1
|
Kan ASH, Kusay AS, Mohammadi NA, Lin SXN, Liao VWY, Lesca G, Souci S, Milh M, Christophersen P, Chebib M, Møller RS, Absalom NL, Jensen AA, Ahring PK. Understanding paralogous epilepsy-associated GABA A receptor variants: Clinical implications, mechanisms, and potential pitfalls. Proc Natl Acad Sci U S A 2024; 121:e2413011121. [PMID: 39642202 DOI: 10.1073/pnas.2413011121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/26/2024] [Indexed: 12/08/2024] Open
Abstract
Recent discoveries have revealed that genetic variants in γ-aminobutyric acid type A (GABAA) receptor subunits can lead to both gain-of-function (GOF) and loss-of-function (LOF) receptors. GABAA receptors, however, have a pseudosymmetrical pentameric assembly, and curiously diverse functional outcomes have been reported for certain homologous variants in paralogous genes (paralogous variants). To investigate this, we assembled a cohort of 11 individuals harboring paralogous M1 proline missense variants in GABRA1, GABRB2, GABRB3, and GABRG2. Seven mutations (α1P260L, α1P260S, β2P252L, β3P253L, β3P253S, γ2P282A, and γ2P282S) in α1β2/3γ2 receptors were analyzed using electrophysiological examinations and molecular dynamics simulations. All individuals in the cohort were diagnosed with developmental and epileptic encephalopathy, with a median seizure onset age of 3.5 mo, and all exhibited global developmental delay. The clinical data for this cohort aligned with established GABAA receptor GOF but not LOF cohorts. Electrophysiological assessments revealed that all variants caused GOF by increasing GABA sensitivity by 3- to 23-fold. In some cases, this was accompanied by LOF traits such as reduced maximal current amplitude and enhanced receptor desensitization. The specific subunit mutated and whether the mutation occurred in one or two subunits within the pentamer influenced the overall effects. Molecular dynamics simulations confirmed similar structural changes from all mutations, but with position-dependent asymmetry. These findings establish that paralogous variants affecting the 100% conserved proline residue in the M1 transmembrane helix of GABAAR subunits all lead to overall GOF traits. The unexpected asymmetric and mixed effects on receptor function have broader implications for interpreting functional analyses for multimeric ion-channel proteins.
Collapse
Affiliation(s)
- Anthony S H Kan
- School of Medical Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ali S Kusay
- School of Medical Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping SE-581 83, Sweden
| | - Nazanin A Mohammadi
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Center Filadelfia, Member of the European Reference Network EpiCARE, Dianalund DK-4293, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense DK-5230, Denmark
| | - Susan X N Lin
- School of Medical Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Vivian W Y Liao
- School of Medical Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Gaetan Lesca
- Department of Medical Genetics, Member of the European Reference Network EpiCARE, Hospices Civils de Lyon, Lyon 69002, France
- Institut Neuromyogène, CNRS UMR 5310-INSERM U1217, Université de Lyon, Université Claude Bernard Lyon 1, Lyon 69008, France
| | - Sabrine Souci
- Department of Neurology, Hospices Civils de Lyon, Lyon Sud University Hospital, Pierre Bénite 69495, France
| | - Mathieu Milh
- Department of Pediatric Neurology, Assistance Publique - Hôpitaux de Marseille, La Timone Children's Hospital, Marseille 13005, France
- Institut de Neurobiologie de la Méditerranée, INSERM, Aix-Marseille Université, Marseille 13273, France
| | | | - Mary Chebib
- School of Medical Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Center Filadelfia, Member of the European Reference Network EpiCARE, Dianalund DK-4293, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense DK-5230, Denmark
| | - Nathan L Absalom
- School of Medical Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Philip K Ahring
- School of Medical Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Absalom NL, Lin SXN, Liao VWY, Chua HC, Møller RS, Chebib M, Ahring PK. GABA A receptors in epilepsy: Elucidating phenotypic divergence through functional analysis of genetic variants. J Neurochem 2024; 168:3831-3852. [PMID: 37621067 PMCID: PMC11591409 DOI: 10.1111/jnc.15932] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Normal brain function requires a tightly regulated balance between excitatory and inhibitory neurotransmissions. γ-Aminobutyric acid type A (GABAA) receptors represent the major class of inhibitory ion channels in the mammalian brain. Dysregulation of these receptors and/or their associated pathways is strongly implicated in the pathophysiology of epilepsy. To date, hundreds of different GABAA receptor subunit variants have been associated with epilepsy, making them a prominent cause of genetically linked epilepsy. While identifying these genetic variants is crucial for accurate diagnosis and effective genetic counselling, it does not necessarily lead to improved personalised treatment options. This is because the identification of a variant does not reveal how the function of GABAA receptors is affected. Genetic variants in GABAA receptor subunits can cause complex changes to receptor properties resulting in various degrees of gain-of-function, loss-of-function or a combination of both. Understanding how variants affect the function of GABAA receptors therefore represents an important first step in the ongoing development of precision therapies. Furthermore, it is important to ensure that functional data are produced using methodologies that allow genetic variants to be classified using clinical guidelines such as those developed by the American College of Medical Genetics and Genomics. This article will review the current knowledge in the field and provide recommendations for future functional analysis of genetic GABAA receptor variants.
Collapse
Affiliation(s)
- Nathan L. Absalom
- School of ScienceUniversity of Western SydneySydneyNew South WalesAustralia
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Susan X. N. Lin
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Vivian W. Y. Liao
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Han C. Chua
- Brain and Mind Centre, Sydney Pharmacy School, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Rikke S. Møller
- Department of Epilepsy Genetics and Personalized MedicineThe Danish Epilepsy Centre, FiladelfiaDianalundDenmark
- Department of Regional Health ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Mary Chebib
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Philip K. Ahring
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
3
|
Li X, Guo S, Sun Y, Ding J, Chen C, Wu Y, Li P, Sun T, Wang X. GABRG2 mutations in genetic epilepsy with febrile seizures plus: structure, roles, and molecular genetics. J Transl Med 2024; 22:767. [PMID: 39143639 PMCID: PMC11323400 DOI: 10.1186/s12967-024-05387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/10/2024] [Indexed: 08/16/2024] Open
Abstract
Genetic epilepsy with febrile seizures plus (GEFS+) is a genetic epilepsy syndrome characterized by a marked hereditary tendency inherited as an autosomal dominant trait. Patients with GEFS+ may develop typical febrile seizures (FS), while generalized tonic-clonic seizures (GTCSs) with fever commonly occur between 3 months and 6 years of age, which is generally followed by febrile seizure plus (FS+), with or without absence seizures, focal seizures, or GTCSs. GEFS+ exhibits significant genetic heterogeneity, with polymerase chain reaction, exon sequencing, and single nucleotide polymorphism analyses all showing that the occurrence of GEFS+ is mainly related to mutations in the gamma-aminobutyric acid type A receptor gamma 2 subunit (GABRG2) gene. The most common mutations in GABRG2 are separated in large autosomal dominant families, but their pathogenesis remains unclear. The predominant types of GABRG2 mutations include missense (c.983A → T, c.245G → A, p.Met199Val), nonsense (R136*, Q390*, W429*), frameshift (c.1329delC, p.Val462fs*33, p.Pro59fs*12), point (P83S), and splice site (IVS6+2T → G) mutations. All of these mutations types can reduce the function of ion channels on the cell membrane; however, the degree and mechanism underlying these dysfunctions are different and could be linked to the main mechanism of epilepsy. The γ2 subunit plays a special role in receptor trafficking and is closely related to its structural specificity. This review focused on investigating the relationship between GEFS+ and GABRG2 mutation types in recent years, discussing novel aspects deemed to be great significance for clinically accurate diagnosis, anti-epileptic treatment strategies, and new drug development.
