1
|
Kadry AA, Adel M, Abubshait SA, Yahya G, Sharaky M, Serya RAT, Abouzid KAM. Targeting DNA repair mechanisms: Spirobenzoxazinone and salicylamide derivatives as novel candidates for PARP-1 inhibition in cancer therapy. Bioorg Med Chem 2025; 124:118173. [PMID: 40252565 DOI: 10.1016/j.bmc.2025.118173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/21/2025]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) plays a crucial role in DNA repair, mediating approximately 90 % of ADP-ribosylation processes associated with DNA damage response. Consequently, inhibiting PARP-1 with small molecules represents a promising strategy for cancer therapy. Utilizing a structure-based design and molecular hybridization approach, we developed three novel series of spirobenzoxazinone-piperdine/salicylamide-based derivatives. These compounds were evaluated for their in vitro PARP-1 inhibitory activity, and their structure-activity relationships were analyzed. At 10 µM concentration, derivatives (18a-d) demonstrated nearly complete inhibition, and the spirocyclic derivative (7c) also achieved a considerable inhibitory effect, with IC50 values in the low micromolar range. The most promising compounds (7c, 18a-d) were tested for their antiproliferative activity against six cancer cell lines. Notably, compounds (7c) and (18d) exhibited significant antiproliferative effects against H1299 and FaDu cells, which correlated with their calculated logP values. These compounds were also tested against normal human skin fibroblasts (HSF), revealing a favorable safety profile compared to cancer cells. Basal anti-PARP-1 activity of the most promising compounds was validated in the HCT116 colorectal cancer cell line. Western blot analysis confirmed robust cleavage of PARP-1, indicating enzymatic inhibition and loss of PARP-1 activity. Combining these inhibitors with doxorubicin showed synergistic lethality in colony-formation assay. Finally, a molecular docking study was conducted to examine the binding modes of these compounds within the PARP-1 active site. The results demonstrated binding modes comparable to those of olaparib and other approved PARP-1 inhibitors, maintaining the key interactions necessary for activity. Based on these findings, compounds (7c) and (18d) emerge as promising candidates for further development in targeting anti-cancer drug resistance through PARP-1 inhibition.
Collapse
Affiliation(s)
- Alaa Ahmed Kadry
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassaia, Cairo 11566, Egypt
| | - Mai Adel
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassaia, Cairo 11566, Egypt.
| | - Samar A Abubshait
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; Basic & Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; Molecular Biology Institute of Barcelona, Spanish National Research Council, Catalonia, Spain
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo 11796, Egypt
| | - Rabah A T Serya
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassaia, Cairo 11566, Egypt
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassaia, Cairo 11566, Egypt.
| |
Collapse
|
2
|
Wang X, Zhou J, Xu B. Engaging an engineered PARP-2 catalytic domain mutant to solve the complex structures harboring approved drugs for structure analyses. Bioorg Chem 2025; 160:108471. [PMID: 40228437 DOI: 10.1016/j.bioorg.2025.108471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
The PARP-1/2 inhibitors have been approved for the treatment of cancers by modulating the enzymatic activity and/or the trapping ability for damaged DNA of PARP-1 and/or PARP-2, and the selective PARP-1 inhibitors are now attracting considerable attention with an aim to search for drug candidates with an improved safety. Exploring the structural basis of the selectivity and trapping capability of known PARP-1/2 inhibitors would be beneficial for the discovery of the improved inhibitors. Herein, a mutated PARP-2 catalytic domain, designated as catPARP-2SE, was engineered. It could be expressed in an elevated level and had capability to crystalize at 25 °C, which greatly facilitated obtaining PARP-2 crystals. Consequently, the complex structures of Fluzoparib, Pamiparib, Rucaparib, and Niraparib within PARP-2 were achieved. Taking advantage of these complexed structures, the detailed and quantitative analyses of protein-ligand and intra-protein interactions (αB-αF, αJ-αB, αJ-αF, ASL-αD and ASL-αF interfaces) were conducted with quantum chemistry methods (GFN2-xTB and IGMH). It suggested that the residues adjacent to Asp766 in the HD and ASL domains and the αJ-αF and ASL-αD interfaces were closely related to the selectivity and trapping mechanism. These results would provide some insights for the design and development of novel PARP-1/2 inhibitors with improved pharmacodynamic properties.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jie Zhou
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bailing Xu
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
3
|
Bosetti C, Kampasis D, Brinch SA, Galera-Prat A, Karelou M, Dhakar SS, Alaviuhkola J, Waaler J, Lehtiö L, Kostakis IK. Substitutions at the C-8 position of quinazolin-4-ones improve the potency of nicotinamide site binding tankyrase inhibitors. Eur J Med Chem 2025; 288:117397. [PMID: 39983556 DOI: 10.1016/j.ejmech.2025.117397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/23/2025]
Abstract
Human diphtheria toxin-like ADP-ribosyltransferases, PARPs and tankyrases, transfer ADP-ribosyl groups to other macromolecules, thereby controlling various signaling events in cells. They are considered promising drug targets, especially in oncology, and a vast number of inhibitors have already been successfully developed. These inhibitors typically occupy the nicotinamide binding site and extend along the NAD+ binding groove of the catalytic domain. Quinazolin-4-ones have been explored as compelling scaffolds for such inhibitors and we have identified a new position within the catalytic domain that has not been extensively studied yet. In this study, we investigate larger substituents at the C-8 position and, using X-ray crystallography, we demonstrate that nitro- and diol-substituents engage in new interactions with TNKS2, improving both affinity and selectivity. Both diol- and nitro-substituents exhibit intriguing inhibition of TNKS2, with the diol-based compound EXQ-1e displaying a pIC50 of 7.19, while the nitro-based compound EXQ-2d's pIC50 value is 7.86. Both analogues impact and attenuate the tankyrase-controlled WNT/β-catenin signaling with sub-micromolar IC50. When tested against a wider panel of enzymes, the nitro-based compound EXQ-2d displayed high selectivity towards tankyrases, whereas the diol-based compound EXQ-1e also inhibited other PARPs. Compound EXQ-2d displays in vitro cell growth inhibition of the colon cancer cell line COLO 320DM, while compound EXQ-1e displays nonspecific cell toxicity. Collectively, the results offer new insights for inhibitor development targeting tankyrases and PARPs by focusing on the subsite between a mobile active site loop and the canonical nicotinamide binding site.
Collapse
Affiliation(s)
- Chiara Bosetti
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Dionysis Kampasis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Shoshy A Brinch
- Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo, 0424, Norway; Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| | - Albert Galera-Prat
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Maria Karelou
- Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Saurabh S Dhakar
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Juho Alaviuhkola
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Jo Waaler
- Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo, 0424, Norway; Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland.
| | - Ioannis K Kostakis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, 15771, Athens, Greece.
| |
Collapse
|
4
|
Conceição CJF, Moe E, Ribeiro PA, Raposo M. PARP1: A comprehensive review of its mechanisms, therapeutic implications and emerging cancer treatments. Biochim Biophys Acta Rev Cancer 2025; 1880:189282. [PMID: 39947443 DOI: 10.1016/j.bbcan.2025.189282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/21/2025]
Abstract
The Poly (ADP-ribose) polymerase-1 (PARP1) enzyme is involved in several signalling pathways related to homologous repair (HR), base excision repair (BER), and non-homologous end joining (NHEJ). Studies demonstrated that the deregulation of PARP1 function and control mechanisms can lead to cancer emergence. On the other side, PARP1 can be a therapeutic target to maximize cancer treatment. This is done by molecules that can modulate radiation effects, such as DNA repair inhibitors (PARPi). With this approach, tumour cell viability can be undermined by targeting DNA repair mechanisms. Thus, treatment using PARPi represents a new era for cancer therapy, and even new horizons can be attained by coupling these molecules with a nano-delivery system. For this, drug delivery systems such as liposomes encompass all the required features due to its excellent biocompatibility, biodegradability, and low toxicity. This review presents a comprehensive overview of PARP1 biological features and mechanisms, its role in cancer development, therapeutic implications, and emerging cancer treatments by PARPi-mediated therapies. Although there are a vast number of studies regarding PARP1 biological function, some PARP1 mechanisms are not clear yet, and full-length PARP1 structure is missing. Nevertheless, literature reports demonstrate already the high usefulness and vast possibilities offered by combined PARPi cancer therapy.
Collapse
Affiliation(s)
- Carlota J F Conceição
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | - Elin Moe
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal; Department of Chemistry, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Paulo A Ribeiro
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Maria Raposo
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
5
|
Patel HC, Patel MS, Parekh JN, Chudasama DD, Dalwadi P, Kunjadiya A, Bhatt V, Modi KM, Patel CN, Ram KR. In silico and in vitro evaluation of newly synthesized pyrazolo-pyridine fused tetrazolo-pyrimidines derivatives as potential anticancer and antimicrobial agents. J Biomol Struct Dyn 2025; 43:3467-3490. [PMID: 38146736 DOI: 10.1080/07391102.2023.2298731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
Diversely functionalized pyrazolo-pyridine fused tetrazolo-pyrimidines 10aa-am and 10ba-bn were successfully synthesized via a catalyst-free synthetic protocol with moderate to very good yields. The compounds were evaluated for cytotoxicity against MCF-7 and HEK-293 cells using MTT assay. Among the tested compounds, 10ab (IC50- 23.83 µM) and 10ah (IC50- 23.30 µM) demonstrated the highest potency against MCF-7 cells, while 10bc (IC50- 14.46 µM) and 10bh (IC50- 2.53 µM) exhibited excellent cytotoxicity against HEK-293 cells. Additionally, antibacterial screening was performed against three Gram-negative bacteria (E. coli, P. aeruginosa, and S. enterica) and three Gram-positive bacteria (S. aureus, B. megaterium, and B. subtilis) using broth dilution method, while antifungal activity was assessed against three fungal strains (A. niger, Penicillium, and S. cerevisiae) using agar well diffusion method. In antimicrobial screening, the majority of the compounds demonstrated significant antibacterial efficacy compared to antifungal activity. We also conducted comprehensive computational studies, including DFT calculations, molecular docking and dynamics, and drug-likeness assessments. In the DFT study, compounds 10ac and 10bc displayed stable conformations, indicating their potential for higher therapeutic activity. Molecular docking analyses revealed compelling interactions, with compound 10ah demonstrating docking score -7.42 kcal/mol against catalytical domain PARP1 (PDB ID: 7KK4) and 10bh exhibiting a best docking score -10.77 kcal/mol against human corticotropin-releasing factor receptor 1 (PDB ID: 4Z9G). A 100 ns molecular dynamics (MD) simulation study of compounds 10ah and 10bh revealed the stable conformation and binding energy in a stimulating environment. In drug-likeness assessments, both the compounds 10ah and 10bh adhere all the established guidelines.
