1
|
Agarwala P, Pal A, Hazra MK, Sasmal DK. Differential Mg 2+ deposition on DNA Holliday Junctions dictates the rate and stability of conformational exchange. NANOSCALE 2024; 17:520-532. [PMID: 39569634 DOI: 10.1039/d4nr02411g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
DNA Holliday junctions (HJs) are crucial intermediates in genetic recombination and genome repair processes, characterized by a dynamic nature and transitioning among multiple conformations on the timescale ranging from sub-milliseconds to seconds. Although the influence of ions on HJ dynamics has been extensively studied, precise quantification of the thermodynamic feasibility of transitions and detailed kinetic cooperativity remain unexplored. Understanding the heterogeneity of stochastic gene recombination using ensemble-averaged experimental techniques is extremely difficult because of its lack of ability to differentiate dynamics and function in a high spatiotemporal resolution. Herein, we developed a new technique that combines single-molecule fluorescence resonance energy transfer (smFRET) experiments and molecular simulation to investigate the kinetic choreography and preferential stability of HJ conformations under ionic conditions that closely mimic the physiological environment relevant to cellular biology. Our findings predict the prevalence of three distinct conformational macrostates in HJ dynamics. At low ion concentrations, HJs transition rapidly among three thermodynamically stable conformational macrostates. However, in a physiological ionic environment, the open conformation becomes predominant. Using a kinetic network model based on the multi-order time correlation function (TCF), we delineated thermodynamic parameters that govern heterogeneous dynamics as a function of divalent ion concentration. Stabilization of conformations due to an ionic environment and activation barriers concertedly affect transition rates between open and closed conformations. Furthermore, we observed a significant enhancement of Mg2+ condensation in the central region of HJs rather than branch ends, leading to a plausible conclusion that the differential stability of conformational states may be governed by the junction region of HJs rather than duplex branches. This study gives a new insight into the complex interplay between the ionic environment and HJ dynamics, offering a comprehensive understanding of their behavior under conditions relevant to cellular biology and roles in key biological processes for creating a heterogeneous nature of life.
Collapse
Affiliation(s)
- Pratibha Agarwala
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan 342037, India.
| | - Arumay Pal
- School of Biosciences, Engineering and Technology, Vellore Institute of Technology Bhopal, India
| | - Milan Kumar Hazra
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan 342037, India.
| | - Dibyendu K Sasmal
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan 342037, India.
| |
Collapse
|
2
|
Severins I, Bastiaanssen C, Kim SH, Simons RB, van Noort J, Joo C. Single-molecule structural and kinetic studies across sequence space. Science 2024; 385:898-904. [PMID: 39172834 DOI: 10.1126/science.adn5968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/01/2024] [Indexed: 08/24/2024]
Abstract
At the core of molecular biology lies the intricate interplay between sequence, structure, and function. Single-molecule techniques provide in-depth dynamic insights into structure and function, but laborious assays impede functional screening of large sequence libraries. We introduce high-throughput Single-molecule Parallel Analysis for Rapid eXploration of Sequence space (SPARXS), integrating single-molecule fluorescence with next-generation sequencing. We applied SPARXS to study the sequence-dependent kinetics of the Holliday junction, a critical intermediate in homologous recombination. By examining the dynamics of millions of Holliday junctions, covering thousands of distinct sequences, we demonstrated the ability of SPARXS to uncover sequence patterns, evaluate sequence motifs, and construct thermodynamic models. SPARXS emerges as a versatile tool for untangling the mechanisms that underlie sequence-specific processes at the molecular scale.
Collapse
Affiliation(s)
- Ivo Severins
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, Netherlands
| | - Carolien Bastiaanssen
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Sung Hyun Kim
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Roy B Simons
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - John van Noort
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, Netherlands
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
3
|
Craig JS, Melidis L, Williams HD, Dettmer SJ, Heidecker AA, Altmann PJ, Guan S, Campbell C, Browning DF, Sigel RKO, Johannsen S, Egan RT, Aikman B, Casini A, Pöthig A, Hannon MJ. Organometallic Pillarplexes That Bind DNA 4-Way Holliday Junctions and Forks. J Am Chem Soc 2023. [PMID: 37318835 DOI: 10.1021/jacs.3c00118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Holliday 4-way junctions are key to important biological DNA processes (insertion, recombination, and repair) and are dynamic structures that adopt either open or closed conformations, the open conformation being the biologically active form. Tetracationic metallo-supramolecular pillarplexes display aryl faces about a cylindrical core, an ideal structure to interact with open DNA junction cavities. Combining experimental studies and MD simulations, we show that an Au pillarplex can bind DNA 4-way (Holliday) junctions in their open form, a binding mode not accessed by synthetic agents before. Pillarplexes can bind 3-way junctions too, but their large size leads them to open up and expand that junction, disrupting the base pairing, which manifests in an increased hydrodynamic size and lower junction thermal stability. At high loading, they rearrange both 4-way and 3-way junctions into Y-shaped forks to increase the available junction-like binding sites. Isostructural Ag pillarplexes show similar DNA junction binding behavior but lower solution stability. This pillarplex binding contrasts with (but complements) that of metallo-supramolecular cylinders, which prefer 3-way junctions and can rearrange 4-way junctions into 3-way junction structures. The pillarplexes' ability to bind open 4-way junctions creates exciting possibilities to modulate and switch such structures in biology, as well as in synthetic nucleic acid nanostructures. In human cells, the pillarplexes do reach the nucleus, with antiproliferative activity at levels similar to those of cisplatin. The findings provide a new roadmap for targeting higher-order junction structures using a metallo-supramolecular approach, as well as expanding the toolbox available to design bioactive junction binders into organometallic chemistry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Roland K O Sigel
- Department of Chemistry, University of Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland
| | - Silke Johannsen
- Department of Chemistry, University of Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
4
|
Singh A, Yadav RK, Shati A, Kamboj NK, Hasssan H, Bharadwaj S, Rana R, Yadava U. Understanding the self-assembly dynamics of A/T absent 'four-way DNA junctions with sticky ends' at altered physiological conditions through molecular dynamics simulations. PLoS One 2023; 18:e0278755. [PMID: 36753480 PMCID: PMC9907842 DOI: 10.1371/journal.pone.0278755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/22/2022] [Indexed: 02/09/2023] Open
Abstract
Elucidation of structure and dynamics of alternative higher-order structures of DNA such as in branched form could be targeted for therapeutics designing. Herein, we are reporting the intrinsically dynamic and folds transitions of an unusual DNA junction with sequence d(CGGCGGCCGC)4 which self-assembles into a four-way DNA junction form with sticky ends using long interval molecular simulations under various artificial physiological conditions. The original crystal structure coordinates (PDB ID: 3Q5C) for the selected DNA junction was considered for a total of 1.1 μs molecular dynamics simulation interval, including different temperature and pH, under OPLS-2005 force field using DESMOND suite. Following, post-dynamics structure parameters for the DNA junction were calculated and analyzed by comparison to the crystal structure. We show here that the self-assembly dynamics of DNA junction is mitigated by the temperature and pH sensitivities, and discloses peculiar structural properties as function of time. From this study it can be concluded on account of temperature sensitive and pH dependent behaviours, DNA junction periodic arrangements can willingly be synthesized and redeveloped for multiple uses like genetic biomarkers, DNA biosensor, DNA nanotechnology, DNA Zipper, etc. Furthermore, the pH dis-regulation behaviour may be used to trigger the functionality of DNA made drug-releasing nanomachines.
