1
|
Dey S, Nofal W, Brothag C, Kabi M, Khamamkar A, Choudhari N, Vijayaraghavan S. PP1γ1 is unable to substitute for the mammal-specific PP1γ2 isoform to support male fertility and sperm function. Reproduction 2025; 169:e240256. [PMID: 39626032 PMCID: PMC11926999 DOI: 10.1530/rep-24-0256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/03/2024] [Indexed: 01/23/2025]
Abstract
In brief Protein phosphatase 1 catalytic subunit gamma isoform 2 (PP1γ2) is a unique phosphatase expressed only in mammalian testes and sperm cells. The PP1γ2 isoform is indispensable for sperm motility and fertility and cannot be replaced by the PP1γ1 isoform for these functions. Abstract The serine-threonine phosphatase has four paralogs - PP1α, PP1β, PP1γ1 and PP1γ2 - encoded by three genes, Ppp1ca, Ppp1cb and Ppp1cc. Protein phosphatase PP1γ2, one of two isoforms of the gene Ppp1cc, is expressed in spermatogenic cells in the testes and sperm, while PP1γ1 is found in somatic cells. The two PP1γ isoforms, formed by alternate splicing that occurs only in mammals, are identical except at their C-termini. Global or testis-specific knockout of Ppp1cc in mice results in male infertility due to disrupted spermiation and mid-to-late spermiogenesis. Transgenic expression of PP1γ2, driven by a testis-specific promoter in differentiating spermatogenic cells, rescues spermatogenesis and fertility in the Ppp1cc-null mice. Why PP1γ2 is essential and present only in mammalian sperm is a mystery. We have generated a knock-in mouse where the Ppp1cc gene is edited to express only PP1γ1. Spermatogenesis was normal in knock-in mice. Testis-expressed PP1γ1 in the knock-in mice and PP1γ2 in the wild-type mice were incorporated in equal amounts into sperm. Sperm bearing PP1γ1 have reduced flagellar beat amplitude and motility, and male mice were severely sub-fertile. Although in the wild-type mice, PP1γ2 is present in both the head and tail, in the knock-in mice, PP1γ1 is absent in sperm heads, leading to an altered intra-sperm protein phosphatase landscape. Phosphoproteomic analysis of sperm proteins suggested a plausible molecular basis for compromised PP1γ1 functions: it identified GSK3α, a known substrate of PP1, to be dysregulated in knock-in sperm. This study provides a preliminary explanation for the isoform-specific requirement of PP1γ2 for male fertility.
Collapse
Affiliation(s)
- Souvik Dey
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576104, India
| | - Wesam Nofal
- Biological Sciences, Kent State University, Kent, Ohio 44240, USA
- Northern Border University, Arar 73213, Saudi Arabia (current)
| | - Cameron Brothag
- Biological Sciences, Kent State University, Kent, Ohio 44240, USA
| | - Mustfa Kabi
- Biological Sciences, Kent State University, Kent, Ohio 44240, USA
- Department of Biology, University of Tabuk, Tabuk, 47512, Saudi Arabia
| | - Aditi Khamamkar
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576104, India
| | - Neha Choudhari
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576104, India
| | | |
Collapse
|
2
|
Kalinin IA, Peled-Zehavi H, Barshap ABD, Tamari SA, Weiss Y, Nevo R, Fluman N. Features of membrane protein sequence direct post-translational insertion. Nat Commun 2024; 15:10198. [PMID: 39587101 PMCID: PMC11589881 DOI: 10.1038/s41467-024-54575-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024] Open
Abstract
The proper folding of multispanning membrane proteins (MPs) hinges on the accurate insertion of their transmembrane helices (TMs) into the membrane. Predominantly, TMs are inserted during protein translation, via a conserved mechanism centered around the Sec translocon. Our study reveals that the C-terminal TMs (cTMs) of numerous MPs across various organisms bypass this cotranslational route, necessitating an alternative posttranslational insertion strategy. We demonstrate that evolution has refined the hydrophilicity and length of the C-terminal tails of these proteins to optimize cTM insertion. Alterations in the C-tail sequence disrupt cTM insertion in both E. coli and human, leading to protein defects, loss of function, and genetic diseases. In E. coli, we identify YidC, a member of the widespread Oxa1 family, as the insertase facilitating cTMs insertion, with C-tail mutations disrupting the productive interaction of cTMs with YidC. Thus, MP sequences are fine-tuned for effective collaboration with the cellular biogenesis machinery, ensuring proper membrane protein folding.
