomes. This association could be driven at least partially by discrete differences in inflammatory cytokine expression.
Collapse
Affiliation(s)
- Andres J Yarur
- Division of Gastroenterology and Hepatology, Inflammatory Bowel Disease Institute, Cedars Sinai Medical Center, Los Angeles, California; Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin.
| | - Alexandra Bruss
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Andrea Moosreiner
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Poonam Beniwal-Patel
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lizbeth Nunez
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brandon Berens
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Stephan R Targan
- Division of Gastroenterology and Hepatology, Inflammatory Bowel Disease Institute, Cedars Sinai Medical Center, Los Angeles, California
| | - Caroline Fox
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Gil Y Melmed
- Division of Gastroenterology and Hepatology, Inflammatory Bowel Disease Institute, Cedars Sinai Medical Center, Los Angeles, California
| | - Maria T Abreu
- Center for Inflammatory Bowel Diseases, Division of Gastroenterology and Hepatology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Parakkal Deepak
- Division of Gastroenterology and Hepatology, Washington University in St Louis School of Medicine, St Louis, Missouri
| |
Collapse
|
11
|
Zhang M, Mo R, Li M, Qu Y, Wang H, Liu T, Liu P, Wu Y. Comparison of the Effects of Enzymolysis Seaweed Powder and Saccharomyces boulardii on Intestinal Health and Microbiota Composition in Kittens. Metabolites 2023; 13:metabo13050637. [PMID: 37233678 DOI: 10.3390/metabo13050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/19/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
Kittens are prone to intestinal health problems as their intestines are not completely developed. Seaweed is rich in plant polysaccharides and bioactive substances that are highly beneficial to gut health. However, the effects of seaweed on cat gut health have not been assessed. This study compared the effects of dietary supplementation with enzymolysis seaweed powder and Saccharomyces boulardii on the intestinal health of kittens. In total, 30 Ragdoll kittens (age: 6 months; weight: 1.50 ± 0.29 kg) were assigned to three treatment groups for a 4-week feeding trial. The dietary treatment given was as follows: (1) basal diet (CON); (2) CON + enzymolysis seaweed powder (20 g/kg of feed) mixed evenly with the diet (SE); and (3) CON + Saccharomyces boulardii (2 × 1010 CFU/kg of feed) mixed evenly with the diet (SB). Compared with the CON and SB groups, dietary supplementation with the enzymolysis seaweed powder improved the immune and antioxidant capacity and also reduced the intestinal permeability and inflammation levels of kittens. The relative abundance of Bacteroidetes, Lachnospiraceae, Prevotellaceae, and Faecalibacterium in the SE group was higher than those in the CON and SB groups (p ≤ 0.05), while the relative abundance of Desulfobacterota, Sutterellaceae, and Erysipelatoclostridium in the SB group was lower than that in the SE group (p ≤ 0.05). Moreover, enzymolysis seaweed powder did not alter the level of intestinal SCFAs in kittens. Conclusively, supplementing kitten diet with enzymolysis seaweed powder can promote intestinal health by enhancing the gut barrier function and optimizing the microbiota composition. Our findings provide new perspectives on the application of enzymolysis seaweed powder.
Collapse
Affiliation(s)
- Mingrui Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ruixia Mo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mingtan Li
- Shidai Marine Biotechnology Co., Ltd., Weihai 264319, China
| | - Yuankai Qu
- Shidai Marine Biotechnology Co., Ltd., Weihai 264319, China
| | - Haotian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tianyi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Pan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yi Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Madunić K, Luijkx YMCA, Mayboroda OA, Janssen GMC, van Veelen PA, Strijbis K, Wennekes T, Lageveen-Kammeijer GSM, Wuhrer M. O-Glycomic and Proteomic Signatures of Spontaneous and Butyrate-Stimulated Colorectal Cancer Cell Line Differentiation. Mol Cell Proteomics 2023; 22:100501. [PMID: 36669592 PMCID: PMC9999233 DOI: 10.1016/j.mcpro.2023.100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Gut microbiota of the gastrointestinal tract provide health benefits to the human host via bacterial metabolites. Bacterial butyrate has beneficial effects on intestinal homeostasis and is the preferred energy source of intestinal epithelial cells, capable of inducing differentiation. It was previously observed that changes in the expression of specific proteins as well as protein glycosylation occur with differentiation. In this study, specific mucin O-glycans were identified that mark butyrate-induced epithelial differentiation of the intestinal cell line CaCo-2 (Cancer Coli-2), by applying porous graphitized carbon nano-liquid chromatography with electrospray ionization tandem mass spectrometry. Moreover, a quantitative proteomic approach was used to decipher changes in the cell proteome. It was found that the fully differentiated butyrate-stimulated cells are characterized by a higher expression of sialylated O-glycan structures, whereas fucosylation is downregulated with differentiation. By performing an integrative approach, we generated hypotheses about the origin of the observed O-glycome changes. These insights pave the way for future endeavors to study the dynamic O-glycosylation patterns in the gut, either produced via cellular biosynthesis or through the action of bacterial glycosidases as well as the functional role of these patterns in homeostasis and dysbiosis at the gut-microbiota interface.
Collapse
Affiliation(s)
- K Madunić
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands
| | - Y M C A Luijkx
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands; Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - O A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands
| | - G M C Janssen
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands
| | - P A van Veelen
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands
| | - K Strijbis
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - T Wennekes
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | - M Wuhrer
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands.
| |
Collapse
|
13
|
Valles-Colomer M, Menni C, Berry SE, Valdes AM, Spector TD, Segata N. Cardiometabolic health, diet and the gut microbiome: a meta-omics perspective. Nat Med 2023; 29:551-561. [PMID: 36932240 PMCID: PMC11258867 DOI: 10.1038/s41591-023-02260-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/16/2023] [Indexed: 03/19/2023]
Abstract
Cardiometabolic diseases have become a leading cause of morbidity and mortality globally. They have been tightly linked to microbiome taxonomic and functional composition, with diet possibly mediating some of the associations described. Both the microbiome and diet are modifiable, which opens the way for novel therapeutic strategies. High-throughput omics techniques applied on microbiome samples (meta-omics) hold the unprecedented potential to shed light on the intricate links between diet, the microbiome, the metabolome and cardiometabolic health, with a top-down approach. However, effective integration of complementary meta-omic techniques is an open challenge and their application on large cohorts is still limited. Here we review meta-omics techniques and discuss their potential in this context, highlighting recent large-scale efforts and the novel insights they provided. Finally, we look to the next decade of meta-omics research and discuss various translational and clinical pathways to improving cardiometabolic health.
Collapse
Affiliation(s)
- Mireia Valles-Colomer
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Cristina Menni
- Department of Twin Research, King's College London, London, UK
| | - Sarah E Berry
- Department of Nutritional Sciences, King's College London, London, UK
| | - Ana M Valdes
- School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham National Institute for Health Research Biomedical Research Centre, Nottingham, UK
| | - Tim D Spector
- Department of Twin Research, King's College London, London, UK
| | - Nicola Segata
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
- European Institute of Oncology, Scientific Institute for Research, Hospitalization and Healthcare, Milan, Italy.
| |
Collapse
|
14
|
Silva LAP, Campagnolo S, Fernandes SR, Marques SS, Barreiros L, Sampaio-Maia B, Segundo MA. Rapid and sustainable HPLC method for the determination of uremic toxins in human plasma samples. Anal Bioanal Chem 2023; 415:683-694. [PMID: 36464734 DOI: 10.1007/s00216-022-04458-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 12/11/2022]
Abstract
Protein-bound uremic toxins, mainly indoxyl sulfate (3-INDS), p-cresol sulfate (pCS), and indole-3-acetic acid (3-IAA) but also phenol (Pol) and p-cresol (pC), are progressively accumulated during chronic kidney disease (CKD). Their accurate measurement in biomatrices is demanded for timely diagnosis and adoption of appropriate therapeutic measures. Multianalyte methods allowing the establishment of a uremic metabolite profile are still missing. Hence, the aim of this work was to develop a rapid and sensitive method based on high-performance liquid chromatography with fluorescence detection for the simultaneous quantification of Pol, 3-IAA, pC, 3-INDS, and pCS in human plasma. Separation was attained in 12 min, using a monolithic C18 column and isocratic elution with acetonitrile and phosphate buffer containing an ion-pairing reagent, at a flow rate of 2 mL min-1. Standards were prepared in plasma and quantification was performed using the background subtraction approach. LOQ values were ≤ 0.2 µg mL-1 for all analytes except for pCS (LOQ of 2 µg mL-1). The method proved to be accurate (93.5-112%) and precise (CV ≤ 14.3%). The multianalyte application of the method, associated to a reduced sample volume (50 µL), a less toxic internal standard (eugenol) in comparison to the previously applied 2,6-dimethylphenol and 4-ethylphenol, and a green extraction solvent (ethanol), resulted in the AGREE score of 0.62 which is in line with the recent trend of green and sustainable analytical chemistry. The validated method was successfully applied to the analysis of plasma samples from control subjects exhibiting normal levels of uremic toxins and CKD patients presenting significantly higher levels of 3-IAA, pC, 3-INDS, and pCS that can be further investigated as biomarkers of disease progression.
