1
|
Wu F, Deng Y, Sokolov EP, Falfushynska H, Glänzer A, Xie L, Sokolova IM. Nanopollutants (nZnO) amplify hypoxia-induced cellular stress in a keystone marine bivalve, Mytilus edulis. ENVIRONMENTAL RESEARCH 2025; 274:121346. [PMID: 40058547 DOI: 10.1016/j.envres.2025.121346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/18/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Zinc oxide nanoparticles (nZnO) are increasingly utilized in industrial, medical, and personal care products, particularly as the main ingredient in sunscreens, raising concerns about their environmental impact, especially in coastal ecosystems. The Baltic Sea, experiencing severe eutrophication, faces persistent hypoxia due to excessive nutrient runoff and limited water exchange. Simultaneously, coastal pollution from industrial and urban activities introduces nZnO, a highly biotoxic nanopollutant. The combined effects of hypoxia and nZnO contamination may amplify environmental stress, yet their interactions remain insufficiently studied. This study investigates the combined effects of nZnO exposure and fluctuating dissolved oxygen regimes (specifically short- and long-term hypoxia and subsequent reoxygenation) on Mytilus edulis, a sentinel species in these ecosystems. By assessing a range of cellular and molecular markers, including oxidative stress, oxygen sensing, protein quality control, stress response, apoptosis, and inflammation, we show that nZnO exacerbates hypoxia-induced oxidative stress, delaying redox recovery and prolonging oxidative damage during reoxygenation. Specifically, nZnO exposure maintains elevated LPO and PC levels after reoxygenation, indicating prolonged oxidative imbalance. While M. edulis typically recovers from hypoxia-induced stress, nZnO disrupts this process by impairing antioxidant defenses, prolonging HIF-1α activation, and dysregulating p53, JNK, and p38 expression, thereby interfering with normal hypoxia-reoxygenation response. Additionally, nZnO alters HSP70, Lon protease, and caspase-3 regulation, disrupting protein-folding and apoptotic pathways. These findings suggest a synergistic interaction between nZnO and hypoxia, heightening the organism's vulnerability to environmental stress and suggesting risks for marine organisms in nanoparticle-polluted, hypoxia-prone coastal regions.
Collapse
Affiliation(s)
- Fangli Wu
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou, China
| | - Yuqing Deng
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Eugene P Sokolov
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Halina Falfushynska
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Faculty of Economics, Anhalt University of Applied Sciences, 06406, Köthen, Germany; ENERTRAG SE, Gut Dauerthal, Dauerthal, 17291, Germany
| | - Aneka Glänzer
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Lingtian Xie
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
2
|
Zeng X, Ma Z, Wen S, Zhou L, Hong W, Wu Z, Cen C, Bai Q, Ding S, Chen X, Wang J, Chen L, Lu W, Wang T. Imatinib aggravates pressure-overload-induced right ventricle failure via JNK/Runx2 pathway. Br J Pharmacol 2025. [PMID: 39965654 DOI: 10.1111/bph.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/28/2024] [Accepted: 01/14/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND AND PURPOSE Right ventricular (RV) function is the key prognostic determinant of pulmonary hypertension (PH). In PH patients, imatinib treatment decreases pulmonary vascular resistance and improves exercise capacity, but does not change mortality or duration to clinical worsening. Imatinib has been reported to be cardiotoxic in the left heart. We hypothesise that imatinib damages the pressure overloaded RV via its direct effects within the heart, which may counteract its therapeutic effects in haemodynamic improvement of PH. EXPERIMENTAL APPROACH A pulmonary arterial banding (PAB) rat model with fixed pulmonary artery narrowing was performed to avoid changes in RV afterload. KEY RESULTS In PAB rats, imatinib treatment decreased the survival rate and exacerbated RV dysfunction, myocardial hypertrophy, apoptosis and fibrosis. In vitro, imatinib increased cardiomyocyte hypertrophy and did not change cardiac fibroblasts activation; however, imatinib-treated conditioned medium from cardiomyocytes promoted fibroblast activation. Mechanistically, imatinib increased the phosphorylation of c-jun N-terminal kinase (JNK) and the expression of RUNX family transcription factor 2 (Runx2), and subsequently promoted the transcription of thrombospondin 4 (THBS4) and connective tissue growth factor (CTGF) in RV cardiomyocytes. Finally, SP600125, a JNK inhibitor, significantly alleviated imatinib-induced RV failure in PAB rats and enhanced the effects of imatinib on RV function improvement in SU5416 + hypoxia-induced PH rats without affecting pulmonary artery narrowing. CONCLUSION AND IMPLICATIONS We demonstrate for the first time that imatinib aggravates RV failure under pressure overload through JNK/Runx2 pathway, and JNK inhibition improves the therapeutic effects of imatinib on RV function in PH.
