1
|
Sachan V, Susan-Resiga D, Lam K, Seidah NG. The Biology and Clinical Implications of PCSK7. Endocr Rev 2025; 46:281-299. [PMID: 39661471 PMCID: PMC11894536 DOI: 10.1210/endrev/bnae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/09/2024] [Indexed: 12/13/2024]
Abstract
Discovered in 1996, PCSK7 is the seventh of the 9-membered proprotein convertase subtilisin-kexin (PCSK) family. This article reviews the various aspects of the multifaceted biology of PCSK7 and what makes it an exciting new target for metabolic dysfunction-associated steatotic liver disease (MASLD), affecting ∼30% of the population globally, dyslipidemia, cardiovascular disease, and likely cancer/metastasis. We will systematically review and discuss all the available epidemiological data, and structural, cell biology, and in vivo evidence that eventually led to the discovery of PCSK7 as a novel post-translational regulator of apolipoprotein B. Interestingly, PCSK7 is the only convertase, other than PCSK9, that exhibits noncanonical/nonenzymatic functions, which will be amply described in this review. The data so far have suggested that PCSK7 is a potential safe target in MASLD treatment. This was based on human epidemiological data, as well as mouse Pcsk7 knockout and mRNA translation inhibition using hepatocyte-targeted antisense oligonucleotides following a diet-induced MASLD. Additionally, of all the 9 convertases only the gene deletion of Pcsk7 and/or Pcsk9 in mice leads to healthy and fertile animals with no apparent deleterious consequences, suggesting that their pharmacological targeting is likely safe. Accordingly, the synergistic effects of inhibiting both PCSK7 and PCSK9 in a clinical setting may represent a novel therapy for various diseases. We believe that the current surge in oligonucleotide therapy, with many Food and Drug Administration-approved oligonucleotide-based drugs now available in clinics, and the urgent need for novel MASLD therapeutics present an opportune moment for this timely review article.
Collapse
Affiliation(s)
- Vatsal Sachan
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC H2W 1R7, Canada
| | - Delia Susan-Resiga
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC H2W 1R7, Canada
| | - Kalista Lam
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC H2W 1R7, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC H2W 1R7, Canada
| |
Collapse
|
2
|
Sachan V, Le Dévéhat M, Roubtsova A, Essalmani R, Laurendeau JF, Garçon D, Susan-Resiga D, Duval S, Mikaeeli S, Hamelin J, Evagelidis A, Chong M, Paré G, Chernetsova E, Gao ZH, Robillard I, Ruiz M, Trinh VQH, Estall JL, Faraj M, Austin RC, Sauvageau M, Prat A, Kiss RS, Seidah NG. PCSK7: A novel regulator of apolipoprotein B and a potential target against non-alcoholic fatty liver disease. Metabolism 2024; 150:155736. [PMID: 37967646 DOI: 10.1016/j.metabol.2023.155736] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Epidemiological evidence links the proprotein convertase subtilisin/kexin 7 (PCSK7) to triglyceride (TG) metabolism. We associated the known PCSK7 gain-of-function non-coding SNP rs236918 with higher levels of plasma apolipoprotein B (apoB) and the loss-of-function coding variant p.Pro777Leu (SNP rs201598301) with lower apoB and TG. Herein, we aimed to unravel the in vivo role of liver PCSK7. METHODS We biochemically defined the functional role of PCSK7 in lipid metabolism using hepatic cell lines and Pcsk7-/- mice. Our findings were validated following subcutaneous administration of hepatocyte-targeted N-acetylgalactosamine (GalNAc)-antisense oligonucleotides (ASOs) against Pcsk7. RESULTS Independent of its proteolytic activity, membrane-bound PCSK7 binds apoB100 in the endoplasmic reticulum and enhances its secretion. Mechanistically, the loss of PCSK7/Pcsk7 leads to apoB100 degradation, triggering an unfolded protein response, autophagy, and β-oxidation, eventually reducing lipid accumulation in hepatocytes. Non-alcoholic fatty liver disease (NAFLD) was induced by a 12-week high fat/fructose/cholesterol diet in wild type (WT) and Pcsk7-/- mice that were then allowed to recover on a 4-week control diet. Pcsk7-/- mice recovered more effectively than WT mice from all NAFLD-related liver phenotypes. Finally, subcutaneous administration of GalNAc-ASOs targeting hepatic Pcsk7 to WT mice validated the above results. CONCLUSIONS Our data reveal hepatic PCSK7 as one of the major regulators of apoB, and its absence reduces apoB secretion from hepatocytes favoring its ubiquitination and degradation by the proteasome. This results in a cascade of events, eventually reducing hepatic lipid accumulation, thus supporting the notion of silencing PCSK7 mRNA in hepatocytes for targeting NAFLD.
