1
|
Jia J, Lietz S, Barth H, Ernst K. The antiarrhythmic drugs amiodarone and dronedarone inhibit intoxication of cells with pertussis toxin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9991-10003. [PMID: 38958734 PMCID: PMC11582147 DOI: 10.1007/s00210-024-03247-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Pertussis toxin (PT) is a virulent factor produced by Bordetella pertussis, the causative agent of whooping cough. PT exerts its pathogenic effects by ADP-ribosylating heterotrimeric G proteins, disrupting cellular signaling pathways. Here, we investigate the potential of two antiarrhythmic drugs, amiodarone and dronedarone, in mitigating PT-induced cellular intoxication. After binding to cells, PT is endocytosed, transported from the Golgi to the endoplasmic reticulum where the enzyme subunit PTS1 is released from the transport subunit of PT. PTS1 is translocated into the cytosol where it ADP-ribosylates inhibitory α-subunit of G-protein coupled receptors (Gαi). We showed that amiodarone and dronedarone protected CHO cells and human A549 cells from PT-intoxication by analyzing the ADP-ribosylation status of Gαi. Amiodarone had no effect on PT binding to cells or in vitro enzyme activity of PTS1 but reduced the signal of PTS1 in the cell suggesting that amiodarone interferes with intracellular transport of PTS1. Moreover, dronedarone mitigated the PT-mediated effect on cAMP signaling in a cell-based bioassay. Taken together, our findings underscore the inhibitory effects of amiodarone and dronedarone on PT-induced cellular intoxication, providing valuable insights into drug repurposing for infectious disease management.
Collapse
Affiliation(s)
- Jinfang Jia
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Stefanie Lietz
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany.
| | - Katharina Ernst
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
2
|
Lingwood C. Is cholesterol both the lock and key to abnormal transmembrane signals in Autism Spectrum Disorder? Lipids Health Dis 2024; 23:114. [PMID: 38643132 PMCID: PMC11032007 DOI: 10.1186/s12944-024-02075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/08/2024] [Indexed: 04/22/2024] Open
Abstract
Disturbances in cholesterol homeostasis have been associated with ASD. Lipid rafts are central in many transmembrane signaling pathways (including mTOR) and changes in raft cholesterol content affect their order function. Cholesterol levels are controlled by several mechanisms, including endoplasmic reticulum associated degradation (ERAD) of the rate limiting HMGCoA reductase. A new approach to increase cholesterol via temporary ERAD blockade using a benign bacterial toxin-derived competitor for the ERAD translocon is suggested.A new lock and key model for cholesterol/lipid raft dependent signaling is proposed in which the rafts provide both the afferent and efferent 'tumblers' across the membrane to allow 'lock and key' receptor transmembrane signals.
Collapse
Affiliation(s)
- Clifford Lingwood
- Division of Molecular Medicine, Research Institute, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- Departments of Biochemistry and Laboratory Medicine & Pathobiology, University of Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
3
|
Jia J, Zoeschg M, Barth H, Pulliainen AT, Ernst K. The Chaperonin TRiC/CCT Inhibitor HSF1A Protects Cells from Intoxication with Pertussis Toxin. Toxins (Basel) 2024; 16:36. [PMID: 38251252 PMCID: PMC10819386 DOI: 10.3390/toxins16010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Pertussis toxin (PT) is a bacterial AB5-toxin produced by Bordetella pertussis and a major molecular determinant of pertussis, also known as whooping cough, a highly contagious respiratory disease. In this study, we investigate the protective effects of the chaperonin TRiC/CCT inhibitor, HSF1A, against PT-induced cell intoxication. TRiC/CCT is a chaperonin complex that facilitates the correct folding of proteins, preventing misfolding and aggregation, and maintaining cellular protein homeostasis. Previous research has demonstrated the significance of TRiC/CCT in the functionality of the Clostridioides difficile TcdB AB-toxin. Our findings reveal that HSF1A effectively reduces the levels of ADP-ribosylated Gαi, the specific substrate of PT, in PT-treated cells, without interfering with enzyme activity in vitro or the cellular binding of PT. Additionally, our study uncovers a novel interaction between PTS1 and the chaperonin complex subunit CCT5, which correlates with reduced PTS1 signaling in cells upon HSF1A treatment. Importantly, HSF1A mitigates the adverse effects of PT on cAMP signaling in cellular systems. These results provide valuable insights into the mechanisms of PT uptake and suggest a promising starting point for the development of innovative therapeutic strategies to counteract pertussis toxin-mediated pathogenicity.