Collapse
Affiliation(s)
- Luís A P Silva
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Stefano Campagnolo
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Sara R Fernandes
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.,Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal
| | - Sara S Marques
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Luisa Barreiros
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal. .,Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal.
| | - Benedita Sampaio-Maia
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,Faculdade de Medicina Dentária, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-393, Porto, Portugal
| | - Marcela A Segundo
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| |
Collapse
|
15
|
Gagnon E, Mitchell PL, Manikpurage HD, Abner E, Taba N, Esko T, Ghodsian N, Thériault S, Mathieu P, Arsenault BJ. Impact of the gut microbiota and associated metabolites on cardiometabolic traits, chronic diseases and human longevity: a Mendelian randomization study. J Transl Med 2023; 21:60. [PMID: 36717893 PMCID: PMC9887809 DOI: 10.1186/s12967-022-03799-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/30/2022] [Indexed: 01/31/2023] Open
Abstract
Features of the gut microbiota have been associated with several chronic diseases and longevity in preclinical models as well as in observational studies. Whether these relations underlie causal effects in humans remains to be established. We aimed to determine whether the gut microbiota influences cardiometabolic traits as well as the risk of chronic diseases and human longevity using a comprehensive 2-Sample Mendelian randomization approach. We included as exposures 10 gut-associated metabolites and pathways and 57 microbial taxa abundance. We included as outcomes nine cardiometabolic traits (fasting glucose, fasting insulin, systolic blood pressure, diastolic blood pressure, HDL cholesterol, LDL cholesterol, triglycerides, estimated glomerular filtration rate, body mass index [BMI]), eight chronic diseases previously linked with the gut microbiota in observational studies (Alzheimer's disease, depression, type 2 diabetes, non-alcoholic fatty liver disease, coronary artery disease (CAD), stroke, osteoporosis and chronic kidney disease), as well as parental lifespan and longevity. We found 7 associations with evidence of causality before and after sensitivity analyses, but not after multiple testing correction (1198 tests). Most effect sizes (4/7) were small. The two largest exposure-outcome effects were markedly attenuated towards the null upon inclusion of BMI or alcohol intake frequency in multivariable MR analyses. While finding robust genetic instruments for microbiota features is challenging hence potentially inflating type 2 errors, these results do not support a large causal impact of human gut microbita features on cardiometabolic traits, chronic diseases or longevity. These results also suggest that the previously documented associations between gut microbiota and human health outcomes may not always underly causal relations.
Collapse
Affiliation(s)
- Eloi Gagnon
- grid.421142.00000 0000 8521 1798Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Y-3106, Pavillon Marguerite D’Youville, 2725 Chemin Ste-Foy, Québec, (QC) G1V 4G5 Canada
| | - Patricia L. Mitchell
- grid.421142.00000 0000 8521 1798Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Y-3106, Pavillon Marguerite D’Youville, 2725 Chemin Ste-Foy, Québec, (QC) G1V 4G5 Canada
| | - Hasanga D. Manikpurage
- grid.421142.00000 0000 8521 1798Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Y-3106, Pavillon Marguerite D’Youville, 2725 Chemin Ste-Foy, Québec, (QC) G1V 4G5 Canada
| | - Erik Abner
- grid.10939.320000 0001 0943 7661Estonian Genome Center, Institute of Genomics, University of Tartu, Riia 23B, 51010 Tartu, Estonia
| | - Nele Taba
- grid.10939.320000 0001 0943 7661Estonian Genome Center, Institute of Genomics, University of Tartu, Riia 23B, 51010 Tartu, Estonia ,grid.10939.320000 0001 0943 7661Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Tõnu Esko
- grid.10939.320000 0001 0943 7661Estonian Genome Center, Institute of Genomics, University of Tartu, Riia 23B, 51010 Tartu, Estonia
| | - Nooshin Ghodsian
- grid.421142.00000 0000 8521 1798Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Y-3106, Pavillon Marguerite D’Youville, 2725 Chemin Ste-Foy, Québec, (QC) G1V 4G5 Canada
| | - Sébastien Thériault
- grid.421142.00000 0000 8521 1798Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Y-3106, Pavillon Marguerite D’Youville, 2725 Chemin Ste-Foy, Québec, (QC) G1V 4G5 Canada ,grid.23856.3a0000 0004 1936 8390Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec, (QC) Canada
| | - Patrick Mathieu
- grid.421142.00000 0000 8521 1798Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Y-3106, Pavillon Marguerite D’Youville, 2725 Chemin Ste-Foy, Québec, (QC) G1V 4G5 Canada ,grid.23856.3a0000 0004 1936 8390Department of Surgery, Faculty of Medicine, Université Laval, Québec, (QC) Canada
| | - Benoit J. Arsenault
- grid.421142.00000 0000 8521 1798Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Y-3106, Pavillon Marguerite D’Youville, 2725 Chemin Ste-Foy, Québec, (QC) G1V 4G5 Canada ,grid.23856.3a0000 0004 1936 8390Department of Medicine, Faculty of Medicine, Université Laval, Québec, (QC) Canada
| |
Collapse
|
16
|
Granados JC, Ermakov V, Maity K, Vera DR, Chang G, Nigam SK. The kidney drug transporter OAT1 regulates gut microbiome-dependent host metabolism. JCI Insight 2023; 8:e160437. [PMID: 36692015 PMCID: PMC9977316 DOI: 10.1172/jci.insight.160437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/30/2022] [Indexed: 01/24/2023] Open
Abstract
Organic anion transporter 1 (OAT1/SLC22A6, NKT) is a multispecific drug transporter in the kidney with numerous substrates, including pharmaceuticals, endogenous metabolites, natural products, and uremic toxins. Here, we show that OAT1 regulates levels of gut microbiome-derived metabolites. We depleted the gut microbiome of Oat1-KO and WT mice and performed metabolomics to analyze the effects of genotype (KO versus WT) and microbiome depletion. OAT1 is an in vivo intermediary between the host and the microbes, with 40 of the 162 metabolites dependent on the gut microbiome also impacted by loss of Oat1. Chemoinformatic analysis revealed that the altered metabolites (e.g., indoxyl sulfate, p-cresol sulfate, deoxycholate) had more ring structures and sulfate groups. This indicates a pathway from gut microbes to liver phase II metabolism, to renal OAT1-mediated transport. The idea that multiple gut-derived metabolites directly interact with OAT1 was confirmed by in vitro transport and magnetic bead binding assays. We show that gut microbiome-derived metabolites dependent on OAT1 are impacted in a chronic kidney disease (CKD) model and human drug-metabolite interactions. Consistent with the Remote Sensing and Signaling Theory, our results support the view that drug transporters (e.g., OAT1, OAT3, OATP1B1, OATP1B3, MRP2, MRP4, ABCG2) play a central role in regulating gut microbe-dependent metabolism, as well as interorganismal communication between the host and microbiome.
Collapse
Affiliation(s)
| | | | - Koustav Maity
- Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - David R. Vera
- Department of Radiology
- In Vivo Cancer and Molecular Imaging Program
| | - Geoffrey Chang
- Skaggs School of Pharmacy and Pharmaceutical Sciences
- Department of Pharmacology, School of Medicine
| | - Sanjay K. Nigam
- Department of Pediatrics, and
- Department of Medicine (Nephrology), UCSD, La Jolla, California, USA
| |
Collapse
|
17
|
Manoharan N, Parasuraman R, Jayamurali D, Govindarajulu SN. The therapeutic role of microbial metabolites in human health and diseases. RECENT ADVANCES AND FUTURE PERSPECTIVES OF MICROBIAL METABOLITES 2023:1-38. [DOI: 10.1016/b978-0-323-90113-0.00002-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Gupta VK, Bakshi U, Chang D, Lee AR, Davis JM, Chandrasekaran S, Jin YS, Freeman MF, Sung J. TaxiBGC: a Taxonomy-Guided Approach for Profiling Experimentally Characterized Microbial Biosynthetic Gene Clusters and Secondary Metabolite Production Potential in Metagenomes. mSystems 2022; 7:e0092522. [PMID: 36378489 PMCID: PMC9765181 DOI: 10.1128/msystems.00925-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Biosynthetic gene clusters (BGCs) in microbial genomes encode bioactive secondary metabolites (SMs), which can play important roles in microbe-microbe and host-microbe interactions. Given the biological significance of SMs and the current profound interest in the metabolic functions of microbiomes, the unbiased identification of BGCs from high-throughput metagenomic data could offer novel insights into the complex chemical ecology of microbial communities. Currently available tools for predicting BGCs from shotgun metagenomes have several limitations, including the need for computationally demanding read assembly, predicting a narrow breadth of BGC classes, and not providing the SM product. To overcome these limitations, we developed taxonomy-guided identification of biosynthetic gene clusters (TaxiBGC), a command-line tool for predicting experimentally characterized BGCs (and inferring their known SMs) in metagenomes by first pinpointing the microbial species likely to harbor them. We benchmarked TaxiBGC on various simulated metagenomes, showing that our taxonomy-guided approach could predict BGCs with much-improved performance (mean F1 score, 0.56; mean PPV score, 0.80) compared with directly identifying BGCs by mapping sequencing reads onto the BGC genes (mean F1 score, 0.49; mean PPV score, 0.41). Next, by applying TaxiBGC on 2,650 metagenomes from the Human Microbiome Project and various case-control gut microbiome studies, we were able to associate BGCs (and their SMs) with different human body sites and with multiple diseases, including Crohn's disease and liver cirrhosis. In all, TaxiBGC provides an in silico platform to predict experimentally characterized BGCs and their SM production potential in metagenomic data while demonstrating important advantages over existing techniques. IMPORTANCE Currently available bioinformatics tools to identify BGCs from metagenomic sequencing data are limited in their predictive capability or ease of use to even computationally oriented researchers. We present an automated computational pipeline called TaxiBGC, which predicts experimentally characterized BGCs (and infers their known SMs) in shotgun metagenomes by first considering the microbial species source. Through rigorous benchmarking techniques on simulated metagenomes, we show that TaxiBGC provides a significant advantage over existing methods. When demonstrating TaxiBGC on thousands of human microbiome samples, we associate BGCs encoding bacteriocins with different human body sites and diseases, thereby elucidating a possible novel role of this antibiotic class in maintaining the stability of microbial ecosystems throughout the human body. Furthermore, we report for the first time gut microbial BGC associations shared among multiple pathologies. Ultimately, we expect our tool to facilitate future investigations into the chemical ecology of microbial communities across diverse niches and pathologies.
Collapse
Affiliation(s)
- Vinod K. Gupta
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Utpal Bakshi
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Daniel Chang
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Aileen R. Lee
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
- BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| | - John M. Davis
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA
- Center for Bioinformatics and Computational Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Michael F. Freeman
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
- BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| | - Jaeyun Sung
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
19
|
Role of Gut Microbiota through Gut–Brain Axis in Epileptogenesis: A Systematic Review of Human and Veterinary Medicine. BIOLOGY 2022; 11:biology11091290. [PMID: 36138769 PMCID: PMC9495720 DOI: 10.3390/biology11091290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Epilepsy is a common chronic neurological disease in both dogs and humans. Despite the elevated prevalence and the many advances in human and veterinary medicine, the etiology and pathophysiology of epilepsy still remain unclear. In this systematic review, the authors discussed the possible role of the gut microbiota in the canine idiopathic epilepsy etiopathogenesis via the gut–brain axis. Abstract Canine idiopathic epilepsy is a common neurological disease characterized by the enduring predisposition of the cerebral cortex to generate seizures. An etiological explanation has not been fully identified in humans and dogs, and, among the presumed causes, several studies support the possible involvement of gut microbiota. In this review, the authors summarize the evidence of the reasonable role of gut microbiota in epilepsy through the so-called gut–brain axis. The authors provide an overview of recent clinical and preclinical studies in humans and dogs in which the modulation of intestinal permeability, the alteration of local immune response, and the alteration in production of essential metabolites and neurotransmitters associated with dysbiosis could be responsible for the pathogenesis of canine epilepsy. A systematic review of the literature, following the PRISMA guidelines, was performed in two databases (PubMed and Web of Science). Eleven studies were included and reviewed supporting the connection between gut microbiota and epilepsy via the gut–brain axis.