Collapse
Affiliation(s)
- Harsh C Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Manan S Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Jaydeepkumar N Parekh
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | | | - Priyanka Dalwadi
- Department of Applied and Interdisciplinary Sciences (IICISST), Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Anju Kunjadiya
- Department of Applied and Interdisciplinary Sciences (IICISST), Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Vaibhav Bhatt
- School of Applied Sciences and Technology, Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Krunal M Modi
- Department of Humanity and Science, School of Engineering, Indrashil University, Mehsana, Gujarat, India
| | - Chirag N Patel
- Biotechnology Research Center, Technology Innovation Institute, Abu Dhabi, United Arab Emirates
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Kesur R Ram
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| |
Collapse
|
6
|
van der Heijden FLAM, Weijers SA, Bleijerveld O, Kliza KW, Vermeulen M, Filippov DV. Proteome-Wide Profiling of Olaparib Interactors Using a Biotinylated Photoaffinity Probe. Chembiochem 2025; 26:e202400882. [PMID: 39898787 PMCID: PMC11907390 DOI: 10.1002/cbic.202400882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/04/2025]
Abstract
Olaparib is a widely used PARP inhibitor for the treatment of BRCA-mutated cancers. To comprehensively understand the drug's clinical impact, measuring its interactions with intended on- and off-targets is crucial. In this study, olaparib's on- and off-targets were profiled using photoaffinity labeling, a powerful, proteome-wide method for studying the direct interactions between a drug and its protein targets. A novel photoaffinity probe was designed and used in a proteomic screening to discover novel targets of olaparib in the human proteome. The probe, incorporating a pre-installed biotin group, bypasses the limitations of using a copper(I)-catalyzed click reaction in cell lysates for reporter group conjugation and revealed a broad range of olaparib interactors, including previously unreported proteins, in a quantitative mass spectrometry-based proteomic screening using HeLa whole cell lysate. This study contributes to our current understanding of the pharmacology of olaparib and provides a valuable tool for elucidating drug interactors within cell lysates, potentially guiding the development of more targeted therapeutics with fewer off-targets.
Collapse
Affiliation(s)
| | - Suzanne A. Weijers
- Division of Molecular GeneticsThe Netherlands Cancer Institute Plesmanlaan 121, 1066 CXAmsterdamThe Netherlands
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode InstituteRadboud University Geert Grooteplein 28, 6525 GANijmegenThe Netherlands
| | - Onno Bleijerveld
- Division of Molecular GeneticsThe Netherlands Cancer Institute Plesmanlaan 121, 1066 CXAmsterdamThe Netherlands
| | - Katarzyna W. Kliza
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode InstituteRadboud University Geert Grooteplein 28, 6525 GANijmegenThe Netherlands
- Max Planck Institute of Molecular Physiology Otto-Hahn Strasse 11, 44227DortmundGermany
| | - Michiel Vermeulen
- Division of Molecular GeneticsThe Netherlands Cancer Institute Plesmanlaan 121, 1066 CXAmsterdamThe Netherlands
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode InstituteRadboud University Geert Grooteplein 28, 6525 GANijmegenThe Netherlands
| | - Dmitri V. Filippov
- Leiden Institute of ChemistryLeiden University Einsteinweg 55, 2333 CCLeidenThe Netherlands
| |
Collapse
|
7
|
Guo T, Yuan Y, Zou Y, Guo Z, Yang T, Tang M, Ma Z, Fu Z, Bo W, Wang P, Bai P, Wang T, Jia T, Yang J, Chen L. Design, Synthesis, and Pharmacodynamic Evaluation of Highly Selective PARP1 Inhibitors with Brain Penetrance. J Med Chem 2025; 68:1731-1754. [PMID: 39789975 DOI: 10.1021/acs.jmedchem.4c02463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Selective poly(ADP-ribose) polymerase 1 (PARP1) inhibitors not only exhibit antitumor efficacy but also offer the potential to mitigate the toxicities typically associated with broader PARP inhibition. In this study, we designed and synthesized a series of small molecules targeting highly selective PARP1 inhibitors. Among these, T26 demonstrated excellent selectivity to PARP1 along with the capability to effectively cross the blood-brain barrier (BBB). T26 exhibited an IC50 of 0.2 nM against PARP1, with a remarkable 610-fold selectivity over PARP2 and high antiproliferative activity in BRCA mutant MDA-MB-436 cells with an IC50 of 2.6 nM. T26 also displayed excellent oral bioavailability (F = 87.74%) and long half-life (T1/2 = 76.07 h) in mice, supporting once every other day administration. Oral administration of T26 at 0.3 mg/kg and 3 mg/kg resulted in significant tumor growth inhibition in both subcutaneous and intracranial xenograft models of MDA-MB-436, suggesting T26 significant potential for the treatment of breast cancer metastases.
Collapse
Affiliation(s)
- Tao Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongting Yuan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yurong Zou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongning Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziyan Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyuan Fu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weichen Bo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peng Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peng Bai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Taijin Wang
- Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu 610041, China
| | - Tao Jia
- Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu 610041, China
| | - Jianhong Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lijuan Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu 610041, China
| |
Collapse
|
8
|
Wu M, Jiang Y, Zhang D, Wu Y, Jin Y, Liu T, Mao X, Yu H, Xu T, Chen Y, Huang W, Che J, Zhang B, Liu T, Lin N, Dong X. Discovery of a potent PARP1 PROTAC as a chemosensitizer for the treatment of colorectal cancer. Eur J Med Chem 2025; 282:117062. [PMID: 39602992 DOI: 10.1016/j.ejmech.2024.117062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Given the vulnerability of colorectal cancer (CRC) patients could not obtain a sustained benefit from chemotherapy, combination therapy is frequently employed as a treatment strategy. Targeting PARP1 blockade exhibit specific toxicity towards tumor cells with BRCA1 or BRCA2 mutations through synthetic lethality. This study focuses on developing a series of potent PROTACs targeting PARP1 in order to enhance the sensitivity of CRC cells with BRCA1 or BRCA2 mutations to chemotherapy. Compound C6, obtained based on precise structural optimization of the linker, has been shown to effectively degrade PARP1 with a DC50 value of 58.14 nM. Furthermore, C6 significantly increased the cytotoxic efficacy of SN-38, an active metabolite of Irinotecan, in BRCA-mutated CRC cells, achieving a favorable combination index (CI) of 0.487. In conclusion, this research underscores the potential benefits of employing a combination therapy that utilizes PAPRP1 degrader C6 alongside Irinotecan for CRC patients harboring BRCA mutations in CRC.
Collapse
Affiliation(s)
- Mingfei Wu
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yiming Jiang
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Daoming Zhang
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yiquan Wu
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuyuan Jin
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310058, China
| | - Tao Liu
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinfei Mao
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hengyuan Yu
- Institute of Modern Chinese Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tengfei Xu
- Institute of Modern Chinese Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yong Chen
- Institute of Modern Chinese Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenhai Huang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310058, China
| | - Jinxin Che
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310009, China
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310024, China; Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, 310024, China
| | - Tao Liu
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310009, China.
| | - Nengming Lin
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310024, China; Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, 310024, China.
| | - Xiaowu Dong
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
9
|
Bai YR, Yang WG, Jia R, Sun JS, Shen DD, Liu HM, Yuan S. The recent advance and prospect of poly(ADP-ribose) polymerase inhibitors for the treatment of cancer. Med Res Rev 2025; 45:214-273. [PMID: 39180380 DOI: 10.1002/med.22069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/29/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
Chemotherapies are commonly used in cancer therapy, their applications are limited to low specificity, severe adverse reactions, and long-term medication-induced drug resistance. Poly(ADP-ribose) polymerase (PARP) inhibitors are a novel class of antitumor drugs developed to solve these intractable problems based on the mechanism of DNA damage repair, which have been widely applied in the treatment of ovarian cancer, breast cancer, and other cancers through inducing synthetic lethal effect and trapping PARP-DNA complex in BRCA gene mutated cancer cells. In recent years, PARP inhibitors have been widely used in combination with various first-line chemotherapy drugs, targeted drugs and immune checkpoint inhibitors to expand the scope of clinical application. However, the intricate mechanisms underlying the drug resistance to PARP inhibitors, including the restoration of homologous recombination, stabilization of DNA replication forks, overexpression of drug efflux protein, and epigenetic modifications pose great challenges and desirability in the development of novel PARP inhibitors. In this review, we will focus on the mechanism, structure-activity relationship, and multidrug resistance associated with the representative PARP inhibitors. Furthermore, we aim to provide insights into the development prospects and emerging trends to offer guidance for the clinical application and inspiration for the development of novel PARP inhibitors and degraders.