Collapse
Affiliation(s)
- Jinfang Jia
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Manuel Zoeschg
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Katharina Ernst
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
4
|
Wang J, Zhang J, Guo Z, Hua H, Zhang H, Liu Y, Jiang Y. Targeting HSP70 chaperones by rhein sensitizes liver cancer to artemisinin derivatives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155156. [PMID: 37897861 DOI: 10.1016/j.phymed.2023.155156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/15/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND Liver cancer is one of common types of cancer with poor prognosis and limited therapies. Heat shock proteins (HSP) are molecular chaperones that have important roles in tumorigenesis, and emerging as therapeutic targets. Artemisinin and rhein are natural agents from Artemisia annua L. and Rheum undulatum L., respectively. Both rhein and artemisinin have anticancer effects; however, the molecular targets of rhein remain to be identified. It is also unclear whether rhein can synergize with artemisinin derivatives to inhibit liver cancer. PURPOSE We aim to identify the targets of rhein in the treatment of hepatocarcinoma and determine the effects of combining rhein and artemisinin derivatives on liver cancer cells. METHODS The targets of rhein were detected by mass spectrometry and validated by rhein-proteins interaction assays. The effects of rhein on the chaperone activity of HSP72/HSC70/GRP78 were determined by luciferase refolding assays. Cell viability and apoptosis were determined by CCK8 and flow cytometry assays. For in vivo study, xenograft tumor models were established and treated with rhein and artesunate. Tumor growth was monitored regularly. RESULTS Mass spectrometry analysis of rhein-binding proteins in HepG2 cells revealed that HSP72, HSC70 and GRP78 were more profoundly pulled down by rhein-crosslinked sepharose 4B beads compared to the control beads. Further experiments demonstrated that rhein directly interacted with HSP72/HSC70/GRP78 proteins, and inhibit their activity of refolding denatured luciferase. Meanwhile, rhein induced proteasomal degradation of HIF1α and β-catenin. Artesunate or dihydroartemisinin in combination with knockdown of both HSP72 and HSC70 significantly inhibited cell viability. The HSP70/HSC70/GRP78 inhibitors VER-155,008 and rhein phenocopied HSP72/HSC70 knockdown, synergizing with artesunate or dihydroartemisinin to inhibit hepatocarcinoma cell viability. Combinatorial treatment with rhein and artemisinin derivatives significantly induced hepatocarcinoma cell apoptosis, and inhibited tumor growth in vivo. CONCLUSIONS The current study demonstrates that rhein is a novel HSP72/HSC70/GRP78 inhibitor that suppresses the chaperone activity of HSP70s. Dual inhibition of HSP72 and HSC70 can enhance the sensitivity of hepatocarcinoma cells to artemisinin derivatives. Combined treatment with artemisinin derivative and rhein significantly inhibits hepatocarcinoma. Artemisinin derivatives in combination with dual inhibition of HSP72 and HSC70 represents a new approach to improve cancer therapy.
Collapse
Affiliation(s)
- Jiao Wang
- Cancer center, Laboratory of Oncogene, West China Hospital, Sichuan University, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, China
| | - Jin Zhang
- Cancer center, Laboratory of Oncogene, West China Hospital, Sichuan University, China
| | - Zeyu Guo
- Cancer center, Laboratory of Oncogene, West China Hospital, Sichuan University, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, China
| | - Hongying Zhang
- Cancer center, Laboratory of Oncogene, West China Hospital, Sichuan University, China
| | - Yongliang Liu
- Cancer center, Laboratory of Oncogene, West China Hospital, Sichuan University, China
| | - Yangfu Jiang
- Cancer center, Laboratory of Oncogene, West China Hospital, Sichuan University, China.
| |
Collapse
|
5
|
Guyette JL, Serrano A, Huhn III GR, Taylor M, Malkòm P, Curtis D, Teter K. Reduction is sufficient for the disassembly of ricin and Shiga toxin 1 but not Escherichia coli heat-labile enterotoxin. Infect Immun 2023; 91:e0033223. [PMID: 37877711 PMCID: PMC10652930 DOI: 10.1128/iai.00332-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Many AB toxins contain an enzymatic A moiety that is anchored to a cell-binding B moiety by a disulfide bridge. After receptor-mediated endocytosis, some AB toxins undergo retrograde transport to the endoplasmic reticulum (ER) where reduction of the disulfide bond occurs. The reduced A subunit then dissociates from the holotoxin and enters the cytosol to alter its cellular target. Intoxication requires A chain separation from the holotoxin, but, for many toxins, it is unclear if reduction alone is sufficient for toxin disassembly. Here, we examined the link between reduction and disassembly for several ER-translocating toxins. We found disassembly of the reduced Escherichia coli heat-labile enterotoxin (Ltx) required an interaction with one specific ER-localized oxidoreductase: protein disulfide isomerase (PDI). In contrast, the reduction and disassembly of ricin toxin (Rtx) and Shiga toxin 1 (Stx1) were coupled events that did not require PDI and could be triggered by reductant alone. PDI-deficient cells accordingly exhibited high resistance to Ltx with continued sensitivity to Rtx and Stx1. The distinct structural organization of each AB toxin thus appears to determine whether holotoxin disassembly occurs spontaneously upon disulfide reduction or requires the additional input of PDI.