Collapse
Affiliation(s)
- Ilya A Kalinin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hadas Peled-Zehavi
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alon B D Barshap
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shai A Tamari
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yarden Weiss
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Reinat Nevo
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Nir Fluman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Sun S, Li X, Mariappan M. Signal sequences encode information for protein folding in the endoplasmic reticulum. J Cell Biol 2023; 222:213733. [PMID: 36459117 PMCID: PMC9723807 DOI: 10.1083/jcb.202203070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/22/2022] [Accepted: 10/26/2022] [Indexed: 12/05/2022] Open
Abstract
One-third of newly synthesized proteins in mammals are translocated into the endoplasmic reticulum (ER) through the Sec61 translocon. How protein translocation coordinates with chaperone availability in the ER to promote protein folding remains unclear. We find that marginally hydrophobic signal sequences and transmembrane domains cause transient retention at the Sec61 translocon and require the luminal BiP chaperone for efficient protein translocation. Using a substrate-trapping proteomic approach, we identify that nascent proteins bearing marginally hydrophobic signal sequences accumulate on the cytosolic side of the Sec61 translocon. Sec63 is co-translationally recruited to the translocation site and mediates BiP binding to incoming polypeptides. BiP binding not only releases translocationally paused nascent chains but also ensures protein folding in the ER. Increasing hydrophobicity of signal sequences bypasses Sec63/BiP-dependent translocation, but translocated proteins are prone to misfold and aggregate in the ER under limited BiP availability. Thus, the signal sequence-guided protein folding may explain why signal sequences are diverse and use multiple protein translocation pathways.
Collapse
Affiliation(s)
- Sha Sun
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT
| | - Xia Li
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT
| | - Malaiyalam Mariappan
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT
| |
Collapse
|
4
|
Hirata T, Yang J, Tomida S, Tokoro Y, Kinoshita T, Fujita M, Kizuka Y. ER entry pathway and glycosylation of GPI-anchored proteins are determined by N-terminal signal sequence and C-terminal GPI-attachment sequence. J Biol Chem 2022; 298:102444. [PMID: 36055406 PMCID: PMC9520029 DOI: 10.1016/j.jbc.2022.102444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022] Open
Abstract
Newly synthesized proteins in the secretory pathway, including glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs), need to be correctly targeted and imported into the endoplasmic reticulum (ER) lumen. GPI-APs are synthesized in the cytosol as preproproteins, which contain an N-terminal signal sequence (SS), mature protein part, and C-terminal GPI-attachment sequence (GPI-AS), and translocated into the ER lumen where SS and GPI-AS are removed, generating mature GPI-APs. However, how various GPI-APs are translocated into the ER lumen in mammalian cells is unclear. Here, we investigated the ER entry pathways of GPI-APs using a panel of KO cells defective in each signal recognition particle–independent ER entry pathway—namely, Sec62, GET, or SND pathway. We found GPI-AP CD59 largely depends on the SND pathway for ER entry, whereas prion protein (Prion) and LY6K depend on both Sec62 and GET pathways. Using chimeric Prion and LY6K constructs in which the N-terminal SS or C-terminal GPI-AS was replaced with that of CD59, we revealed that the hydrophobicity of the SSs and GPI-ASs contributes to the dependence on Sec62 and GET pathways, respectively. Moreover, the ER entry route of chimeric Prion constructs with the C-terminal GPI-ASs replaced with that of CD59 was changed to the SND pathway. Simultaneously, their GPI structures and which oligosaccharyltransferase isoforms modify the constructs were altered without any amino acid change in the mature protein part. Taking these findings together, this study revealed N- and C-terminal sequences of GPI-APs determine the selective ER entry route, which in turn regulates subsequent maturation processes of GPI-APs.
Collapse
Affiliation(s)
- Tetsuya Hirata
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Jing Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Seita Tomida
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan; Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan
| | - Yuko Tokoro
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Taroh Kinoshita
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita 565-0871, Japan
| | - Morihisa Fujita
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yasuhiko Kizuka
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan.
| |
Collapse
|
5
|
Abstract
The endoplasmic reticulum (ER) is the site of membrane protein insertion, folding, and assembly in eukaryotes. Over the past few years, a combination of genetic and biochemical studies have implicated an abundant factor termed the ER membrane protein complex (EMC) in several aspects of membrane protein biogenesis. This large nine-protein complex is built around a deeply conserved core formed by the EMC3-EMC6 subcomplex. EMC3 belongs to the universally conserved Oxa1 superfamily of membrane protein transporters, whereas EMC6 is an ancient, widely conserved obligate partner. EMC has an established role in the insertion of transmembrane domains (TMDs) and less understood roles during the later steps of membrane protein folding and assembly. Several recent structures suggest hypotheses about the mechanism(s) of TMD insertion by EMC, with various biochemical and proteomics studies beginning to reveal the range of EMC's membrane protein substrates. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ramanujan S Hegde
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom;
| |
Collapse
|
6
|
Hegde RS, Keenan RJ. The mechanisms of integral membrane protein biogenesis. Nat Rev Mol Cell Biol 2022; 23:107-124. [PMID: 34556847 DOI: 10.1038/s41580-021-00413-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 02/08/2023]
Abstract
Roughly one quarter of all genes code for integral membrane proteins that are inserted into the plasma membrane of prokaryotes or the endoplasmic reticulum membrane of eukaryotes. Multiple pathways are used for the targeting and insertion of membrane proteins on the basis of their topological and biophysical characteristics. Multipass membrane proteins span the membrane multiple times and face the additional challenges of intramembrane folding. In many cases, integral membrane proteins require assembly with other proteins to form multi-subunit membrane protein complexes. Recent biochemical and structural analyses have provided considerable clarity regarding the molecular basis of membrane protein targeting and insertion, with tantalizing new insights into the poorly understood processes of multipass membrane protein biogenesis and multi-subunit protein complex assembly.