Collapse
Affiliation(s)
- Akanksha Singh
- Department of Physics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, India
| | | | - Ali Shati
- Department of Biology, Faculty of Science, King Khaild University, Abha, Saudi Arabia
| | - Nitin Kumar Kamboj
- School of Physical Sciences, DIT University, Dehradun, Uttarakhand, India
| | - Hesham Hasssan
- Department of Pathology, College of Medicine, King Khaild University, Abha, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Shiv Bharadwaj
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
- * E-mail: (SB); (RR); (UY)
| | - Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
- * E-mail: (SB); (RR); (UY)
| | - Umesh Yadava
- Department of Physics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, India
- * E-mail: (SB); (RR); (UY)
| |
Collapse
|
5
|
Chiriboga M, Green CM, Mathur D, Hastman DA, Melinger JS, Veneziano R, Medintz IL, Díaz SA. Structural and optical variation of pseudoisocyanine aggregates nucleated on DNA substrates. Methods Appl Fluoresc 2023; 11. [PMID: 36719011 PMCID: PMC10362908 DOI: 10.1088/2050-6120/acb2b4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/12/2023] [Indexed: 02/01/2023]
Abstract
Coherently coupled pseudoisocyanine (PIC) dye aggregates have demonstrated the ability to delocalize electronic excitations and ultimately migrate excitons with much higher efficiency than similar designs where excitations are isolated to individual chromophores. Here, we report initial evidence of a new type of PIC aggregate, formed through heterogeneous nucleation on DNA oligonucleotides, displaying photophysical properties that differ significantly from previously reported aggregates. This new aggregate, which we call the super aggregate (SA) due to the need for elevated dye excess to form it, is clearly differentiated from previously reported aggregates by spectroscopic and biophysical characterization. In emission spectra, the SA exhibits peak narrowing and, in some cases, significant quantum yield variation, indicative of stronger coupling in cyanine dyes. The SA was further characterized with circular dichroism and atomic force microscopy observing unique features depending on the DNA substrate. Then by integrating an AlexaFluorTM647 (AF) dye as an energy transfer acceptor into the system, we observed mixed energy transfer characteristics using the different DNA. For example, SA formed with a rigid DNA double crossover tile (DX-tile) substrate resulted in AF emission sensitization. While SA formed with more flexible non-DX-tile DNA (i.e. duplex and single strand DNA) resulted in AF emission quenching. These combined characterizations strongly imply that DNA-based PIC aggregate properties can be controlled through simple modifications to the DNA substrate's sequence and geometry. Ultimately, we aim to inform rational design principles for future device prototyping. For example, one key conclusion of the study is that the high absorbance cross-section and efficient energy transfer observed with rigid substrates made for better photonic antennae, compared to flexible DNA substrates.
Collapse
Affiliation(s)
- Matthew Chiriboga
- Center for Bio/Molecular Science and Engineering Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W. Washington, DC 20375, United States of America.,Department of Bioengineering. College of Engineering and Computing, George Mason University, 4400 University Drive, Fairfax, VA 22030, United States of America
| | - Christopher M Green
- Center for Bio/Molecular Science and Engineering Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W. Washington, DC 20375, United States of America
| | - Divita Mathur
- Center for Bio/Molecular Science and Engineering Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W. Washington, DC 20375, United States of America.,Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - David A Hastman
- Center for Bio/Molecular Science and Engineering Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W. Washington, DC 20375, United States of America
| | - Joseph S Melinger
- Electronics Sciences and Technology Division, U.S. Naval Research Laboratory, 4555 Overlook Ave. S.W. Washington, DC 20375, United States of America
| | - Remi Veneziano
- Department of Bioengineering. College of Engineering and Computing, George Mason University, 4400 University Drive, Fairfax, VA 22030, United States of America
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W. Washington, DC 20375, United States of America
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W. Washington, DC 20375, United States of America
| |
Collapse
|
6
|
Cofsky JC, Knott GJ, Gee CL, Doudna JA. Crystal structure of an RNA/DNA strand exchange junction. PLoS One 2022; 17:e0263547. [PMID: 35436289 PMCID: PMC9015157 DOI: 10.1371/journal.pone.0263547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/04/2022] [Indexed: 11/29/2022] Open
Abstract
Short segments of RNA displace one strand of a DNA duplex during diverse processes including transcription and CRISPR-mediated immunity and genome editing. These strand exchange events involve the intersection of two geometrically distinct helix types-an RNA:DNA hybrid (A-form) and a DNA:DNA homoduplex (B-form). Although previous evidence suggests that these two helices can stack on each other, it is unknown what local geometric adjustments could enable A-on-B stacking. Here we report the X-ray crystal structure of an RNA-5'/DNA-3' strand exchange junction at an anisotropic resolution of 1.6 to 2.2 Å. The structure reveals that the A-to-B helical transition involves a combination of helical axis misalignment, helical axis tilting and compression of the DNA strand within the RNA:DNA helix, where nucleotides exhibit a mixture of A- and B-form geometry. These structural principles explain previous observations of conformational stability in RNA/DNA exchange junctions, enabling a nucleic acid architecture that is repeatedly populated during biological strand exchange events.