Collapse
Affiliation(s)
- Jessica L. Guyette
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Albert Serrano
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - G. Robb Huhn III
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Michael Taylor
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Pat Malkòm
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - David Curtis
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Ken Teter
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
6
|
Braune-Yan M, Jia J, Wahba M, Schmid J, Papatheodorou P, Barth H, Ernst K. Domperidone Protects Cells from Intoxication with Clostridioides difficile Toxins by Inhibiting Hsp70-Assisted Membrane Translocation. Toxins (Basel) 2023; 15:384. [PMID: 37368685 DOI: 10.3390/toxins15060384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Clostridioides difficile infections cause severe symptoms ranging from diarrhea to pseudomembranous colitis due to the secretion of AB-toxins, TcdA and TcdB. Both toxins are taken up into cells through receptor-mediated endocytosis, autoproteolytic processing and translocation of their enzyme domains from acidified endosomes into the cytosol. The enzyme domains glucosylate small GTPases such as Rac1, thereby inhibiting processes such as actin cytoskeleton regulation. Here, we demonstrate that specific pharmacological inhibition of Hsp70 activity protected cells from TcdB intoxication. In particular, the established inhibitor VER-155008 and the antiemetic drug domperidone, which was found to be an Hsp70 inhibitor, reduced the number of cells with TcdB-induced intoxication morphology in HeLa, Vero and intestinal CaCo-2 cells. These drugs also decreased the intracellular glucosylation of Rac1 by TcdB. Domperidone did not inhibit TcdB binding to cells or enzymatic activity but did prevent membrane translocation of TcdB's glucosyltransferase domain into the cytosol. Domperidone also protected cells from intoxication with TcdA as well as CDT toxin produced by hypervirulent strains of Clostridioides difficile. Our results reveal Hsp70 requirement as a new aspect of the cellular uptake mechanism of TcdB and identified Hsp70 as a novel drug target for potential therapeutic strategies required to combat severe Clostridioides difficile infections.
Collapse
Affiliation(s)
- Maria Braune-Yan
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jinfang Jia
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Mary Wahba
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Johannes Schmid
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Panagiotis Papatheodorou
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Katharina Ernst
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
7
|
White C, Bader C, Teter K. The manipulation of cell signaling and host cell biology by cholera toxin. Cell Signal 2022; 100:110489. [PMID: 36216164 PMCID: PMC10082135 DOI: 10.1016/j.cellsig.2022.110489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/01/2022] [Indexed: 11/03/2022]
Abstract
Vibrio cholerae colonizes the small intestine and releases cholera toxin into the extracellular space. The toxin binds to the apical surface of the epithelium, is internalized into the host endomembrane system, and escapes into the cytosol where it activates the stimulatory alpha subunit of the heterotrimeric G protein by ADP-ribosylation. This initiates a cAMP-dependent signaling pathway that stimulates chloride efflux into the gut, with diarrhea resulting from the accompanying osmotic movement of water into the intestinal lumen. G protein signaling is not the only host system manipulated by cholera toxin, however. Other cellular mechanisms and signaling pathways active in the intoxication process include endocytosis through lipid rafts, retrograde transport to the endoplasmic reticulum, the endoplasmic reticulum-associated degradation system for protein delivery to the cytosol, the unfolded protein response, and G protein de-activation through degradation or the function of ADP-ribosyl hydrolases. Although toxin-induced chloride efflux is thought to be an irreversible event, alterations to these processes could facilitate cellular recovery from intoxication. This review will highlight how cholera toxin exploits signaling pathways and other cell biology events to elicit a diarrheal response from the host.
Collapse
Affiliation(s)
- Christopher White
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA.
| | - Carly Bader
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA.
| | - Ken Teter
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA.