Collapse
|
20
|
Gong T, Wang H, Liu S, Zhang M, Xie Y, Liu X. Capsaicin regulates lipid metabolism through modulation of bile acid/gut microbiota metabolism in high-fat-fed SD rats. Food Nutr Res 2022; 66:8289. [PMID: 35721805 PMCID: PMC9180124 DOI: 10.29219/fnr.v66.8289] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 12/12/2022] Open
Abstract
Capsaicin (CAP) is one of the active ingredients found in chili peppers and has been shown to reduce fat. This study aimed to explore the mechanisms of CAP activity by investigating intestinal microorganisms and bile acids (BAs). This study utilized 16S RNA sequencing to detect gut microbiota in cecal contents, and BAs in Sprague Dawley (SD) rats were also investigated. The results showed that 1) CAP increased the levels of chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), β-muricholic acid (β-MCA), and tauro-β-muricholic acid sodium salt (T-β-MCA), which can regulate farnesoid X receptor (FXR) to inhibit Fgf15, increased CYP7A1 expression to lower triglycerides (TG) and total cholesterol (TC); 2) CAP decreased the abundance of Firmicutes and promoted the presence of specific fermentative bacterial populations, like Akkermansia; meanwhile, less optimal dose can reduce Desulfovibrio; 3) CAP decreased inflammatory factors IL-6 and IL-1β, and increased transient receptor potential channel of vanilloid subtype 1 (TRPV1) to regulate lipid metabolism, fasting plasma glucose and insulin resistance. In conclusion, CAP can reduce fat accumulation by regulating BAs, microorganisms, and short-chain fatty acids. ![]()
Collapse
Affiliation(s)
- Ting Gong
- College of Food Science, Southwest University, Chongqing, People's Republic of China.,Chongqing Medical and Pharmaceutical College, Chongqing, People's Republic of China
| | - Haizhu Wang
- Chongqing Medical and Pharmaceutical College, Chongqing, People's Republic of China
| | - Shanli Liu
- Chongqing Medical and Pharmaceutical College, Chongqing, People's Republic of China
| | - Min Zhang
- Chongqing Medical and Pharmaceutical College, Chongqing, People's Republic of China
| | - Yong Xie
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Xiong Liu
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| |
Collapse
|
21
|
Transitions of foliar mycobiota community and transcriptome in response to pathogenic conifer needle interactions. Sci Rep 2022; 12:7832. [PMID: 35551491 PMCID: PMC9098639 DOI: 10.1038/s41598-022-11907-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/28/2022] [Indexed: 12/13/2022] Open
Abstract
Profiling the host–mycobiota interactions in healthy vs. diseased forest ecosystems helps understand the dynamics of understudied yet increasingly important threats to forest health that are emerging due to climate change. We analyzed the structural and functional changes of the mycobiota and the responses of Pinus contorta in the Lophodermella needle cast pathosystem through metabarcoding and metatranscriptomics. When needles transitioned from asymptomatic to symptomatic, dysbiosis of the mycobiota occurred, but with an enrichment of Lophodermella pathogens. Many pathogenicity-related genes were highly expressed by the mycobiota at the necrotrophic phase, showing an active pathogen response that are absent in asymptomatic needles. This study also revealed that Lophodermella spp. are members of a healthy needle mycobiota that have latent lifestyles suggesting that other pine needle pathogens may have similar biology. Interestingly, Pinus contorta upregulated defense genes in healthy needles, indicating response to fungal recognition, while a variety of biotic and abiotic stresses genes were activated in diseased needles. Further investigation to elucidate the possible antagonistic interplay of other biotic members leading to disease progression and/or suppression is warranted. This study provides insights into microbial interactions in non-model pathosystems and contributes to the development of new forest management strategies against emerging latent pathogens.
Collapse
|
22
|
Xu P, Lv T, Dong S, Cui Z, Luo X, Jia B, Jeon CO, Zhang J. Association between intestinal microbiome and inflammatory bowel disease: insights from bibliometric analysis. Comput Struct Biotechnol J 2022; 20:1716-1725. [PMID: 35495114 PMCID: PMC9019919 DOI: 10.1016/j.csbj.2022.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022] Open
Abstract
Intestinal microbiota has been increasingly studied in the field of IBD over the last 20 years. The gut microbiome, metabolites, and their corresponding host signaling pathways are highly associated with IBD. Probiotics may relieve IBD as a complementary therapy. The pathogenesis and treatment strategies of IBD need to be further studied.
The gut microbiome is highly linked to inflammatory bowel disease (IBD). A total of 3890 publications related to the two terms from 2000 to 2020 were extracted from the Web of Science Core Collection to study the association from a bibliometric perspective. Publications on this topic have grown rapidly since 2008. The United States and Harvard University are the country and institution with the largest number of publications, respectively. Inflammatory Bowel Diseases is the most productive journal with 211 published articles. The most influential journal in this field is Gut with 13,359 citations. The co-citation analysis of references showed that the IBD-related topics with the highest focus are “gut microbiota,” “metagenomics,” “bacterial community,” “fecal microbiota transplantation,” “probiotics,” and “colitis-associated colorectal cancer.” Keyword cluster and keyword burst analyses showed that “gut microbiota,” “metagenomics,” and “fecal microbiota transplantation” are currently the most researched topics in the field of IBD. The literature in this field is mainly distributed between alterations of the intestinal microbiota, microbial metabolites, and related host signaling pathways. Probiotic treatment also frequently appears in literature. This bibliometric analysis can guide future research and promote the development of the field of gut microbiome and IBD.
Collapse
|
23
|
Feeding Fiber-Bound Polyphenol Ingredients at Different Levels Modulates Colonic Postbiotics to Improve Gut Health in Dogs. Animals (Basel) 2022; 12:ani12050627. [PMID: 35268196 PMCID: PMC8909809 DOI: 10.3390/ani12050627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Microbes present in the large intestine of humans and companion animals produce bioactive metabolites from host-ingested food. These bioactive metabolites can influence host health. A prior study in dogs that were healthy or had chronic enteritis/gastroenteritis showed that stool quality improved when they ate food containing a fiber bundle made from fibers of pecan shells, flax seed, cranberry, citrus, and beet. In addition, eating food containing the fiber bundle resulted in the gut bacteria shifting from digesting mainly protein to digesting mainly carbohydrates. The present study tested the impact of the fiber bundle at a lower range of concentrations in dogs. Fecal levels of several bioactive metabolites with beneficial antioxidant or anti-inflammatory properties increased after dogs consumed food with the fiber bundle, though no changes in the bacteria or their functional pathways were observed. Stool quality remained in the acceptable range. These results suggest that the gut bacteria were able to digest the fiber bundle to produce beneficial bioactive metabolites to improve host health. Abstract This study assessed changes in canine fecal metabolites and microbiota with the consumption of foods with increasing concentrations of a fiber bundle including pecan shells, flax seed, and powders of cranberry, citrus, and beet that was previously shown (at 14% w/w) to improve stool quality, shift fecal bacterial metabolism from proteolysis to saccharolysis, increase abundance of saccharolytic bacteria, and decrease abundance of proteolytic bacteria. In this study, 48 healthy adult dogs were split evenly to consume different inclusion levels (0%, 1%, 2%, and 4%) of the fiber bundle for a 31-day period following a 28-day pre-feed period. Increases from baseline in the fecal short-chain fatty acids butyric acid, valeric acid, and hexanoic acid were observed only in the dogs that consumed the food with the 4% fiber bundle. With addition of any level of the fiber bundle, increases were seen in the polyphenols hesperidin, hesperetin, ponciretin, secoisolariciresinol diglucoside, secoisolariciresinol, and enterodiol. However, fecal microbiota and their metabolism, and stool scores were largely unaffected by the fiber bundle. Overall, addition of the fiber bundle appeared to increase bioactive metabolites of increased antioxidant and anti-inflammatory potency for beneficial to health and, at levels ≥4%, shifted gut bacterial metabolism toward saccharolysis.
Collapse
|
24
|
Xie Y, Hu X, Li S, Qiu Y, Cao R, Xu C, Lu C, Wang Z, Yang J. Pharmacological targeting macrophage phenotype via gut-kidney axis ameliorates renal fibrosis in mice. Pharmacol Res 2022; 178:106161. [DOI: 10.1016/j.phrs.2022.106161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/06/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022]
|
25
|
Tsalgatidou PC, Thomloudi EE, Baira E, Papadimitriou K, Skagia A, Venieraki A, Katinakis P. Integrated Genomic and Metabolomic Analysis Illuminates Key Secreted Metabolites Produced by the Novel Endophyte Bacillus halotolerans Cal.l.30 Involved in Diverse Biological Control Activities. Microorganisms 2022; 10:microorganisms10020399. [PMID: 35208854 PMCID: PMC8877463 DOI: 10.3390/microorganisms10020399] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
The endophytic strain Cal.l.30, isolated from the medicinal plant Calendula officinalis, was selected among seven Bacillus strains with plant growth promoting activity and strong biological potential against the postharvest fungal pathogen Botrytis cinerea. Treatment by inoculating Cal.l.30 bacterial cell culture or cell free supernatant on harvested grapes and cherry tomato fruits, significantly reduced gray mold disease severity index and disease incidence. Based on 16S rRNA sequence analysis and whole genome phylogeny, Cal.l.30 was identified as Bacillus halotolerans. Genome mining revealed that B. halotolerans Cal.l.30 is endowed with a diverse arsenal of secondary metabolite biosynthetic gene clusters (SM-BGCs) responsible for metabolite production with antimicrobial properties. A sub-set of the identified SM-BGCs (mojavensin A, ‘bacillunoic acid’) appears to be the result of recent horizontal gene transfer events. Its genome was also mined for CAZymes associated with antifungal activity. Further UHPLC-HRMS analysis indicated that Cal.l.30 synthesizes and secretes secondary metabolites with antimicrobial activity, including the lipopeptides, fengycin, surfactin and mojavensin A, bacillaene isoforms, L-dihydroanticapsin and bacillibactin. Other compounds with known antimicrobial activity were also detected, such as azelaic acid, 15- hydroxypentadecanoid acid and 2-hydroxyphenylacetic acid. The genomic and metabolomic features of the B. halotolerans Cal.l.30 provided new perspectives on the exploitation of novel Bacillus sp. as a biocontrol agent.