Collapse
Affiliation(s)
- Xinxiao Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
| | - Shengnan Guo
- Department of Rehabilitative Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Yangyang Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, 750001, People's Republic of China
| | - Jiangwei Ding
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Chao Chen
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Yuehui Wu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Peidong Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, 750001, People's Republic of China.
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
- Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
| |
Collapse
|
4
|
Zhu X, Li P. GABA(A) Receptor Subunit (γ2, δ, β1-3) Variants in Genetic Epilepsy: A Comprehensive Summary of 206 Clinical Cases. J Child Neurol 2024; 39:354-370. [PMID: 39228214 DOI: 10.1177/08830738241273437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Epilepsy is identified in individuals who experienced 2 or more unprovoked seizures occurring over 24 hours apart, which can have a profound impact on a person's neurobiological, cognitive, psychological, and social well-being. Epilepsy is considerably diverse, with classifications such as genetic epilepsy that result directly from a known or presumed genetic variant with the core symptoms of seizures. The GABAA receptor primarily functions as a heteropentamer, containing 3 of 8 subunit types: α, β, γ, δ, ε, π, θ, and ρ. In the adult brain, the GABAA receptor is the primary inhibitory component in neural networks. The involvement of GABAA receptors in the pathogenesis of epilepsy has been proposed. We extensively reviewed all relevant clinical data of previously published cases of GABAA receptor subunit γ2, δ, β1-3 variants included in PubMed up to February 2024, including the variant types, loci, postulated mechanisms, their relevant regions, first onset ages, and phenotypes. We summarized the postulated mechanisms of epileptic pathogenesis. We also divided the collected 206 cases of epilepsy into 4 epileptic phenotypes: genetic generalized epilepsies, focal epilepsy, developmental and epileptic encephalopathies, and epilepsy with fever sensibility. We showed that there were significant differences in the likelihood of the γ2, β2, and β3 subunit variants causing genetic generalized epilepsies, focal epilepsy, developmental and epileptic encephalopathies, and epilepsy with fever sensibility. Patients with the β3 subunit variant seemed related to an earlier first onset age. Our review supports that GABAA receptor subunit variants are a crucial area of epilepsy research and treatment exploration.
Collapse
Affiliation(s)
- Xinyi Zhu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Peijun Li
- Shandong Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Mohammadi NA, Ahring PK, Yu Liao VW, Chua HC, Ortiz de la Rosa S, Johannesen KM, Michaeli-Yossef Y, Vincent-Devulder A, Meridda C, Bruel AL, Rossi A, Patel C, Klepper J, Bonanni P, Minghetti S, Trivisano M, Specchio N, Amor D, Auvin S, Baer S, Meyer P, Milh M, Salpietro V, Maroofian R, Lemke JR, Weckhuysen S, Christophersen P, Rubboli G, Chebib M, Jensen AA, Absalom NL, Møller RS. Distinct neurodevelopmental and epileptic phenotypes associated with gain- and loss-of-function GABRB2 variants. EBioMedicine 2024; 106:105236. [PMID: 38996765 PMCID: PMC11296288 DOI: 10.1016/j.ebiom.2024.105236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Variants in GABRB2, encoding the β2 subunit of the γ-aminobutyric acid type A (GABAA) receptor, can result in a diverse range of conditions, ranging from febrile seizures to severe developmental and epileptic encephalopathies. However, the mechanisms underlying the risk of developing milder vs more severe forms of disorder remain unclear. In this study, we conducted a comprehensive genotype-phenotype correlation analysis in a cohort of individuals with GABRB2 variants. METHODS Genetic and electroclinical data of 42 individuals harbouring 26 different GABRB2 variants were collected and accompanied by electrophysiological analysis of the effects of the variants on receptor function. FINDINGS Electrophysiological assessments of α1β2γ2 receptors revealed that 25/26 variants caused dysfunction to core receptor properties such as GABA sensitivity. Of these, 17 resulted in gain-of-function (GOF) while eight yielded loss-of-function traits (LOF). Genotype-phenotype correlation analysis revealed that individuals harbouring GOF variants suffered from severe developmental delay/intellectual disability (DD/ID, 74%), movement disorders such as dystonia or dyskinesia (59%), microcephaly (50%) and high risk of early mortality (26%). Conversely, LOF variants were associated with milder disease manifestations. Individuals with these variants typically exhibited fever-triggered seizures (92%), milder degrees of DD/ID (85%), and maintained ambulatory function (85%). Notably, severe movement disorders or microcephaly were not reported in individuals with loss-of-function variants. INTERPRETATION The data reveals that genetic variants in GABRB2 can lead to both gain and loss-of-function, and this divergence is correlated with distinct disease manifestations. Utilising this information, we constructed a diagnostic flowchart that aids in predicting the pathogenicity of recently identified variants by considering clinical phenotypes. FUNDING This work was funded by the Australian National Health & Medical Research Council, the Novo Nordisk Foundation and The Lundbeck Foundation.
Collapse
Affiliation(s)
- Nazanin Azarinejad Mohammadi
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, Filadelfia (Member of the ERN EpiCARE), Dianalund, Denmark; Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Philip Kiær Ahring
- School of Medical Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Vivian Wan Yu Liao
- School of Medical Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Han Chow Chua
- Sydney Pharmacy School, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sebastián Ortiz de la Rosa
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, Filadelfia (Member of the ERN EpiCARE), Dianalund, Denmark; Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Katrine Marie Johannesen
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, Filadelfia (Member of the ERN EpiCARE), Dianalund, Denmark; Department of Genetics, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Yael Michaeli-Yossef
- Pediatric Neurology Unit and Metabolic Neurogenetic Clinic, Wolfson Medical Center, Holon, Israel
| | | | | | | | - Alessandra Rossi
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, Filadelfia (Member of the ERN EpiCARE), Dianalund, Denmark; Pediatric Clinic, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane & Women's Hospital, Brisbane, QLD 4029, Australia
| | - Joerg Klepper
- Children's Hospital Aschaffenburg-Alzenau, Aschaffenburg, Germany
| | - Paolo Bonanni
- IRCCS E. Medea Scientific Institute, Epilepsy Unit, Conegliano, Treviso, Italy
| | - Sara Minghetti
- IRCCS E. Medea Scientific Institute, Clinical Neurophysiology Unit, Bosisio Parini, LC, Italy
| | - Marina Trivisano
- Neurology, Epilepsy and Movement Disorders, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Nicola Specchio
- Neurology, Epilepsy and Movement Disorders, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - David Amor
- Murdoch Children's Research Institute, Melbourne, Australia
| | - Stéphane Auvin
- Université de Paris, Child Neurology & Epilepsy, Paris, France; Robert-Debré Hospital, Center for Rare Epilepsies - Pediatric Neurology, Paris, France
| | - Sarah Baer
- Department of Paediatric Neurology, French Reference Center of Rare Epilepsies CREER, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Pierre Meyer
- Paediatric Neurology Department, Phymedexp, Montpellier University, Inserm, CNRS, University Hospital Montpellier, Montpellier, France
| | - Mathieu Milh
- Department of Pediatric Neurology, AP-HM, La Timone Children's Hospital, Marseille, France; Faculté de Médecine Timone, Aix Marseille Univ, INSERM, MMG, U1251, ERN EpiCARE, Marseille, France
| | - Vincenzo Salpietro
- Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany; Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Neurology, Antwerp University Hospital, Antwerp, Belgium; Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | | | - Guido Rubboli
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, Filadelfia (Member of the ERN EpiCARE), Dianalund, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mary Chebib
- School of Medical Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nathan L Absalom
- School of Medical Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia; School of Science, Western Sydney University, Sydney, Australia.