Collapse
Affiliation(s)
- Xiaohui Zeng
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhuoji Ma
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanshan Wen
- Chinese Academy of Sciences Guangzhou Institutes of Biomedicine and Health Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Liang Zhou
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wanxian Hong
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhixiong Wu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chunxian Cen
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qianwen Bai
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shangwei Ding
- Department of Ultrasound, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lingdan Chen
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tao Wang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Hertzog N, Duman M, Bochud M, Brügger-Verdon V, Gerhards M, Schön F, Dorndecker F, Meijer D, Fledrich R, Stassart R, Sankar DS, Dengjel J, López SR, Jacob C. Hypoxia-induced conversion of sensory Schwann cells into repair cells is regulated by HDAC8. Nat Commun 2025; 16:515. [PMID: 39779705 PMCID: PMC11711395 DOI: 10.1038/s41467-025-55835-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
After a peripheral nerve injury, Schwann cells (SCs), the myelinating glia of the peripheral nervous system, convert into repair cells that foster axonal regrowth, and then remyelinate or re-ensheath regenerated axons, thereby ensuring functional recovery. The efficiency of this mechanism depends however on the time needed for axons to regrow. Here, we show that ablation of histone deacetylase 8 (HDAC8) in SCs accelerates the regrowth of sensory axons and sensory function recovery. We found that HDAC8 is specifically expressed in sensory SCs and regulates the E3 ubiquitin ligase TRAF7, which destabilizes hypoxia-inducible factor 1-alpha (HIF1α) and counteracts the phosphorylation and upregulation of c-Jun, a major inducer of the repair SC phenotype. Our study indicates that this phenotype switch is regulated by different mechanisms in sensory and motor SCs and is accelerated by HDAC8 downregulation, which promotes sensory axon regeneration and sensory function recovery.
Collapse
Affiliation(s)
- Nadège Hertzog
- Institute of Developmental Biology and Neurobiology, Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Mert Duman
- Institute of Developmental Biology and Neurobiology, Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Maëlle Bochud
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Maren Gerhards
- Institute of Developmental Biology and Neurobiology, Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Felicia Schön
- Institute of Developmental Biology and Neurobiology, Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Franka Dorndecker
- Institute of Developmental Biology and Neurobiology, Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dies Meijer
- Center for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Robert Fledrich
- Paul Flechsig Institute, Center of Neuropathology and Brain Sciences, University of Leipzig, Leipzig, Germany
| | - Ruth Stassart
- Paul Flechsig Institute, Center of Neuropathology and Brain Sciences, University of Leipzig, Leipzig, Germany
| | | | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Sofía Raigón López
- Institute of Developmental Biology and Neurobiology, Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Claire Jacob
- Institute of Developmental Biology and Neurobiology, Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany.
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
4
|
Tao B, Gong W, Xu C, Ma Z, Mei J, Chen M. The relationship between hypoxia and Alzheimer's disease: an updated review. Front Aging Neurosci 2024; 16:1402774. [PMID: 39086755 PMCID: PMC11288848 DOI: 10.3389/fnagi.2024.1402774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/04/2024] [Indexed: 08/02/2024] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, and the most prevalent form of dementia. The main hallmarks for the diagnosis of AD are extracellular amyloid-beta (Aβ) plaque deposition and intracellular accumulation of highly hyperphosphorylated Tau protein as neurofibrillary tangles. The brain consumes more oxygen than any other organs, so it is more easily to be affected by hypoxia. Hypoxia has long been recognized as one of the possible causes of AD and other neurodegenerative diseases, but the exact mechanism has not been clarified. In this review, we will elucidate the connection between hypoxia-inducible factors-1α and AD, including its contribution to AD and its possible protective effects. Additionally, we will discuss the relationship between oxidative stress and AD as evidence show that oxidative stress acts on AD-related pathogenic factors such as mitochondrial dysfunction, Aβ deposition, inflammation, etc. Currently, there is no cure for AD. Given the close association between hypoxia, oxidative stress, and AD, along with current research on the protective effects of antioxidants against AD, we speculate that antioxidants could be a potential therapeutic approach for AD and worth further study.