Collapse
Affiliation(s)
- Polina C. Tsalgatidou
- Laboratory of General and Agricultural Microbiology, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (P.C.T.); (E.-E.T.); (A.S.)
- Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece
| | - Eirini-Evangelia Thomloudi
- Laboratory of General and Agricultural Microbiology, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (P.C.T.); (E.-E.T.); (A.S.)
| | - Eirini Baira
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides’ Control and Phytopharmacy, Benaki Phytopathological Institute (BPI), Kifissia, 14561 Athens, Greece;
| | | | - Aggeliki Skagia
- Laboratory of General and Agricultural Microbiology, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (P.C.T.); (E.-E.T.); (A.S.)
| | - Anastasia Venieraki
- Laboratory of Plant Pathology, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Correspondence: (A.V.); (P.K.)
| | - Panagiotis Katinakis
- Laboratory of General and Agricultural Microbiology, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (P.C.T.); (E.-E.T.); (A.S.)
- Correspondence: (A.V.); (P.K.)
| |
Collapse
|
26
|
Ortega MA, Alvarez-Mon MA, García-Montero C, Fraile-Martinez O, Guijarro LG, Lahera G, Monserrat J, Valls P, Mora F, Rodríguez-Jiménez R, Quintero J, Álvarez-Mon M. Gut Microbiota Metabolites in Major Depressive Disorder-Deep Insights into Their Pathophysiological Role and Potential Translational Applications. Metabolites 2022; 12:metabo12010050. [PMID: 35050172 PMCID: PMC8778125 DOI: 10.3390/metabo12010050] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota is a complex and dynamic ecosystem essential for the proper functioning of the organism, affecting the health and disease status of the individuals. There is continuous and bidirectional communication between gut microbiota and the host, conforming to a unique entity known as "holobiont". Among these crosstalk mechanisms, the gut microbiota synthesizes a broad spectrum of bioactive compounds or metabolites which exert pleiotropic effects on the human organism. Many of these microbial metabolites can cross the blood-brain barrier (BBB) or have significant effects on the brain, playing a key role in the so-called microbiota-gut-brain axis. An altered microbiota-gut-brain (MGB) axis is a major characteristic of many neuropsychiatric disorders, including major depressive disorder (MDD). Significative differences between gut eubiosis and dysbiosis in mental disorders like MDD with their different metabolite composition and concentrations are being discussed. In the present review, the main microbial metabolites (short-chain fatty acids -SCFAs-, bile acids, amino acids, tryptophan -trp- derivatives, and more), their signaling pathways and functions will be summarized to explain part of MDD pathophysiology. Conclusions from promising translational approaches related to microbial metabolome will be addressed in more depth to discuss their possible clinical value in the management of MDD patients.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (F.M.); (J.Q.)
- Correspondence:
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Unit of Biochemistry and Molecular Biology (CIBEREHD), Department of System Biology, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Paula Valls
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
| | - Fernando Mora
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (F.M.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Roberto Rodríguez-Jiménez
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
- Institute for Health Research 12 de Octubre Hospital, (Imas 12)/CIBERSAM (Biomedical Research Networking Centre in Mental Health), 28041 Madrid, Spain
| | - Javier Quintero
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (F.M.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| |
Collapse
|
27
|
Cruz-Lebrón A, Johnson R, Mazahery C, Troyer Z, Joussef-Piña S, Quiñones-Mateu ME, Strauch CM, Hazen SL, Levine AD. Chronic opioid use modulates human enteric microbiota and intestinal barrier integrity. Gut Microbes 2021; 13:1946368. [PMID: 34313547 PMCID: PMC8317955 DOI: 10.1080/19490976.2021.1946368] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Over the past three decades the United States has experienced a devastating opioid epidemic. One of the many debilitating side effects of chronic opioid use is opioid-induced bowel dysfunction. We investigated the impact of methadone maintenance treatment (MMT) on the gut microbiome, the gut bacterial metabolite profile, and intestinal barrier integrity. An imbalance in key bacterial communities required for production of short-chain fatty acids (SCFAs), mucus degradation, and maintenance of barrier integrity was identified. Consistent with dysbiosis, levels of fecal SCFAs were reduced in MMT. We demonstrated that metabolites synthesized by Akkermansia muciniphila modulate intestinal barrier integrity in vitro by strengthening the pore pathway and regulating tight junction protein expression. This study provides essential information about the therapeutic potential of A. muciniphila and warrants development of new clinical strategies that aim to normalize the gut microbiome in individuals affected by chronic opioid use.
Collapse
Affiliation(s)
- Angélica Cruz-Lebrón
- Departments of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, USA
| | - Ramona Johnson
- Departments of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, USA
| | - Claire Mazahery
- Department of Pathology, Case Western Reserve University, Cleveland, USA
| | - Zach Troyer
- Departments of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, USA
| | | | - Miguel E. Quiñones-Mateu
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Christopher M Strauch
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, USA
| | - Stanley L. Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, USA
| | - Alan D. Levine
- Departments of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, USA,Department of Pathology, Case Western Reserve University, Cleveland, USA,Departments of Pharmacology, Medicine, and Pediatrics, Case Western Reserve University, Cleveland, USA,CONTACT Alan D. Levine Case Western Reserve University School of Medicine (Wood W217C), 10900 Euclid Avenue, Cleveland, Ohio44106-4960
| |
Collapse
|
28
|
Schepis T, De Lucia SS, Nista EC, Manilla V, Pignataro G, Ojetti V, Piccioni A, Gasbarrini A, Franceschi F, Candelli M. Microbiota in Pancreatic Diseases: A Review of the Literature. J Clin Med 2021; 10:5920. [PMID: 34945216 PMCID: PMC8704740 DOI: 10.3390/jcm10245920] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/05/2023] Open
Abstract
The gut microbiota is a critical element in the balance between human health and disease. Its impairment, defined as dysbiosis, is associated with gastroenterological and systemic diseases. Pancreatic secretions are involved in the composition and changes of the gut microbiota, and the gut microbiota may colonize the pancreatic parenchyma and be associated with the occurrence of diseases. The gut microbiota and the pancreas influence each other, resulting in a "gut microbiota-pancreas axis". Moreover, the gut microbiota may be involved in pancreatic diseases, both through direct bacterial colonization and an indirect effect of small molecules and toxins derived from dysbiosis. Pancreatic diseases such as acute pancreatitis, chronic pancreatitis, autoimmune pancreatitis, and pancreatic cancer are common gastroenterological diseases associated with high morbidity and mortality. The involvement of the microbiota in pancreatic diseases is increasingly recognized. Therefore, modifying the intestinal bacterial flora could have important therapeutic implications on these pathologies. The aim of this study is to review the literature to evaluate the alterations of the gut microbiota in pancreatic diseases, and the role of the microbiota in the treatment of these diseases.
Collapse
Affiliation(s)
- Tommaso Schepis
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (T.S.); (S.S.D.L.); (E.C.N.); (V.M.); (A.G.)
| | - Sara S. De Lucia
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (T.S.); (S.S.D.L.); (E.C.N.); (V.M.); (A.G.)
| | - Enrico C. Nista
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (T.S.); (S.S.D.L.); (E.C.N.); (V.M.); (A.G.)
| | - Vittoria Manilla
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (T.S.); (S.S.D.L.); (E.C.N.); (V.M.); (A.G.)
| | - Giulia Pignataro
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (G.P.); (V.O.); (A.P.); (F.F.)
| | - Veronica Ojetti
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (G.P.); (V.O.); (A.P.); (F.F.)
| | - Andrea Piccioni
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (G.P.); (V.O.); (A.P.); (F.F.)
| | - Antonio Gasbarrini
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (T.S.); (S.S.D.L.); (E.C.N.); (V.M.); (A.G.)
| | - Francesco Franceschi
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (G.P.); (V.O.); (A.P.); (F.F.)
| | - Marcello Candelli
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (G.P.); (V.O.); (A.P.); (F.F.)
| |
Collapse
|
29
|
Liu X, Sun R, Li Z, Xiao R, Lv P, Sun X, Olson MA, Gong Y. Luteolin alleviates non-alcoholic fatty liver disease in rats via restoration of intestinal mucosal barrier damage and microbiota imbalance involving in gut-liver axis. Arch Biochem Biophys 2021; 711:109019. [PMID: 34478730 DOI: 10.1016/j.abb.2021.109019] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is demonstrated to be closely related to the disorder of gut microbiota and the intestinal mucosal barrier. Luteolin is a natural flavonoid with various activities. We aimed to investigate whether Luteolin can alleviate NAFLD and its possible mechanism involving the gut-liver axis. A rat NAFLD model was established by feeding a high-fat diet (HFD), and Luteolin was administered intragastrically. The effects of Luteolin on liver biochemical parameters, intestinal histopathology and integrity, gut microbiota, lipopolysaccharides (LPS), inflammatory cytokines, and the Toll-like receptor 4 (TLR4) signaling pathway were evaluated. We found that Luteolin restored the expression of the tight junction proteins in the intestine and ameliorated the increase permeability of the intestinal mucosa to Fluorescein isothiocyanate-dextran (FD4) caused by a high-fat diet, thus enhancing the function of the intestinal barrier. In addition, Luteolin inhibited the TLR4 signaling pathway in the liver, thereby reducing the secretion of pro-inflammatory factors and alleviating NAFLD. 16S rRNA gene sequencing revealed that Luteolin intervention significantly altered the composition of the gut microbiota in NAFLD rats and increased the richness of gut microbiota. Luteolin alleviates NAFLD in rats via restoration and repair of the damaged intestinal mucosal barrier and microbiota imbalance.