| |
Collapse
|
8
|
Ernst K. Requirement of Peptidyl-Prolyl Cis/Trans isomerases and chaperones for cellular uptake of bacterial AB-type toxins. Front Cell Infect Microbiol 2022; 12:938015. [PMID: 35992160 PMCID: PMC9387773 DOI: 10.3389/fcimb.2022.938015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Bacterial AB-type toxins are proteins released by the producing bacteria and are the causative agents for several severe diseases including cholera, whooping cough, diphtheria or enteric diseases. Their unique AB-type structure enables their uptake into mammalian cells via sophisticated mechanisms exploiting cellular uptake and transport pathways. The binding/translocation B-subunit facilitates binding of the toxin to a specific receptor on the cell surface. This is followed by receptor-mediated endocytosis. Then the enzymatically active A-subunit either escapes from endosomes in a pH-dependent manner or the toxin is further transported through the Golgi to the endoplasmic reticulum from where the A-subunit translocates into the cytosol. In the cytosol, the A-subunits enzymatically modify a specific substrate which leads to cellular reactions resulting in clinical symptoms that can be life-threatening. Both intracellular uptake routes require the A-subunit to unfold to either fit through a pore formed by the B-subunit into the endosomal membrane or to be recognized by the ER-associated degradation pathway. This led to the hypothesis that folding helper enzymes such as chaperones and peptidyl-prolyl cis/trans isomerases are required to assist the translocation of the A-subunit into the cytosol and/or facilitate their refolding into an enzymatically active conformation. This review article gives an overview about the role of heat shock proteins Hsp90 and Hsp70 as well as of peptidyl-prolyl cis/trans isomerases of the cyclophilin and FK506 binding protein families during uptake of bacterial AB-type toxins with a focus on clostridial binary toxins Clostridium botulinum C2 toxin, Clostridium perfringens iota toxin, Clostridioides difficile CDT toxin, as well as diphtheria toxin, pertussis toxin and cholera toxin.
Collapse
|
9
|
黄 浩, 乔 妤, 黄 奕, 董 航. [HSP90α exacerbates house dust mite-induced asthmatic airway inflammation by upregulating endoplasmic reticulum stress in bronchial epithelial cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:347-353. [PMID: 35426797 PMCID: PMC9010984 DOI: 10.12122/j.issn.1673-4254.2022.03.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To explore the role of heat shock protein 90α (HSP90α) and endoplasmic reticulum (ER) stress pathway in allergic airway inflammation induced by house dust mite (HDM) in bronchial epithelial cells. METHODS A HDM- induced asthmatic cell model was established in human bronchial epithelial (HBE) cells by exposure to a concentration gradient (200, 400 and 800 U/mL) of HDM for 24 h. To test the effect of siHSP90α and HSP90 inhibitor 17-AAG on HDM-induced asthmatic inflammation, HBE cells were transfected with siHSP90α (50 nmol, 12 h) or pretreated with 17-AAG (900 nmol, 6 h) prior to HDM exposure (800 U/mL) for 24 h, and the changes in the expression of HSP90α and ER stress markers were assessed. We also tested the effect of nasal drip of 17-AAG, HDM, or their combination on airway inflammation and ER stress in C57BL/6 mice. RESULTS In HBE cells, HDM exposure significantly up-regulated the expression of HSP90α protein (P=0.011) and ER stress markers XBP-1 (P=0.044), ATF-6α (P=0.030) and GRP-78 (P=0.027). Knocking down HSP90α and treatment with 17-AAG both significantly inhibited HDM-induced upregulation of XBP-1 (P=0.008). In C57BL/6 mice, treatment with 17-AAG obviously improved HDM-induced airway inflammation and significantly reduced the number of inflammatory cells in the airway (P=0.014) and lowered the levels of IL-4 (P=0.030) and IL-5 (P=0.035) in alveolar lavage fluid. Immunohistochemical staining showed that the expressions of XBP-1 and GRP-78 in airway epithelial cells decreased significantly after the treatment of 17-AAG. CONCLUSIONS HSP90α promotes HDM-induced airway allergic inflammation possibly by upregulating ER stress pathway in bronchial epithelial cells.