Collapse
Affiliation(s)
- Yi-Ru Bai
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
- Key Laboratory of Advanced Drug Preparation Technologies, School of Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Wei-Guang Yang
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Rui Jia
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Ju-Shan Sun
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Dan-Dan Shen
- Department of Obstetrics and Gynecology, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment, Zhengzhou, China
- Gynecology Department, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong-Min Liu
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
- Key Laboratory of Advanced Drug Preparation Technologies, School of Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Shuo Yuan
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
- Key Laboratory of Advanced Drug Preparation Technologies, School of Pharmacy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Cho H, No KT, Lim H. Development of Drug-Induced Gene Expression Ranking Analysis (DIGERA) and Its Application to Virtual Screening for Poly (ADP-Ribose) Polymerase 1 Inhibitor. Int J Mol Sci 2024; 26:224. [PMID: 39796080 PMCID: PMC11720423 DOI: 10.3390/ijms26010224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/21/2024] [Accepted: 12/28/2024] [Indexed: 01/30/2025] Open
Abstract
Understanding drug-target interactions is crucial for identifying novel lead compounds, enhancing efficacy, and reducing toxicity. Phenotype-based approaches, like analyzing drug-induced gene expression changes, have shown effectiveness in drug discovery and precision medicine. However, experimentally determining gene expression for all relevant chemicals is impractical, limiting large-scale gene expression-based screening. In this study, we developed DIGERA (Drug-Induced Gene Expression Ranking Analysis), a Lasso-based ensemble framework utilizing LINCS L1000 data to predict drug-induced gene expression rankings. We created novel numerical features for chemicals, cell lines, and experimental conditions, allowing the prediction of gene expression rankings across eight key cell lines. DIGERA outperformed baseline models in the F1@K metric, demonstrating improved precision in gene expression ranking. We also combined DIGERA with an iterative fine-tuning process for de novo design, suggesting 10 PARP1 inhibitors with favorable predicted properties like binding affinity, synthetic accessibility, solubility, membrane permeability, drug-likeness, and similar gene expression ranking to olaparib. Notably, nine compounds were novel, and six analogs of these compounds had references linked to PARP1 inhibition. These results underscore DIGERA's potential to boost model performance and robustness through novel features and ensemble learning, aiding virtual screening for new PARP1 inhibitors.
Collapse
Affiliation(s)
- Hyein Cho
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea
| | - Kyoung Tai No
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Republic of Korea
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea
| | - Hocheol Lim
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Republic of Korea
| |
Collapse
|
11
|
Moiani D, Tainer JA. A goldilocks computational protocol for inhibitor discovery targeting DNA damage responses including replication-repair functions. Front Mol Biosci 2024; 11:1442267. [PMID: 39669672 PMCID: PMC11635304 DOI: 10.3389/fmolb.2024.1442267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/28/2024] [Indexed: 12/14/2024] Open
Abstract
While many researchers can design knockdown and knockout methodologies to remove a gene product, this is mainly untrue for new chemical inhibitor designs that empower multifunctional DNA Damage Response (DDR) networks. Here, we present a robust Goldilocks (GL) computational discovery protocol to efficiently innovate inhibitor tools and preclinical drug candidates for cellular and structural biologists without requiring extensive virtual screen (VS) and chemical synthesis expertise. By computationally targeting DDR replication and repair proteins, we exemplify the identification of DDR target sites and compounds to probe cancer biology. Our GL pipeline integrates experimental and predicted structures to efficiently discover leads, allowing early-structure and early-testing (ESET) experiments by many laboratories. By employing an efficient VS protocol to examine protein-protein interfaces (PPIs) and allosteric interactions, we identify ligand binding sites beyond active sites, leveraging in silico advances for molecular docking and modeling to screen PPIs and multiple targets. A diverse 3,174 compound ESET library combines Diamond Light Source DSI-poised, Protein Data Bank fragments, and FDA-approved drugs to span relevant chemotypes and facilitate downstream hit evaluation efficiency for academic laboratories. Two VS per library and multiple ranked ligand binding poses enable target testing for several DDR targets. This GL library and protocol can thus strategically probe multiple DDR network targets and identify readily available compounds for early structural and activity testing to overcome bottlenecks that can limit timely breakthrough drug discoveries. By testing accessible compounds to dissect multi-functional DDRs and suggesting inhibitor mechanisms from initial docking, the GL approach may enable more groups to help accelerate discovery, suggest new sites and compounds for challenging targets including emerging biothreats and advance cancer biology for future precision medicine clinical trials.
Collapse
Affiliation(s)
- Davide Moiani
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Moiani Research Inc., Missouri City, TX, United States
| | - John A. Tainer
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
12
|
Roggia M, Natale B, Amendola G, Grasso N, Di Maro S, Taliani S, Castellano S, Reina SCR, Salvati E, Amato J, Cosconati S. Discovering Dually Active Anti-cancer Compounds with a Hybrid AI-structure-based Approach. J Chem Inf Model 2024; 64:8299-8309. [PMID: 39276072 DOI: 10.1021/acs.jcim.4c01132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
Cancer's persistent growth often relies on its ability to maintain telomere length and tolerate the accumulation of DNA damage. This study explores a computational approach to identify compounds that can simultaneously target both G-quadruplex (G4) structures and poly(ADP-ribose) polymerase (PARP)1 enzyme, offering a potential multipronged attack on cancer cells. We employed a hybrid virtual screening (VS) protocol, combining the power of machine learning with traditional structure-based methods. PyRMD, our AI-powered tool, was first used to analyze vast chemical libraries and to identify potential PARP1 inhibitors based on known bioactivity data. Subsequently, a structure-based VS approach selected compounds from these identified inhibitors for their G4 stabilization potential. This two-step process yielded 50 promising candidates, which were then experimentally validated for their ability to inhibit PARP1 and stabilize G4 structures. Ultimately, four lead compounds emerged as promising candidates with the desired dual activity and demonstrated antiproliferative effects against specific cancer cell lines. This study highlights the potential of combining Artificial Intelligence and structure-based methods for the discovery of multitarget anticancer compounds, offering a valuable approach for future drug development efforts.
Collapse
Affiliation(s)
- Michele Roggia
- DiSTABiF, Università della Campania Luigi Vanvitelli, Via Vivaldi 43, Caserta 81100, Italy
| | - Benito Natale
- DiSTABiF, Università della Campania Luigi Vanvitelli, Via Vivaldi 43, Caserta 81100, Italy
| | - Giorgio Amendola
- DiSTABiF, Università della Campania Luigi Vanvitelli, Via Vivaldi 43, Caserta 81100, Italy
| | - Nicola Grasso
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples 80131, Italy
| | - Salvatore Di Maro
- DiSTABiF, Università della Campania Luigi Vanvitelli, Via Vivaldi 43, Caserta 81100, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Sabrina Castellano
- Dipartimento di Farmacia, Università di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano Salerno, Italy
| | | | - Erica Salvati
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples 80131, Italy
| | - Sandro Cosconati
- DiSTABiF, Università della Campania Luigi Vanvitelli, Via Vivaldi 43, Caserta 81100, Italy
| |
Collapse
|
13
|
Lu G, Zou Z, Xin M, Meng Y, Cheng Z, Du Z, Gu J, Zhang X, Zou Y. Carbamoylation at C-8 position of natural 3-arylcoumarin scaffold for the discovery of novel PARP-1 inhibitors with potent anticancer activity. Eur J Med Chem 2024; 277:116726. [PMID: 39116535 DOI: 10.1016/j.ejmech.2024.116726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/21/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024]
Abstract
Structural modification based on natural privileged scaffolds has proven to be an attractive approach to generate potential antitumor candidates with high potency and specific targeting. As a continuation of our efforts to identify potent PARP-1 inhibitors, natural 3-arylcoumarin scaffold was served as the starting point for the construction of novel structural unit for PARP-1 inhibition. Herein, a series of novel 8-carbamyl-3-arylcoumarin derivatives were designed and synthesized. The antiproliferative activities of target compounds against four BRCA-mutated cancer cells (SUM149PT, HCC1937, MDA-MB-436 and Capan-1) were evaluated. Among them, compound 9b exhibited excellent antiproliferative effects against SUM149PT, HCC1937 and Capan-1 cells with IC50 values of 0.62, 1.91 and 4.26 μM, respectively. Moreover, 9b could significantly inhibit the intracellular PARP-1/2 activity in SUM149PT cells with IC50 values of 2.53 nM and 6.45 nM, respectively. Further mechanism studies revealed that 9b could aggravate DNA double-strand breaks, increase ROS production, decrease mitochondrial membrane potential, arrest cell cycle at G2/M phase and ultimately induce apoptosis in SUM149PT cells. In addition, molecular docking study demonstrated that the binding mode of 9b with PARP-1 was similar to that of niraparib, forming multiple hydrogen bond interactions with the active site of PARP-1. Taken together, these findings suggest that 8-carbamyl-3-arylcoumarin scaffold could serve as an effective structural unit for PARP-1 inhibition and offer a valuable paradigm for the structural modification of natural products.