Collapse
Affiliation(s)
- Joshua C. Cofsky
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Gavin J. Knott
- Department of Biochemistry & Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Christine L. Gee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Jennifer A. Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
- Department of Chemistry, University of California, Berkeley, Berkeley, California, United States of America
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, Berkeley, California, United States of America
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, United States of America
- Gladstone Institutes, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
7
|
van Rixel VHS, Busemann A, Wissingh MF, Hopkins SL, Siewert B, van de Griend C, Siegler MA, Marzo T, Papi F, Ferraroni M, Gratteri P, Bazzicalupi C, Messori L, Bonnet S. Induction of a Four-Way Junction Structure in the DNA Palindromic Hexanucleotide 5'-d(CGTACG)-3' by a Mononuclear Platinum Complex. Angew Chem Int Ed Engl 2019; 58:9378-9382. [PMID: 31046177 PMCID: PMC6618160 DOI: 10.1002/anie.201814532] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 12/22/2022]
Abstract
Four-way junctions (4WJs) are supramolecular DNA assemblies comprising four interacting DNA strands that in biology are involved in DNA-damage repair. In this study, a new mononuclear platinum(II) complex 1 was prepared that is capable of driving the crystallization of the DNA oligomer 5'-d(CGTACG)-3' specifically into a 4WJ-like motif. In the crystal structure of the 1-CGTACG adduct, the distorted-square-planar platinum complex binds to the core of the 4WJ-like motif through π-π stacking and hydrogen bonding, without forming any platinum-nitrogen coordination bonds. Our observations suggest that the specific molecular properties of the metal complex are crucially responsible for triggering the selective assembly of this peculiar DNA superstructure.
Collapse
Affiliation(s)
- Vincent H. S. van Rixel
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, PO Box 95022333CCLeidenThe Netherlands
| | - Anja Busemann
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, PO Box 95022333CCLeidenThe Netherlands
| | - Mathijs F. Wissingh
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, PO Box 95022333CCLeidenThe Netherlands
| | - Samantha L. Hopkins
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, PO Box 95022333CCLeidenThe Netherlands
| | - Bianka Siewert
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, PO Box 95022333CCLeidenThe Netherlands
| | - Corjan van de Griend
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, PO Box 95022333CCLeidenThe Netherlands
| | | | - Tiziano Marzo
- Department of PharmacyUniversity of PisaVia Bonanno Pisano 656126PisaItaly
| | - Francesco Papi
- Department of ChemistryUniversity of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI)Italy
| | - Marta Ferraroni
- Department of ChemistryUniversity of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI)Italy
| | - Paola Gratteri
- Department NEUROFARBA—Pharmaceutical and Nutraceutical sectionLaboratory of Molecular Modeling Cheminformatics and QSARUniversity of FlorenceVia Ugo Schiff 650019Sesto Fiorentino (FI)Italy
| | - Carla Bazzicalupi
- Department of ChemistryUniversity of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI)Italy
| | - Luigi Messori
- Department of Chemistry “Ugo Schiff”University of FlorenceItaly
| | - Sylvestre Bonnet
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, PO Box 95022333CCLeidenThe Netherlands
| |
Collapse
|
8
|
van Rixel VHS, Busemann A, Wissingh MF, Hopkins SL, Siewert B, van de Griend C, Siegler MA, Marzo T, Papi F, Ferraroni M, Gratteri P, Bazzicalupi C, Messori L, Bonnet S. Induction of a Four‐Way Junction Structure in the DNA Palindromic Hexanucleotide 5′‐d(CGTACG)‐3′ by a Mononuclear Platinum Complex. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Vincent H. S. van Rixel
- Leiden Institute of ChemistryLeiden University Einsteinweg 55, PO Box 9502 2333CC Leiden The Netherlands
| | - Anja Busemann
- Leiden Institute of ChemistryLeiden University Einsteinweg 55, PO Box 9502 2333CC Leiden The Netherlands
| | - Mathijs F. Wissingh
- Leiden Institute of ChemistryLeiden University Einsteinweg 55, PO Box 9502 2333CC Leiden The Netherlands
| | - Samantha L. Hopkins
- Leiden Institute of ChemistryLeiden University Einsteinweg 55, PO Box 9502 2333CC Leiden The Netherlands
| | - Bianka Siewert
- Leiden Institute of ChemistryLeiden University Einsteinweg 55, PO Box 9502 2333CC Leiden The Netherlands
| | - Corjan van de Griend
- Leiden Institute of ChemistryLeiden University Einsteinweg 55, PO Box 9502 2333CC Leiden The Netherlands
| | | | - Tiziano Marzo
- Department of PharmacyUniversity of Pisa Via Bonanno Pisano 6 56126 Pisa Italy
| | - Francesco Papi
- Department of ChemistryUniversity of Florence Via della Lastruccia 3 50019 Sesto Fiorentino (FI) Italy
| | - Marta Ferraroni
- Department of ChemistryUniversity of Florence Via della Lastruccia 3 50019 Sesto Fiorentino (FI) Italy
| | - Paola Gratteri
- Department NEUROFARBA—Pharmaceutical and Nutraceutical sectionLaboratory of Molecular Modeling Cheminformatics and QSARUniversity of Florence Via Ugo Schiff 6 50019 Sesto Fiorentino (FI) Italy
| | - Carla Bazzicalupi
- Department of ChemistryUniversity of Florence Via della Lastruccia 3 50019 Sesto Fiorentino (FI) Italy
| | - Luigi Messori
- Department of Chemistry “Ugo Schiff”University of Florence Italy
| | - Sylvestre Bonnet
- Leiden Institute of ChemistryLeiden University Einsteinweg 55, PO Box 9502 2333CC Leiden The Netherlands
| |
Collapse
|
9
|
Abstract
The halogen bond (X-bond) has become an important design element in chemistry, including medicinal chemistry and biomolecular engineering. Although oxygen is the most prevalent and best characterized X-bond acceptor in biomolecules, the interaction is seen with nitrogen, sulfur, and aromatic systems as well. In this study, we characterize the structure and thermodynamics of a Br···S X-bond between a 5-bromouracil base and a phosphorothioate in a model DNA junction. The single-crystal structure of the junction shows the geometry of the Br···S to be variable, while calorimetric studies show that the anionic S acceptor is comparable to or slightly more stable than the analogous O acceptor, with a -3.5 kcal/mol difference in ΔΔH25°C and -0.4 kcal/mol ΔΔG25°C (including an entropic penalty ΔΔS25°C of -10 cal/(mol K)). Thus sulfur is shown to be a favorable acceptor for bromine X-bonds, extending the application of this interaction for the design of inhibitors and biological materials.