| | - Rikke Steensbjerre Møller
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, Filadelfia (Member of the ERN EpiCARE), Dianalund, Denmark; Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
6
|
Karabacak M, Jagtiani P, Jain A, Panov F, Margetis K. Tracing topics and trends in drug-resistant epilepsy research using a natural language processing-based topic modeling approach. Epilepsia 2024; 65:861-872. [PMID: 38314969 DOI: 10.1111/epi.17890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/07/2024]
Abstract
Epilepsy is a common neurological disorder affecting over 70 million people worldwide. Although many patients achieve seizure control with anti-epileptic drugs (AEDs), 30%-40% develop drug-resistant epilepsy (DRE), where seizures persist despite adequate trials of AEDs. DRE is associated with reduced quality of life, increased mortality and morbidity, and greater socioeconomic challenges. The continued intractability of DRE has fueled exponential growth in research that aims to understand and treat this serious condition. However, synthesizing this vast and continuously expanding DRE literature to derive insights poses considerable difficulties for investigators and clinicians. Conventional review methods are often prolonged, hampering the timely application of findings. More-efficient approaches to analyze the voluminous research are needed. In this study, we utilize a natural language processing (NLP)-based topic modeling approach to examine the DRE publication landscape, uncovering key topics and trends. Documents were retrieved from Scopus, preprocessed, and modeled using BERTopic. This technique employs transformer models like BERT (Bidirectional Encoder Representations from Transformers) for contextual understanding, thereby enabling accurate topic categorization. Analysis revealed 18 distinct topics spanning various DRE research areas. The 10 most common topics, including "AEDs," "Neuromodulation Therapy," and "Genomics," were examined further. "Cannabidiol," "Functional Brain Mapping," and "Autoimmune Encephalitis" emerged as the hottest topics of the current decade, and were examined further. This NLP methodology provided valuable insights into the evolving DRE research landscape, revealing shifting priorities and declining interests. Moreover, we demonstrate an efficient approach to synthesizing and visualizing patterns within extensive literature that could be applied to other research fields.
Collapse
Affiliation(s)
- Mert Karabacak
- Department of Neurosurgery, Mount Sinai Health System, New York, New York, USA
| | - Pemla Jagtiani
- School of Medicine, SUNY Downstate Health Sciences University, New York, New York, USA
| | - Ankita Jain
- School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Fedor Panov
- Department of Neurosurgery, Mount Sinai Health System, New York, New York, USA
| | | |
Collapse
|
7
|
Vera E, Cornejo I, Henao JC, Tribiños F, Burgos J, Sepúlveda FV, Cid LP. Normal vision and development in mice with low functional expression of Kir7.1 in heterozygosis for a blindness-producing mutation inactivating the channel. Am J Physiol Cell Physiol 2024; 326:C1178-C1192. [PMID: 38406825 DOI: 10.1152/ajpcell.00597.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
K+ channel Kir7.1 expressed at the apical membrane of the retinal pigment epithelium (RPE) plays an essential role in retinal function. An isoleucine-to-threonine mutation at position 120 of the protein is responsible for blindness-causing vitreo-retinal dystrophy. We have studied the molecular mechanism of action of Kir7.1-I120T in vitro by heterologous expression and in vivo in CRISPR-generated knockin mice. Full-size Kir7.1-I120T reaches the plasma membrane but lacks any activity. Analysis of Kir7.1 and the I120T mutant in mixed transfection experiments, and that of tandem tetrameric constructs made by combining wild type (WT) and mutant protomers, leads us to conclude that they do not form heterotetramers in vitro. Homozygous I120T/I120T mice show cleft palate and tracheomalacia and do not survive beyond P0, whereas heterozygous WT/I120T develop normally. Membrane conductance of RPE cells isolated from WT/WT and heterozygous WT/I120T mice is dominated by Kir7.1 current. Using Rb+ as a charge carrier, we demonstrate that the Kir7.1 current of WT/I120T RPE cells corresponds to approximately 50% of that in cells from WT/WT animals, in direct proportion to WT gene dosage. This suggests a lack of compensatory effects or interference from the mutated allele product, an interpretation consistent with results obtained using WT/- hemizygous mouse. Electroretinography and behavioral tests also show normal vision in WT/I120T animals. The hypomorphic ion channel phenotype of heterozygous Kir7.1-I120T mutants is therefore compatible with normal development and retinal function. The lack of detrimental effect of this degree of functional deficit might explain the recessive nature of Kir7.1 mutations causing human eye disease.NEW & NOTEWORTHY Human retinal pigment epithelium K+ channel Kir7.1 is affected by generally recessive mutations leading to blindness. We investigate one such mutation, isoleucine-to-threonine at position 120, both in vitro and in vivo in knockin mice. The mutated channel is inactive and in heterozygosis gives a hypomorphic phenotype with normal retinal function. Mutant channels do not interfere with wild-type Kir7.1 channels which are expressed concomitantly without hindrance, providing an explanation for the recessive nature of the disease.
Collapse
Affiliation(s)
- Erwin Vera
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | - Isabel Cornejo
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Valdivia, Chile
| | - Juan Carlos Henao
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | | | | | - Francisco V Sepúlveda
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - L Pablo Cid
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| |
Collapse
|
8
|
O'Connor EC, Kambara K, Bertrand D. Advancements in the use of xenopus oocytes for modelling neurological disease for novel drug discovery. Expert Opin Drug Discov 2024; 19:173-187. [PMID: 37850233 DOI: 10.1080/17460441.2023.2270902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
INTRODUCTION Introduced about 50 years ago, the model of Xenopus oocytes for the expression of recombinant proteins has gained a broad spectrum of applications. The authors herein review the benefits brought from using this model system, with a focus on modeling neurological disease mechanisms and application to drug discovery. AREAS COVERED Using multiple examples spanning from ligand gated ion channels to transporters, this review presents, in the light of the latest publications, the benefits offered from using Xenopus oocytes. Studies range from the characterization of gene mutations to the discovery of novel treatments for disorders of the central nervous system (CNS). EXPERT OPINION Development of new drugs targeting CNS disorders has been marked by failures in the translation from preclinical to clinical studies. As progress in genetics and molecular biology highlights large functional differences arising from a single to a few amino acid exchanges, the need for drug screening and functional testing against human proteins is increasing. The use of Xenopus oocytes to enable precise modeling and characterization of clinically relevant genetic variants constitutes a powerful model system that can be used to inform various aspects of CNS drug discovery and development.
Collapse
Affiliation(s)
- Eoin C O'Connor
- Roche Pharma Research and Early Development, Neuroscience & Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | | | | |
Collapse
|
9
|
Lin SXN, Ahring PK, Keramidas A, Liao VWY, Møller RS, Chebib M, Absalom NL. Correlations of receptor desensitization of gain-of-function GABRB3 variants with clinical severity. Brain 2024; 147:224-239. [PMID: 37647766 PMCID: PMC10766243 DOI: 10.1093/brain/awad285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
Genetic variants associated with developmental and epileptic encephalopathies have been identified in the GABRB3 gene that encodes the β3 subunit of GABAA receptors. Typically, variants alter receptor sensitivity to GABA resulting in either gain- or loss-of-function, which correlates with patient phenotypes. However, it is unclear how another important receptor property, desensitization, contributes to the greater clinical severity of gain-of-function variants. Desensitization properties of 20 gain-of-function GABRB3 variant receptors were evaluated using two-electrode voltage-clamp electrophysiology. The parameters measured included current decay rates and steady-state currents. Selected variants with increased or reduced desensitization were also evaluated using whole-cell electrophysiology in transfected mammalian cell lines. Of the 20 gain-of-function variants assessed, 13 were found to alter receptor desensitization properties. Seven variants reduced desensitization at equilibrium, which acts to worsen gain-of-function traits. Six variants accelerated current decay kinetics, which limits gain-of-function traits. All affected patients displayed severe clinical phenotypes with intellectual disability and difficult-to-treat epilepsy. Nevertheless, variants that reduced desensitization at equilibrium were associated with more severe clinical outcomes. This included younger age of first seizure onset (median 0.5 months), movement disorders (dystonia and dyskinesia), epilepsy of infancy with migrating focal seizures (EIMFS) and risk of early mortality. Variants that accelerated current decay kinetics were associated with slightly milder phenotypes with later seizure onset (median 4 months), unclassifiable developmental and epileptic encephalopathies or Lennox-Gastaut syndrome and no movement disorders. Our study reveals that gain-of-function GABRB3 variants can increase or decrease receptor desensitization properties and that there is a correlation with the degree of disease severity. Variants that reduced the desensitization at equilibrium were clustered in the transmembrane regions that constitute the channel pore and correlated with greater disease severity, while variants that accelerated current decay were clustered in the coupling loops responsible for receptor activation and correlated with lesser severity.