Collapse
Affiliation(s)
- 浩华 黄
- />南方医科大学南方医院呼吸与危重症医学科,广东 广州 510515Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 妤婕 乔
- />南方医科大学南方医院呼吸与危重症医学科,广东 广州 510515Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 奕 黄
- />南方医科大学南方医院呼吸与危重症医学科,广东 广州 510515Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 航明 董
- />南方医科大学南方医院呼吸与危重症医学科,广东 广州 510515Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
10
|
Hepatocellular BChE as a therapeutic target to ameliorate hypercholesterolemia through PRMT5 selective degradation to restore LDL receptor transcription. Life Sci 2022; 293:120336. [PMID: 35065166 DOI: 10.1016/j.lfs.2022.120336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 11/22/2022]
Abstract
AIMS Individuals with nonalcoholic hepatosteatosis (NAFLD) have a worse atherogenic lipoprotein profile and are susceptible to cardiovascular diseases. The MEK-ERK signaling cascades are central regulators of the levels of LDL receptor (LDLR), a major determinant of circulating cholesterol. It is elusive how hepatic steatosis contributes to dyslipidemia, especially hypercholesterolemia. MAIN METHODS The effects of BChE on signaling pathways were determined by immunoblotting in a BChE knockout hepatocyte cell line. DiI-LDL probe was used to explore the effect of BChE expression on LDL internalization. Co-immunoprecipitation and LC-MS were used to explore the interacting proteins with BChE. Finally, a hepatocyte-restricted BChE silencing mouse model was established by AAV8-Tbg-shRNA, and the hypercholesterolemia was induced by 65% kcal% high-fat, high-sucrose diet feeding. MAIN FINDINGS Here we demonstrate that butyrylcholinesterase (BChE) governs the LDL receptor levels and LDL uptake capacity through the MEK-ERK signaling cascades to promote Ldlr transcription. BChE interacts and co-localizes with PRMT5, a protein methylation modifier controlling the ERK signaling. PRMT5 regulates LDLR-dependent LDL uptake and is a substrate of chaperone-mediated autophagy (CMA). BChE deficiency induces the PRTM5 degradation dependent on CMA activity, possibly through facilitating the HSC70 (Heat shock cognate 71 kDa) recognition of PRMT5. Remarkably, in vivo hepatocyte-restricted BChE silencing reduces plasma cholesterol levels substantially. In contrast, the BChE knockout mice are predisposed to hypercholesterolemia. SIGNIFICANCE Taken together, these findings outline a regulatory role for the BChE-PRMT5-ERK-LDLR axis in hepatocyte cholesterol metabolism, and suggest that targeting liver BChE is an effective therapeutic strategy to treat hypercholesterolemia.
Collapse
|
11
|
Kellner A, Cherubin P, Harper JK, Teter K. Proline Isomerization as a Key Determinant for Hsp90-Toxin Interactions. Front Cell Infect Microbiol 2021; 11:771653. [PMID: 34746036 PMCID: PMC8569296 DOI: 10.3389/fcimb.2021.771653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022] Open
Abstract
The A chains of ADP-ribosylating toxins exploit Hsp90 for translocation into the host cytosol. Here, we hypothesize that cis proline residues play a key role in toxin recognition by Hsp90. Our model is largely derived from studies on the unusual interplay between Hsp90 and the catalytic A1 subunit of cholera toxin (CTA1), including the recent identification of an RPPDEI-like binding motif for Hsp90 in CTA1 and several other bacterial toxins. Cis/trans proline isomerization is known to influence protein-protein interactions and protein structure/function, but it has not yet been proposed to affect Hsp90-toxin interactions. Our model thus provides a new framework to understand the molecular basis for Hsp90 chaperone function and Hsp90-driven toxin translocation.
Collapse
Affiliation(s)
- Alisha Kellner
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Patrick Cherubin
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - James K Harper
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Ken Teter
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
12
|
Liao Y, Liu Y, Shao Z, Xia X, Deng Y, Cai J, Yao L, He J, Yu C, Hu T, Sun W, Liu F, Tang D, Liu J, Huang H. A new role of GRP75-USP1-SIX1 protein complex in driving prostate cancer progression and castration resistance. Oncogene 2021; 40:4291-4306. [PMID: 34079090 DOI: 10.1038/s41388-021-01851-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/05/2021] [Accepted: 05/20/2021] [Indexed: 01/23/2023]
Abstract
Prostate cancer (PC) is the second most common cancer with limited treatment option in males. Although the reactivation of embryonic signals in adult cells is one of the characteristics of cancer, the underlying protein degradation mechanism remains elusive. Here, we show that the molecular chaperone GRP75 is a key player in PC cells by maintaining the protein stability of SIX1, a transcription factor for embryonic development. Mechanistically, GRP75 provides a platform to recruit the deubiquitinating enzyme USP1 to inhibit K48-linked polyubiquitination of SIX1. Structurally, the C-terminus of GRP75 (433-679 aa) contains a peptide binding domain, which is required for the formation of GRP75-USP1-SIX1 protein complex. Functionally, pharmacological or genetic inhibition of the GRP75-USP1-SIX1 protein complex suppresses tumor growth and overcomes the castration resistance of PC cells in vitro and in xenograft mouse models. Clinically, the protein expression of SIX1 in PC tumor tissues is positively correlated with the expression of GRP75 and USP1. These new findings not only enhance our understanding of the protein degradation mechanism, but also may provide a potential way to enhance the anti-cancer activity of androgen suppression therapy.