Collapse
Affiliation(s)
- Borui Tao
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Wei Gong
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chengyuan Xu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhihui Ma
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jinyu Mei
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ming Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Shima N, Yamamura A, Fujiwara M, Amano T, Matsumoto K, Sekine T, Okano H, Kondo R, Suzuki Y, Yamamura H. Up-regulated expression of two-pore domain K + channels, KCNK1 and KCNK2, is involved in the proliferation and migration of pulmonary arterial smooth muscle cells in pulmonary arterial hypertension. Front Cardiovasc Med 2024; 11:1343804. [PMID: 38410243 PMCID: PMC10894933 DOI: 10.3389/fcvm.2024.1343804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Background Pulmonary arterial hypertension (PAH) is a severe and rare disease in the cardiopulmonary system. Its pathogenesis involves vascular remodeling of the pulmonary artery, which results in progressive increases in pulmonary arterial pressure. Chronically increased pulmonary arterial pressure causes right ventricular hypertrophy and subsequent right heart failure. Pulmonary vascular remodeling is attributed to the excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), which are induced by enhanced Ca2+ signaling following the up-/down-regulation of ion channel expression. Objectives In the present study, the functional expression of two-pore domain potassium KCNK channels was investigated in PASMCs from idiopathic PAH (IPAH) patients and experimental pulmonary hypertensive (PH) animals. Results In IPAH-PASMCs, the expression of KCNK1/TWIK1 and KCNK2/TREK1 channels was up-regulated, whereas that of KCNK3/TASK1 and KCNK6/TWIK2 channels was down-regulated. The similar up-regulated expression of KCNK1 and KCNK2 channels was observed in the pulmonary arterial smooth muscles of monocrotaline-induced PH rats, Sugen 5416/hypoxia-induced PH rats, and hypoxia-induced PH mice. The facilitated proliferation of IPAH-PASMCs was suppressed by the KCNK channel blockers, quinine and tetrapentylammonium. The migration of IPAH-PASMCs was also suppressed by these channel blockers. Furthermore, increases in the proliferation and migration were inhibited by the siRNA knockdown of KCNK1 or KCNK2 channels. The siRNA knockdown also caused membrane depolarization and subsequent decrease in cytosolic [Ca2+]. The phosphorylated level of c-Jun N-terminal kinase (JNK) was elevated in IPAH-PASMCs compared to normal-PASMCs. The increased phosphorylation was significantly reduced by the siRNA knockdown of KCNK1 or KCNK2 channels. Conclusion Collectively, these findings indicate that the up-regulated expression of KCNK1 and KCNK2 channels facilitates the proliferation and migration of PASMCs via enhanced Ca2+ signaling and JNK signaling pathway, which is associated with vascular remodeling in PAH.
Collapse
Affiliation(s)
- Natsumi Shima
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Aya Yamamura
- Department of Physiology, Aichi Medical University, Nagakute, Japan
| | - Moe Fujiwara
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Taiki Amano
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kazuyuki Matsumoto
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Taiga Sekine
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Haruka Okano
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Rubii Kondo
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
6
|
Wan JJ, Yi J, Wang FY, Zhang C, Dai AG. Expression and regulation of HIF-1a in hypoxic pulmonary hypertension: Focus on pathological mechanism and Pharmacological Treatment. Int J Med Sci 2024; 21:45-60. [PMID: 38164358 PMCID: PMC10750340 DOI: 10.7150/ijms.88216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/20/2023] [Indexed: 01/03/2024] Open
Abstract
Hypoxia inducible factor-1(HIF-1), a heterodimeric transcription factor, is composed of two subunits (HIF-1α and HIF-1β). It is considered as an important transcription factor for regulating oxygen changes in hypoxic environment, which can regulate the expression of various hypoxia-related target genes and play a role in acute and chronic hypoxia pulmonary vascular reactions. In this paper, the function and mechanism of HIF-1a expression and regulation in hypoxic pulmonary hypertension (HPH) were reviewed, and current candidate schemes for treating pulmonary hypertension by using HIF-1a as the target were introduced, so as to provide reference for studying the pathogenesis of HPH and screening effective treatment methods.
Collapse
Affiliation(s)
- Jia-Jing Wan
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, People's Republic of China
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha 410208, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, Hunan, People's Republic of China
| | - Jian Yi
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan, People's Republic of China
| | - Fei-Ying Wang
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha 410208, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, Hunan, People's Republic of China
| | - Chao Zhang
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha 410208, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, Hunan, People's Republic of China
| | - Ai-Guo Dai
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha 410208, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, Hunan, People's Republic of China
- Department of Respiratory Medicine, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha 410021, Hunan, People's Republic of China
| |
Collapse
|
7
|
Wang CB, Zhao M, Wang J, Shi JT, Wang WF, Zhang Y, Meng XH, Sang CY, Zhu LL, Yang JL. Gypenosides (GPs) alleviates hypoxia-induced injury in PC12 cells and enhances tolerance to anoxia in C57BL/6 mice. J Food Biochem 2022; 46:e14448. [PMID: 36226816 DOI: 10.1111/jfbc.14448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/03/2022] [Accepted: 09/20/2022] [Indexed: 01/14/2023]
Abstract
Oxygen is a necessary substance for life activities, but reduced oxygen utilization due to high altitude exposure and respiratory dysfunction diseases could lead to pathological changes in the organisms. Herein gypenosides, the active ingredients in the food and medicine resource plant Gynostemma pentaphyllum (Thunb.) Makino were found to alleviate hypoxia-induced injury in PC12 cells. Moreover, hypoxia induced an increase in Ca2+ and reactive oxygen species content, and such patterns were both significantly reduced by gypenosides treatment. At the same time, gypenosides significantly blocked the decrease of both NO content and mitochondrial membrane potential caused by hypoxia. Furthermore, gypenosides gavage treatment significantly prolonged the survival time of C57BL/6 mice in confinement up to 24.3% and enhanced the locomotor ability of mice. Therefore, gypenosides have good neuroprotective effects and hypoxia tolerance activity and have the prospect of being developed as a preventive and therapeutic drug for hypoxia-related diseases. PRACTICAL APPLICATIONS: Gypenosides can enhance tolerance of cells and mice to hypoxia and have the potential to be developed into hypoxia-resistant health food and drugs.