Collapse
Affiliation(s)
- Vatsal Sachan
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Maïlys Le Dévéhat
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Anna Roubtsova
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Rachid Essalmani
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Jean-Francois Laurendeau
- RNA and Noncoding Mechanisms of Disease, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Damien Garçon
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Delia Susan-Resiga
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Stéphanie Duval
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Sahar Mikaeeli
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Josée Hamelin
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Alexandra Evagelidis
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Michael Chong
- Department of Biochemistry & Biomedical Sciences, McMaster University Faculty of Health Sciences, Hamilton, Ontario, Canada
| | - Guillaume Paré
- Department of Biochemistry & Biomedical Sciences, McMaster University Faculty of Health Sciences, Hamilton, Ontario, Canada
| | | | - Zu-Hua Gao
- Department of Pathology, McGill University Health Centre, Montréal, QC, Canada
| | - Isabelle Robillard
- Montreal Heart Institute, Metabolomics Platform, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montréal, QC, Canada
| | - Matthieu Ruiz
- Montreal Heart Institute, Metabolomics Platform, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montréal, QC, Canada
| | - Vincent Quoc-Huy Trinh
- Departement of Pathology and Cellular Biology, Institut de Recherche en Immunologie et Cancérologie, Université de Montréal, Montréal, QC, Canada
| | - Jennifer L Estall
- Molecular Mechanisms of Diabetes, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - May Faraj
- Nutrition Department, Université de Montréal, Research Unit on Nutrition, Lipoproteins and Cardiometabolic Diseases, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Richard C Austin
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe's Hamilton and the Hamilton Center for Kidney Research, Hamilton, ON, Canada
| | - Martin Sauvageau
- RNA and Noncoding Mechanisms of Disease, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Annik Prat
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Robert S Kiss
- McGill University Health Centre Research Institute, Montréal, QC, Canada
| | - Nabil G Seidah
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
3
|
Post-Transcriptional Effects of miRNAs on PCSK7 Expression and Function: miR-125a-5p, miR-143-3p, and miR-409-3p as Negative Regulators. Metabolites 2022; 12:metabo12070588. [PMID: 35888711 PMCID: PMC9323720 DOI: 10.3390/metabo12070588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022] Open
Abstract
The regulatory mechanism of PCSK7 gene is still unknown, although its encoded protein PC7 is the most ancient and highly conserved of all proprotein convertases and exhibits enzymatic and non-enzymatic functions in liver triglyceride regulation. Bioinformatics algorithms were used to predict regulatory microRNAs (miRNAs) of PCSK7 expression. This led to the identification of four miRNAs, namely miR-125a-5p, miR-143-3p, miR-409-3p, and miR-320a-3p, with potential binding sites on the 3′-untranslated region (3′-UTR) of human PCSK7 mRNA. The expression patterns of these miRNAs and PCSK7 mRNA were assessed in three different cell lines with quantitative polymerase chain reaction (qPCR), which revealed reciprocal expression patterns between the expression levels of the four selected miRNAs and PCSK7. Next, the interactions and effects of these miRNAs on PCSK7 expression levels were investigated via cell-based expression analysis, dual-luciferase assay, and Western blot analysis. The data revealed that PCSK7 mRNA levels decreased in cells transfected with vectors overexpressing miR-125a-5p, miR-143-3p, and miR-409-3p, but not miR-320a-3p. The dual-luciferase assay demonstrated that the above three miRNAs could directly interact with putative target sites in PCSK7 3′-UTR and regulate its expression, whereas miR-320-3p exhibited no interaction. Western blot analysis further revealed that the overexpression of miR-125a-5p in Huh7 cells inhibits the expression and ability of PC7 to cleave human transferrin receptor 1. Our results support a regulatory role of these miRNAs on PCSK7 expression and function and open the way to assess their roles in the regulation of PC7 activity in vivo in the development of hepatic steatosis.