Collapse
Affiliation(s)
- Xia Liu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China
| | - Runzhou Sun
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China
| | - Zhaozhen Li
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China
| | - Ruixin Xiao
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China
| | - Pengfei Lv
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China
| | - Xiangrong Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mark A Olson
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China; Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Yanling Gong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China.
| |
Collapse
|
30
|
Han H, Safe S, Jayaraman A, Chapkin RS. Diet-Host-Microbiota Interactions Shape Aryl Hydrocarbon Receptor Ligand Production to Modulate Intestinal Homeostasis. Annu Rev Nutr 2021; 41:455-478. [PMID: 34633858 PMCID: PMC8667662 DOI: 10.1146/annurev-nutr-043020-090050] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated basic-helix-loop-helix transcription factor that binds structurally diverse ligands and senses cues from environmental toxicants and physiologically relevant dietary/microbiota-derived ligands. The AhR is an ancient conserved protein and is widely expressed across different tissues in vertebrates and invertebrates. AhR signaling mediates a wide range of cellular functions in a ligand-, cell type-, species-, and context-specific manner. Dysregulation of AhR signaling is linked to many developmental defects and chronic diseases. In this review, we discuss the emerging role of AhR signaling in mediating bidirectional host-microbiome interactions. We also consider evidence showing the potential for the dietary/microbial enhancement ofhealth-promoting AhR ligands to improve clinical pathway management in the context of inflammatory bowel diseases and colon tumorigenesis.
Collapse
Affiliation(s)
- Huajun Han
- Program in Integrative Nutrition and Complex Diseases and Department of Nutrition, Texas A&M University, College Station, Texas 77843, USA;
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Stephen Safe
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases and Department of Nutrition, Texas A&M University, College Station, Texas 77843, USA;
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
31
|
Badri DV, Jackson MI, Jewell DE. Dietary Protein and Carbohydrate Levels Affect the Gut Microbiota and Clinical Assessment in Healthy Adult Cats. J Nutr 2021; 151:3637-3650. [PMID: 34587256 PMCID: PMC8643606 DOI: 10.1093/jn/nxab308] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/16/2021] [Accepted: 08/19/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Relative levels of dietary protein and carbohydrate intake influence microbiota and their functional capabilities, but the effect has not been well documented in cats. OBJECTIVES The impact of 3 foods with different protein:carbohydrate ratios on the gut microbiota and functional attributes in healthy adult cats was evaluated. METHODS Male and female cats (n = 30; mean age: 5.1 y; mean body weight: 5.26 kg) were fed 1 of 3 foods [P28 (28.3% protein, dry matter basis), P35 (35.1%), and P55 (54.8%)] for 90 d in a Williams Latin Square design. Each food had a 1:1 ratio of animal (dried chicken) to plant (pea) protein; protein replaced carbohydrate as protein level increased. Fecal microbiota and their functional capability were assessed with 16S sequencing and the Kyoto Encyclopedia of Genes and Genomes database, respectively. RESULTS Fecal pH, ammonia, and branched-chain fatty acids (BCFAs) were higher when cats consumed P55 food than when they consumed P28 and P35. Clear separation of samples between P28 and P55 based on bacterial genera was observed, with partitioning into saccharolytic and proteolytic functions, respectively. Significantly higher α diversity was seen with P55 than with P28 and P35. Amino acid metabolism, mucin foraging pathways, and urea metabolism were higher with P55 than with P28, whereas feces from cats fed P28 had higher concentrations of carbohydrate-active enzymes and enzymes involved in SCFA pathways than with P55. Bacterial genera that showed positive associations with amino acid catabolism also showed positive associations with mucin degradation. CONCLUSIONS Despite higher protein digestibility and less protein arriving to the colon, when healthy adult cats consumed the highest level of protein (P55), their gut microbiota exhibited higher mucin glycan foraging and amino acid metabolism, leading to higher fecal pH, ammonia, and BCFAs. This is likely due to lower availability of carbohydrate substrates and dietary fiber as protein replaced carbohydrate in the food.
Collapse
Affiliation(s)
| | | | - Dennis E Jewell
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
32
|
Ohtani N, Hara E. Gut-liver axis-mediated mechanism of liver cancer: A special focus on the role of gut microbiota. Cancer Sci 2021; 112:4433-4443. [PMID: 34533882 PMCID: PMC8586687 DOI: 10.1111/cas.15142] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/15/2022] Open
Abstract
Gut microbiota and the mammalian host share a symbiotic relationship, in which the host provides a suitable ecosystem for the gut bacteria to digest indigestible nutrients and produce useful metabolites. Although gut microbiota primarily reside in and influence the intestine, they also regulate liver function via absorption and subsequent transfer of microbial components and metabolites through the portal vein to the liver. Due to this transfer, the liver may be continuously exposed to gut‐derived metabolites and components. For example, short‐chain fatty acids (SCFA) produced by gut microbiota, through the fermentation of dietary fiber, can suppress inflammation via regulatory T cell induction through SCFA‐induced epigenetic mechanisms. Additionally, secondary bile acids (BA), such as deoxycholic acid, produced by gut bacteria through the 7α‐dehydroxylation of primary BAs, are thought to induce DNA damage and contribute to the remodeling of tumor microenvironments. Other substances that are also thought to influence liver function include lipopolysaccharides (components of the outer membrane of gram‐negative bacteria) and lipoteichoic acid (cell wall component of Gram‐positive bacteria), which are ligands of innate immune receptors, Toll‐like receptor‐4, and Toll‐like receptor‐2, respectively, through which inflammatory signaling is elicited. In this review, we focus on the role of gut microbiota in the liver microenvironment, describing the anatomy of the gut‐liver axis, the role of gut microbial metabolites, and the relationships that exist between gut microbiota and liver diseases, including liver cancer.
Collapse
Affiliation(s)
- Naoko Ohtani
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, Osaka, Japan.,AMED-CREST, AMED, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Eiji Hara
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan.,Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan.,Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| |
Collapse
|
33
|
Peralta-Marzal LN, Prince N, Bajic D, Roussin L, Naudon L, Rabot S, Garssen J, Kraneveld AD, Perez-Pardo P. The Impact of Gut Microbiota-Derived Metabolites in Autism Spectrum Disorders. Int J Mol Sci 2021; 22:10052. [PMID: 34576216 PMCID: PMC8470471 DOI: 10.3390/ijms221810052] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a set of neurodevelopmental disorders characterised by behavioural impairment and deficiencies in social interaction and communication. A recent study estimated that 1 in 89 children have developed some form of ASD in European countries. Moreover, there is no specific treatment and since ASD is not a single clinical entity, the identification of molecular biomarkers for diagnosis remains challenging. Besides behavioural deficiencies, individuals with ASD often develop comorbid medical conditions including intestinal problems, which may reflect aberrations in the bidirectional communication between the brain and the gut. The impact of faecal microbial composition in brain development and behavioural functions has been repeatedly linked to ASD, as well as changes in the metabolic profile of individuals affected by ASD. Since metabolism is one of the major drivers of microbiome-host interactions, this review aims to report emerging literature showing shifts in gut microbiota metabolic function in ASD. Additionally, we discuss how these changes may be involved in and/or perpetuate ASD pathology. These valuable insights can help us to better comprehend ASD pathogenesis and may provide relevant biomarkers for improving diagnosis and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Lucía N. Peralta-Marzal
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.P.); (J.G.); (A.D.K.)
| | - Naika Prince
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.P.); (J.G.); (A.D.K.)
| | - Djordje Bajic
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA;
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Léa Roussin
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (L.R.); (S.R.)
| | - Laurent Naudon
- CNRS, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France;
| | - Sylvie Rabot
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (L.R.); (S.R.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.P.); (J.G.); (A.D.K.)
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.P.); (J.G.); (A.D.K.)
| | - Paula Perez-Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.P.); (J.G.); (A.D.K.)
| |
Collapse
|
34
|
Significance of the Gut Microbiome for Viral Diarrheal and Extra-Intestinal Diseases. Viruses 2021; 13:v13081601. [PMID: 34452466 PMCID: PMC8402659 DOI: 10.3390/v13081601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
The composition of the mammalian gut microbiome is very important for the health and disease of the host. Significant correlations of particular gut microbiota with host immune responsiveness and various infectious and noninfectious host conditions, such as chronic enteric infections, type 2 diabetes, obesity, asthma, and neurological diseases, have been uncovered. Recently, research has moved on to exploring the causalities of such relationships. The metabolites of gut microbiota and those of the host are considered in a ‘holobiontic’ way. It turns out that the host’s diet is a major determinant of the composition of the gut microbiome and its metabolites. Animal models of bacterial and viral intestinal infections have been developed to explore the interrelationships of diet, gut microbiome, and health/disease phenotypes of the host. Dietary fibers can act as prebiotics, and certain bacterial species support the host’s wellbeing as probiotics. In cases of Clostridioides difficile-associated antibiotic-resistant chronic diarrhea, transplantation of fecal microbiomes has sometimes cured the disease. Future research will concentrate on the definition of microbial/host/diet interrelationships which will inform rationales for improving host conditions, in particular in relation to optimization of immune responses to childhood vaccines.
Collapse
|
35
|
Kayama H, Okumura R, Takeda K. Interaction Between the Microbiota, Epithelia, and Immune Cells in the Intestine. Annu Rev Immunol 2021; 38:23-48. [PMID: 32340570 DOI: 10.1146/annurev-immunol-070119-115104] [Citation(s) in RCA: 418] [Impact Index Per Article: 104.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The gastrointestinal tract harbors numerous commensal bacteria, referred to as the microbiota, that benefit host health by digesting dietary components and eliminating pathogens. The intestinal microbiota maintains epithelial barrier integrity and shapes the mucosal immune system, balancing host defense and oral tolerance with microbial metabolites, components, and attachment to host cells. To avoid aberrant immune responses, epithelial cells segregate the intestinal microbiota from immune cells by constructing chemical and physical barriers, leading to the establishment of host-commensal mutualism. Furthermore, intestinal immune cells participate in the maintenance of a healthy microbiota community and reinforce epithelial barrier functions. Perturbations of the microbiota composition are commonly observed in patients with autoimmune diseases and chronic inflammatory disorders. An understanding of the intimate interactions between the intestinal microbiota, epithelial cells, and immune cells that are crucial for the maintenance of intestinal homeostasis might promote advances in diagnostic and therapeutic approaches for various diseases.