Collapse
Affiliation(s)
- Yuning Liao
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuan Liu
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhenlong Shao
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaohong Xia
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuanfei Deng
- Department of Pathology, First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Jianyu Cai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Leyi Yao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jinchan He
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Cuifu Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tumei Hu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenshuang Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fang Liu
- Department of Pathology, First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Daolin Tang
- Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jinbao Liu
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, Guangdong, China. .,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Hongbiao Huang
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, Guangdong, China. .,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Voegele A, Sadi M, O'Brien DP, Gehan P, Raoux‐Barbot D, Davi M, Hoos S, Brûlé S, Raynal B, Weber P, Mechaly A, Haouz A, Rodriguez N, Vachette P, Durand D, Brier S, Ladant D, Chenal A. A High-Affinity Calmodulin-Binding Site in the CyaA Toxin Translocation Domain is Essential for Invasion of Eukaryotic Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003630. [PMID: 33977052 PMCID: PMC8097335 DOI: 10.1002/advs.202003630] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/10/2020] [Indexed: 06/12/2023]
Abstract
The molecular mechanisms and forces involved in the translocation of bacterial toxins into host cells are still a matter of intense research. The adenylate cyclase (CyaA) toxin from Bordetella pertussis displays a unique intoxication pathway in which its catalytic domain is directly translocated across target cell membranes. The CyaA translocation region contains a segment, P454 (residues 454-484), which exhibits membrane-active properties related to antimicrobial peptides. Herein, the results show that this peptide is able to translocate across membranes and to interact with calmodulin (CaM). Structural and biophysical analyses reveal the key residues of P454 involved in membrane destabilization and calmodulin binding. Mutational analysis demonstrates that these residues play a crucial role in CyaA translocation into target cells. In addition, calmidazolium, a calmodulin inhibitor, efficiently blocks CyaA internalization. It is proposed that after CyaA binding to target cells, the P454 segment destabilizes the plasma membrane, translocates across the lipid bilayer and binds calmodulin. Trapping of CyaA by the CaM:P454 interaction in the cytosol may assist the entry of the N-terminal catalytic domain by converting the stochastic motion of the polypeptide chain through the membrane into an efficient vectorial chain translocation into host cells.
Collapse
Affiliation(s)
- Alexis Voegele
- Biochemistry of Macromolecular Interactions UnitDepartment of Structural Biology and ChemistryInstitut PasteurCNRS UMR3528Paris75015France
- Université de ParisSorbonne Paris CitéParis75006France
| | - Mirko Sadi
- Biochemistry of Macromolecular Interactions UnitDepartment of Structural Biology and ChemistryInstitut PasteurCNRS UMR3528Paris75015France
- Université de ParisSorbonne Paris CitéParis75006France
| | - Darragh Patrick O'Brien
- Biochemistry of Macromolecular Interactions UnitDepartment of Structural Biology and ChemistryInstitut PasteurCNRS UMR3528Paris75015France
| | - Pauline Gehan
- Sorbonne UniversitéÉcole normale supérieurePSL UniversityCNRSLaboratoire des biomoléculesLBMParis75005France
| | - Dorothée Raoux‐Barbot
- Biochemistry of Macromolecular Interactions UnitDepartment of Structural Biology and ChemistryInstitut PasteurCNRS UMR3528Paris75015France
| | - Maryline Davi
- Biochemistry of Macromolecular Interactions UnitDepartment of Structural Biology and ChemistryInstitut PasteurCNRS UMR3528Paris75015France
| | - Sylviane Hoos
- Plateforme de Biophysique MoléculaireInstitut PasteurUMR 3528 CNRSParis75015France
| | - Sébastien Brûlé
- Plateforme de Biophysique MoléculaireInstitut PasteurUMR 3528 CNRSParis75015France
| | - Bertrand Raynal
- Plateforme de Biophysique MoléculaireInstitut PasteurUMR 3528 CNRSParis75015France
| | - Patrick Weber
- Institut PasteurPlate‐forme de cristallographie‐C2RTUMR‐3528 CNRSParis75015France
| | - Ariel Mechaly
- Institut PasteurPlate‐forme de cristallographie‐C2RTUMR‐3528 CNRSParis75015France
| | - Ahmed Haouz
- Institut PasteurPlate‐forme de cristallographie‐C2RTUMR‐3528 CNRSParis75015France
| | - Nicolas Rodriguez
- Sorbonne UniversitéÉcole normale supérieurePSL UniversityCNRSLaboratoire des biomoléculesLBMParis75005France
| | - Patrice Vachette
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐Yvette91198France
| | - Dominique Durand
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐Yvette91198France
| | - Sébastien Brier