Collapse
Affiliation(s)
- Guoqing Lu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Zhiru Zou
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Meixiu Xin
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yingfen Meng
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Zhuo Cheng
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Zhibo Du
- Zhongshan Wanhan Pharmaceuticals Co., Ltd., Zhongshan, 528451, PR China
| | - Jiayi Gu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Xuejing Zhang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yong Zou
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
14
|
Coelho MA, Strauss ME, Watterson A, Cooper S, Bhosle S, Illuzzi G, Karakoc E, Dinçer C, Vieira SF, Sharma M, Moullet M, Conticelli D, Koeppel J, McCarten K, Cattaneo CM, Veninga V, Picco G, Parts L, Forment JV, Voest EE, Marioni JC, Bassett A, Garnett MJ. Base editing screens define the genetic landscape of cancer drug resistance mechanisms. Nat Genet 2024; 56:2479-2492. [PMID: 39424923 PMCID: PMC11549056 DOI: 10.1038/s41588-024-01948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Drug resistance is a principal limitation to the long-term efficacy of cancer therapies. Cancer genome sequencing can retrospectively delineate the genetic basis of drug resistance, but this requires large numbers of post-treatment samples to nominate causal variants. Here we prospectively identify genetic mechanisms of resistance to ten oncology drugs from CRISPR base editing mutagenesis screens in four cancer cell lines using a guide RNA library predicted to install 32,476 variants in 11 cancer genes. We identify four functional classes of protein variants modulating drug sensitivity and use single-cell transcriptomics to reveal how these variants operate through distinct mechanisms, including eliciting a drug-addicted cell state. We identify variants that can be targeted with alternative inhibitors to overcome resistance and functionally validate an epidermal growth factor receptor (EGFR) variant that sensitizes lung cancer cells to EGFR inhibitors. Our variant-to-function map has implications for patient stratification, therapy combinations and drug scheduling in cancer treatment.
Collapse
Affiliation(s)
- Matthew A Coelho
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK.
- Cancer Genome Editing, Wellcome Sanger Institute, Hinxton, UK.
- Open Targets, Cambridge, UK.
| | - Magdalena E Strauss
- EMBL-European Bioinformatics Institute, Cambridge, UK
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
- Gene Editing and Cellular Research and Development, Wellcome Sanger Institute, Hinxton, UK
- Department of Mathematics and Statistics, University of Exeter, Exeter, UK
| | - Alex Watterson
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Sarah Cooper
- Gene Editing and Cellular Research and Development, Wellcome Sanger Institute, Hinxton, UK
| | - Shriram Bhosle
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | | | - Emre Karakoc
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
- Open Targets, Cambridge, UK
| | - Cansu Dinçer
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Sara F Vieira
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
- Open Targets, Cambridge, UK
| | - Mamta Sharma
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Marie Moullet
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Daniela Conticelli
- Department of Oncology, University of Turin, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Jonas Koeppel
- Generative and Synthetic Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Katrina McCarten
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Chiara M Cattaneo
- Department of Immunology and Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vivien Veninga
- Department of Immunology and Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Gabriele Picco
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
- Open Targets, Cambridge, UK
| | - Leopold Parts
- Generative and Synthetic Genomics, Wellcome Sanger Institute, Hinxton, UK
| | | | - Emile E Voest
- Department of Immunology and Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - John C Marioni
- EMBL-European Bioinformatics Institute, Cambridge, UK
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
- Genentech, South San Francisco, CA, USA
| | - Andrew Bassett
- Gene Editing and Cellular Research and Development, Wellcome Sanger Institute, Hinxton, UK
| | - Mathew J Garnett
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK.
- Open Targets, Cambridge, UK.
| |
Collapse
|
15
|
Yang L, Guttman L, Dawson VL, Dawson TM. Parthanatos: Mechanisms, modulation, and therapeutic prospects in neurodegenerative disease and stroke. Biochem Pharmacol 2024; 228:116174. [PMID: 38552851 PMCID: PMC11410548 DOI: 10.1016/j.bcp.2024.116174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Parthanatos is a cell death signaling pathway that has emerged as a compelling target for pharmaceutical intervention. It plays a pivotal role in the neuron loss and neuroinflammation that occurs in Parkinson's Disease (PD), Alzheimer's Disease (AD), Huntington's Disease (HD), Amyotrophic Lateral Sclerosis (ALS), and stroke. There are currently no treatments available to humans to prevent cell death in any of these diseases. This review provides an in-depth examination of the current understanding of the Parthanatos mechanism, with a particular focus on its implications in neuroinflammation and various diseases discussed herein. Furthermore, we thoroughly review potential intervention targets within the Parthanatos pathway. We dissect recent progress in inhibitory strategies, complimented by a detailed structural analysis of key Parthanatos executioners, PARP-1, AIF, and MIF, along with an assessment of their established inhibitors. We hope to introduce a new perspective on the feasibility of targeting components within the Parthanatos pathway, emphasizing its potential to bring about transformative outcomes in therapeutic interventions. By delineating therapeutic opportunities and known targets, we seek to emphasize the imperative of blocking Parthanatos as a precursor to developing disease-modifying treatments. This comprehensive exploration aims to catalyze a paradigm shift in our understanding of potential neurodegenerative disease therapeutics, advocating for the pursuit of effective interventions centered around Parthanatos inhibition.
Collapse
Affiliation(s)
- Liu Yang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lauren Guttman
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
16
|
Jessop M, Broadway BJ, Miller K, Guettler S. Regulation of PARP1/2 and the tankyrases: emerging parallels. Biochem J 2024; 481:1097-1123. [PMID: 39178157 DOI: 10.1042/bcj20230230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/25/2024]
Abstract
ADP-ribosylation is a prominent and versatile post-translational modification, which regulates a diverse set of cellular processes. Poly-ADP-ribose (PAR) is synthesised by the poly-ADP-ribosyltransferases PARP1, PARP2, tankyrase (TNKS), and tankyrase 2 (TNKS2), all of which are linked to human disease. PARP1/2 inhibitors have entered the clinic to target cancers with deficiencies in DNA damage repair. Conversely, tankyrase inhibitors have continued to face obstacles on their way to clinical use, largely owing to our limited knowledge of their molecular impacts on tankyrase and effector pathways, and linked concerns around their tolerability. Whilst detailed structure-function studies have revealed a comprehensive picture of PARP1/2 regulation, our mechanistic understanding of the tankyrases lags behind, and thereby our appreciation of the molecular consequences of tankyrase inhibition. Despite large differences in their architecture and cellular contexts, recent structure-function work has revealed striking parallels in the regulatory principles that govern these enzymes. This includes low basal activity, activation by intra- or inter-molecular assembly, negative feedback regulation by auto-PARylation, and allosteric communication. Here we compare these poly-ADP-ribosyltransferases and point towards emerging parallels and open questions, whose pursuit will inform future drug development efforts.
Collapse
Affiliation(s)
- Matthew Jessop
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, U.K
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, U.K
| | - Benjamin J Broadway
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, U.K
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, U.K
| | - Katy Miller
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, U.K
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, U.K
| | - Sebastian Guettler
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, U.K
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, U.K
| |
Collapse
|
17
|
Böhi F, Hottiger MO. Expanding the Perspective on PARP1 and Its Inhibitors in Cancer Therapy: From DNA Damage Repair to Immunomodulation. Biomedicines 2024; 12:1617. [PMID: 39062190 PMCID: PMC11275100 DOI: 10.3390/biomedicines12071617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The emergence of PARP inhibitors as a therapeutic strategy for tumors with high genomic instability, particularly those harboring BRCA mutations, has advanced cancer treatment. However, recent advances have illuminated a multifaceted role of PARP1 beyond its canonical function in DNA damage repair. This review explores the expanding roles of PARP1, highlighting its crucial interplay with the immune system during tumorigenesis. We discuss PARP1's immunomodulatory effects in macrophages and T cells, with a particular focus on cytokine expression. Understanding these immunomodulatory roles of PARP1 not only holds promise for enhancing the efficacy of PARP inhibitors in cancer therapy but also paves the way for novel treatment regimens targeting immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Flurina Böhi
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
- Cancer Biology Ph.D. Program, Life Science Zurich Graduate School, University of Zurich, 8057 Zurich, Switzerland
| | - Michael O. Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
18
|
Wozniak JM, Li W, Governa P, Chen LY, Jadhav A, Dongre A, Forli S, Parker CG. Enhanced mapping of small-molecule binding sites in cells. Nat Chem Biol 2024; 20:823-834. [PMID: 38167919 PMCID: PMC11213684 DOI: 10.1038/s41589-023-01514-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Photoaffinity probes are routinely utilized to identify proteins that interact with small molecules. However, despite this common usage, resolving the specific sites of these interactions remains a challenge. Here we developed a chemoproteomic workflow to determine precise protein binding sites of photoaffinity probes in cells. Deconvolution of features unique to probe-modified peptides, such as their tendency to produce chimeric spectra, facilitated the development of predictive models to confidently determine labeled sites. This yielded an expansive map of small-molecule binding sites on endogenous proteins and enabled the integration with multiplexed quantitation, increasing the throughput and dimensionality of experiments. Finally, using structural information, we characterized diverse binding sites across the proteome, providing direct evidence of their tractability to small molecules. Together, our findings reveal new knowledge for the analysis of photoaffinity probes and provide a robust method for high-resolution mapping of reversible small-molecule interactions en masse in native systems.
Collapse
Affiliation(s)
- Jacob M Wozniak
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Weichao Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Paolo Governa
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Li-Yun Chen
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Appaso Jadhav
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Ashok Dongre
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
19
|
Zhang Y, Li X, Liu F, Bai X, Liu X, Sun H, Gao C, Lin Y, Xing P, Zhu J, Liu R, Wang Z, Dai J, Shi D. Design of Selective PARP-1 Inhibitors and Antitumor Studies. J Med Chem 2024; 67:8877-8901. [PMID: 38776379 DOI: 10.1021/acs.jmedchem.3c02460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Designing selective PARP-1 inhibitors has become a new strategy for anticancer drug development. By sequence comparison of PARP-1 and PARP-2, we identified a possible selective site (S site) consisting of several different amino acid residues of α-5 helix and D-loop. Targeting this S site, 140 compounds were designed, synthesized, and characterized for their anticancer activities and mechanisms. Compound I16 showed the highest PARP-1 enzyme inhibitory activity (IC50 = 12.38 ± 1.33 nM) and optimal selectivity index over PARP-2 (SI = 155.74). Oral administration of I16 (25 mg/kg) showed high inhibition rates of Hela and SK-OV-3 tumor cell xenograft models, both of which were higher than those of the oral positive drug Olaparib (50 mg/kg). In addition, I16 has an excellent safety profile, without significant toxicity at high oral doses. These findings provide a novel design strategy and chemotype for the development of safe, efficient, and highly selective PARP-1 inhibitors.