Collapse
Affiliation(s)
- Melissa Coates Ford
- Department of Biochemistry & Molecular Biology, Colorado State University , 1870 Campus Delivery, Fort Collins, Colorado 80523-1870, United States
| | - Matthew Saxton
- Department of Biochemistry & Molecular Biology, Colorado State University , 1870 Campus Delivery, Fort Collins, Colorado 80523-1870, United States
| | - P Shing Ho
- Department of Biochemistry & Molecular Biology, Colorado State University , 1870 Campus Delivery, Fort Collins, Colorado 80523-1870, United States
| |
Collapse
|
10
|
Holliday Junction Thermodynamics and Structure: Coarse-Grained Simulations and Experiments. Sci Rep 2016; 6:22863. [PMID: 26971574 PMCID: PMC4789735 DOI: 10.1038/srep22863] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/22/2016] [Indexed: 02/08/2023] Open
Abstract
Holliday junctions play a central role in genetic recombination, DNA repair and other cellular processes. We combine simulations and experiments to evaluate the ability of the 3SPN.2 model, a coarse-grained representation designed to mimic B-DNA, to predict the properties of DNA Holliday junctions. The model reproduces many experimentally determined aspects of junction structure and stability, including the temperature dependence of melting on salt concentration, the bias between open and stacked conformations, the relative populations of conformers at high salt concentration, and the inter-duplex angle (IDA) between arms. We also obtain a close correspondence between the junction structure evaluated by all-atom and coarse-grained simulations. We predict that, for salt concentrations at physiological and higher levels, the populations of the stacked conformers are independent of salt concentration, and directly observe proposed tetrahedral intermediate sub-states implicated in conformational transitions. Our findings demonstrate that the 3SPN.2 model captures junction properties that are inaccessible to all-atom studies, opening the possibility to simulate complex aspects of junction behavior.
Collapse
|
11
|
Litke JL, Li Y, Nocka LM, Mukerji I. Probing the Ion Binding Site in a DNA Holliday Junction Using Förster Resonance Energy Transfer (FRET). Int J Mol Sci 2016; 17:366. [PMID: 26978349 PMCID: PMC4813226 DOI: 10.3390/ijms17030366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/21/2016] [Accepted: 02/26/2016] [Indexed: 11/17/2022] Open
Abstract
Holliday Junctions are critical DNA intermediates central to double strand break repair and homologous recombination. The junctions can adopt two general forms: open and stacked-X, which are induced by protein or ion binding. In this work, fluorescence spectroscopy, metal ion luminescence and thermodynamic measurements are used to elucidate the ion binding site and the mechanism of junction conformational change. Förster resonance energy transfer measurements of end-labeled junctions monitored junction conformation and ion binding affinity, and reported higher affinities for multi-valent ions. Thermodynamic measurements provided evidence for two classes of binding sites. The higher affinity ion-binding interaction is an enthalpy driven process with an apparent stoichiometry of 2.1 ± 0.2. As revealed by Eu(3+) luminescence, this binding class is homogeneous, and results in slight dehydration of the ion with one direct coordination site to the junction. Luminescence resonance energy transfer experiments confirmed the presence of two ions and indicated they are 6-7 Å apart. These findings are in good agreement with previous molecular dynamics simulations, which identified two symmetrical regions of high ion density in the center of stacked junctions. These results support a model in which site-specific binding of two ions in close proximity is required for folding of DNA Holliday junctions into the stacked-X conformation.
Collapse
Affiliation(s)
- Jacob L Litke
- Department of Molecular Biology and Biochemistry and Molecular Biophysics Program, Wesleyan University, Middletown, CT 06459-0175, USA.
| | - Yan Li
- Department of Molecular Biology and Biochemistry and Molecular Biophysics Program, Wesleyan University, Middletown, CT 06459-0175, USA.
| | - Laura M Nocka
- Department of Molecular Biology and Biochemistry and Molecular Biophysics Program, Wesleyan University, Middletown, CT 06459-0175, USA.
| | - Ishita Mukerji
- Department of Molecular Biology and Biochemistry and Molecular Biophysics Program, Wesleyan University, Middletown, CT 06459-0175, USA.
| |
Collapse
|
12
|
Iverson D, Serrano C, Brahan AM, Shams A, Totsingan F, Bell AJ. Characterization of the structural and protein recognition properties of hybrid PNA-DNA four-way junctions. Arch Biochem Biophys 2015; 587:1-11. [PMID: 26348651 DOI: 10.1016/j.abb.2015.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/11/2015] [Accepted: 08/26/2015] [Indexed: 01/31/2023]
Abstract
The objective of this study is to evaluate the structure and protein recognition properties of hybrid four-way junctions (4WJs) composed of DNA and peptide nucleic acid (PNA) strands. We compare a classic immobile DNA junction, J1, vs. six PNA-DNA junctions, including a number with blunt DNA ends and multiple PNA strands. Circular dichroism (CD) analysis reveals that hybrid 4WJs are composed of helices that possess structures intermediate between A- and B-form DNA, the apparent level of A-form structure correlates with the PNA content. The structure of hybrids that contain one PNA strand is sensitive to Mg(+2). For these constructs, the apparent B-form structure and conformational stability (Tm) increase in high Mg(+2). The blunt-ended junction, b4WJ-PNA3, possesses the highest B-form CD signals and Tm (40.1 °C) values vs. all hybrids and J1. Protein recognition studies are carried out using the recombinant DNA-binding protein, HMGB1b. HMGB1b binds the blunt ended single-PNA hybrids, b4WJ-PNA1 and b4WJ-PNA3, with high affinity. HMGB1b binds the multi-PNA hybrids, 4WJ-PNA1,3 and b4WJ-PNA1,3, but does not form stable protein-nucleic acid complexes. Protein interactions with hybrid 4WJs are influenced by the ratio of A- to B-form helices: hybrids with helices composed of higher levels of B-form structure preferentially associate with HMGB1b.
Collapse
Affiliation(s)
- Douglas Iverson
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Crystal Serrano
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Ann Marie Brahan
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Arik Shams
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS, USA
| | | | - Anthony J Bell
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS, USA.
| |
Collapse
|
13
|
Yadav RK, Yadava U. Molecular modeling and structural studies of 12-mer immobile four-way DNA junction in solution. Bioinformation 2014; 10:394-400. [PMID: 25187677 PMCID: PMC4135285 DOI: 10.6026/97320630010394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 05/26/2014] [Indexed: 11/23/2022] Open
Abstract
Molecular modelling and structural studies of 12-mer immobile four-way DNA junction model is reported here. The DNA junction which was built and investigated, consisted of the following sequences 5'd(GGAAGGGGCTGG), 5'd(CCAGCCTGAGCC), 5'd(GGCTCAACTCGG) and 5'd(CCGAGTCCTTCC). The model was made in such a way that the junction may lack two-fold sequence symmetry at the crossover point. A new version of the AMBER force field has been used, in addition to the Particle Mesh Ewald (PME) method which deals with the refinement treatment of the long range interaction potentials, the well known limitation in MD protocol. After molecular dynamics simulation the backbone parameters and helical parameters of the DNA junction model is calculated and its dynamical pathway is discussed. A close observation near the junction point reveals the shifting in the orientation of some of the P-O bonds from the usual π3 turn for A- and B- DNA to either π1 or π2 type of turn in order to achieve conformational stability. With this study it seems possible to derivatize synthetic DNA molecules with special functional groups both on the bases and at the backbones as in the case of some natural processes by which drugs, particular proteins etc. recognizes and binds to the specific sites of DNA.