Collapse
Affiliation(s)
- Hisako Kayama
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; , , .,WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryu Okumura
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; , , .,WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kiyoshi Takeda
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; , , .,WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
36
|
Integrated mass spectrometry-based multi-omics for elucidating mechanisms of bacterial virulence. Biochem Soc Trans 2021; 49:1905-1926. [PMID: 34374408 DOI: 10.1042/bst20191088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022]
Abstract
Despite being considered the simplest form of life, bacteria remain enigmatic, particularly in light of pathogenesis and evolving antimicrobial resistance. After three decades of genomics, we remain some way from understanding these organisms, and a substantial proportion of genes remain functionally unknown. Methodological advances, principally mass spectrometry (MS), are paving the way for parallel analysis of the proteome, metabolome and lipidome. Each provides a global, complementary assay, in addition to genomics, and the ability to better comprehend how pathogens respond to changes in their internal (e.g. mutation) and external environments consistent with infection-like conditions. Such responses include accessing necessary nutrients for survival in a hostile environment where co-colonizing bacteria and normal flora are acclimated to the prevailing conditions. Multi-omics can be harnessed across temporal and spatial (sub-cellular) dimensions to understand adaptation at the molecular level. Gene deletion libraries, in conjunction with large-scale approaches and evolving bioinformatics integration, will greatly facilitate next-generation vaccines and antimicrobial interventions by highlighting novel targets and pathogen-specific pathways. MS is also central in phenotypic characterization of surface biomolecules such as lipid A, as well as aiding in the determination of protein interactions and complexes. There is increasing evidence that bacteria are capable of widespread post-translational modification, including phosphorylation, glycosylation and acetylation; with each contributing to virulence. This review focuses on the bacterial genotype to phenotype transition and surveys the recent literature showing how the genome can be validated at the proteome, metabolome and lipidome levels to provide an integrated view of organism response to host conditions.
Collapse
|
37
|
McGinniss JE, Whiteside SA, Simon-Soro A, Diamond JM, Christie JD, Bushman FD, Collman RG. The lung microbiome in lung transplantation. J Heart Lung Transplant 2021; 40:733-744. [PMID: 34120840 PMCID: PMC8335643 DOI: 10.1016/j.healun.2021.04.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/21/2022] Open
Abstract
Culture-independent study of the lower respiratory tract after lung transplantation has enabled an understanding of the microbiome - that is, the collection of bacteria, fungi, and viruses, and their respective gene complement - in this niche. The lung has unique features as a microbial environment, with balanced entry from the upper respiratory tract, clearance, and local replication. There are many pressures impacting the microbiome after transplantation, including donor allograft factors, recipient host factors such as underlying disease and ongoing exposure to the microbe-rich upper respiratory tract, and transplantation-related immunosuppression, antimicrobials, and postsurgical changes. To date, we understand that the lung microbiome after transplant is dysbiotic; that is, it has higher biomass and altered composition compared to a healthy lung. Emerging data suggest that specific microbiome features may be linked to host responses, both immune and non-immune, and clinical outcomes such as chronic lung allograft dysfunction (CLAD), but many questions remain. The goal of this review is to put into context our burgeoning understanding of the lung microbiome in the postlung transplant patient, the interactions between microbiome and host, the role the microbiome may play in post-transplant complications, and critical outstanding research questions.
Collapse
Affiliation(s)
- John E McGinniss
- Division of Pulmonary, Allergy and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Samantha A Whiteside
- Division of Pulmonary, Allergy and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Aurea Simon-Soro
- Department of Orthodontics and Divisions of Community Oral Health and Pediatric Dentistry, School of Dental Medicine at the University of Pennsylvania
| | - Joshua M Diamond
- Division of Pulmonary, Allergy and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jason D Christie
- Division of Pulmonary, Allergy and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fredrick D Bushman
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ronald G Collman
- Division of Pulmonary, Allergy and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
38
|
Mejía-Granados DM, Villasana-Salazar B, Lozano-García L, Cavalheiro EA, Striano P. Gut-microbiota-directed strategies to treat epilepsy: clinical and experimental evidence. Seizure 2021; 90:80-92. [PMID: 33762166 DOI: 10.1016/j.seizure.2021.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/18/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
|
39
|
Ansari A, Bose S, You Y, Park S, Kim Y. Molecular Mechanism of Microbiota Metabolites in Preterm Birth: Pathological and Therapeutic Insights. Int J Mol Sci 2021; 22:8145. [PMID: 34360908 PMCID: PMC8347546 DOI: 10.3390/ijms22158145] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Preterm birth (PTB) refers to the birth of infants before 37 weeks of gestation and is a challenging issue worldwide. Evidence reveals that PTB is a multifactorial dysregulation mediated by a complex molecular mechanism. Thus, a better understanding of the complex molecular mechanisms underlying PTB is a prerequisite to explore effective therapeutic approaches. During early pregnancy, various physiological and metabolic changes occur as a result of endocrine and immune metabolism. The microbiota controls the physiological and metabolic mechanism of the host homeostasis, and dysbiosis of maternal microbial homeostasis dysregulates the mechanistic of fetal developmental processes and directly affects the birth outcome. Accumulating evidence indicates that metabolic dysregulation in the maternal or fetal membranes stimulates the inflammatory cytokines, which may positively progress the PTB. Although labour is regarded as an inflammatory process, it is still unclear how microbial dysbiosis could regulate the molecular mechanism of PTB. In this review based on recent research, we focused on both the pathological and therapeutic contribution of microbiota-generated metabolites to PTB and the possible molecular mechanisms.
Collapse
Affiliation(s)
- AbuZar Ansari
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Mokdong Hospital, Seoul 07985, Korea; (A.A.); (Y.Y.); (S.P.)
| | - Shambhunath Bose
- Department of Bioscience, Sri Sathya Sai University for Human Excellence, Navanihal, Okali Post, Kamalapur, Kalaburagi, Karnataka 585313, India;
| | - Youngah You
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Mokdong Hospital, Seoul 07985, Korea; (A.A.); (Y.Y.); (S.P.)
| | - Sunwha Park
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Mokdong Hospital, Seoul 07985, Korea; (A.A.); (Y.Y.); (S.P.)
| | - Youngju Kim
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Mokdong Hospital, Seoul 07985, Korea; (A.A.); (Y.Y.); (S.P.)
| |
Collapse
|
40
|
Saito T, Wei Y, Wen L, Srinivasan C, Wolthers BO, Tsai CY, Harris MH, Stevenson K, Byersdorfer C, Oparaji JA, Fernandez C, Mukherjee A, Abu-El-Haija M, Agnihotri S, Schmiegelow K, Showalter MR, Fogle PW, McCulloch S, Contrepois K, Silverman LB, Ding Y, Husain SZ. Impact of acute lymphoblastic leukemia induction therapy: findings from metabolomics on non-fasted plasma samples from a biorepository. Metabolomics 2021; 17:64. [PMID: 34175981 PMCID: PMC11446541 DOI: 10.1007/s11306-021-01814-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/15/2021] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Acute lymphoblastic leukemia (ALL) is among the most common cancers in children. With improvements in combination chemotherapy regimens, the overall survival has increased to over 90%. However, the current challenge is to mitigate adverse events resulting from the complex therapy. Several chemotherapies intercept cancer metabolism, but little is known about their collective role in altering host metabolism. OBJECTIVES We profiled the metabolomic changes in plasma of ALL patients initial- and post- induction therapy. METHODS We exploited a biorepository of non-fasted plasma samples derived from the Dana Farber Cancer Institute ALL Consortium; these samples were obtained from 50 ALL patients initial- and post-induction therapy. Plasma metabolites and complex lipids were analyzed by high resolution tandem mass spectrometry and differential mobility tandem mass spectrometry. Data were analyzed using a covariate-adjusted regression model with multiplicity adjustment. Pathway enrichment analysis and co-expression network analysis were performed to identify unique clusters of molecules. RESULTS More than 1200 metabolites and complex lipids were identified in the total of global metabolomics and lipidomics platforms. Over 20% of those molecules were significantly altered. In the pathway enrichment analysis, lipids, particularly phosphatidylethanolamines (PEs), were identified. Network analysis indicated that the bioactive fatty acids, docosahexaenoic acid (DHA)-containing (22:6) triacylglycerols (TAGs), were decreased in the post-induction therapy. CONCLUSION Metabolomic profiling in ALL patients revealed a large number of alterations following induction chemotherapy. In particular, lipid metabolism was substantially altered. The changes in metabolites and complex lipids following induction therapy could provide insight into the adverse events experienced by ALL patients.
Collapse
Affiliation(s)
- Toshie Saito
- Department of Pediatrics, Stanford University, 750 Welch Road, Palo Alto, CA, 94304, USA
| | - Yue Wei
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Li Wen
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chaitanya Srinivasan
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin O Wolthers
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Cheng-Yu Tsai
- Department of Pediatrics, Stanford University, 750 Welch Road, Palo Alto, CA, 94304, USA
| | - Marian H Harris
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Kristen Stevenson
- Department of Data Sciences at Dana-Farber Cancer Institute, Boston, MA, USA
| | - Craig Byersdorfer
- Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular Therapies, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Christian Fernandez
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amitava Mukherjee
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maisam Abu-El-Haija
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Sameer Agnihotri
- School of Medicine, Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | | | | | - Kevin Contrepois
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Lewis B Silverman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Pediatric Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Ying Ding
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sohail Z Husain
- Department of Pediatrics, Stanford University, 750 Welch Road, Palo Alto, CA, 94304, USA.
| |
Collapse
|
41
|
Shaligram S, Narwade NP, Kumbhare SV, Bordoloi M, Tamuli KJ, Nath S, Parimelazhagan T, Patil VS, Kapley A, Pawar SP, Dhotre DP, Muddeshwar MG, Purohit HJ, Shouche YS. Integrated Genomic and Functional Characterization of the Anti-diabetic Potential of Arthrobacter sp. SW1. Curr Microbiol 2021; 78:2577-2588. [PMID: 33983483 DOI: 10.1007/s00284-021-02523-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 04/28/2021] [Indexed: 11/29/2022]
Abstract
For decades, bacterial natural products have served as valuable resources for developing novel drugs to treat several human diseases. Recent advancements in the integrative approach of using genomic and functional tools have proved beneficial in obtaining a comprehensive understanding of these biomolecules. This study presents an in-depth characterization of the anti-diabetic activity exhibited by a bacterial isolate SW1, isolated from an effluent treatment plant. As a primary screening, we assessed the isolate for its potential to inhibit alpha-amylase and alpha-glucosidase enzymes. Upon confirmation, we further utilized LC-MS, ESI-MS/MS, and NMR spectroscopy to identify and characterize the biomolecule. These efforts were coupled with the genomic assessment of the biosynthetic gene cluster involved in the anti-diabetic compound production. Our investigation discovered that the isolate SW1 inhibited both α-amylase and α-glucosidase activity. The chemical analysis suggested the production of acarbose, an anti-diabetic biomolecule, which was further confirmed by the presence of biosynthetic gene cluster "acb" in the genome. Our in-depth chemical characterization and genome mining approach revealed the potential of bacteria from an unconventional niche, an effluent treatment plant. To the best of our knowledge, it is one of the first few reports of acarbose production from the genus Arthrobacter.