Collapse
Affiliation(s)
- Cheng-Bo Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, China
| | - Ming Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jun Wang
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, China
| | - Jiao-Tai Shi
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Wei-Feng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, China
| | - Ying Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xian-Hua Meng
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, China
| | - Chun-Yan Sang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, China
| | - Ling-Ling Zhu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, China
| |
Collapse
|
8
|
Yu B, Wang X, Song Y, Xie G, Jiao S, Shi L, Cao X, Han X, Qu A. The role of hypoxia-inducible factors in cardiovascular diseases. Pharmacol Ther 2022; 238:108186. [PMID: 35413308 DOI: 10.1016/j.pharmthera.2022.108186] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/29/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases are the leading cause of death worldwide. During the development of cardiovascular diseases, hypoxia plays a crucial role. Hypoxia-inducible factors (HIFs) are the key transcription factors for adaptive hypoxic responses, which orchestrate the transcription of numerous genes involved in angiogenesis, erythropoiesis, glycolytic metabolism, inflammation, and so on. Recent studies have dissected the precise role of cell-specific HIFs in the pathogenesis of hypertension, atherosclerosis, aortic aneurysms, pulmonary arterial hypertension, and heart failure using tissue-specific HIF-knockout or -overexpressing animal models. More importantly, several compounds developed as HIF inhibitors or activators have been in clinical trials for the treatment of renal cancer or anemia; however, little is known on the therapeutic potential of these inhibitors for cardiovascular diseases. The purpose of this review is to summarize the recent advances on HIFs in the pathogenesis and pathophysiology of cardiovascular diseases and to provide evidence of potential clinical therapeutic targets.
Collapse
Affiliation(s)
- Baoqi Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Yanting Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China; Department of Pathology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Guomin Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Shiyu Jiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Li Shi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Xuejie Cao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Xinyao Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China.
| |
Collapse
|
9
|
Kim H, Kwon S. Dual effects of hypoxia on proliferation and osteogenic differentiation of mouse clonal mesenchymal stem cells. Bioprocess Biosyst Eng 2021; 44:1831-1839. [PMID: 33821326 DOI: 10.1007/s00449-021-02563-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/28/2021] [Indexed: 11/30/2022]
Abstract
Mouse clonal mesenchymal stem cells (mc-MSCs) were cultured on a Cytodex 3 microcarrier in a spinner flask for a suspension culture under hypoxia condition to increase mass productivity. The hypoxia environment was established using 4.0 mM Na2SO3 with 10 μM or 100 µM CoCl2 for 24 h in a low glucose DMEM medium. As a result, the proliferation of mc-MSCs under hypoxic conditions was 1.56 times faster than the control group over 7 days. The gene expression of HIF-1a and VEGFA increased 4.62 fold and 2.07 fold, respectively. Furthermore, the gene expression of ALP, RUNX2, COL1A, and osteocalcin increased significantly by 9.55, 1.55, 2.29, and 2.53 times, respectively. In contrast, the expression of adipogenic differentiation markers, such as PPAR-γ and FABP4, decreased. These results show that the hypoxia environment produced by these chemicals in a suspension culture increases the proliferation of mc-MSCs and promotes the osteogenic differentiation of mc-MSCs.
Collapse
Affiliation(s)
- Hyoungki Kim
- Department of Biological Engineering, Inha University, Incheon, 22212, Korea.,Department of Biological Sciences and Biongineering, Inha University, Incheon, 22212, Korea
| | - Soonjo Kwon
- Department of Biological Engineering, Inha University, Incheon, 22212, Korea. .,Department of Biological Sciences and Biongineering, Inha University, Incheon, 22212, Korea.