Collapse
Affiliation(s)
| | - Umesh Yadava
- Department of Physics, DDU Gorakhpur University, Gorakhpur 273009, India
| |
Collapse
|
14
|
Mo AH, Landon PB, Meckes B, Yang MM, Glinsky GV, Lal R. An on-demand four-way junction DNAzyme nanoswitch driven by inosine-based partial strand displacement. NANOSCALE 2014; 6:1462-1466. [PMID: 24317092 DOI: 10.1039/c3nr05365b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A DNA four-way junction device capable of junction expansion and contraction cycles using an inosine-based partial strand displacement scheme is reported. These nanoscale positioning capabilities are used to provide on-demand activation and deactivation of a pair of split E6 DNAzymes on the device. The device also demonstrates a combined catalytic rate significantly higher than the original E6 DNAzyme under similar operational conditions. This approach can provide structural organization and spatially control other multicomponent molecular complexes.
Collapse
Affiliation(s)
- Alexander H Mo
- Materials Science and Engineering Program, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Totsingan F, Bell AJ. Interaction of HMG proteins and H1 with hybrid PNA-DNA junctions. Protein Sci 2013; 22:1552-62. [PMID: 23963921 DOI: 10.1002/pro.2342] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/15/2013] [Accepted: 08/15/2013] [Indexed: 12/21/2022]
Abstract
The objective of this study was to evaluate the effects of inserting peptide nucleic acid (PNA) sequences into the protein-binding surface of an immobilized four-way junction (4WJ). Here we compare the classic immobile DNA junction, J1, with two PNA containing hybrid junctions (4WJ-PNA1 and 4WJ-PNA3 ). The protein interactions of each 4WJ were evaluated using recombinant high mobility group proteins from rat (HMGB1b and HMGB1b/R26A) and human histone H1. In vitro studies show that both HMG and H1 proteins display high binding affinity toward 4WJ's. A 4WJ can access different conformations depending on ionic environment, most simply interpreted by a two-state equilibrium between: (i) an open-x state favored by absence of Mg(2+), low salt, and protein binding, and (ii) a compact stacked-x state favored by Mg(2+). 4WJ-PNA3, like J1, shifts readily from an open to stacked conformation in the presence of Mg(+2), while 4WJ-PNA1 does not. Circular dichroism spectra indicate that HMGB1b recognizes each of the hybrid junctions. H1, however, displays a strong preference for J1 relative to the hybrids. More extensive binding analysis revealed that HMGB1b binds J1 and 4WJ-PNA3 with nearly identical affinity (K(D)s) and 4WJ-PNA1 with two-fold lower affinity. Thus both the sequence/location of the PNA sequence and the protein determine the structural and protein recognition properties of 4WJs.
Collapse
|
16
|
Molecular basis of recognition of quadruplexes human telomere and c-myc promoter by the putative anticancer agent sanguinarine. Biochim Biophys Acta Gen Subj 2013; 1830:4189-201. [DOI: 10.1016/j.bbagen.2013.03.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/19/2013] [Accepted: 03/26/2013] [Indexed: 01/24/2023]
|
17
|
Carter M, Voth AR, Scholfield MR, Rummel B, Sowers LC, Ho PS. Enthalpy–Entropy Compensation in Biomolecular Halogen Bonds Measured in DNA Junctions. Biochemistry 2013; 52:4891-903. [DOI: 10.1021/bi400590h] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Megan Carter
- Department of Biochemistry and
Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Andrea Regier Voth
- Department of Biochemistry and
Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Matthew R. Scholfield
- Department of Biochemistry and
Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Brittany Rummel
- Department of Biochemistry and
Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Lawrence C. Sowers
- Department of Pharmacology and
Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - P. Shing Ho
- Department of Biochemistry and
Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
18
|
Čech P, Kukal J, Černý J, Schneider B, Svozil D. Automatic workflow for the classification of local DNA conformations. BMC Bioinformatics 2013; 14:205. [PMID: 23800225 PMCID: PMC3694522 DOI: 10.1186/1471-2105-14-205] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 05/28/2013] [Indexed: 12/03/2022] Open
Abstract
Background A growing number of crystal and NMR structures reveals a considerable structural polymorphism of DNA architecture going well beyond the usual image of a double helical molecule. DNA is highly variable with dinucleotide steps exhibiting a substantial flexibility in a sequence-dependent manner. An analysis of the conformational space of the DNA backbone and the enhancement of our understanding of the conformational dependencies in DNA are therefore important for full comprehension of DNA structural polymorphism. Results A detailed classification of local DNA conformations based on the technique of Fourier averaging was published in our previous work. However, this procedure requires a considerable amount of manual work. To overcome this limitation we developed an automatic classification method consisting of the combination of supervised and unsupervised approaches. A proposed workflow is composed of k-NN method followed by a non-hierarchical single-pass clustering algorithm. We applied this workflow to analyze 816 X-ray and 664 NMR DNA structures released till February 2013. We identified and annotated six new conformers, and we assigned four of these conformers to two structurally important DNA families: guanine quadruplexes and Holliday (four-way) junctions. We also compared populations of the assigned conformers in the dataset of X-ray and NMR structures. Conclusions In the present work we developed a machine learning workflow for the automatic classification of dinucleotide conformations. Dinucleotides with unassigned conformations can be either classified into one of already known 24 classes or they can be flagged as unclassifiable. The proposed machine learning workflow permits identification of new classes among so far unclassifiable data, and we identified and annotated six new conformations in the X-ray structures released since our previous analysis. The results illustrate the utility of machine learning approaches in the classification of local DNA conformations.
Collapse
Affiliation(s)
- Petr Čech
- Laboratory of Informatics and Chemistry, ICT Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | | | | | | | | |
Collapse
|
19
|
Mládek A, Krepl M, Svozil D, Čech P, Otyepka M, Banáš P, Zgarbová M, Jurečka P, Šponer J. Benchmark quantum-chemical calculations on a complete set of rotameric families of the DNA sugar–phosphate backbone and their comparison with modern density functional theory. Phys Chem Chem Phys 2013; 15:7295-310. [DOI: 10.1039/c3cp44383c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Chakraborty A, Mandal PK, Gautham N. Structure of d(CCGGGACCGG)4 as a four-way junction at 1.6 Å resolution: new insights into solvent interactions. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1169-74. [PMID: 23027741 PMCID: PMC3497973 DOI: 10.1107/s1744309112034926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 08/07/2012] [Indexed: 06/01/2023]
Abstract
The crystal structure of the decamer sequence d(CCGGGACCGG)(4) has previously been reported at 2.16 Å resolution as a four-way junction. Here, the structure of this sequence is reported at the significantly higher resolution of 1.6 Å, which is the highest resolution reported for a four-way junction. This allowed the unambiguous identification of an extensive hydration network with distinct patterns and solvent-mediated interactions that shed new light on the role of water in the formation and stabilization of junction structures.