Collapse
Affiliation(s)
- Yiting Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Fang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaoyi Bai
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaochun Liu
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Hao Sun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Chenxia Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yuxi Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Pan Xing
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jiqiang Zhu
- Shandong Linghai Biotechnology Co.Ltd., Jinan 250299, Shandong, P. R. China
| | - Ruihua Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zemin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jiajia Dai
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Shandong Linghai Biotechnology Co.Ltd., Jinan 250299, Shandong, P. R. China
| |
Collapse
|
20
|
McCarthy KA, Marcotte DJ, Parelkar S, McKinnon CL, Trammell LE, Stangeland EL, Jetson RR. Discovery of Potent Isoindolinone Inhibitors that Target an Active Conformation of PARP1 Using DNA-Encoded Libraries. ChemMedChem 2024; 19:e202400093. [PMID: 38482564 DOI: 10.1002/cmdc.202400093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Indexed: 04/11/2024]
Abstract
Inhibition of poly (ADP-ribose) polymerase-1 (PARP1), a DNA repair enzyme, has proven to be a successful strategy for the treatment of various cancers. With the appropriate selection conditions and protein design, DNA-encoded library (DEL) technology provides a powerful avenue to identify small molecules with the desired mechanism of action towards a target of interest. However, DNA-binding proteins, such as PARP1, can be challenging targets for DEL screening due to non-specific protein-DNA interactions. To overcome this, we designed and screened a PARP1 catalytic domain construct without the autoinhibitory helical domain. This allowed us to interrogate an active, functionally-relevant form of the protein resulting in the discovery of novel isoindolinone PARP1 inhibitors with single-digit nanomolar potency. These inhibitors also demonstrated little to no PARP1-DNA trapping, a property that could be advantageous in the clinic.
Collapse
Affiliation(s)
- Kelly A McCarthy
- Discovery Sciences, Valo Health, 75 Hayden Avenue, Lexington, MA, 02421, United States
| | - Douglas J Marcotte
- Discovery Sciences, Valo Health, 75 Hayden Avenue, Lexington, MA, 02421, United States
| | - Sangram Parelkar
- Discovery Sciences, Valo Health, 75 Hayden Avenue, Lexington, MA, 02421, United States
| | - Crystal L McKinnon
- Discovery Sciences, Valo Health, 75 Hayden Avenue, Lexington, MA, 02421, United States
| | - Lindsay E Trammell
- Discovery Sciences, Valo Health, 75 Hayden Avenue, Lexington, MA, 02421, United States
| | - Eric L Stangeland
- Discovery Sciences, Valo Health, 75 Hayden Avenue, Lexington, MA, 02421, United States
| | - Rachael R Jetson
- Discovery Sciences, Valo Health, 75 Hayden Avenue, Lexington, MA, 02421, United States
| |
Collapse
|
21
|
Chen L, Han W, Jing W, Feng M, Zhou Q, Cheng X. Novel anti- Acanthamoeba effects elicited by a repurposed poly (ADP-ribose) polymerase inhibitor AZ9482. Front Cell Infect Microbiol 2024; 14:1414135. [PMID: 38863831 PMCID: PMC11165085 DOI: 10.3389/fcimb.2024.1414135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Introduction Acanthamoeba infection is a serious public health concern, necessitating the development of effective and safe anti-Acanthamoeba chemotherapies. Poly (ADP-ribose) polymerases (PARPs) govern a colossal amount of biological processes, such as DNA damage repair, protein degradation and apoptosis. Multiple PARP-targeted compounds have been approved for cancer treatment. However, repurposing of PARP inhibitors to treat Acanthamoeba is poorly understood. Methods In the present study, we attempted to fill these knowledge gaps by performing anti-Acanthamoeba efficacy assays, cell biology experiments, bioinformatics, and transcriptomic analyses. Results Using a homology model of Acanthamoeba poly (ADP-ribose) polymerases (PARPs), molecular docking of approved drugs revealed three potential inhibitory compounds: olaparib, venadaparib and AZ9482. In particular, venadaparib exhibited superior docking scores (-13.71) and favorable predicted binding free energy (-89.28 kcal/mol), followed by AZ9482, which showed a docking score of -13.20 and a binding free energy of -92.13 kcal/mol. Notably, the positively charged cyclopropylamine in venadaparib established a salt bridge (through E535) and a hydrogen bond (via N531) within the binding pocket. For comparison, AZ9482 was well stacked by the surrounding aromatic residues including H625, Y652, Y659 and Y670. In an assessment of trophozoites viability, AZ9482 exhibited a dose-and time-dependent anti-trophozoite effect by suppressing Acanthamoeba PARP activity, unlike olaparib and venadaparib. An Annexin V-fluorescein isothiocyanate/propidium iodide apoptosis assay revealed AZ9482 induced trophozoite necrotic cell death rather than apoptosis. Transcriptomics analyses conducted on Acanthamoeba trophozoites treated with AZ9482 demonstrated an atlas of differentially regulated proteins and genes, and found that AZ9482 rapidly upregulates a multitude of DNA damage repair pathways in trophozoites, and intriguingly downregulates several virulent genes. Analyzing gene expression related to DNA damage repair pathway and the rate of apurinic/apyrimidinic (AP) sites indicated DNA damage efficacy and repair modulation in Acanthamoeba trophozoites following AZ9482 treatment. Discussion Collectively, these findings highlight AZ9482, as a structurally unique PARP inhibitor, provides a promising prototype for advancing anti-Acanthamoeba drug research.
Collapse
Affiliation(s)
- Lijun Chen
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Han
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, China
| | - Wenwen Jing
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meng Feng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Liu Y, Yu H, Duan X, Zhang X, Cheng T, Jiang F, Tang H, Ruan Y, Zhang M, Zhang H, Zhang Q. TransGEM: a molecule generation model based on Transformer with gene expression data. Bioinformatics 2024; 40:btae189. [PMID: 38632084 PMCID: PMC11078772 DOI: 10.1093/bioinformatics/btae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024] Open
Abstract
MOTIVATION It is difficult to generate new molecules with desirable bioactivity through ligand-based de novo drug design, and receptor-based de novo drug design is constrained by disease target information availability. The combination of artificial intelligence and phenotype-based de novo drug design can generate new bioactive molecules, independent from disease target information. Gene expression profiles can be used to characterize biological phenotypes. The Transformer model can be utilized to capture the associations between gene expression profiles and molecular structures due to its remarkable ability in processing contextual information. RESULTS We propose TransGEM (Transformer-based model from gene expression to molecules), which is a phenotype-based de novo drug design model. A specialized gene expression encoder is used to embed gene expression difference values between diseased cell lines and their corresponding normal tissue cells into TransGEM model. The results demonstrate that the TransGEM model can generate molecules with desirable evaluation metrics and property distributions. Case studies illustrate that TransGEM model can generate structurally novel molecules with good binding affinity to disease target proteins. The majority of genes with high attention scores obtained from TransGEM model are associated with the onset of the disease, indicating the potential of these genes as disease targets. Therefore, this study provides a new paradigm for de novo drug design, and it will promote phenotype-based drug discovery. AVAILABILITY AND IMPLEMENTATION The code is available at https://github.com/hzauzqy/TransGEM.
Collapse
Affiliation(s)
- Yanguang Liu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Hailong Yu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Xinya Duan
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Xiaomin Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Ting Cheng
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Feng Jiang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Hao Tang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yao Ruan
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Miao Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Hongyu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Qingye Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|
23
|
Yuan Y, Wu D, Hou Y, Zhang Y, Tan C, Nie X, Zhao Z, Hou J. Wnt signaling: Modulating tumor-associated macrophages and related immunotherapeutic insights. Biochem Pharmacol 2024; 223:116154. [PMID: 38513742 DOI: 10.1016/j.bcp.2024.116154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Wnt signaling pathways are highly conserved cascades that mediate multiple biological processes through canonical or noncanonical pathways, from embryonic development to tissue maintenance, but they also contribute to the pathogenesis of numerous cancers. Recent studies have revealed that Wnt signaling pathways critically control the interplay between cancer cells and tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) and potentially impact the efficacy of cancer immunotherapy. In this review, we summarize the evidence that Wnt signaling pathways boost the maturation and infiltration of macrophages for immune surveillance in the steady state but also polarize TAMs toward immunosuppressive M2-like phenotypes for immune escape in the TME. Both cancer cells and TAMs utilize Wnt signaling to transmit signals, and this interaction is crucial for the carcinogenesis and progression of common solid cancers, such as colorectal, gastric, hepatocellular, breast, thyroid, prostate, kidney, and lung cancers; osteosarcoma; and glioma. Specifically, compared with those in solid cancers, Wnt signaling pathways play a distinct role in the pathogenesis of leukemia. Efforts to develop Wnt-based drugs for cancer treatment are still ongoing, and some indeed enhance the anticancer immune response. We believe that the combination of Wnt signaling-based therapy with conventional or immune therapies is a promising therapeutic approach and can facilitate personalized treatment for most cancers.