Collapse
Affiliation(s)
- Susan X N Lin
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Philip K Ahring
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Angelo Keramidas
- Institute for Molecular Bioscience, The University of Queensland, Saint Lucia, QLD 4072, Australia
| | - Vivian W Y Liao
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, Member of ERN, EpiCare, Danish Epilepsy Centre, Dianalund DK-4293, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense DK-5230, Denmark
| | - Mary Chebib
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nathan L Absalom
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Science, University of Western Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Borowicz-Reutt K, Czernia J, Krawczyk M. Genetic Background of Epilepsy and Antiepileptic Treatments. Int J Mol Sci 2023; 24:16280. [PMID: 38003469 PMCID: PMC10671416 DOI: 10.3390/ijms242216280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Advanced identification of the gene mutations causing epilepsy syndromes is expected to translate into faster diagnosis and more effective treatment of these conditions. Over the last 5 years, approximately 40 clinical trials on the treatment of genetic epilepsies have been conducted. As a result, some medications that are not regular antiseizure drugs (e.g., soticlestat, fenfluramine, or ganaxolone) have been introduced to the treatment of drug-resistant seizures in Dravet, Lennox-Gastaut, maternally inherited chromosome 15q11.2-q13.1 duplication (Dup 15q) syndromes, and protocadherin 19 (PCDH 19)-clusterig epilepsy. And although the effects of soticlestat, fenfluramine, and ganaxolone are described as promising, they do not significantly affect the course of the mentioned epilepsy syndromes. Importantly, each of these syndromes is related to mutations in several genes. On the other hand, several mutations can occur within one gene, and different gene variants may be manifested in different disease phenotypes. This complex pattern of inheritance contributes to rather poor genotype-phenotype correlations. Hence, the detection of a specific mutation is not synonymous with a precise diagnosis of a specific syndrome. Bearing in mind that seizures develop as a consequence of the predominance of excitatory over inhibitory processes, it seems reasonable that mutations in genes encoding sodium and potassium channels, as well as glutamatergic and gamma-aminobutyric (GABA) receptors, play a role in the pathogenesis of epilepsy. In some cases, different pathogenic variants of the same gene can result in opposite functional effects, determining the effectiveness of therapy with certain medications. For instance, seizures related to gain-of-function (GoF) mutations in genes encoding sodium channels can be successfully treated with sodium channel blockers. On the contrary, the same drugs may aggravate seizures related to loss-of-function (LoF) variants of the same genes. Hence, knowledge of gene mutation-treatment response relationships facilitates more favorable selection of drugs for anticonvulsant therapy.
Collapse
Affiliation(s)
- Kinga Borowicz-Reutt
- Independent Unit of Experimental Neuropathophysiology, Department of Toxicology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (J.C.); (M.K.)
| | | | | |
Collapse
|
11
|
Gjerulfsen CE, Mieszczanek TS, Johannesen KM, Liao VWY, Chebib M, Nørby HAJ, Gardella E, Rubboli G, Ahring P, Møller RS. Vinpocetine improved neuropsychiatric and epileptic outcomes in a patient with a GABRA1 loss-of-function variant. Ann Clin Transl Neurol 2023; 10:1493-1498. [PMID: 37434477 PMCID: PMC10424645 DOI: 10.1002/acn3.51838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/09/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023] Open
Abstract
Vinpocetine is a synthetic derivative of the alkaloid vincamine and has been used as a dietary supplement for decades. Following a positive report of the use of vinpocetine in a patient with a loss-of-function GABRB3 variant, we here describe another patient with a loss-of-function GABRA1 variant (p.(Arg112Gln)) who benefited from vinpocetine treatment. This patient was diagnosed with autism spectrum disorder, psychiatric complications, and therapy-resistant focal epilepsy. Upon add-on treatment with 40 mg vinpocetine daily for 16 months, the patient experienced an overall improved quality of life as well as seizure freedom. Our findings corroborate that vinpocetine can attenuate epilepsy-associated behavioral issues in patients with loss-of-function GABAA receptor gene variants.
Collapse
Affiliation(s)
- Cathrine E. Gjerulfsen
- Department of Epilepsy Genetics and Personalized MedicineDanish Epilepsy CentreDianalundDenmark
| | | | - Katrine M. Johannesen
- Department of Epilepsy Genetics and Personalized MedicineDanish Epilepsy CentreDianalundDenmark
- Department of GeneticsUniversity Hospital of Copenhagen, RigshospitaletCopenhagenDenmark
| | - Vivian W. Y. Liao
- Brain and Mind Centre, Sydney Pharmacy School, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Mary Chebib
- Brain and Mind Centre, Sydney Pharmacy School, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | | | - Elena Gardella
- Department of Epilepsy Genetics and Personalized MedicineDanish Epilepsy CentreDianalundDenmark
- Department of Regional Health Research, Faculty of Health SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Guido Rubboli
- Department of Epilepsy Genetics and Personalized MedicineDanish Epilepsy CentreDianalundDenmark
- Institute of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Philip Ahring
- Brain and Mind Centre, Sydney Pharmacy School, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Rikke S. Møller
- Department of Epilepsy Genetics and Personalized MedicineDanish Epilepsy CentreDianalundDenmark
- Department of Regional Health Research, Faculty of Health SciencesUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|
12
|
Lima LSD, Loyola V, Bicca JVML, Faro L, Vale CLC, Lotufo Denucci B, Mortari MR. Innovative treatments for epilepsy: Venom peptides, cannabinoids, and neurostimulation. J Neurosci Res 2022; 100:1969-1986. [PMID: 35934922 DOI: 10.1002/jnr.25114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/13/2022] [Accepted: 07/22/2022] [Indexed: 11/07/2022]
Abstract
Antiepileptic drugs have been successfully treating epilepsy and providing individuals sustained seizure freedom. However, about 30% of the patients with epilepsy present drug resistance, which means they are not responsive to the pharmacological treatment. Considering this, it becomes extremely relevant to pursue alternative therapeutic approaches, in order to provide appropriate treatment for those patients and also improve their quality of life. In the light of that, this review aims to discuss some innovative options for the treatment of epilepsy, which are currently under investigation, addressing strategies that go from therapeutic compounds to clinical procedures. For instance, peptides derived from animal venoms, such as wasps, spiders, and scorpions, demonstrate to be promising antiepileptic molecules, acting on a variety of targets. Other options are cannabinoids and compounds that modulate the endocannabinoid system, since it is now known that this network is involved in the pathophysiology of epilepsy. Furthermore, neurostimulation is another strategy, being an alternative clinical procedure for drug-resistant patients who are not eligible for palliative surgeries.