Collapse
Affiliation(s)
- Arka Chakraborty
- CAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamil Nadu 600 025, India
| | - Pradeep Kumar Mandal
- CAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamil Nadu 600 025, India
| | - Namasivayam Gautham
- CAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamil Nadu 600 025, India
| |
Collapse
|
21
|
Venkadesh S, Mandal PK, Gautham N. Crystallographic and spectroscopic studies of d(CCGGTACCGG). NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2012; 31:184-96. [PMID: 22356234 DOI: 10.1080/15257770.2011.648363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The decanucleotide sequence d(CCGGTACCGG) crystallizes as a four-way junction at low cobalt ion concentrations (i.e., 1 mM). When the cobalt concentration in the crystallization solution is increased to 5 mM, the sequence crystallizes as resolved B-DNA duplexes. Gel retardation studies of the decamer show both a faint slow-moving band and a much thicker fast-moving band at low cobalt ion concentrations, and only the intense fast-moving band at higher ion concentration. Circular dichroism (CD) spectroscopy of the decamer indicates a structural transition as the cobalt ion concentration in the solution is increased, probably from B-type to A-type DNA. These studies revealed that the oligomer sequence has several conformations and structures accessible to it, in a manner dependent on sequence, ion concentration, and DNA concentration. [Supplementary materials are available for this article. Go to the publisher's online edition of Nucleosides, Nucleotides & Nucleic Acids for the following free supplemental resources(s): Supplementary Figures 1, 2, and 3.].
Collapse
Affiliation(s)
- S Venkadesh
- CAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, India
| | | | | |
Collapse
|
22
|
Mandal PK, Venkadesh S, Gautham N. Structure of the tetradecanucleotide d(CCCCGGTACCGGGG)2 as an A-DNA duplex. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:393-9. [PMID: 22505405 PMCID: PMC3325805 DOI: 10.1107/s174430911200869x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/27/2012] [Indexed: 11/10/2022]
Abstract
The crystal structure of the tetradecanucleotide sequence d(CCCCGGTACCGGGG)(2) has been determined at 2.5 Å resolution in the tetragonal space group P4(1). This sequence was designed with the expectation of a four-way junction. However, the sequence crystallized as an A-DNA duplex and represents more than one full turn of the A-helix. The crystallographic asymmetric unit consists of one tetradecanucleotide duplex. The structural parameters of the A-type DNA duplex structure and the crystal-packing arrangement are described. One Mn(2+) ion was identified with direct coordination to the N7 position of G(13) and a water molecule at the major-groove side of the C(2)·G(13) base pair.
Collapse
Affiliation(s)
- Pradeep Kumar Mandal
- C. A. S. in Crystallography and Biophysics, University of Madras, Guindy, Chennai 600 025, India
| | - Sarkarai Venkadesh
- C. A. S. in Crystallography and Biophysics, University of Madras, Guindy, Chennai 600 025, India
| | - Namasivayam Gautham
- C. A. S. in Crystallography and Biophysics, University of Madras, Guindy, Chennai 600 025, India
| |
Collapse
|
23
|
Mandal PK, Venkadesh S, Gautham N. Structure of d(CGGGTACCCG)4 as a four-way Holliday junction. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1506-10. [PMID: 22139153 PMCID: PMC3232126 DOI: 10.1107/s1744309111046616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 11/04/2011] [Indexed: 05/31/2023]
Abstract
The crystal structure of the decamer sequence d(CGGGTACCCG)(4) as a four-way Holliday junction has been determined at 2.35 Å resolution. The sequence was designed in order to understand the principles that govern the relationship between sequence and branching structure. It crystallized as a four-way junction structure with an overall geometry similar to those of previously determined Holliday junction structures.
Collapse
Affiliation(s)
- P K Mandal
- CAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, India
| | | | | |
Collapse
|
24
|
Grach AA. Alternative telomere-lengthening mechanisms. CYTOL GENET+ 2011. [DOI: 10.3103/s0095452711020046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Venkadesh S, Mandal PK, Gautham N. The sequence d(CGGCGGCCGC) self-assembles into a two dimensional rhombic DNA lattice. Biochem Biophys Res Commun 2011; 407:548-551. [PMID: 21419105 DOI: 10.1016/j.bbrc.2011.03.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 03/14/2011] [Indexed: 05/30/2023]
Abstract
We report here the crystal structure of the partially self-complementary decameric sequence d(CGGCGGCCGC), which self assembles to form a four-way junction with sticky ends. Each junction binds to four others through Watson-Crick base pairing at the sticky ends to form a rhombic structure. The rhombuses bind to each other and form two dimensional tiles. The tiles stack to form the crystal. The crystal diffracted in the space group P1 to a resolution of 2.5Å. The junction has the anti-parallel stacked-X conformation like other junction structures, though the formation of the rhombic net noticeably alters the details of the junction geometry.
Collapse
Affiliation(s)
- S Venkadesh
- CAS in Crystallography and Biophysics, University of Madras, Chennai 600 025, India
| | | | | |
Collapse
|
26
|
Vitoc CI, Mukerji I. HU binding to a DNA four-way junction probed by Förster resonance energy transfer. Biochemistry 2011; 50:1432-41. [PMID: 21230005 PMCID: PMC4724199 DOI: 10.1021/bi1007589] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Escherichia coli protein HU is a non-sequence-specific DNA-binding protein that interacts with DNA primarily through electrostatic interactions. In addition to nonspecific binding to linear DNA, HU has been shown to bind with nanomolar affinity to discontinuous DNA substrates, such as repair and recombination intermediates. This work specifically examines the HU-four-way junction (4WJ) interaction using fluorescence spectroscopic methods. The conformation of the junction in the presence of different counterions was investigated by Förster resonance energy transfer (FRET) measurements, which revealed an ion-type conformational dependence, where Na(+) yields the most stacked conformation followed by K(+) and Mg(2+). HU binding induces a greater degree of stacking in the Na(+)-stabilized and Mg(2+)-stabilized junctions but not the K(+)-stabilized junction, which is attributed to differences in the size of the ionic radii and potential differences in ion binding sites. Interestingly, junction conformation modulates binding affinity, where HU exhibits the lowest affinity for the Mg(2+)-stabilized form (24 μM(-1)), which is the least stacked conformation. Protein binding to a mixed population of open and stacked forms of the junction leads to nearly complete formation of a protein-stabilized stacked-X junction. These results strongly support a model in which HU binds to and stabilizes the stacked-X conformation.