Collapse
Affiliation(s)
- Yimeng Yuan
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Dapeng Wu
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Yifan Hou
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Yi Zhang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Cong Tan
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China; Henan Provincial Research Center for the Prevention and Diagnosis of Prostate Diseases, Henan University, Kaifeng, China.
| | - Zhenhua Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China; Henan Provincial Research Center for the Prevention and Diagnosis of Prostate Diseases, Henan University, Kaifeng, China.
| | - Junqing Hou
- Kaifeng 155 Hospital, China RongTong Medical Healthcare Group Co. Ltd., Kaifeng, China; Henan Provincial Research Center for the Prevention and Diagnosis of Prostate Diseases, Henan University, Kaifeng, China.
| |
Collapse
|
24
|
Caba K, Tran-Nguyen VK, Rahman T, Ballester PJ. Comprehensive machine learning boosts structure-based virtual screening for PARP1 inhibitors. J Cheminform 2024; 16:40. [PMID: 38582911 PMCID: PMC10999096 DOI: 10.1186/s13321-024-00832-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/23/2024] [Indexed: 04/08/2024] Open
Abstract
Poly ADP-ribose polymerase 1 (PARP1) is an attractive therapeutic target for cancer treatment. Machine-learning scoring functions constitute a promising approach to discovering novel PARP1 inhibitors. Cutting-edge PARP1-specific machine-learning scoring functions were investigated using semi-synthetic training data from docking activity-labelled molecules: known PARP1 inhibitors, hard-to-discriminate decoys property-matched to them with generative graph neural networks and confirmed inactives. We further made test sets harder by including only molecules dissimilar to those in the training set. Comprehensive analysis of these datasets using five supervised learning algorithms, and protein-ligand fingerprints extracted from docking poses and ligand only features revealed one highly predictive scoring function. This is the PARP1-specific support vector machine-based regressor, when employing PLEC fingerprints, which achieved a high Normalized Enrichment Factor at the top 1% on the hardest test set (NEF1% = 0.588, median of 10 repetitions), and was more predictive than any other investigated scoring function, especially the classical scoring function employed as baseline.
Collapse
Affiliation(s)
- Klaudia Caba
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Viet-Khoa Tran-Nguyen
- Unité de Biologie Fonctionnelle et Adaptative (BFA), UFR Sciences du Vivant, Université Paris Cité, 75013, Paris, France
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| | - Pedro J Ballester
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
25
|
Sun Z, Li L, Zhai B, Hu M, Huang L, Huang S, Ye L, Kong X, Xu J, Bai J, Yan J, Zhou Q, Hu Z, Zhang Y, Jiang Y, Zhang Y, Qiao Z, Zou Y, Xu Y, Zhu Q. Rational Design of PARP1/c-Met Dual Inhibitors for Overcoming PARP1 Inhibitor Resistance Induced by c-Met Overexpression. J Med Chem 2024; 67:4916-4935. [PMID: 38477575 DOI: 10.1021/acs.jmedchem.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The emergence of resistance to PARP1 inhibitors poses a current therapeutic challenge, necessitating the development of novel strategies to overcome this obstacle. The present study describes the design and synthesis of a series of small molecules that target both PARP1 and c-Met. Among them, compound 16 is identified as a highly potent dual inhibitor, exhibiting excellent inhibitory activities against PARP1 (IC50 = 3.3 nM) and c-Met (IC50 = 32.2 nM), as well as demonstrating good antiproliferative effects on HR-proficient cancer cell lines and those resistant to PARP1 inhibitors. Importantly, compound 16 demonstrates superior antitumor potency compared to the PARP1 inhibitor Olaparib and the c-Met inhibitor Crizotinib, either alone or in combination, in MDA-MB-231 and HCT116OR xenograft models. These findings highlight the potential of PARP1/c-Met dual inhibitors for expanding the indications of PARP1 inhibitors and overcoming tumor cells' resistance to them.
Collapse
Affiliation(s)
- Zeren Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| | - Lanjie Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| | - Bingxin Zhai
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| | - Mengxuan Hu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| | - Lei Huang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| | - Shihui Huang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| | - Liu Ye
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| | - Xiangying Kong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Bai
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jingjie Yan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qichen Zhou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| | - Zheqi Hu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| | - Yuchen Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| | - Yuhan Jiang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhou Qiao
- China Pharmaceutical University Center for Analysis and Testing, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Zou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yungen Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qihua Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
26
|
Velagapudi UK, Rouleau-Turcotte É, Billur R, Shao X, Patil M, Black BE, Pascal JM, Talele TT. Novel modifications of PARP inhibitor veliparib increase PARP1 binding to DNA breaks. Biochem J 2024; 481:437-460. [PMID: 38372302 PMCID: PMC11070930 DOI: 10.1042/bcj20230406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
Catalytic poly(ADP-ribose) production by PARP1 is allosterically activated through interaction with DNA breaks, and PARP inhibitor compounds have the potential to influence PARP1 allostery in addition to preventing catalytic activity. Using the benzimidazole-4-carboxamide pharmacophore present in the first generation PARP1 inhibitor veliparib, a series of 11 derivatives was designed, synthesized, and evaluated as allosteric PARP1 inhibitors, with the premise that bulky substituents would engage the regulatory helical domain (HD) and thereby promote PARP1 retention on DNA breaks. We found that core scaffold modifications could indeed increase PARP1 affinity for DNA; however, the bulk of the modification alone was insufficient to trigger PARP1 allosteric retention on DNA breaks. Rather, compounds eliciting PARP1 retention on DNA breaks were found to be rigidly held in a position that interferes with a specific region of the HD domain, a region that is not targeted by current clinical PARP inhibitors. Collectively, these compounds highlight a unique way to trigger PARP1 retention on DNA breaks and open a path to unveil the pharmacological benefits of such inhibitors with novel properties.
Collapse
Affiliation(s)
- Uday Kiran Velagapudi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York 11439, USA
| | - Élise Rouleau-Turcotte
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal H3T 1J4 Canada
| | - Ramya Billur
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | - Xuwei Shao
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York 11439, USA
| | - Manisha Patil
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York 11439, USA
| | - Ben E. Black
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | - John M. Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal H3T 1J4 Canada
| | - Tanaji T. Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York 11439, USA
| |
Collapse
|
27
|
Islam S, Gour J, Beer T, Tang HY, Cassel J, Salvino JM, Busino L. A Tandem-Affinity Purification Method for Identification of Primary Intracellular Drug-Binding Proteins. ACS Chem Biol 2024; 19:233-242. [PMID: 38271588 PMCID: PMC10878392 DOI: 10.1021/acschembio.3c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024]
Abstract
In the field of drug discovery, understanding how small molecule drugs interact with cellular components is crucial. Our study introduces a novel methodology to uncover primary drug targets using Tandem Affinity Purification for identification of Drug-Binding Proteins (TAP-DBP). Central to our approach is the generation of a FLAG-hemagglutinin (HA)-tagged chimeric protein featuring the FKBP12(F36V) adaptor protein and the TurboID enzyme. Conjugation of drug molecules with the FKBP12(F36V) ligand allows for the coordinated recruitment of drug-binding partners effectively enabling in-cell TurboID-mediated biotinylation. By employing a tandem affinity purification protocol based on FLAG-immunoprecipitation and streptavidin pulldown, alongside mass spectrometry analysis, TAP-DBP allows for the precise identification of drug-primary binding partners. Overall, this study introduces a systematic, unbiased method for identification of drug-protein interactions, contributing a clear understanding of target engagement and drug selectivity to advance the mode of action of a drug in cells.
Collapse
Affiliation(s)
- Sehbanul Islam
- University
of Pennsylvania, Perelman School
of Medicine, Department of Cancer Biology, Philadelphia, Pennsylvania 19104, United States
| | - Jitendra Gour
- Medicinal
Chemistry and Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Thomas Beer
- Medicinal
Chemistry and Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Hsin-Yao Tang
- Medicinal
Chemistry and Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Joel Cassel
- Molecular
Screening and Protein Expression Shared Resource, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Joseph M. Salvino
- Medicinal
Chemistry and Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Luca Busino
- University
of Pennsylvania, Perelman School
of Medicine, Department of Cancer Biology, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
28
|
Romanelli MN, Braconi L, Gabellini A, Manetti D, Marotta G, Teodori E. Synthetic Approaches to Piperazine-Containing Drugs Approved by FDA in the Period of 2011-2023. Molecules 2023; 29:68. [PMID: 38202651 PMCID: PMC10780301 DOI: 10.3390/molecules29010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The piperazine moiety is often found in drugs or in bioactive molecules. This widespread presence is due to different possible roles depending on the position in the molecule and on the therapeutic class, but it also depends on the chemical reactivity of piperazine-based synthons, which facilitate its insertion into the molecule. In this paper, we take into consideration the piperazine-containing drugs approved by the Food and Drug Administration between January 2011 and June 2023, and the synthetic methodologies used to prepare the compounds in the discovery and process chemistry are reviewed.
Collapse
Affiliation(s)
- Maria Novella Romanelli
- Section of Pharmaceutical and Nutraceutical Science, Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Via Ugo Schiff, 6, Sesto Fiorentino, 50019 Florence, Italy; (L.B.); (A.G.); (D.M.); (G.M.); (E.T.)
| | | | | | | | | | | |
Collapse
|
29
|
Rouleau-Turcotte É, Pascal JM. ADP-ribose contributions to genome stability and PARP enzyme trapping on sites of DNA damage; paradigm shifts for a coming-of-age modification. J Biol Chem 2023; 299:105397. [PMID: 37898399 PMCID: PMC10722394 DOI: 10.1016/j.jbc.2023.105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023] Open
Abstract
ADP-ribose is a versatile modification that plays a critical role in diverse cellular processes. The addition of this modification is catalyzed by ADP-ribosyltransferases, among which notable poly(ADP-ribose) polymerase (PARP) enzymes are intimately involved in the maintenance of genome integrity. The role of ADP-ribose modifications during DNA damage repair is of significant interest for the proper development of PARP inhibitors targeted toward the treatment of diseases caused by genomic instability. More specifically, inhibitors promoting PARP persistence on DNA lesions, termed PARP "trapping," is considered a desirable characteristic. In this review, we discuss key classes of proteins involved in ADP-ribose signaling (writers, readers, and erasers) with a focus on those involved in the maintenance of genome integrity. An overview of factors that modulate PARP1 and PARP2 persistence at sites of DNA lesions is also discussed. Finally, we clarify aspects of the PARP trapping model in light of recent studies that characterize the kinetics of PARP1 and PARP2 recruitment at sites of lesions. These findings suggest that PARP trapping could be considered as the continuous recruitment of PARP molecules to sites of lesions, rather than the physical stalling of molecules. Recent studies and novel research tools have elevated the level of understanding of ADP-ribosylation, marking a coming-of-age for this interesting modification.