Collapse
Affiliation(s)
- Ramanujan S Hegde
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Robert J Keenan
- Gordon Center for Integrative Science, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Chamness LM, Zelt NB, Harrington HR, Kuntz CP, Bender BJ, Penn WD, Ziarek JJ, Meiler J, Schlebach JP. Molecular basis for the evolved instability of a human G-protein coupled receptor. Cell Rep 2021; 37:110046. [PMID: 34818554 PMCID: PMC8865034 DOI: 10.1016/j.celrep.2021.110046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 08/06/2021] [Accepted: 11/01/2021] [Indexed: 11/26/2022] Open
Abstract
Membrane proteins are prone to misfolding and degradation. This is particularly true for mammalian forms of the gonadotropin-releasing hormone receptor (GnRHR). Although they function at the plasma membrane, mammalian GnRHRs accumulate within the secretory pathway. Their apparent instability is believed to have evolved through selection for attenuated GnRHR activity. Nevertheless, the molecular basis of this adaptation remains unclear. We show that adaptation coincides with a C-terminal truncation that compromises the translocon-mediated membrane integration of its seventh transmembrane domain (TM7). We also identify a series of polar residues in mammalian GnRHRs that compromise the membrane integration of TM2 and TM6. Reverting a lipid-exposed polar residue in TM6 to an ancestral hydrophobic residue restores expression with no impact on function. Evolutionary trends suggest variations in the polarity of this residue track with reproductive phenotypes. Our findings suggest that the marginal energetics of cotranslational folding can be exploited to tune membrane protein fitness. Integral membrane proteins are prone to misfolding, especially mammalian gonadotropin-releasing hormone receptors (GnRHRs). Chamness et al. show that the evolved instability of mammalian GnRHRs stems from adaptive modifications that disrupt translocon-mediated membrane integration, suggesting that membrane protein misfolding can be exploited to tune fitness.
Collapse
Affiliation(s)
- Laura M Chamness
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Nathan B Zelt
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | | | - Charles P Kuntz
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Brian J Bender
- Department of Chemistry, Vanderbilt University, Nashville, TN 49795, USA
| | - Wesley D Penn
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Joshua J Ziarek
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN 49795, USA; Institut for Drug Development, Leipzig University, Leipzig, SAC, Germany
| | | |
Collapse
|
8
|
Li X, Sun S, Appathurai S, Sundaram A, Plumb R, Mariappan M. A Molecular Mechanism for Turning Off IRE1α Signaling during Endoplasmic Reticulum Stress. Cell Rep 2020; 33:108563. [PMID: 33378667 PMCID: PMC7809255 DOI: 10.1016/j.celrep.2020.108563] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/14/2020] [Accepted: 12/06/2020] [Indexed: 12/15/2022] Open
Abstract
Misfolded proteins in the endoplasmic reticulum (ER) activate IRE1α endoribonuclease in mammalian cells, which mediates XBP1 mRNA splicing to produce an active transcription factor. This promotes the expression of specific genes to alleviate ER stress, thereby attenuating IRE1α. Although sustained activation of IRE1α is linked to human diseases, it is not clear how IRE1α is attenuated during ER stress. Here, we identify that Sec63 is a subunit of the previously identified IRE1α/Sec61 translocon complex. We find that Sec63 recruits and activates BiP ATPase through its luminal J-domain to bind onto IRE1α. This leads to inhibition of higher-order oligomerization and attenuation of IRE1α RNase activity during prolonged ER stress. In Sec63-deficient cells, IRE1α remains activated for a long period of time despite the presence of excess BiP in the ER. Thus, our data suggest that the Sec61 translocon bridges IRE1α with Sec63/BiP to regulate the dynamics of IRE1α signaling in cells. The stress sensor IRE1α is attenuated during prolonged ER stress by a poorly understood mechanism. Li et al. show that IRE1α forms a complex with the Sec61/Sec63 translocon in cells. Sec63 mediates BiP binding to IRE1α and thereby inhibits IRE1α oligomerization and attenuates IRE1α signaling during prolonged ER stress.
Collapse
Affiliation(s)
- Xia Li
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT 06516, USA
| | - Sha Sun
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT 06516, USA
| | - Suhila Appathurai
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT 06516, USA
| | - Arunkumar Sundaram
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT 06516, USA
| | - Rachel Plumb
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT 06516, USA
| | - Malaiyalam Mariappan
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT 06516, USA.
| |
Collapse
|
9
|
|