Collapse
Affiliation(s)
- Shraddha Shaligram
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Central Tower, Sai Trinity Complex, Pashan, Pune, 411021, India.
| | - Nitin P Narwade
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Central Tower, Sai Trinity Complex, Pashan, Pune, 411021, India
| | - Shreyas V Kumbhare
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Central Tower, Sai Trinity Complex, Pashan, Pune, 411021, India
| | - Manobjyoti Bordoloi
- Chemical Sciences and Technology Division, CSIR North East Institute of Science & Technology, Jorhat, Assam, 785006, India.
| | - Kashyap J Tamuli
- Chemical Sciences and Technology Division, CSIR North East Institute of Science & Technology, Jorhat, Assam, 785006, India
| | - Shyamalendu Nath
- Chemical Sciences and Technology Division, CSIR North East Institute of Science & Technology, Jorhat, Assam, 785006, India
| | - T Parimelazhagan
- Department of Botany, Bioprospecting Laboratory, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Vikas S Patil
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Central Tower, Sai Trinity Complex, Pashan, Pune, 411021, India
| | - Atya Kapley
- Environmental Biotechnology and Genomics Division, National Environmental Engineering Research Institute, CSIR-NEERI, Nehru Marg, Nagpur, 440020, India
| | - Shrikant P Pawar
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Central Tower, Sai Trinity Complex, Pashan, Pune, 411021, India
| | - Dhiraj P Dhotre
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Central Tower, Sai Trinity Complex, Pashan, Pune, 411021, India
| | - M G Muddeshwar
- Department of Biochemistry, Government Medical College, Nagpur, Maharashtra, 440009, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, National Environmental Engineering Research Institute, CSIR-NEERI, Nehru Marg, Nagpur, 440020, India
| | - Yogesh S Shouche
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Central Tower, Sai Trinity Complex, Pashan, Pune, 411021, India
| |
Collapse
|
42
|
Sudhakar P, Machiels K, Verstockt B, Korcsmaros T, Vermeire S. Computational Biology and Machine Learning Approaches to Understand Mechanistic Microbiome-Host Interactions. Front Microbiol 2021; 12:618856. [PMID: 34046017 PMCID: PMC8148342 DOI: 10.3389/fmicb.2021.618856] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
The microbiome, by virtue of its interactions with the host, is implicated in various host functions including its influence on nutrition and homeostasis. Many chronic diseases such as diabetes, cancer, inflammatory bowel diseases are characterized by a disruption of microbial communities in at least one biological niche/organ system. Various molecular mechanisms between microbial and host components such as proteins, RNAs, metabolites have recently been identified, thus filling many gaps in our understanding of how the microbiome modulates host processes. Concurrently, high-throughput technologies have enabled the profiling of heterogeneous datasets capturing community level changes in the microbiome as well as the host responses. However, due to limitations in parallel sampling and analytical procedures, big gaps still exist in terms of how the microbiome mechanistically influences host functions at a system and community level. In the past decade, computational biology and machine learning methodologies have been developed with the aim of filling the existing gaps. Due to the agnostic nature of the tools, they have been applied in diverse disease contexts to analyze and infer the interactions between the microbiome and host molecular components. Some of these approaches allow the identification and analysis of affected downstream host processes. Most of the tools statistically or mechanistically integrate different types of -omic and meta -omic datasets followed by functional/biological interpretation. In this review, we provide an overview of the landscape of computational approaches for investigating mechanistic interactions between individual microbes/microbiome and the host and the opportunities for basic and clinical research. These could include but are not limited to the development of activity- and mechanism-based biomarkers, uncovering mechanisms for therapeutic interventions and generating integrated signatures to stratify patients.
Collapse
Affiliation(s)
- Padhmanand Sudhakar
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Earlham Institute, Norwich, United Kingdom
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Kathleen Machiels
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Bram Verstockt
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Tamas Korcsmaros
- Earlham Institute, Norwich, United Kingdom
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Séverine Vermeire
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
43
|
Ailioaie LM, Litscher G. Probiotics, Photobiomodulation, and Disease Management: Controversies and Challenges. Int J Mol Sci 2021; 22:4942. [PMID: 34066560 PMCID: PMC8124384 DOI: 10.3390/ijms22094942] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
In recent decades, researchers around the world have been studying intensively how micro-organisms that are present inside living organisms could affect the main processes of life, namely health and pathological conditions of mind or body. They discovered a relationship between the whole microbial colonization and the initiation and development of different medical disorders. Besides already known probiotics, novel products such as postbiotics and paraprobiotics have been developed in recent years to create new non-viable micro-organisms or bacterial-free extracts, which can provide benefits to the host with additional bioactivity to probiotics, but without the risk of side effects. The best alternatives in the use of probiotics and postbiotics to maintain the health of the intestinal microbiota and to prevent the attachment of pathogens to children and adults are highlighted and discussed as controversies and challenges. Updated knowledge of the molecular and cellular mechanisms involved in the balance between microbiota and immune system for the introspection on the gut-lung-brain axis could reveal the latest benefits and perspectives of applied photobiomics for health. Multiple interconditioning between photobiomodulation (PBM), probiotics, and the human microbiota, their effects on the human body, and their implications for the management of viral infectious diseases is essential. Coupled complex PBM and probiotic interventions can control the microbiome, improve the activity of the immune system, and save the lives of people with immune imbalances. There is an urgent need to seek and develop innovative treatments to successfully interact with the microbiota and the human immune system in the coronavirus crisis. In the near future, photobiomics and metabolomics should be applied innovatively in the SARS-CoV-2 crisis (to study and design new therapies for COVID-19 immediately), to discover how bacteria can help us through adequate energy biostimulation to combat this pandemic, so that we can find the key to the hidden code of communication between RNA viruses, bacteria, and our body.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania;
- Ultramedical & Laser Clinic, 83 Arcu Street, 700135 Iasi, Romania
| | - Gerhard Litscher
- Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, and Traditional Chinese Medicine (TCM) Research Center Graz, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
| |
Collapse
|
44
|
Internal connections between dietary intake and gut microbiota homeostasis in disease progression of ulcerative colitis: a review. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
The gut microbial metabolite trimethylamine N-oxide aggravates GVHD by inducing M1 macrophage polarization in mice. Blood 2021; 136:501-515. [PMID: 32291445 DOI: 10.1182/blood.2019003990] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
The diversity of the human microbiome heralds the difference of the impact that gut microbial metabolites exert on allogenic graft-versus-host (GVH) disease (GVHD), even though short-chain fatty acids and indole were demonstrated to reduce its severity. In this study, we dissected the role of choline-metabolized trimethylamine N-oxide (TMAO) in the GVHD process. Either TMAO or a high-choline diet enhanced the allogenic GVH reaction, whereas the analog of choline, 3,3-dimethyl-1-butanol reversed TMAO-induced GVHD severity. Interestingly, TMAO-induced alloreactive T-cell proliferation and differentiation into T-helper (Th) subtypes was seen in GVHD mice but not in in vitro cultures. We thus investigated the role of macrophage polarization, which was absent from the in vitro culture system. F4/80+CD11b+CD16/32+ M1 macrophage and signature genes, IL-1β, IL-6, TNF-α, CXCL9, and CXCL10, were increased in TMAO-induced GVHD tissues and in TMAO-cultured bone marrow-derived macrophages (BMDMs). Inhibition of the NLRP3 inflammasome reversed TMAO-stimulated M1 features, indicating that NLRP3 is the key proteolytic activator involved in the macrophage's response to TMAO stimulation. Consistently, mitochondrial reactive oxygen species and enhanced NF-κB nuclear relocalization were investigated in TMAO-stimulated BMDMs. In vivo depletion of NLRP3 in GVHD recipients not only blocked M1 polarization but also reversed GVHD severity in the presence of TMAO treatment. In conclusion, our data revealed that TMAO-induced GVHD progression resulted from Th1 and Th17 differentiation, which is mediated by the polarized M1 macrophage requiring NLRP3 inflammasome activation. It provides the link among the host choline diet, microbial metabolites, and GVH reaction, shedding light on alleviating GVHD by controlling choline intake.
Collapse
|
46
|
Khan A, Ding Z, Ishaq M, Bacha AS, Khan I, Hanif A, Li W, Guo X. Understanding the Effects of Gut Microbiota Dysbiosis on Nonalcoholic Fatty Liver Disease and the Possible Probiotics Role: Recent Updates. Int J Biol Sci 2021; 17:818-833. [PMID: 33767591 PMCID: PMC7975705 DOI: 10.7150/ijbs.56214] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is leading chronic liver syndrome worldwide. Gut microbiota dysbiosis significantly contributes to the pathogenesis and severity of NAFLD. However, its role is complex and even unclear. Treatment of NAFLD through chemotherapeutic agents have been questioned because of their side effects on health. In this review, we highlighted and discussed the current understanding on the importance of gut microbiota, its dysbiosis and its effects on the gut-liver axis and gut mucosa. Further, we discussed key mechanisms involved in gut dysbiosis to provide an outline of its role in progression to NAFLD and liver cirrhosis. In addition, we also explored the potential role of probiotics as a treatment approach for the prevention and treatment of NAFLD. Based on the latest findings, it is evident that microbiota targeted interventions mostly the use of probiotics have shown promising effects and can possibly alleviate the gut microbiota dysbiosis, regulate the metabolic pathways which in turn inhibit the progression of NAFLD through the gut-liver axis. However, very limited studies in humans are available on this issue and suggest further research work to identify a specific core microbiome association with NAFLD and to discover its mechanism of pathogenesis, which will help to enhance the therapeutic potential of probiotics to NAFLD.