Collapse
Affiliation(s)
- Élise Rouleau-Turcotte
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada.
| |
Collapse
|
30
|
Thakur A, Rana M, Ritika, Mathew J, Nepali S, Pan CH, Liou JP, Nepali K. Small molecule tractable PARP inhibitors: Scaffold construction approaches, mechanistic insights and structure activity relationship. Bioorg Chem 2023; 141:106893. [PMID: 37783100 DOI: 10.1016/j.bioorg.2023.106893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Diverse drug design strategies viz. molecular hybridization, substituent installation, scaffold hopping, isosteric replacement, high-throughput screening, induction and separation of chirality, structure modifications of phytoconstituents and use of structural templates have been exhaustively leveraged in the last decade to load the chemical toolbox of PARP inhibitors. Resultantly, numerous promising scaffolds have been pinpointed that in turn have led to the resuscitation of the credence to PARP inhibitors as cancer therapeutics. This review briefly presents the physiological functions of PARPs, the pharmacokinetics, and pharmacodynamics, and the interaction profiles of FDA-approved PARP inhibitors. Comprehensively covered is the section on the drug design strategies employed by drug discovery enthusiasts for furnishing PARP inhibitors. The impact of structural variations in the template of designed scaffolds on enzymatic and cellular activity (structure-activity relationship studies) has been discussed. The insights gained through the biological evaluation such as profiling of physicochemical properties andin vitroADME properties, PK assessments, and high-dose pharmacology are covered.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Mandeep Rana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Ritika
- College of Medicine, Taipei Medical University, Taipei 110031, Taiwan
| | - Jacob Mathew
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Sanya Nepali
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Chun-Hsu Pan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan.
| |
Collapse
|
31
|
Wang P, Zhu WT, Wang Y, Song SS, Xi Y, Yang XY, Shen YY, Su Y, Sun YM, Gao YL, Chen Y, Ding J, Miao ZH, Zhang A, He JX. Identification of [1,2,4]Triazolo[4,3-a]pyrazine PARP1 inhibitors with overcome acquired resistance activities. Eur J Med Chem 2023; 259:115709. [PMID: 37567056 DOI: 10.1016/j.ejmech.2023.115709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) inhibitors can selectively kill homologous recombination (HR) deficient cancer cells and elicit anticancer effect through a mechanism of synthetic lethality. In this study, we designed, synthesized and pharmacologically evaluated a series of [1,2,4]triazolo[4,3-a]pyrazine derivatives as a class of potent PARP1 inhibitors. Among them, compounds 17m, 19a, 19c, 19e, 19i and 19k not only displayed more potent inhibitory activities (IC50s < 4.1 nM) than 9 and 1 against PARP1, but also exhibited nanomolar range of antiproliferative effects against MDA-MB-436 (BRCA1-/-, IC50s < 1.9 nM) and Capan-1 (BRCA2-/-, IC50s < 21.6 nM) cells. Notably, 19k significantly inhibited proliferation of resistant Capan-1 cells (IC50s < 0.3 nM). Collectively, the newly discovered PARP1 inhibitors act as a useful pharmacological tool for investigating the mechanism of acquired resistance to PARP1 inhibitors, and may also represent promising therapeutic agents for the treatment of HR deficient cancers with the potential to overcome the acquired resistance.
Collapse
Affiliation(s)
- Pingyuan Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, College of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Evolution and Marine Biodiversity Ministry of Education, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| | - Wen-Ting Zhu
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Yajing Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, College of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shan-Shan Song
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Yong Xi
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Xin-Ying Yang
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Yan-Yan Shen
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Yi Su
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Yi-Ming Sun
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Ying-Lei Gao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Yi Chen
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Jian Ding
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Ze-Hong Miao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Ao Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, College of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Jin-Xue He
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
32
|
Bono A, La Monica G, Alamia F, Mingoia F, Gentile C, Peri D, Lauria A, Martorana A. In Silico Mixed Ligand/Structure-Based Design of New CDK-1/PARP-1 Dual Inhibitors as Anti-Breast Cancer Agents. Int J Mol Sci 2023; 24:13769. [PMID: 37762072 PMCID: PMC10531453 DOI: 10.3390/ijms241813769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
CDK-1 and PARP-1 play crucial roles in breast cancer progression. Compounds acting as CDK-1 and/or PARP-1 inhibitors can induct cell death in breast cancer with a selective synthetic lethality mechanism. A mixed treatment by means of CDK-1 and PARP-1 inhibitors resulted in radical breast cancer cell growth reduction. Inhibitors with a dual target mechanism of action could arrest cancer progression by simultaneously blocking the DNA repair mechanism and cell cycle, resulting in advantageous monotherapy. To this aim, in the present work, we identified compound 645656 with a significant affinity for both CDK-1 and PARP-1 by a mixed ligand- and structure-based virtual screening protocol. The Biotarget Predictor Tool was used at first in a Multitarget mode to filter the large National Cancer Institute (NCI) database. Then, hierarchical docking studies were performed to further screen the compounds and evaluate the ligands binding mode, whose putative dual-target mechanism of action was investigated through the correlation between the antiproliferative activity data and the target proteins' (CDK-1 and PARP-1) expression pattern. Finally, a Molecular Dynamics Simulation confirmed the high stability of the most effective selected compound 645656 in complex with both PARP-1 and CDK-1.
Collapse
Affiliation(s)
- Alessia Bono
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| | - Gabriele La Monica
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| | - Federica Alamia
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| | - Francesco Mingoia
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche (CNR), 90146 Palermo, Italy;
| | - Carla Gentile
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| | - Daniele Peri
- Dipartimento di Ingegneria dell’Innovazione Industriale e Digitale, Università degli Studi di Palermo, Viale 10 delle Scienze Ed. 6, 90128 Palermo, Italy;
| | - Antonino Lauria
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| | - Annamaria Martorana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| |
Collapse
|
33
|
Abstract
Biomolecular condensates are reversible compartments that form through a process called phase separation. Post-translational modifications like ADP-ribosylation can nucleate the formation of these condensates by accelerating the self-association of proteins. Poly(ADP-ribose) (PAR) chains are remarkably transient modifications with turnover rates on the order of minutes, yet they can be required for the formation of granules in response to oxidative stress, DNA damage, and other stimuli. Moreover, accumulation of PAR is linked with adverse phase transitions in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In this review, we provide a primer on how PAR is synthesized and regulated, the diverse structures and chemistries of ADP-ribosylation modifications, and protein-PAR interactions. We review substantial progress in recent efforts to determine the molecular mechanism of PAR-mediated phase separation, and we further delineate how inhibitors of PAR polymerases may be effective treatments for neurodegenerative pathologies. Finally, we highlight the need for rigorous biochemical interrogation of ADP-ribosylation in vivo and in vitro to clarify the exact pathway from PARylation to condensate formation.
Collapse
Affiliation(s)
- Kevin Rhine
- Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hana M Odeh
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - James Shorter
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Sua Myong
- Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Physics Frontier Center (Center for the Physics of Living Cells), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
34
|
Wong WW, O'Brien-Gortner SF, Anderson RF, Wilson WR, Hay MP, Dickson BD. Hypoxia-activated prodrugs of phenolic olaparib analogues for tumour-selective chemosensitisation. RSC Med Chem 2023; 14:1309-1330. [PMID: 37484567 PMCID: PMC10357951 DOI: 10.1039/d3md00117b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/28/2023] [Indexed: 07/25/2023] Open
Abstract
Poly(ADP-ribose)polymerase inhibitors (PARPi) are used for treatment of tumours with a defect in homologous recombination (HR) repair. Combination with radio- or chemotherapy could broaden their applicability but a major hurdle is enhancement of normal tissue toxicity. Development of hypoxia-activated prodrugs (HAPs) of PARPi has potential to restrict PARP inhibition to tumours thereby avoiding off-target toxicity. We have designed and synthesised phenolic derivatives of olaparib (termed phenolaparibs) and corresponding ether-linked HAPs. Phenolaparib cytotoxicity in HR-proficient and deficient cell lines was consistent with inhibition of PARP-1. Prodrugs were deactivated relative to phenolaparibs in biochemical PARP-1 inhibition assays, and cell culture. Prodrug 7 was selectively converted to phenolaparib 4 under hypoxia and demonstrated hypoxia-selective cytotoxicity, including chemosensitisation of HR-proficient cells in combination with temozolomide. This work demonstrates the feasibility of a HAP approach to PARPi for use in combination therapies.