| |
Collapse
|
10
|
Veeroju S, Kojonazarov B, Weiss A, Ghofrani HA, Weissmann N, Grimminger F, Seeger W, Novoyatleva T, Schermuly RT. Therapeutic Potential of Regorafenib-A Multikinase Inhibitor in Pulmonary Hypertension. Int J Mol Sci 2021; 22:ijms22031502. [PMID: 33540939 PMCID: PMC7867319 DOI: 10.3390/ijms22031502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
Pulmonary hypertension (PH) is characterized by a progressive elevation of mean arterial pressure followed by right ventricular failure and death. Previous studies have indicated that numerous inhibitors of receptor tyrosine kinase signaling could be either beneficial or detrimental for the treatment of PH. Here we investigated the therapeutic potential of the multi-kinase inhibitor regorafenib (BAY 73-4506) for the treatment of PH. A peptide-based kinase activity assay was performed using the PamStation®12 platform. The 5-bromo-2′-deoxyuridine proliferation and transwell migration assays were utilized in pulmonary arterial smooth muscle cells (PASMCs). Regorafenib was administered to monocrotaline- and hypoxia-induced PH in rats and mice, respectively. Functional parameters were analyzed by hemodynamic and echocardiographic measurements. The kinase activity assay revealed upregulation of twenty-nine kinases in PASMCs from patients with idiopathic PAH (IPAH), of which fifteen were established as potential targets of regorafenib. Regorafenib showed strong anti-proliferative and anti-migratory effects in IPAH-PASMCs compared to the control PASMCs. Both experimental models indicated improved cardiac function and reduced pulmonary vascular remodeling upon regorafenib treatment. In lungs from monocrotaline (MCT) rats, regorafenib reduced the phosphorylation of c-Jun N-terminal kinase and extracellular signal-regulated kinase 1/2. Overall, our data indicated that regorafenib plays a beneficial role in experimental PH.
Collapse
MESH Headings
- Animals
- Cell Division/drug effects
- Cell Movement/drug effects
- Drug Evaluation, Preclinical
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Gene Expression Regulation/drug effects
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/enzymology
- Hypertension, Pulmonary/etiology
- Hypoxia/complications
- JNK Mitogen-Activated Protein Kinases/metabolism
- MAP Kinase Signaling System/drug effects
- Mice
- Monocrotaline/toxicity
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Phenylurea Compounds/pharmacology
- Phenylurea Compounds/therapeutic use
- Phosphorylation/drug effects
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein Processing, Post-Translational/drug effects
- Pulmonary Artery/cytology
- Pyridines/pharmacology
- Pyridines/therapeutic use
- Rats
- Rats, Sprague-Dawley
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Swathi Veeroju
- Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (S.V.); (B.K.); (A.W.); (H.A.G.); (N.W.); (F.G.); (W.S.)
| | - Baktybek Kojonazarov
- Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (S.V.); (B.K.); (A.W.); (H.A.G.); (N.W.); (F.G.); (W.S.)
- Institute for Lung Health, 35392 Giessen, Germany
| | - Astrid Weiss
- Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (S.V.); (B.K.); (A.W.); (H.A.G.); (N.W.); (F.G.); (W.S.)
| | - Hossein Ardeschir Ghofrani
- Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (S.V.); (B.K.); (A.W.); (H.A.G.); (N.W.); (F.G.); (W.S.)
| | - Norbert Weissmann
- Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (S.V.); (B.K.); (A.W.); (H.A.G.); (N.W.); (F.G.); (W.S.)
| | - Friedrich Grimminger
- Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (S.V.); (B.K.); (A.W.); (H.A.G.); (N.W.); (F.G.); (W.S.)
| | - Werner Seeger
- Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (S.V.); (B.K.); (A.W.); (H.A.G.); (N.W.); (F.G.); (W.S.)
- Institute for Lung Health, 35392 Giessen, Germany
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Tatyana Novoyatleva
- Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (S.V.); (B.K.); (A.W.); (H.A.G.); (N.W.); (F.G.); (W.S.)
- Correspondence: (T.N.); (R.T.S.); Tel.: +49-641-994-2421 (R.T.S.); Fax: +49-641-994-2419 (R.T.S.)
| | - Ralph Theo Schermuly
- Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (S.V.); (B.K.); (A.W.); (H.A.G.); (N.W.); (F.G.); (W.S.)
- Correspondence: (T.N.); (R.T.S.); Tel.: +49-641-994-2421 (R.T.S.); Fax: +49-641-994-2419 (R.T.S.)
| |
Collapse
|
11
|
Zhu D, Kang W, Zhang S, Qiao X, Liu J, Liu C, Lu H. Effect of mandibular advancement device treatment on HIF-1α, EPO and VEGF in the myocardium of obstructive sleep apnea-hypopnea syndrome rabbits. Sci Rep 2020; 10:13261. [PMID: 32764565 PMCID: PMC7414037 DOI: 10.1038/s41598-020-70238-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 07/22/2020] [Indexed: 11/09/2022] Open
Abstract
The aim of this study was to investigate the effects of mandibular advancement device (MAD) therapy for obstructive sleep apnea-hypopnea syndrome (OSAHS) on hypoxia-inducible factor-1α (HIF-1α), erythropoietin (EPO) and vascular endothelial growth factor (VEGF) in myocardial tissue. New Zealand rabbits were used to develop OSAHS and MAD models. Cone beam computed tomography (CBCT) of the upper airway and polysomnography (PSG) recordings were performed with the animals in the supine position. All of the animals were induced to sleep in a supine position for 4-6 h each day and were observed continuously for 8 weeks. The myocardial tissue of the three groups was dissected to measure the expression of HIF-1α, EPO and VEGF. The results showed that there was higher expression of HIF-1α, EPO and VEGF in the OSAHS group than those in the MAD and control groups. MAD treatment significantly downregulated the expression of HIF-1α, EPO and VEGF in the OSAHS animals. We concluded that MAD treatment could significantly downregulate the increased expression of HIF-1α, EPO and VEGF in OSAHS rabbits, improving their myocardial function.