Collapse
Affiliation(s)
- Ashiq Khan
- School of Life Sciences, Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China
- Department of Microbiology, Balochistan University of Information Technology Engineering & Management Sciences Quetta 87300, Pakistan
| | - Zitong Ding
- School of Life Sciences, Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China
| | - Muhammad Ishaq
- School of Life Sciences, Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China
| | - Ali Sher Bacha
- School of Life Sciences, Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China
| | - Israr Khan
- School of Life Sciences, Institute of Microbiology Lanzhou University, Lanzhou 730000, PR China
| | - Anum Hanif
- School of Life Sciences, Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China
| | - Wenyuan Li
- School of Life Sciences, Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China
| | - Xusheng Guo
- School of Life Sciences, Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
47
|
Li X, Zheng J, Ma X, Zhang B, Zhang J, Wang W, Sun C, Wang Y, Zheng J, Chen H, Tao J, Wang H, Zhang F, Wang J, Zhang H. The oral microbiome of pregnant women facilitates gestational diabetes discrimination. J Genet Genomics 2021; 48:32-39. [PMID: 33663937 DOI: 10.1016/j.jgg.2020.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
The oral microbiota plays an important role in the development of various diseases, whereas its association with gestational diabetes mellitus (GDM) remains largely unclear. The aim of this study is to identify biomarkers from the oral microbiota of GDM patients by analyzing the microbiome of the saliva and dental plaque samples of 111 pregnant women. We find that the microbiota of both types of oral samples in GDM patients exhibits differences and significantly varies from that of patients with periodontitis or dental caries. Using bacterial biomarkers from the oral microbiota, GDM classification models based on support vector machine and random forest algorithms are constructed. The area under curve (AUC) value of the classification model constructed by combination of Lautropia and Neisseria in dental plaque and Streptococcus in saliva reaches 0.83, and the value achieves a maximum value of 0.89 by adding clinical features. These findings suggest that certain bacteria in either saliva or dental plaque can effectively distinguish women with GDM from healthy pregnant women, which provides evidence of oral microbiome as an informative source for developing noninvasive biomarkers of GDM.
Collapse
Affiliation(s)
- Xiaoqing Li
- Wenzhou People's Hospital/Wenzhou Maternal and Child Health Care Hospital/The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Jiayong Zheng
- Wenzhou People's Hospital/Wenzhou Maternal and Child Health Care Hospital/The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Xiuling Ma
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Zhang
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyang Zhang
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhuan Wang
- Wenzhou People's Hospital/Wenzhou Maternal and Child Health Care Hospital/The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Congcong Sun
- Wenzhou People's Hospital/Wenzhou Maternal and Child Health Care Hospital/The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Yeping Wang
- Wenzhou People's Hospital/Wenzhou Maternal and Child Health Care Hospital/The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Jianqiong Zheng
- Wenzhou People's Hospital/Wenzhou Maternal and Child Health Care Hospital/The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Haiying Chen
- Wenzhou People's Hospital/Wenzhou Maternal and Child Health Care Hospital/The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Jiejing Tao
- Wenzhou People's Hospital/Wenzhou Maternal and Child Health Care Hospital/The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Hai Wang
- Wenzhou People's Hospital/Wenzhou Maternal and Child Health Care Hospital/The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Fengyi Zhang
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Wang
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hongping Zhang
- Wenzhou People's Hospital/Wenzhou Maternal and Child Health Care Hospital/The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
48
|
Sharpton SR, Schnabl B, Knight R, Loomba R. Current Concepts, Opportunities, and Challenges of Gut Microbiome-Based Personalized Medicine in Nonalcoholic Fatty Liver Disease. Cell Metab 2021; 33:21-32. [PMID: 33296678 PMCID: PMC8414992 DOI: 10.1016/j.cmet.2020.11.010] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 10/16/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NALFD) is now a leading cause of chronic liver disease worldwide, in part, as a consequence of rapidly rising levels of obesity and metabolic syndrome and is a major risk factor for cirrhosis, hepatocellular carcinoma, and liver-related mortality. From NAFLD stems a myriad of clinical challenges related to both diagnosis and management. A growing body of evidence suggests an intricate linkage between the gut microbiome and the pathogenesis of NAFLD. We highlight how our current knowledge of the gut-liver axis in NAFLD may be leveraged to develop gut microbiome-based personalized approaches for disease management, including its use as a non-invasive biomarker for diagnosis and staging, as a target for therapeutic modulation, and as a marker of drug response. We will also discuss current limitations of these microbiome-based approaches. Ultimately, a better understanding of microbiota-host interactions in NAFLD will inform the development of novel preventative strategies and precise therapeutic targets.
Collapse
Affiliation(s)
- S R Sharpton
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; NAFLD Research Center, Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
| | - B Schnabl
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - R Knight
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA; Department of Computer Science & Engineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA, USA; Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - R Loomba
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; NAFLD Research Center, Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
49
|
Xu M, Yang K, Zhu J. Monitoring the Diversity and Metabolic Shift of Gut Microbes during Green Tea Feeding in an In Vitro Human Colonic Model. Molecules 2020; 25:E5101. [PMID: 33153091 PMCID: PMC7663002 DOI: 10.3390/molecules25215101] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
The human gut microbiome plays an important role in human health, and many factors such as environment, host genetics, age, and diet have been found to influence the microbial composition. Tea, as one of the widely consumed beverages, has been known for centuries to have antioxidant, anti-inflammatory, and anticancer effects. To investigate the impact of green tea polyphenol on the diversity and metabolic functions of human gut microbes, we applied an in vitro human colonic model (HCM) in this study to mimic a short-term green tea ingestion event and investigate its related changes to gut microbial composition and their metabolic functions. The pH, temperature, anaerobic environment, feeding nutrient, and time point in each compartment of the HCM were tightly controlled to simulate the intestinal system, and pooled human fecal samples of two healthy volunteers were used for the colon microbiota inoculation within the colonic model. By adding green tea extract (GTE) to the growth medium, the detailed impacts of GTE polyphenol on gut microbial population/diversity, gut microbial metabolites, metabolic pathways, and their associations were investigated via 16 S ribosomal DNA sequencing and liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) analyses. Our data indicated that the treatment of green tea extract applied to gut microbiota can induce a significant decrease in the abundance of Firmicutes and a slight decrease in the abundance of Bacteroidetes, and these changes result in a decreased Firmicutes/Bacteroidetes ratio, which can be an effective indicator for successful GTE intervention, which may generate beneficial health effect to human. Meanwhile, the relative abundances of many detected bacteria genera among three HCM vessels changed through the GTE intervention. The overall effects of GTE on gut microbial beta-diversity were observed by multivariate statistical analyses, and the differences in metabolic profiles from different GTE treatment stages were detected. Moreover, we identified several associations between microbial population and microbial metabolites, which may assist us in establishing new hypotheses for future related studies. In summary, our study suggested that the microbial compositional changes induced by GTE also changed their metabolic functions, and consequentially, may change the host metabolism and impact human health.
Collapse
Affiliation(s)
- Mengyang Xu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; (M.X.); (K.Y.)
| | - Kundi Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; (M.X.); (K.Y.)
| | - Jiangjiang Zhu
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
50
|
Jackson MI, Waldy C, Jewell DE. Dietary resistant starch preserved through mild extrusion of grain alters fecal microbiome metabolism of dietary macronutrients while increasing immunoglobulin A in the cat. PLoS One 2020; 15:e0241037. [PMID: 33141838 PMCID: PMC7608938 DOI: 10.1371/journal.pone.0241037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Dietary digestion-resistant starch (RS) provides health benefits to the host via gut microbiome-mediated metabolism. The degree to which cats manifest beneficial changes in response to RS intake was examined. Healthy cats (N = 36) were fed identically formulated foods processed under high (n = 17) or low (n = 19) shear extrusion conditions (low and high RS levels [LRS and HRS], respectively). Fecal samples collected after 3 and 6 weeks' feeding were assayed for stool firmness score, short-chain fatty acids, ammonia, and changes to the global metabolome and microbiome; fecal immunoglobulin A (IgA) was analyzed at week 6. Few differences were seen in proximate analyses of the foods; stool firmness scores did not differ. In cats consuming HRS food, concentrations of fecal butyrate and the straight chain:branched chain fatty acid ratio were significantly greater in feces at both weeks 3 and 6, while fecal ammonia was reduced at week 6 relative to feces from LRS-fed cats. Fecal IgA concentrations were significantly higher at week 6 with HRS food. RS consumption altered 47% of the fecal metabolome; RS-derived sugars and metabolites associated with greater gut health, including indoles and polyamines, increased in the cats consuming HRS food relative to those fed the LS food, while endocannabinoid N-acylethanolamines decreased. Consumption of HRS food increased concentrations of the ketone body 3-hydroxybutyrate in feces and elevated concentrations of reduced members of NADH-coupled redox congeners and NADH precursors. At the microbiome genus-level, 21% of operational taxonomic units were significantly different between food types; many involved taxa with known saccharolytic or proteolytic proclivities. Microbiome taxa richness and Shannon and Simpson alpha diversity were significantly higher in the HRS group at both weeks. These data show that feline consumption of grain-derived RS produces potentially beneficial shifts in microbiota-mediated metabolism and increases IgA production.
Collapse
Affiliation(s)
- Matthew I. Jackson
- Pet Nutrition Center, Hill's Pet Nutrition, Inc., Topeka, KS, United States of America
| | - Christopher Waldy
- Pet Nutrition Center, Hill's Pet Nutrition, Inc., Topeka, KS, United States of America
| | - Dennis E. Jewell
- Pet Nutrition Center, Hill's Pet Nutrition, Inc., Topeka, KS, United States of America
| |
Collapse
|