Collapse
Affiliation(s)
- Larissa Silva de Lima
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Vinícius Loyola
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - João Victor Montenegro Luzardo Bicca
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Lucas Faro
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Camilla Lepesqueur Costa Vale
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Bruna Lotufo Denucci
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Márcia Renata Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
13
|
Absalom NL, Liao VWY, Johannesen KMH, Gardella E, Jacobs J, Lesca G, Gokce-Samar Z, Arzimanoglou A, Zeidler S, Striano P, Meyer P, Benkel-Herrenbrueck I, Mero IL, Rummel J, Chebib M, Møller RS, Ahring PK. Gain-of-function and loss-of-function GABRB3 variants lead to distinct clinical phenotypes in patients with developmental and epileptic encephalopathies. Nat Commun 2022; 13:1822. [PMID: 35383156 PMCID: PMC8983652 DOI: 10.1038/s41467-022-29280-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/08/2022] [Indexed: 12/23/2022] Open
Abstract
Many patients with developmental and epileptic encephalopathies present with variants in genes coding for GABAA receptors. These variants are presumed to cause loss-of-function receptors leading to reduced neuronal GABAergic activity. Yet, patients with GABAA receptor variants have diverse clinical phenotypes and many are refractory to treatment despite the availability of drugs that enhance GABAergic activity. Here we show that 44 pathogenic GABRB3 missense variants segregate into gain-of-function and loss-of-function groups and respective patients display distinct clinical phenotypes. The gain-of-function cohort (n = 27 patients) presented with a younger age of seizure onset, higher risk of severe intellectual disability, focal seizures at onset, hypotonia, and lower likelihood of seizure freedom in response to treatment. Febrile seizures at onset are exclusive to the loss-of-function cohort (n = 47 patients). Overall, patients with GABRB3 variants that increase GABAergic activity have more severe developmental and epileptic encephalopathies. This paradoxical finding challenges our current understanding of the GABAergic system in epilepsy and how patients should be treated.
Collapse
Affiliation(s)
- Nathan L Absalom
- Brain and Mind Centre, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,School of Science, Western Sydney University, Sydney, NSW, Australia
| | - Vivian W Y Liao
- Brain and Mind Centre, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Katrine M H Johannesen
- Department of Epilepsy Genetics and Personalized Treatment, Member of the ERN EpiCARE, The Danish Epilepsy Centre, Dianalund, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Elena Gardella
- Department of Epilepsy Genetics and Personalized Treatment, Member of the ERN EpiCARE, The Danish Epilepsy Centre, Dianalund, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Julia Jacobs
- Department of Neuropediatrics and Muscle Disorders, Medical Center-University of Freiburg, Freiburg, Germany.,Department of Paediatrics and Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Gaetan Lesca
- Department of Medical Genetics, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon, France.,Institut Neuromyogène, CNRS UMR 5310 - INSERM U1217, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Zeynep Gokce-Samar
- Department of Paediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon, France
| | - Alexis Arzimanoglou
- Department of Paediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon, France
| | - Shimriet Zeidler
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Pasquale Striano
- IRCCS Institute "Giannina Gaslini", Genova, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Pierre Meyer
- Pediatric Neurology Department, Phymedexp, Montpellier University, Inserm, CRNS, Montpellier University Hospital, Montpellier, France
| | - Ira Benkel-Herrenbrueck
- Sana-Krankenhaus Düsseldorf-Gerresheim, Academic Teaching Hospital der Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Inger-Lise Mero
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Jutta Rummel
- Department of Neurohabilitation, Oslo University Hospital, Oslo, Norway
| | - Mary Chebib
- Brain and Mind Centre, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Treatment, Member of the ERN EpiCARE, The Danish Epilepsy Centre, Dianalund, Denmark. .,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.
| | - Philip K Ahring
- Brain and Mind Centre, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
14
|
Significance of GABA A Receptor for Cognitive Function and Hippocampal Pathology. Int J Mol Sci 2021; 22:ijms222212456. [PMID: 34830337 PMCID: PMC8623595 DOI: 10.3390/ijms222212456] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 02/05/2023] Open
Abstract
The hippocampus is a primary area for contextual memory, known to process spatiotemporal information within a specific episode. Long-term strengthening of glutamatergic transmission is a mechanism of contextual learning in the dorsal cornu ammonis 1 (CA1) area of the hippocampus. CA1-specific immobilization or blockade of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor delivery can impair learning performance, indicating a causal relationship between learning and receptor delivery into the synapse. Moreover, contextual learning also strengthens GABAA (gamma-aminobutyric acid) receptor-mediated inhibitory synapses onto CA1 neurons. Recently we revealed that strengthening of GABAA receptor-mediated inhibitory synapses preceded excitatory synaptic plasticity after contextual learning, resulting in a reduced synaptic excitatory/inhibitory (E/I) input balance that returned to pretraining levels within 10 min. The faster plasticity at inhibitory synapses may allow encoding a contextual memory and prevent cognitive dysfunction in various hippocampal pathologies. In this review, we focus on the dynamic changes of GABAA receptor mediated-synaptic currents after contextual learning and the intracellular mechanism underlying rapid inhibitory synaptic plasticity. In addition, we discuss that several pathologies, such as Alzheimer’s disease, autism spectrum disorders and epilepsy are characterized by alterations in GABAA receptor trafficking, synaptic E/I imbalance and neuronal excitability.
Collapse
|
15
|
Ahring PK, Liao VWY, Gardella E, Johannesen KM, Krey I, Selmer KK, Stadheim BF, Davis H, Peinhardt C, Koko M, Coorg RK, Syrbe S, Bertsche A, Santiago-Sim T, Diemer T, Fenger CD, Platzer K, Eichler EE, Lerche H, Lemke JR, Chebib M, Møller RS. Gain-of-function variants in GABRD reveal a novel pathway for neurodevelopmental disorders and epilepsy. Brain 2021; 145:1299-1309. [PMID: 34633442 DOI: 10.1093/brain/awab391] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 11/14/2022] Open
Abstract
A potential link between GABRD encoding the δ subunit of extrasynaptic GABAA receptors and neurodevelopmental disorders has largely been disregarded due to conflicting conclusions from early studies. However, we identified seven heterozygous missense GABRD variants in 10 patients with neurodevelopmental disorders and generalized epilepsy. One variant occurred in two sibs of healthy parents with presumed somatic mosaicism, another segregated with the disease in three affected family members, and the remaining five occurred de novo in sporadic patients. Electrophysiological measurements were used to determine the functional consequence of the seven missense δ subunit variants in receptor combinations of α1β3δ and α4β2δ GABAA receptors. This was accompanied by analysis of electro-clinical phenotypes of the affected individuals. We determined that five of the seven variants caused altered function of the resulting α1β3δ and α4β2δ GABAA receptors. Surprisingly, four of the five variants led to gain-of-function effects whereas one led to a loss-of-function effect. The stark differences between the gain-of-function and loss-of function effects were mirrored by the clinical phenotypes. Six patients with gain-of-function variants shared common phenotypes: neurodevelopmental disorders with generalized epilepsy, behavioral issues, and various degrees of intellectual disability. Six patients with gain-of-function variants shared common phenotypes: neurodevelopmental disorders with behavioral issues, various degrees of intellectual disability, generalized epilepsy with atypical absences and generalized myoclonic and/or bilateral tonic-clonic seizures. The EEG showed qualitative analogies among the different gain-of-function variant carriers consisting of focal slowing in the occipital regions often preceding irregular generalized epileptiform discharges, with frontal predominance. In contrast, the one patient carrying a loss-of-function variant had normal intelligence, no seizure history but has a diagnosis of autism spectrum disorder and suffering from elevated internalizing psychiatric symptoms. We hypothesize that increase in tonic GABA-evoked current levels mediated by δ-containing extrasynaptic GABAA receptors lead to abnormal neurotransmission, which represent a novel mechanism for severe neurodevelopmental disorders. In support of this, the electro-clinical findings for the gain-of-function GABRD variants resemble the phenotypic spectrum reported in patients with missense SLC6A1 (GABA uptake transporter) variants. This also indicates that the phenomenon of extrasynaptic receptor over-activity is observed in a broader range of patients with neurodevelopmental disorders, since SLC6A1 loss-of-function variants also lead to overactive extrasynaptic δ-containing GABAA receptors. These findings have implications when selecting potential treatment options, since a substantial portion of available anti-seizure medication act by enhancing GABAergic function either directly or indirectly, which could exacerbate symptoms in patients with gain-of-function GABRD variants.