- Biological NMR Technological PlateformCenter for Technological Resources and ResearchDepartment of Structural Biology and ChemistryInstitut PasteurCNRS UMR3528Paris75015France
| | - Daniel Ladant
- Biochemistry of Macromolecular Interactions UnitDepartment of Structural Biology and ChemistryInstitut PasteurCNRS UMR3528Paris75015France
| | - Alexandre Chenal
- Biochemistry of Macromolecular Interactions UnitDepartment of Structural Biology and ChemistryInstitut PasteurCNRS UMR3528Paris75015France
| |
Collapse
|
14
|
Ernst K, Mittler AK, Winkelmann V, Kling C, Eberhardt N, Anastasia A, Sonnabend M, Lochbaum R, Wirsching J, Sakari M, Pulliainen AT, Skerry C, Carbonetti NH, Frick M, Barth H. Pharmacological targeting of host chaperones protects from pertussis toxin in vitro and in vivo. Sci Rep 2021; 11:5429. [PMID: 33686161 PMCID: PMC7940712 DOI: 10.1038/s41598-021-84817-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/16/2021] [Indexed: 01/05/2023] Open
Abstract
Whooping cough is caused by Bordetella pertussis that releases pertussis toxin (PT) which comprises enzyme A-subunit PTS1 and binding/transport B-subunit. After receptor-mediated endocytosis, PT reaches the endoplasmic reticulum from where unfolded PTS1 is transported to the cytosol. PTS1 ADP-ribosylates G-protein α-subunits resulting in increased cAMP signaling. Here, a role of target cell chaperones Hsp90, Hsp70, cyclophilins and FK506-binding proteins for cytosolic PTS1-uptake is demonstrated. PTS1 specifically and directly interacts with chaperones in vitro and in cells. Specific pharmacological chaperone inhibition protects CHO-K1, human primary airway basal cells and a fully differentiated airway epithelium from PT-intoxication by reducing intracellular PTS1-amounts without affecting cell binding or enzyme activity. PT is internalized by human airway epithelium secretory but not ciliated cells and leads to increase of apical surface liquid. Cyclophilin-inhibitors reduced leukocytosis in infant mouse model of pertussis, indicating their promising potential for developing novel therapeutic strategies against whooping cough.
Collapse
Affiliation(s)
- Katharina Ernst
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany.
| | - Ann-Katrin Mittler
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | | | - Carolin Kling
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Nina Eberhardt
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Anna Anastasia
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Michael Sonnabend
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Robin Lochbaum
- Institute of General Physiology, University of Ulm, Ulm, Germany
| | - Jan Wirsching
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Moona Sakari
- Institute of Biomedicine, Research Unit for Infection and Immunity, University of Turku, Turku, Finland
| | - Arto T Pulliainen
- Institute of Biomedicine, Research Unit for Infection and Immunity, University of Turku, Turku, Finland
| | - Ciaran Skerry
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicholas H Carbonetti
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Manfred Frick
- Institute of General Physiology, University of Ulm, Ulm, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany.
| |
Collapse
|
15
|
Ernst K, Sailer J, Braune M, Barth H. Intoxication of mammalian cells with binary clostridial enterotoxins is inhibited by the combination of pharmacological chaperone inhibitors. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:941-954. [PMID: 33284399 PMCID: PMC8102464 DOI: 10.1007/s00210-020-02029-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/18/2020] [Indexed: 01/05/2023]
Abstract
Binary enterotoxins Clostridioides difficile CDT toxin, Clostridium botulinum C2 toxin, and Clostridium perfringens iota toxin consist of two separate protein components. The B-components facilitate receptor-mediated uptake into mammalian cells and form pores into endosomal membranes through which the enzymatic active A-components translocate into the cytosol. Here, the A-components ADP-ribosylate G-actin which leads to F-actin depolymerization followed by rounding of cells which causes clinical symptoms. The protein folding helper enzymes Hsp90, Hsp70, and peptidyl-prolyl cis/trans isomerases of the cyclophilin (Cyp) and FK506 binding protein (FKBP) families are required for translocation of A-components of CDT, C2, and iota toxins from endosomes to the cytosol. Here, we demonstrated that simultaneous inhibition of these folding helpers by specific pharmacological inhibitors protects mammalian, including human, cells from intoxication with CDT, C2, and iota toxins, and that the inhibitor combination displayed an enhanced effect compared to application of the individual inhibitors. Moreover, combination of inhibitors allowed a concentration reduction of the individual compounds as well as decreasing of the incubation time with inhibitors to achieve a protective effect. These results potentially have implications for possible future therapeutic applications to relieve clinical symptoms caused by bacterial toxins that depend on Hsp90, Hsp70, Cyps, and FKBPs for their membrane translocation into the cytosol of target cells.