Collapse
Affiliation(s)
- Codruta Iulia Vitoc
- Molecular Biology and Biochemistry Department, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459-0175
| | - Ishita Mukerji
- Molecular Biology and Biochemistry Department, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459-0175
| |
Collapse
|
27
|
Papadakis G, Tsortos A, Gizeli E. Acoustic characterization of nanoswitch structures: application to the DNA Holliday Junction. NANO LETTERS 2010; 10:5093-5097. [PMID: 21038866 DOI: 10.1021/nl103491v] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A novel biophysical approach in combination with an acoustic device is demonstrated as a sensitive, rapid, and label-free technique for characterizing various structures of the DNA Holliday Junction (J1) nanoswitch. We were successful in discriminating the "closed" from the "open" state, as well as confirming that the digestion of the J1 junction resulted in the two, anticipated, rod-shaped, 20 bp long fragments. Furthermore, we propose a possible structure for the ∼10 nm long (DNA58) component participating in the J1 assembly. This work reveals the potential of acoustic devices as a powerful tool for molecular conformation studies.
Collapse
Affiliation(s)
- George Papadakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 100 N. Plastira, Vassilika Vouton, 70013 Heraklion, Greece
| | | | | |
Collapse
|
28
|
Abstract
The single-crystal structure of a DNA Holliday junction assembled from four unique sequences shows a structure that conforms to the general features of models derived from similar constructs in solution. The structure is a compact stacked-X form junction with two sets of stacked B-DNA-type arms that coaxially stack to form semicontinuous duplexes interrupted only by the crossing of the junction. These semicontinuous helices are related by a right-handed rotation angle of 56.5 degrees, which is nearly identical to the 60 degree angle in the solution model but differs from the more shallow value of approximately 40 degrees for previous crystal structures of symmetric junctions that self-assemble from single identical inverted-repeat sequences. This supports the model in which the unique set of intramolecular interactions at the trinucleotide core of the crossing strands, which are not present in the current asymmetric junction, affects both the stability and geometry of the symmetric junctions. An unexpected result, however, is that a highly wobbled A.T base pair, which is ascribed here to a rare enol tautomer form of the thymine, was observed at the end of a CCCC/GGGG sequence within the stacked B-DNA arms of this 1.9 A resolution structure. We suggest that the junction itself is not responsible for this unusual conformation but served as a vehicle for the study of this CG-rich sequence as a B-DNA duplex, mimicking the form that would be present in a replication complex. The existence of this unusual base lends credence to and defines a sequence context for the "rare tautomer hypothesis" as a mechanism for inducing transition mutations during DNA replication.
Collapse
Affiliation(s)
- Patricia Khuu
- Department of Biochemistry and Biophysics, ALS 2011, Oregon State University, Corvallis, OR 97331
| | - P. Shing Ho
- Department of Biochemistry and Biophysics, ALS 2011, Oregon State University, Corvallis, OR 97331
- Department of Biochemistry and Molecular Biology, 1870 Campus Delivery, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
29
|
Voth AR, Hays FA, Ho PS. Directing macromolecular conformation through halogen bonds. Proc Natl Acad Sci U S A 2007; 104:6188-93. [PMID: 17379665 PMCID: PMC1851028 DOI: 10.1073/pnas.0610531104] [Citation(s) in RCA: 279] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Indexed: 11/18/2022] Open
Abstract
The halogen bond, a noncovalent interaction involving polarizable chlorine, bromine, or iodine molecular substituents, is now being exploited to control the assembly of small molecules in the design of supramolecular complexes and new materials. We demonstrate that a halogen bond formed between a brominated uracil and phosphate oxygen can be engineered to direct the conformation of a biological molecule, in this case to define the conformational isomer of a four-stranded DNA junction when placed in direct competition against a classic hydrogen bond. As a result, this bromine interaction is estimated to be approximately 2-5 kcal/mol stronger than the analogous hydrogen bond in this environment, depending on the geometry of the halogen bond. This study helps to establish halogen bonding as a potential tool for the rational design and construction of molecular materials with DNA and other biological macromolecules.
Collapse
Affiliation(s)
- Andrea Regier Voth
- Department of Biochemistry and Biophysics, ALS 2011, Oregon State University, Corvallis, OR 97331-7503
| | - Franklin A. Hays
- Department of Biochemistry and Biophysics, ALS 2011, Oregon State University, Corvallis, OR 97331-7503
| | - P. Shing Ho
- Department of Biochemistry and Biophysics, ALS 2011, Oregon State University, Corvallis, OR 97331-7503
| |
Collapse
|
30
|
Mikheikin AL, Lushnikov AY, Lyubchenko YL. Effect of DNA supercoiling on the geometry of holliday junctions. Biochemistry 2006; 45:12998-3006. [PMID: 17059216 PMCID: PMC1646289 DOI: 10.1021/bi061002k] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unusual DNA conformations including cruciforms play an important role in gene regulation and various DNA transactions. Cruciforms are also the models for Holliday junctions, the transient DNA conformations critically involved in DNA homologous and site-specific recombination, repair, and replication. Although the conformations of immobile Holliday junctions in linear DNA molecules have been analyzed with the use of various techniques, the role of DNA supercoiling has not been studied systematically. We utilized atomic force microscopy (AFM) to visualize cruciform geometry in plasmid DNA with different superhelical densities at various ionic conditions. Both folded and unfolded conformations of the cruciform were identified, and the data showed that DNA supercoiling shifts the equilibrium between folded and unfolded conformations of the cruciform toward the folded one. In topoisomers with low superhelical density, the population of the folded conformation is 50-80%, depending upon the ionic strength of the buffer and a type of cation added, whereas in the sample with high superhelical density, this population is as high as 98-100%. The time-lapse studies in aqueous solutions allowed us to observe the conformational transition of the cruciform directly. The time-dependent dynamics of the cruciform correlates with the structural changes revealed by the ensemble-averaged analysis of dry samples. Altogether, the data obtained show directly that DNA supercoiling is the major factor determining the Holliday junction conformation.
Collapse
Affiliation(s)
- Andrey L Mikheikin
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, USA
| | | | | |
Collapse
|
31
|
Abstract
The crystal structure of the four-stranded DNA Holliday junction has now been determined in the presence and absence of junction binding proteins, with the extended open-X form of the junction seen in all protein complexes, but the more compact stacked-X structure observed in free DNA. The structures of the stacked-X junction were crystallized because of an unexpected sequence dependence on the stability of this structure. Inverted repeat sequences that contain the general motif NCC or ANC favor formation of stacked-X junctions, with the junction cross-over occurring between the first two positions of the trinucleotides. This review focuses on the sequence dependent structure of the stacked-X junction and how it may play a role in structural recognition by a class of dimeric junction resolving enzymes that themselves show no direct sequence recognition.