Collapse
Affiliation(s)
- Philip K Ahring
- Brain and Mind Centre, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney; Sydney, New South Wales, Australia
| | - Vivian W Y Liao
- Brain and Mind Centre, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney; Sydney, New South Wales, Australia
| | - Elena Gardella
- Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Centre; Dianalund, Denmark.,Department of Regional Health Research, University of Southern Denmark; Odense, Denmark
| | - Katrine M Johannesen
- Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Centre; Dianalund, Denmark.,Department of Regional Health Research, University of Southern Denmark; Odense, Denmark
| | - Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center; Leipzig, Germany
| | - Kaja K Selmer
- National Centre for Rare Epilepsy-Related Disorders, Oslo University Hospital; Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital; Oslo, Norway
| | - Barbro F Stadheim
- Department of Medical Genetics, Oslo University Hospital; Oslo, Norway
| | - Hannah Davis
- Division of Medical Genetics, Department of Human Genetics, Emory University School of Medicine; Atlanta, GA, USA
| | - Charlotte Peinhardt
- Division of Medical Genetics, Department of Human Genetics, Emory University School of Medicine; Atlanta, GA, USA
| | - Mahmoud Koko
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen; Tübingen, Germany
| | - Rohini K Coorg
- Department of Pediatrics and Neurology, Neurophysiology and Epilepsy, Baylor College of Medicine; Houston, Texas, USA
| | - Steffen Syrbe
- Division of Paediatric Epileptology, Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg; Heidelberg, Germany
| | - Astrid Bertsche
- University Hospital for Children and Adolescents, Neuropaediatrics; Rostock, Germany.,University Hospital for Children and Adolescents, Center for Pediatric Research; Leipzig, Germany
| | | | - Tue Diemer
- Department of Clinical Genetics, Aalborg University Hospital; Aalborg, Denmark
| | - Christina D Fenger
- Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Centre; Dianalund, Denmark.,Department of Regional Health Research, University of Southern Denmark; Odense, Denmark
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center; Leipzig, Germany
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine; Seattle, WA, USA.,Howard Hughes Medical Institute, University of Washington; Seattle, WA 98195, USA
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen; Tübingen, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center; Leipzig, Germany
| | - Mary Chebib
- Brain and Mind Centre, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney; Sydney, New South Wales, Australia
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Centre; Dianalund, Denmark.,Department of Regional Health Research, University of Southern Denmark; Odense, Denmark
| |
Collapse
|
16
|
Anderson LL, Heblinski M, Absalom NL, Hawkins NA, Bowen M, Benson MJ, Zhang F, Bahceci D, Doohan PT, Chebib M, McGregor IS, Kearney JA, Arnold JC. Cannabigerolic acid, a major biosynthetic precursor molecule in cannabis, exhibits divergent effects on seizures in mouse models of epilepsy. Br J Pharmacol 2021; 178:4826-4841. [PMID: 34384142 PMCID: PMC9292928 DOI: 10.1111/bph.15661] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022] Open
Abstract
Background and Purpose Cannabis has been used to treat epilepsy for millennia, with such use validated by regulatory approval of cannabidiol (CBD) for Dravet syndrome. Unregulated artisanal cannabis‐based products used to treat children with intractable epilepsies often contain relatively low doses of CBD but are enriched in other phytocannabinoids. This raises the possibility that other cannabis constituents might have anticonvulsant properties. Experimental Approach We used the Scn1a+/− mouse model of Dravet syndrome to investigate the cannabis plant for phytocannabinoids with anticonvulsant effects against hyperthermia‐induced seizures. The most promising, cannabigerolic acid (CBGA), was further examined against spontaneous seizures and survival in Scn1a+/− mice and in electroshock seizure models. Pharmacological effects of CBGA were surveyed across multiple drug targets. Key Results The initial screen identified three phytocannabinoids with novel anticonvulsant properties: CBGA, cannabidivarinic acid (CBDVA) and cannabigerovarinic acid (CBGVA). CBGA was most potent and potentiated the anticonvulsant effects of clobazam against hyperthermia‐induced and spontaneous seizures, and was anticonvulsant in the MES threshold test. However, CBGA was proconvulsant in the 6‐Hz threshold test and a high dose increased spontaneous seizure frequency in Scn1a+/− mice. CBGA was found to interact with numerous epilepsy‐relevant targets including GPR55, TRPV1 channels and GABAA receptors. Conclusion and Implications These results suggest that CBGA, CBDVA and CBGVA may contribute to the effects of cannabis‐based products in childhood epilepsy. Although these phytocannabinoids have anticonvulsant potential and could be lead compounds for drug development programmes, several liabilities would need to be overcome before CBD is superseded by another in this class.
Collapse
Affiliation(s)
- L L Anderson
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - M Heblinski
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - N L Absalom
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - N A Hawkins
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - M Bowen
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,School of Psychology, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - M J Benson
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia.,School of Psychology, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - F Zhang
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - D Bahceci
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - P T Doohan
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - M Chebib
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - I S McGregor
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia.,School of Psychology, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - J A Kearney
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - J C Arnold
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Intricacies of GABA A Receptor Function: The Critical Role of the β3 Subunit in Norm and Pathology. Int J Mol Sci 2021; 22:ijms22031457. [PMID: 33535681 PMCID: PMC7867123 DOI: 10.3390/ijms22031457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/23/2022] Open
Abstract
Neuronal intracellular chloride ([Cl−]i) is a key determinant in γ-aminobutyric acid type A (GABA)ergic signaling. γ-Aminobutyric acid type A receptors (GABAARs) mediate both inhibitory and excitatory neurotransmission, as the passive fluxes of Cl− and HCO3− via pores can be reversed by changes in the transmembrane concentration gradient of Cl−. The cation–chloride co-transporters (CCCs) are the primary systems for maintaining [Cl−]i homeostasis. However, despite extensive electrophysiological data obtained in vitro that are supported by a wide range of molecular biological studies on the expression patterns and properties of CCCs, the presence of ontogenetic changes in [Cl−]i—along with the consequent shift in GABA reversal potential—remain a subject of debate. Recent studies showed that the β3 subunit possesses properties of the P-type ATPase that participates in the ATP-consuming movement of Cl− via the receptor. Moreover, row studies have demonstrated that the β3 subunit is a key player in GABAAR performance and in the appearance of serious neurological disorders. In this review, we discuss the properties and driving forces of CCCs and Cl−, HCO3−ATPase in the maintenance of [Cl−]i homeostasis after changes in upcoming GABAAR function. Moreover, we discuss the contribution of the β3 subunit in the manifestation of epilepsy, autism, and other syndromes.
Collapse
|
18
|
Han W, Shepard RD, Lu W. Regulation of GABA ARs by Transmembrane Accessory Proteins. Trends Neurosci 2021; 44:152-165. [PMID: 33234346 PMCID: PMC7855156 DOI: 10.1016/j.tins.2020.10.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/08/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
The vast majority of fast inhibitory transmission in the brain is mediated by GABA acting on GABAA receptors (GABAARs), which provides inhibitory balance to excitatory drive and controls neuronal output. GABAARs are also effectively targeted by clinically important drugs for treatment in a number of neurological disorders. It has long been hypothesized that function and pharmacology of GABAARs are determined by the channel pore-forming subunits. However, recent studies have provided new dimensions in studying GABAARs due to several transmembrane proteins that interact with GABAARs and modulate their trafficking and function. In this review, we summarize recent findings on these novel GABAAR transmembrane regulators and highlight a potential avenue to develop new GABAAR psychopharmacology by targeting these receptor-associated membrane proteins.