Collapse
|
4
|
Parvaz N, Jalali Z. Molecular evolution of PCSK family: Analysis of natural selection rate and gene loss. PLoS One 2021; 16:e0259085. [PMID: 34710160 PMCID: PMC8553125 DOI: 10.1371/journal.pone.0259085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Proprotein convertases subtilisin kexins are serine endoproteases, playing critical roles in the biological functions, including lipid, glucose, and bile acid metabolism, as well as cell proliferation, migration, and metastasis. Experimental studies have demonstrated the physiological functions of PCSKs and their association with diseases; however, studies on the evolutionary history and diversification of these proteins are missing. In the present research, a bioinformatics study was conducted on the molecular evolution of several PCSKs family members and gene loss events across placental mammalian. In order to detect evolutionary constraints and positive selection, the CodeML program of the PAML package was used. The results showed the positive selection to occur in PCSK1, PCSK3, PCSK5, and PCSK7. A decelerated rate of evolution was observed in PCSK7, PCSK3, and MBTPS1 in Carnivores compared to the rest of phylogeny, and an accelerated evolution of PCSK1, PCSK7, and MBTPS1 in Muridae family of rodents was found. Additionally, our results indicated pcsk9 gene loss in 12 species comprising Carnivores and bats (Chiroptera). Future studies are required to evaluate the functional relevance and selective evolutionary advantages associated with these modifications in PCSK proteins during evolution.
Collapse
Affiliation(s)
- Najmeh Parvaz
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Jalali
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- * E-mail:
| |
Collapse
|
5
|
Abstract
The kexin-like proprotein convertases perform the initial proteolytic cleavages that ultimately generate a variety of different mature peptide and proteins, ranging from brain neuropeptides to endocrine peptide hormones, to structural proteins, among others. In this review, we present a general introduction to proprotein convertase structure and biochemistry, followed by a comprehensive discussion of each member of the kexin-like subfamily of proprotein convertases. We summarize current knowledge of human proprotein convertase insufficiency syndromes, including genome-wide analyses of convertase polymorphisms, and compare these to convertase null and mutant mouse models. These mouse models have illuminated our understanding of the roles specific convertases play in human disease and have led to the identification of convertase-specific substrates; for example, the identification of procorin as a specific PACE4 substrate in the heart. We also discuss the limitations of mouse null models in interpreting human disease, such as differential precursor cleavage due to species-specific sequence differences, and the challenges presented by functional redundancy among convertases in attempting to assign specific cleavages and/or physiological roles. However, in most cases, knockout mouse models have added substantively both to our knowledge of diseases caused by human proprotein convertase insufficiency and to our appreciation of their normal physiological roles, as clearly seen in the case of the furin, proprotein convertase 1/3, and proprotein convertase 5/6 mouse models. The creation of more sophisticated mouse models with tissue- or temporally-restricted expression of specific convertases will improve our understanding of human proprotein convertase insufficiency and potentially provide support for the emerging concept of therapeutic inhibition of convertases.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Shedding of cancer susceptibility candidate 4 by the convertases PC7/furin unravels a novel secretory protein implicated in cancer progression. Cell Death Dis 2020; 11:665. [PMID: 32820145 PMCID: PMC7441151 DOI: 10.1038/s41419-020-02893-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023]
Abstract
The proprotein convertases (PCs) are responsible for the maturation of precursor proteins, and are involved in multiple and critical biological processes. Over the past 30 years, the PCs have had great translational applications, but the physiological roles of PC7, the seventh member of the family, are still obscure. Searching for new substrates of PC7, a quantitative proteomics screen for selective enrichment of N-glycosylated polypeptides secreted from hepatic HuH7 cells identified two human type-II transmembrane proteins of unknown function(s): Cancer Susceptibility Candidate 4 (CASC4) and Golgi Phosphoprotein of 130 kDa (GPP130/GOLIM4). Concentrating on CASC4, its mutagenesis characterized the PC7/Furin-shedding site to occur at KR66↓NS, in HEK293 cells. We defined PC7 and Furin trafficking and activity, and demonstrated that CASC4 shedding occurs in acidic endosomes and/or in the trans-Golgi Network. Our data unraveled a cancer-protective role for CASC4, because siRNA silencing of endogenous CASC4 expression in the invasive triple-negative breast cancer human cell line MDA-MB-231 resulted in a significantly increased cellular migration and invasion. Conversely, MDA-MB-231 cells stably expressing CASC4 exhibited reduced migration and invasion, which can be explained by an increased number of paxillin-positive focal adhesions. This phenotypic cancer-protective role of CASC4 is reversed in cells overexpressing an optimally PC7/Furin-cleaved CASC4 mutant, or upon overexpression of the N-terminally convertase-generated membrane-bound segment. This phenotype was associated with increased formation of podosome-like structures, especially evident in cells overexpressing the N-terminal fragment. In accord, breast cancer patients’ data sets show that high CASC4 and PCSK7 expression levels predict a significantly worse prognosis compared to high CASC4 but low PCSK7 levels. In conclusion, CASC4 shedding not only disrupts its anti-migratory/invasive role, but also generates a membrane-bound fragment that drastically modifies the actin cytoskeleton, resulting in an enhanced cellular migration and invasion. This phenotype might be clinically relevant in the prognosis of breast cancer patients.
Collapse
|