Collapse
Affiliation(s)
- Patricia A. Khuu
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331-7305, USA
| | - Andrea Regier Voth
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331-7305, USA
| | | | - P. Shing Ho
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331-7305, USA
| |
Collapse
|
32
|
Hays FA, Schirf V, Ho PS, Demeler B. Solution formation of Holliday junctions in inverted-repeat DNA sequences. Biochemistry 2006; 45:2467-71. [PMID: 16489738 PMCID: PMC2034439 DOI: 10.1021/bi052129x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure of Holliday junctions has now been well characterized at the atomic level through single-crystal X-ray diffraction in symmetric (inverted-repeat) DNA sequences. At issue, however, is whether the formation of these four-stranded complexes in solution is truly sequence dependent in the manner proposed or is an artifact of the crystallization process and, therefore, has no relevance to the behavior of this central intermediate in homologous recombination and recombination-dependent cellular processes. Here, we apply analytical ultracentrifugation to demonstrate that the sequence d(CCGGTACCGG), which crystallizes in the stacked-X form of the junction, assembles into four-stranded junctions in solution in a manner that is dependent on the DNA and cation concentrations, with an equilibrium established between the junction and duplex forms at 100-200 microM DNA duplex. In contrast, the sequence d(CCGCTAGCGG), which has been crystallized as B-DNA, is seen to adopt only the double-helical form at all DNA and salt concentrations that were tested. Thus, the ACC trinucleotide core is now shown to be important for the formation of Holliday junctions in both crystals and in solution and can be estimated to contribute approximately -4 kcal/mol to stabilizing this recombination intermediate in inverted-repeat sequences.
Collapse
Affiliation(s)
| | | | - P. Shing Ho
- * To whom correspondence should be addressed. P.S.H.: telephone, (541) 737-2769; fax, (541) 737-0481; e-mail, . B.D.: telephone, (210) 567-6592; fax, (210) 567-6595; e-mail,
| | - Borries Demeler
- * To whom correspondence should be addressed. P.S.H.: telephone, (541) 737-2769; fax, (541) 737-0481; e-mail, . B.D.: telephone, (210) 567-6592; fax, (210) 567-6595; e-mail,
| |
Collapse
|
33
|
Hays FA, Teegarden A, Jones ZJR, Harms M, Raup D, Watson J, Cavaliere E, Ho PS. How sequence defines structure: a crystallographic map of DNA structure and conformation. Proc Natl Acad Sci U S A 2005; 102:7157-62. [PMID: 15870206 PMCID: PMC1129101 DOI: 10.1073/pnas.0409455102] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fundamental question of how sequence defines conformation is explicitly answered if the structures of all possible sequences of a macromolecule are determined. We present here a crystallographic screen of all permutations of the inverted repeat DNA sequence d(CCnnnN6N7N8GG), where N6, N7, and N8 are any of the four naturally occurring nucleotides. At this point, 63 of the 64 possible permutations have been crystallized from a defined set of solutions. When combined with previous work, we have assembled a data set of 37 single-crystal structures from 29 of the sequences in this motif, representing three structural classes of DNA (B-DNA, A-DNA, and four-stranded Holliday junctions). This data set includes a unique set of amphimorphic sequence, those that crystallize in two different conformations and serve to bridge the three structural phases. We have thus constructed a map of DNA structures that can be walked through in single nucleotide steps. Finally, the resulting data set allows us to dissect in detail the stabilization of and conformational variations within structural classes and identify significant conformational deviations within a particular structural class that result from sequence rather than crystal or crystallization effects.
Collapse
Affiliation(s)
- Franklin A Hays
- Department of Biochemistry and Biophysics, Oregon State University, Agricultural and Life Sciences Building 2011, Corvallis, OR 97331-7305, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Fifty years after the publication of the DNA double helix model by Watson and Crick, new nucleic acid structures keep emerging at an ever-increasing rate. The past three years have brought a flurry of new oligonucleotide structures, including those of a Hoogsteen-paired DNA duplex, Holliday junctions, DNA-drug complexes, quadruplexes, a host of RNA motifs and various nucleic acid analogues. Major advances were also made in terms of the structure and function of catalytic RNAs. These range from improved models of the phosphodiester cleavage reactions catalyzed by the hairpin and hepatitis delta virus ribozymes to the visualization of a complete active site of a group I self-splicing intron with bound 5'- and 3'-exons. These triumphs are complemented by a refined understanding of cation-nucleic-acid interactions and new routes to the generation of derivatives for phasing of DNA and RNA structures.
Collapse
Affiliation(s)
- Martin Egli
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
35
|
Watson J, Hays FA, Ho PS. Definitions and analysis of DNA Holliday junction geometry. Nucleic Acids Res 2004; 32:3017-27. [PMID: 15173384 PMCID: PMC434437 DOI: 10.1093/nar/gkh631] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 05/11/2004] [Accepted: 05/11/2004] [Indexed: 11/14/2022] Open
Abstract
A number of single-crystal structures have now been solved of the four-stranded antiparallel stacked-X form of the Holliday junction. These structures demonstrate how base sequence, substituents, and drug and ion interactions affect the general conformation of this recombination intermediate. The geometry of junctions had previously been described in terms of a specific set of parameters that include: (i) the angle relating the ends of DNA duplexes arms of the junction (interduplex angle); (ii) the relative rotation of the duplexes about the helix axes of the stacked duplex arms (J(roll)); and (iii) the translation of the duplexes along these helix axes (J(slide)). Here, we present a consistent set of definitions and methods to accurately calculate each of these parameters based on the helical features of the stacked duplex arms in the single-crystal structures of the stacked-X junction, and demonstrate how each of these parameters contributes to an overall conformational feature of the structure. We show that the values for these parameters derived from global rather than local helical axes through the stacked bases of the duplex arms are the most representative of the stacked-X junction conformation. In addition, a very specific parameter (J(twist)) is introduced which relates the relative orientation of the stacked duplex arms across the junction which, unlike the interduplex angle, is length independent. The results from this study provide a general means to relate the geometric features seen in the crystal structures to those determined in solution.
Collapse
Affiliation(s)
- Jeffrey Watson
- Department of Biochemistry and Biophysics, ALS 2011, Oregon State University, Corvallis, OR 97331-7305, USA
| | | | | |
Collapse
|