Collapse
Affiliation(s)
- Katharina Ernst
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Judith Sailer
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Maria Braune
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081, Ulm, Germany.
| |
Collapse
|
16
|
Masuyer G. Crystal Structure of Exotoxin A from Aeromonas Pathogenic Species. Toxins (Basel) 2020; 12:toxins12060397. [PMID: 32549399 PMCID: PMC7354439 DOI: 10.3390/toxins12060397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
Aeromonas exotoxin A (AE) is a bacterial virulence factor recently discovered in a clinical case of necrotising fasciitis caused by the flesh-eating Aeromonas hydrophila. Here, database mining shows that AE is present in the genome of several emerging Aeromonas pathogenic species. The X-ray crystal structure of AE was solved at 2.3 Å and presents all the hallmarks common to diphthamide-specific mono-ADP-ribosylating toxins, suggesting AE is a fourth member of this family alongside the diphtheria toxin, Pseudomonas exotoxin A and cholix. Structural homology indicates AE may use a similar mechanism of cytotoxicity that targets eukaryotic elongation factor 2 and thus inhibition of protein synthesis. The structure of AE also highlights unique features including a metal binding site, and a negatively charged cleft that could play a role in interdomain interactions and may affect toxicity. This study raises new opportunities to engineer alternative toxin-based molecules with pharmaceutical potential.
Collapse
Affiliation(s)
- Geoffrey Masuyer
- Department of Pharmacy and Pharmacology, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
17
|
Kellner A, Taylor M, Banerjee T, Britt CB, Teter K. A binding motif for Hsp90 in the A chains of ADP-ribosylating toxins that move from the endoplasmic reticulum to the cytosol. Cell Microbiol 2019; 21:e13074. [PMID: 31231933 PMCID: PMC6744307 DOI: 10.1111/cmi.13074] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/15/2019] [Accepted: 06/19/2019] [Indexed: 12/29/2022]
Abstract
Cholera toxin (Ctx) is an AB-type protein toxin that acts as an adenosine diphosphate (ADP)-ribosyltransferase to disrupt intracellular signalling in the target cell. It moves by vesicle carriers from the cell surface to the endoplasmic reticulum (ER) of an intoxicated cell. The catalytic CtxA1 subunit then dissociates from the rest of the toxin, unfolds, and activates the ER-associated degradation system for export to the cytosol. Translocation occurs through an unusual ratchet mechanism in which the cytosolic chaperone Hsp90 couples CtxA1 refolding with CtxA1 extraction from the ER. Here, we report that Hsp90 recognises two peptide sequences from CtxA1: an N-terminal RPPDEI sequence (residues 11-16) and an LDIAPA sequence in the C-terminal region (residues 153-158) of the 192 amino acid protein. Peptides containing either sequence effectively blocked Hsp90 binding to full-length CtxA1. Both sequences were necessary for the ER-to-cytosol export of CtxA1. Mutagenesis studies further demonstrated that the RPP residues in the RPPDEI motif are required for CtxA1 translocation to the cytosol. The LDIAPA sequence is unique to CtxA1, but we identified an RPPDEI-like motif at the N- or C-termini of the A chains from four other ER-translocating toxins that act as ADP-ribosyltransferases: pertussis toxin, Escherichia coli heat-labile toxin, Pseudomonas aeruginosa exotoxin A, and Salmonella enterica serovar Typhimurium ADP-ribosylating toxin. Hsp90 plays a functional role in the intoxication process for most, if not all, of these toxins. Our work has established a defined RPPDEI binding motif for Hsp90 that is required for the ER-to-cytosol export of CtxA1 and possibly other toxin A chains as well.
Collapse
Affiliation(s)
- Alisha Kellner
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32826
| | - Michael Taylor
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32826
| | | | - Christopher B.T. Britt
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32826
| | - Ken Teter
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32826
| |
Collapse
|
18
|
Intracellular Trafficking and Translocation of Pertussis Toxin. Toxins (Basel) 2019; 11:toxins11080437. [PMID: 31349590 PMCID: PMC6723225 DOI: 10.3390/toxins11080437] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 07/24/2019] [Indexed: 12/25/2022] Open
Abstract
Pertussis toxin (PT) is a multimeric complex of six proteins. The PTS1 subunit is an ADP-ribosyltransferase that inactivates the alpha subunit of heterotrimeric Gi/o proteins. The remaining PT subunits form a pentamer that positions PTS1 in and above the central cavity of the triangular structure. Adhesion of this pentamer to glycoprotein or glycolipid conjugates on the surface of a target cell leads to endocytosis of the PT holotoxin. Vesicle carriers then deliver the holotoxin to the endoplasmic reticulum (ER) where PTS1 dissociates from the rest of the toxin, unfolds, and exploits the ER-associated degradation pathway for export to the cytosol. Refolding of the cytosolic toxin allows it to regain an active conformation for the disruption of cAMP-dependent signaling events. This review will consider the intracellular trafficking of PT and the order-disorder-order transitions of PTS1 that are essential for its cellular activity.
Collapse
|