Collapse
Affiliation(s)
- Dechao Zhu
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology, No. 383, East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Wenjing Kang
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology, No. 383, East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Shilong Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology, No. 383, East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Xing Qiao
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology, No. 383, East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Jie Liu
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology, No. 383, East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Chunyan Liu
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology, No. 383, East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China.
| | - Haiyan Lu
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology, No. 383, East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China.
| |
Collapse
|
12
|
Guo C, Xue H, Guo T, Zhang W, Xuan WQ, Ren YT, Wang D, Chen YH, Meng YH, Gao HL, Zhao P. Recombinant human lactoferrin attenuates the progression of hepatosteatosis and hepatocellular death by regulating iron and lipid homeostasis in ob/ob mice. Food Funct 2020; 11:7183-7196. [PMID: 32756704 DOI: 10.1039/d0fo00910e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lactoferrin (Lf), an iron-binding glycoprotein, has been shown to possess antioxidant and anti-inflammatory properties and exert modulatory effects on lipid homeostasis and non-alcoholic fatty liver disease (NAFLD), but our understanding of its regulatory mechanisms is limited and inconsistent. We used leptin-deficient (ob/ob) mice as the rodent model of NAFLD, and administered recombinant human Lf (4 mg per kg body weight) or control vehicle by intraperitoneal injection to evaluate the hepatoprotective effects of Lf. After 40 days of treatment with Lf, insulin sensitivity and hepatic steatosis in ob/ob mice were significantly improved with the down-regulation of sterol regulatory element binding protein-2 (SREBP2), indicating an improvement in hepatic lipid metabolism and function. We further explored the mechanism, and found that Lf may increase the hepatocellular iron output by targeting the hepcidin-ferroportin (FPn) axis, and then maintains the liver oxidative balance through a nonenzymatic antioxidant system, ultimately suppressing the death of hepatocytes. In addition, the cytoprotective role of Lf may be associated with the inhibition of endoplasmic reticulum (ER) stress and inflammation, promotion of autophagy of damaged hepatocytes and induction of up-regulation of hypoxia inducible factor-1α/vascular endothelial growth factor (HIF-lα/VEGF) to facilitate liver function recovery. These findings suggest that recombinant human Lf might be a potential therapeutic agent for mitigating or delaying the pathological process of NAFLD.
Collapse
Affiliation(s)
- Chuang Guo
- College of Life and Health Sciences, Northeastern University, No. 195, Chuangxin Road, Hunnan District, Shenyang, 110169, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Liu X, Wang X, Liu J, Wang X, Bao H. Identifying Candidate Genes for Hypoxia Adaptation of Tibet Chicken Embryos by Selection Signature Analyses and RNA Sequencing. Genes (Basel) 2020; 11:E823. [PMID: 32698384 PMCID: PMC7397227 DOI: 10.3390/genes11070823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 11/16/2022] Open
Abstract
The Tibet chicken (Gallus gallus) lives on the Qinghai-Tibet Plateau and adapts to the hypoxic environment very well. The objectives of this study was to obtain candidate genes associated with hypoxia adaptation in the Tibet chicken embryos. In the present study, we used the fixation index (Fst) and cross population extended haplotype homozygosity (XPEHH) statistical methods to detect signatures of positive selection of the Tibet chicken, and analyzed the RNA sequencing data from the embryonic liver and heart with HISAT, StringTie and Ballgown for differentially expressed genes between the Tibet chicken and White leghorn (Gallus gallus, a kind of lowland chicken) embryos hatched under hypoxia condition. Genes which were screened out by both selection signature analysis and RNA sequencing analysis could be regarded as candidate genes for hypoxia adaptation of chicken embryos. We screened out 1772 genes by XPEHH and 601 genes by Fst, and obtained 384 and 353 differentially expressed genes in embryonic liver and heart, respectively. Among these genes, 89 genes were considered as candidate genes for hypoxia adaptation in chicken embryos. ARNT, AHR, GSTK1 and FGFR1 could be considered the most important candidate genes. Our findings provide references to elucidate the molecular mechanism of hypoxia adaptation in Tibet chicken embryos.