Collapse
Affiliation(s)
- Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan D Shepard
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
Prevost MS, Bouchenaki H, Barilone N, Gielen M, Corringer PJ. Concatemers to re-investigate the role of α5 in α4β2 nicotinic receptors. Cell Mol Life Sci 2021; 78:1051-1064. [PMID: 32472188 PMCID: PMC11071962 DOI: 10.1007/s00018-020-03558-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 01/08/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ion channels expressed in the central nervous systems. nAChRs containing the α4, β2 and α5 subunits are specifically involved in addictive processes, but their functional architecture is poorly understood due to the intricacy of assembly of these subunits. Here we constrained the subunit assembly by designing fully concatenated human α4β2 and α4β2α5 receptors and characterized their properties by two-electrodes voltage-clamp electrophysiology in Xenopus oocytes. We found that α5-containing nAChRs are irreversibly blocked by methanethiosulfonate (MTS) reagents through a covalent reaction with a cysteine present only in α5. MTS-block experiments establish that the concatemers are expressed in intact form at the oocyte surface, but that reconstitution of nAChRs from loose subunits show inefficient and highly variable assembly of α5 with α4 and β2. Mutational analysis shows that the concatemers assemble both in clockwise and anticlockwise orientations, and that α5 does not contribute to ACh binding from its principal (+) site. Reinvestigation of suspected α5-ligands such as galantamine show no specific effect on α5-containing concatemers. Analysis of the α5-D398N mutation that is linked to smoking and lung cancer shows no significant effect on the electrophysiological function, suggesting that its effect might arise from alteration of other cellular processes. The concatemeric strategy provides a well-characterized platform for mechanistic analysis and screening of human α5-specific ligands.
Collapse
Affiliation(s)
- Marie S Prevost
- Unité Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, 75015, Paris, France
| | - Hichem Bouchenaki
- Unité Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, 75015, Paris, France
| | - Nathalie Barilone
- Unité Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, 75015, Paris, France
| | - Marc Gielen
- Unité Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, 75015, Paris, France.
- Sorbonne Université, 21, rue de l'école de médecine, 75006, Paris, France.
| | | |
Collapse
|
20
|
Garcia-Rosa S, de Freitas Brenha B, Felipe da Rocha V, Goulart E, Araujo BHS. Personalized Medicine Using Cutting Edge Technologies for Genetic Epilepsies. Curr Neuropharmacol 2021; 19:813-831. [PMID: 32933463 PMCID: PMC8686309 DOI: 10.2174/1570159x18666200915151909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/08/2020] [Accepted: 08/28/2020] [Indexed: 11/22/2022] Open
Abstract
Epilepsy is the most common chronic neurologic disorder in the world, affecting 1-2% of the population. Besides, 30% of epilepsy patients are drug-resistant. Genomic mutations seem to play a key role in its etiology and knowledge of strong effect mutations in protein structures might improve prediction and the development of efficacious drugs to treat epilepsy. Several genetic association studies have been undertaken to examine the effect of a range of candidate genes for resistance. Although, few studies have explored the effect of the mutations into protein structure and biophysics in the epilepsy field. Much work remains to be done, but the plans made for exciting developments will hold therapeutic potential for patients with drug-resistance. In summary, we provide a critical review of the perspectives for the development of individualized medicine for epilepsy based on genetic polymorphisms/mutations in light of core elements such as transcriptomics, structural biology, disease model, pharmacogenomics and pharmacokinetics in a manner to improve the success of trial designs of antiepileptic drugs.
Collapse
Affiliation(s)
- Sheila Garcia-Rosa
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Material (CNPEM), Campinas, SP, Brazil
| | - Bianca de Freitas Brenha
- Laboratory of Embryonic Genetic Regulation, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Vinicius Felipe da Rocha
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Material (CNPEM), Campinas, SP, Brazil
| | - Ernesto Goulart
- Human Genome and Stem-Cell Research Center (HUG-CEL), Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP, Brazil
| | - Bruno Henrique Silva Araujo
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Material (CNPEM), Campinas, SP, Brazil
| |
Collapse
|
21
|
The anticonvulsant zonisamide positively modulates recombinant and native glycine receptors at clinically relevant concentrations. Neuropharmacology 2020; 182:108371. [PMID: 33122032 DOI: 10.1016/j.neuropharm.2020.108371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/04/2020] [Accepted: 10/23/2020] [Indexed: 12/29/2022]
Abstract
GABAA and glycine receptors mediate fast synaptic inhibitory neurotransmission. Despite studies showing that activation of cerebral glycine receptors could be a potential strategy in the treatment of epilepsy, few studies have assessed the effects of existing anticonvulsant therapies on recombinant or native glycine receptors. We, therefore, evaluated the actions of a series of anticonvulsants at recombinant human homo-oligomeric glycine receptor α1, α2 and α3 subtypes expressed in Xenopus oocytes using two-electrode voltage-clamp methods, and then assessed the most effective drug at native glycine receptors from entorhinal cortex neurons using whole-cell voltage-clamp recordings. Ganaxolone, tiagabine and zonisamide positively modulated glycine induced currents at recombinant homomeric glycine receptors. Of these, zonisamide was the most efficacious and exhibited an EC50 value ranging between 450 and 560 μM at α1, α2 and α3 subtypes. These values were not significantly different indicating a non-selective modulation of glycine receptors. Using a therapeutic concentration of zonisamide (100 μM), the potency of glycine was significantly shifted from 106 to 56 μM at α1, 185 to 112 μM at α2, and 245 to 91 μM at α3 receptors. Furthermore, zonisamide (100 μM) potentiated exogenous homomeric and heteromeric glycine mediated currents from layer II pyramidal cells of the lateral or medial entorhinal cortex. As therapeutic concentrations of zonisamide positively modulate recombinant and native glycine receptors, we propose that the anticonvulsant effects of zonisamide may, at least in part, be mediated via this action.
Collapse
|
22
|
Absalom NL, Liao VWY, Kothur K, Indurthi DC, Bennetts B, Troedson C, Mohammad SS, Gupta S, McGregor IS, Bowen MT, Lederer D, Mary S, De Waele L, Jansen K, Gill D, Kurian MA, McTague A, Møller RS, Ahring PK, Dale RC, Chebib M. Gain-of-function GABRB3 variants identified in vigabatrin-hypersensitive epileptic encephalopathies. Brain Commun 2020; 2:fcaa162. [PMID: 33585817 PMCID: PMC7869430 DOI: 10.1093/braincomms/fcaa162] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/31/2020] [Accepted: 08/28/2020] [Indexed: 01/06/2023] Open
Abstract
Variants in the GABRB3 gene encoding the β3-subunit of the γ-aminobutyric acid type A ( receptor are associated with various developmental and epileptic encephalopathies. Typically, these variants cause a loss-of-function molecular phenotype whereby γ-aminobutyric acid has reduced inhibitory effectiveness leading to seizures. Drugs that potentiate inhibitory GABAergic activity, such as nitrazepam, phenobarbital or vigabatrin, are expected to compensate for this and thereby reduce seizure frequency. However, vigabatrin, a drug that inhibits γ-aminobutyric acid transaminase to increase tonic γ-aminobutyric acid currents, has mixed success in treating seizures in patients with GABRB3 variants: some patients experience seizure cessation, but there is hypersensitivity in some patients associated with hypotonia, sedation and respiratory suppression. A GABRB3 variant that responds well to vigabatrin involves a truncation variant (p.Arg194*) resulting in a clear loss-of-function. We hypothesized that patients with a hypersensitive response to vigabatrin may exhibit a different γ-aminobutyric acid A receptor phenotype. To test this hypothesis, we evaluated the phenotype of de novo variants in GABRB3 (p.Glu77Lys and p.Thr287Ile) associated with patients who are clinically hypersensitive to vigabatrin. We introduced the GABRB3 p.Glu77Lys and p.Thr287Ile variants into a concatenated synaptic and extrasynaptic γ-aminobutyric acid A receptor construct, to resemble the γ-aminobutyric acid A receptor expression by a patient heterozygous for the GABRB3 variant. The mRNA of these constructs was injected into Xenopus oocytes and activation properties of each receptor measured by two-electrode voltage clamp electrophysiology. Results showed an atypical gain-of-function molecular phenotype in the GABRB3 p.Glu77Lys and p.Thr287Ile variants characterized by increased potency of γ-aminobutyric acid A without change to the estimated maximum open channel probability, deactivation kinetics or absolute currents. Modelling of the activation properties of the receptors indicated that either variant caused increased chloride flux in response to low concentrations of γ-aminobutyric acid that mediate tonic currents. We therefore propose that the hypersensitivity reaction to vigabatrin is a result of GABRB3 variants that exacerbate GABAergic tonic currents and caution is required when prescribing vigabatrin. In contrast, drug strategies increasing tonic currents in loss-of-function variants are likely to be a safe and effective therapy. This study demonstrates that functional genomics can explain beneficial and adverse anti-epileptic drug effects, and propose that vigabatrin should be considered in patients with clear loss-of-function GABRB3 variants.