Collapse
Affiliation(s)
- Xiayi Liu
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.L.); (J.L.)
| | - Xiaochen Wang
- Chinese Academy of Sciences Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China;
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Liu
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.L.); (J.L.)
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haigang Bao
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.L.); (J.L.)
| |
Collapse
|
14
|
The association between pulmonary hypertension and stroke: a systematic review and meta-analysis. Int J Cardiol 2019; 303:78. [PMID: 31864793 DOI: 10.1016/j.ijcard.2019.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/10/2019] [Indexed: 11/22/2022]
|
15
|
Igari K, Kelly MJ, Yamanouchi D. Digoxin Attenuates Receptor Activation of NF-κB Ligand-Induced Osteoclastogenesis in Macrophages. J Vasc Res 2019; 56:55-64. [PMID: 31085912 PMCID: PMC6764455 DOI: 10.1159/000499380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/05/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Even though hypoxia-inducible factor-1α (HIF-1α) is among the transcriptional factors demonstrated to contribute to the formation of abdominal aortic aneurysms (AAAs), the precise mechanism has been unclear. Digoxin is known as an inhibitor of HIF-1α, and shows a protective effect against the progression of AAAs. OBJECTIVES We tested the effect of digoxin on osteoclastogenesis (OCG) and examined the pathway through which digoxin exerts inhibition of HIF-1α. MATERIALS AND METHODS RAW 264.7 macrophage cells were cultured and stimulated by soluble receptor activator of NF-κB ligand (sRANKL) with or without digoxin. First, we tested the effect of digoxin to attenuate macrophage activation, which led to OCG, characterized by tartrate-resistant acid phosphatase (TRAP)-positive macrophages (TPMs). RESULTS The activation of TPMs stimulated by sRANKL was attenuated by digoxin treatment. Furthermore, the receptor activator of NF-κB (RANK)/receptor activator of NF-κB ligand (RANKL) complex signaling pathway, which is stimulated by HIF-1α, was downregulated by digoxin treatment. CONCLUSIONS These results show that digoxin attenuates OCG. By inhibition of HIF-1α, digoxin decreases OCG through the downregulation of the RANK/RANKL signaling pathway. Therefore, digoxin is a potential candidate for medical treatment of AAAs.
Collapse
Affiliation(s)
- Kimihiro Igari
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Matthew J Kelly
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Dai Yamanouchi
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA,
| |
Collapse
|
16
|
Lin L, Li G, Zhang W, Wang YL, Yang H. Low-dose aspirin reduces hypoxia-induced sFlt1 release via the JNK/AP-1 pathway in human trophoblast and endothelial cells. J Cell Physiol 2019; 234:18928-18941. [PMID: 31004367 DOI: 10.1002/jcp.28533] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 11/06/2022]
Abstract
Pre-eclampsia (PE) is a serious hypertensive disorder of pregnancy that remains a leading cause of perinatal and maternal morbidity and mortality worldwide. Placental ischemia/hypoxia and the secretion of soluble fms-like tyrosine kinase 1 (sFlt1) into maternal circulation are involved in the pathogenesis of PE. Although low-dose aspirin (LDA) has beneficial effects on the prevention of PE, the exact mechanisms of action of LDA, particularly on placental dysfunction, and sFlt1 release, have not been well investigated. This study aimed to determine whether LDA exists the protective effects on placental trophoblast and endothelial functions and prevents PE-associated sFlt1 release. First, we observed that LDA mitigated hypoxia-induced trophoblast apoptosis, showed positive effects on trophoblast cells migration and invasion activity, and increased the tube-forming activity of human umbilical vein endothelial cells (HUVECs). In addition, LDA decreased hypoxia-induced sFlt1 production, and the c-Jun NH2 -terminal kinase/activator protein-1 (JNK/AP-1) pathway was shown to mediate the induction of sFlt1. Moreover, the transcription factor AP-1 was confirmed to regulate the Flt1 gene expression by directly binding to the Flt1 promoter in luciferase assays. The result of chromatin immunoprecipitation assays further demonstrated that LDA could directly decrease the expression of the transcription factor AP-1, and thus decrease sFlt1 production. Finally, the effects of LDA on sFlt1 production were proved in human placental explants. Taken together, our data show the protective effects of LDA against trophoblast and endothelial cell dysfunction and reveal that the LDA-mediated inhibition of sFlt1 via the JNK/AP-1 pathway may be a potential cellular/molecular mechanism for the prevention of PE.
Collapse
Affiliation(s)
- Li Lin
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Guanlin Li
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Wanyi Zhang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Science, Beijing, China
| | - Huixia Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal-Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| |
Collapse
|
17
|
Miikkulainen P, Högel H, Seyednasrollah F, Rantanen K, Elo LL, Jaakkola PM. Hypoxia-inducible factor (HIF)-prolyl hydroxylase 3 (PHD3) maintains high HIF2A mRNA levels in clear cell renal cell carcinoma. J Biol Chem 2019; 294:3760-3771. [PMID: 30617181 DOI: 10.1074/jbc.ra118.004902] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/04/2019] [Indexed: 11/06/2022] Open
Abstract
Most clear cell renal cell carcinomas (ccRCCs) have inactivation of the von Hippel-Lindau tumor suppressor protein (pVHL), resulting in the accumulation of hypoxia-inducible factor α-subunits (HIF-α) and their downstream targets. HIF-2α expression is particularly high in ccRCC and is associated with increased ccRCC growth and aggressiveness. In the canonical HIF signaling pathway, HIF-prolyl hydroxylase 3 (PHD3) suppresses HIF-2α protein by post-translational hydroxylation under sufficient oxygen availability. Here, using immunoblotting and immunofluorescence staining, qRT-PCR, and siRNA-mediated gene silencing, we show that unlike in the canonical pathway, PHD3 silencing in ccRCC cells leads to down-regulation of HIF-2α protein and mRNA. Depletion of other PHD family members had no effect on HIF-2α expression, and PHD3 knockdown in non-RCC cells resulted in the expected increase in HIF-2α protein expression. Accordingly, PHD3 knockdown decreased HIF-2α target gene expression in ccRCC cells and expression was restored upon forced HIF-2α expression. The effect of PHD3 depletion was pinpointed to HIF2A mRNA stability. In line with these in vitro results, a strong positive correlation of PHD3 and HIF2A mRNA expression in ccRCC tumors was detected. Our results suggest that in contrast to the known negative regulation of HIF-2α in most cell types, high PHD3 expression in ccRCC cells maintains elevated HIF-2α expression and that of its target genes, which may enhance kidney cancer aggressiveness.
Collapse
Affiliation(s)
- Petra Miikkulainen
- From the Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland.,the Department of Medical Biochemistry, Faculty of Medicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Heidi Högel
- From the Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland.,the Department of Medical Biochemistry, Faculty of Medicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Fatemeh Seyednasrollah
- From the Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland.,the Department of Mathematics and Statistics, University of Turku, Vesilinnantie 5, 20520 Turku, Finland, and
| | - Krista Rantanen
- From the Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | - Laura L Elo
- From the Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | - Panu M Jaakkola
- From the Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland, .,the Department of Medical Biochemistry, Faculty of Medicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland.,Helsinki University Hospital Cancer Center and Department of Oncology, University of Helsinki, Haartmaninkatu 4, 00290 Helsinki, Finland
| |
Collapse
|
18
|
Das M, Zawada WM, West J, Stenmark KR. JNK2 regulates vascular remodeling in pulmonary hypertension. Pulm Circ 2018; 8:2045894018778156. [PMID: 29718758 PMCID: PMC6055330 DOI: 10.1177/2045894018778156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/26/2018] [Indexed: 01/04/2023] Open
Abstract
Pulmonary arterial (PA) wall modifications are key pathological features of pulmonary hypertension (PH). Although such abnormalities correlate with heightened phosphorylation of c-Jun N-terminal kinases 1/2 (JNK1/2) in a rat model of PH, the contribution of specific JNK isoforms to the pathophysiology of PH is unknown. Hence, we hypothesized that activation of either one, or both JNK isoforms regulates PA remodeling in PH. We detected increased JNK1/2 phosphorylation in the thickened vessels of PH patients' lungs compared to that in lungs of healthy individuals. JNK1/2 phosphorylation paralleled a marked reduction in MAP kinase phosphatase 1 (JNK dephosphorylator) expression in patients' lungs. Association of JNK1/2 activation with vascular modification was confirmed in the calf model of severe hypoxia-induced PH. To ascertain the role of each JNK isoform in pathophysiology of PH, wild-type (WT), JNK1 null (JNK1-/-), and JNK2 null (JNK2-/-) mice were exposed to chronic hypoxia (10% O2 for six weeks) to develop PH. In hypoxic WT lungs, an increase in JNK1/2 phosphorylation was associated with PH-like pathology. Hallmarks of PH pathophysiology, i.e. excessive accumulation of extracellular matrix and vessel muscularization with medial wall thickening, was also detected in hypoxic JNK1-/- lungs, but not in hypoxia-exposed JNK2-/- lungs. However, hypoxia-induced increases in right ventricular systolic pressure (RVSP) and in right ventricular hypertrophy (RVH) were similar in all three genotypes. Our findings suggest that JNK2 participates in PA remodeling (but likely not in vasoconstriction) in murine hypoxic PH and that modulating JNK2 actions might quell vascular abnormalities and limit the course of PH.
Collapse
Affiliation(s)
- Mita Das
- Department of Internal Medicine, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, USA
| | - W. Michael Zawada
- Department of Basic Medical Sciences, A. T. Still University, School of Osteopathic Medicine Arizona, Mesa, AZ, USA
| | - James West
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kurt R. Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|