Collapse
Affiliation(s)
- Nathan L Absalom
- Faculty of Medicine and Health, School of Pharmacy, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Vivian W Y Liao
- Faculty of Medicine and Health, School of Pharmacy, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kavitha Kothur
- Kids Neuroscience Centre at The Children’s Hospital at Westmead, Westmead, New South Wales 2145, Australia
| | - Dinesh C Indurthi
- Faculty of Medicine and Health, School of Pharmacy, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Bruce Bennetts
- Department of Molecular Genetics, The Children’s Hospital at Westmead, Westmead, New South Wales 2145, Australia
- Discipline of Paediatrics and Adolescent Health, The Children's Hospital at Westmead Clinical School, The University of Sydney, 2145, Australia
| | - Christopher Troedson
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia
| | - Shekeeb S Mohammad
- Kids Neuroscience Centre at The Children’s Hospital at Westmead, Westmead, New South Wales 2145, Australia
| | - Sachin Gupta
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia
| | - Iain S McGregor
- Faculty of Science, Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Michael T Bowen
- Faculty of Science, Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Damien Lederer
- Institute of Pathology and Genetics, Center for Human Genetics, Gosselies 6041, Belgium
| | - Sandrine Mary
- Institute of Pathology and Genetics, Center for Human Genetics, Gosselies 6041, Belgium
| | - Liesbeth De Waele
- Department of Development and Regeneration, KULeuven, Leuven 3000, Belgium
| | - Katrien Jansen
- Department of Development and Regeneration, KULeuven, Leuven 3000, Belgium
| | - Deepak Gill
- Kids Neuroscience Centre at The Children’s Hospital at Westmead, Westmead, New South Wales 2145, Australia
| | - Manju A Kurian
- Molecular Neurosciences, UCL Great Ormond Street Institute of Child Health, London WC1E 6BT, UK
- Department of Neurology, Great Ormond Street Hospital for Children, London WC1N 3JH, UK
| | - Amy McTague
- Molecular Neurosciences, UCL Great Ormond Street Institute of Child Health, London WC1E 6BT, UK
- Department of Neurology, Great Ormond Street Hospital for Children, London WC1N 3JH, UK
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund 4293, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense 5230, Denmark
| | - Philip K Ahring
- Faculty of Medicine and Health, School of Pharmacy, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Russell C Dale
- Kids Neuroscience Centre at The Children’s Hospital at Westmead, Westmead, New South Wales 2145, Australia
| | - Mary Chebib
- Faculty of Medicine and Health, School of Pharmacy, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
23
|
Absalom NL, Liao VW, Chebib M. Ligand-gated ion channels in genetic disorders and the question of efficacy. Int J Biochem Cell Biol 2020; 126:105806. [DOI: 10.1016/j.biocel.2020.105806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 01/13/2023]
|
24
|
Liao VWY, Kusay AS, Balle T, Ahring PK. Heterologous expression of concatenated nicotinic ACh receptors: Pros and cons of subunit concatenation and recommendations for construct designs. Br J Pharmacol 2020; 177:4275-4295. [PMID: 32627170 DOI: 10.1111/bph.15188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/15/2020] [Accepted: 06/26/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Concatenation of Cys-loop receptor subunits is a commonly used technique to ensure experimental control of receptor assembly. However, we recently demonstrated that widely used constructs did not lead to the expression of uniform pools of ternary and more complex receptors. The aim was therefore to identify viable strategies for designing concatenated constructs that would allow strict control of resultant receptor pools. EXPERIMENTAL APPROACH Concatenated dimeric, tetrameric, and pentameric α4β2-containing nicotinic ACh (nACh) receptor constructs were designed with successively shorter linker lengths and expressed in Xenopus laevis oocytes. Resulting receptor stoichiometries were investigated by functional analysis in two-electrode voltage-clamp experiments. Molecular dynamics simulations were performed to investigate potential effects of linkers on the 3D structure of concatemers. KEY RESULTS Dimeric constructs were found to be unreliable and should be avoided for expression of ternary receptors. By introducing two short linkers, we obtained efficient expression of uniform receptor pools with tetrameric and pentameric constructs. However, linkers should not be excessively short as that introduces strain on the 3D structure of concatemers. CONCLUSION AND IMPLICATIONS The data demonstrate that design of concatenated Cys-loop receptors requires a compromise between the desire for control of assembly and avoiding introduction of strain on the resulting protein. The overall best strategy was found to be pentameric constructs with carefully optimised linker lengths. Our findings will advance studies of ternary or more complex Cys-loop receptors as well as enabling detailed analysis of how pharmacological agents interact with stoichiometry-specific binding sites.
Collapse
Affiliation(s)
- Vivian Wan Yu Liao
- Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia.,Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| | - Ali Saad Kusay
- Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia.,Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| | - Thomas Balle
- Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia.,Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| | - Philip Kiaer Ahring
- Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia.,Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| |
Collapse
|
25
|
A novel de novo variant of GABRA1 causes increased sensitivity for GABA in vitro. Sci Rep 2020; 10:2379. [PMID: 32047208 PMCID: PMC7012862 DOI: 10.1038/s41598-020-59323-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
The GABRA1 gene encodes one of the most conserved and highly expressed subunits of the GABAA receptor family. Variants in this gene are causatively implicated in different forms of epilepsy and also more severe epilepsy-related neurodevelopmental syndromes. Here we study functional consequences of a novel de novo missense GABRA1 variant, p.(Ala332Val), identified through exome sequencing in an individual affected by early-onset syndromic epileptic encephalopathy. The variant is localised within the transmembrane domain helix 3 (TM3) and in silico prediction algorithms suggested this variant to be likely pathogenic. In vitro assessment revealed unchanged protein levels, regular assembly and forward trafficking to the cell surface. On the functional level a significant left shift of the apparent GABA potency in two-electrode voltage clamp electrophysiology experiments was observed, as well as changes in the extent of desensitization. Additionally, apparent diazepam potency was left shifted in radioligand displacement assays. During prenatal development mainly alpha2/3 subunits are expressed, whereas after birth a switch to alpha1 occurs. The expression of alpha1 in humans is upregulated during the first years. Thus, the molecular change of function reported here supports pathogenicity and could explain early-onset of seizures in the affected individual.
Collapse
|