Collapse
Affiliation(s)
- Way W Wong
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland Private Bag 92019 Auckland 1010 New Zealand
| | - Sophia F O'Brien-Gortner
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland Private Bag 92019 Auckland 1010 New Zealand
| | - Robert F Anderson
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland Private Bag 92019 Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland Symonds St Auckland 1010 New Zealand
- School of Chemical Sciences, The University of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - William R Wilson
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland Private Bag 92019 Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland Symonds St Auckland 1010 New Zealand
| | - Michael P Hay
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland Private Bag 92019 Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland Symonds St Auckland 1010 New Zealand
| | - Benjamin D Dickson
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland Private Bag 92019 Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland Symonds St Auckland 1010 New Zealand
| |
Collapse
|
35
|
Rogova A, Gorbunova IA, Karpov TE, Sidorov RY, Rubtsov AE, Shipilovskikh DA, Muslimov AR, Zyuzin MV, Timin AS, Shipilovskikh SA. Synthesis of thieno[3,2-e]pyrrolo[1,2-a]pyrimidine derivatives and their precursors containing 2-aminothiophenes fragments as anticancer agents for therapy of pulmonary metastatic melanoma. Eur J Med Chem 2023; 254:115325. [PMID: 37084598 DOI: 10.1016/j.ejmech.2023.115325] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/23/2023]
Abstract
The design and synthesis of new promising compounds based on thienopyrimidine scaffold containing 2-aminothiophene fragments with good safety and favorable drug-like properties are highly relevant for chemotherapy. In this study, a series of 14 variants of thieno[3,2-e]pyrrolo[1,2-a]pyrimidine derivatives (11aa-oa) and their precursors (31 compounds) containing 2-aminothiophenes fragments (9aa-mb, 10aa-oa) were synthesized and screened for their cytotoxicity against B16-F10 melanoma cells. The selectivity of the developed compounds was assessed by determining the cytotoxicity using normal mouse embryonic fibroblasts (MEF NF2 cells). The lead compounds 9cb, 10ic and 11jc with the most significant antitumor activity and minimum cytotoxicity on normal non-cancerous cells were chosen for further in vivo experiments. Additional in vitro experiments with compounds 9cb, 10ic and 11jc showed that apoptosis was the predominant mechanism of death in B16-F10 melanoma cells. With support from in vivo studies, compounds 9cb, 10ic and 11jc demonstrated the biosafety to healthy mice and significant inhibition of the metastatic nodules in pulmonary metastatic melanoma mouse model. Histological analysis detected no abnormal changes in the main organs (the liver, spleen, kidneys, and heart) after the therapy. Thus, the developed compounds 9cb, 10ic and 11jc demonstrate high efficiency in the treatment of pulmonary metastatic melanoma and can be recommended for further preclinical investigation of the melanoma treatment.
Collapse
Affiliation(s)
- Anna Rogova
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation; Laboratory of nano- and microencapsulation of biologically active compounds, Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation
| | - Irina A Gorbunova
- Perm State University, Perm, Bukireva 15, Perm, 614990, Russian Federation
| | - Timofey E Karpov
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation; Laboratory of nano- and microencapsulation of biologically active compounds, Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation
| | - Roman Yu Sidorov
- Perm State University, Perm, Bukireva 15, Perm, 614990, Russian Federation; Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Ural Branch, Goleva 13, Perm, 614081, Russian Federation
| | | | - Daria A Shipilovskikh
- Perm State University, Perm, Bukireva 15, Perm, 614990, Russian Federation; Perm National Research Polytechnic University, 29 Komsomolsky prospekt, Perm, 614990, Russian Federation
| | - Albert R Muslimov
- Laboratory of nano- and microencapsulation of biologically active compounds, Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation
| | - Mikhail V Zyuzin
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation
| | - Alexander S Timin
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation; Laboratory of nano- and microencapsulation of biologically active compounds, Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation.
| | - Sergei A Shipilovskikh
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation; Perm State University, Perm, Bukireva 15, Perm, 614990, Russian Federation.
| |
Collapse
|
36
|
Hirlekar BU, Nuthi A, Singh KD, Murty US, Dixit VA. An overview of compound properties, multiparameter optimization, and computational drug design methods for PARP-1 inhibitor drugs. Eur J Med Chem 2023; 252:115300. [PMID: 36989813 DOI: 10.1016/j.ejmech.2023.115300] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
Breast cancer treatment with PARP-1 inhibitors remains challenging due to emerging toxicities, drug resistance, and unaffordable costs of treatment options. How do we invent strategies to design better anti-cancer drugs? A part of the answer is in optimized compound properties, desirability functions, and modern computational drug design methods that drive selectivity and toxicity and have not been reviewed for PARP-1 inhibitors. Nonetheless, comparisons of these compound properties for PARP-1 inhibitors are not available in the literature. In this review, we analyze the physchem, PKPD space to identify inherent desirability functions characteristic of approved drugs that can be valuable for the design of better candidates. Recent literature utilizing ligand, structure-based drug design strategies and matched molecular pair analysis (MMPA) for the discovery of novel PARP-1 inhibitors are also reviewed. Thus, this perspective provides valuable insights into the medchem and multiparameter optimization of PARP-1 inhibitors that might be useful to other medicinal chemists.
Collapse
|
37
|
Rahman A, Belur Ningegowda N, Kammathalli Siddappa M, Kumar Jain S, Malleshappa Kumaraswamy H, Achur R, Devappa Satyanarayan N, Malavalli Mahadevan K. Palladium‐Catalysed C−C Bond Forming 4‐Cyanophenyl‐nicotinamide Conjugates; Anti‐Pancreatic Cancer Screening on Capan‐1 Cell Line. ChemistrySelect 2023; 8. [DOI: 10.1002/slct.202204309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/22/2023] [Indexed: 01/04/2025]
Abstract
AbstractPancreatic cancer is the most severe, as a consequence of asymptomatic nature and ineffective therapies among all malignancies. Nicotinamides are effective ring systems in the treatment of pancreatic cancer with their wide range of applications. In the present investigation, nicotinamide and 4‐cyanophenyl ring systems are brought together to obtain greater potency. For the process of investigation, PARP1 protein is targeted and evaluated by docking at the active site to determine the protein‐ligand interaction, revealed the potential with the binding affinity of −9.0 to −11.0 Kcal/mol to inhibit the poly ADP‐ribose polymerase 1 (PARP1) pathway. The MTT‐assay assessment of a synthesized series has been performed against Capan‐1 pancreatic cancer cell line. The nicotinamide compounds demonstrated a significant inhibitory effect over Capan‐1 cell line, and 6‐(4‐cyanophenyl)‐N‐(3‐phenylpropyl)nicotinamide exhibited as a potential lead for the development of novel chemotherapeutics against pancreatic cancer.
Collapse
Affiliation(s)
- Abdul Rahman
- Department of Pharmaceutical Chemistry Kuvempu University Post Graduate Centre, Kadur 577548 Chikkamagaluru Karnataka India
| | - Nippu Belur Ningegowda
- Department of Pharmaceutical Chemistry Kuvempu University Post Graduate Centre, Kadur 577548 Chikkamagaluru Karnataka India
| | | | - Sandeep Kumar Jain
- Laboratory of Experimental Medicine Department of Biotechnology Kuvempu University 577451 Shankaragatta Karnataka India
| | | | - Rajeshwara Achur
- Department of Biochemistry Kuvempu University Shankargatta 577451 Shimoga Karnataka India
| | - Nayak Devappa Satyanarayan
- Department of Pharmaceutical Chemistry Kuvempu University Post Graduate Centre, Kadur 577548 Chikkamagaluru Karnataka India
| | - Kittappa Malavalli Mahadevan
- Kittappa Malavalli Mahadevand Department of Chemistry Kuvempu University Post Graduate Centre, Kadur 577548 Chikkamagaluru Karnataka India
| |
Collapse
|
38
|
Yan F, Fu Z, Li G, Wang Z. In Silico Investigation of the Molecular Mechanism of PARP1 Inhibition for the Treatment of BRCA-Deficient Cancers. Molecules 2023; 28:1829. [PMID: 36838818 PMCID: PMC9961911 DOI: 10.3390/molecules28041829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The protein PARP1, which plays a crucial role in DNA repair processes, is an attractive target for cancer therapy, especially for BRCA-deficient cancers. To overcome the acquired drug resistance of PARP1, PARP1 G-quadruplex (G4) identified in the PARP1-promotor region is gaining increasing attention. Aiming to explore the molecular mechanism of PARP1 inhibition with PARP1 G4 and PARP1 as potential targets, a comparative investigation of the binding characteristics of the newly identified G4 stabilizer MTR-106, which showed modest activity against talazoparib-resistant xenograft models and the FDA-approved PARP1 inhibitor (PARPi) talazoparib, were performed through molecular simulations. Combined analyses revealed that, relative to the groove binding of talazoparib, MTR-106 induced the formation of a sandwich framework through stacking with dT1 and the capping G-pair (dG2 and dG14) of PARP1 G4 to present largely enhanced binding affinity. For the binding with PARP1, although both were located in the catalytic pocket of PARP1, MTR-106 formed more extensive interactions with the surrounding PARP1 residues compared to talazoparib, in line with its increased binding strength. Importantly, vdW interaction was recognized as a decisive factor in the bindings with PARP1 G4 and PARP1. Collectively, these findings demonstrated the ascendancy of MTR-106 over talazoparib at the atomic level and revealed that the dual targeting of PARP1 G4 and PARP1 might be pivotal for PARPi that is capable of overcoming acquired drug resistance, providing valuable information for the design and development of novel drugs.
Collapse
Affiliation(s)
- Fengqin Yan
- Department of Radiotherapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Zhenfu Fu
- Department of Radiotherapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Guo Li
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou 571199, China
- Hainan Province Clinical Medical Center, Hainan Hospital Affiliated to Hainan Medical University, Haikou 571199, China
| | - Zhiguo Wang
- Institute of Ageing Research, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
39
|
Mehta CC, Rohit S, Patel S, Bhatt HG. New molecular insights for 4 H-1,2,4-triazole derivatives as inhibitors of tankyrase and Wnt-signaling antagonist: a molecular dynamics simulation study. J Biomol Struct Dyn 2023; 41:13496-13508. [PMID: 36755438 DOI: 10.1080/07391102.2023.2175376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023]
Abstract
Tankyrase (TNKS) enzymes remained central biotargets to treat Wnt-driven colorectal cancers. The success of Olaparib posited the druggability of PARP family enzymes depending on their role in tumor proliferation. In this work, an MD-simulation-based comparative assessment of the protein-ligand interactions using the best-docked poses of three selected compounds (two of the designed and previously synthesized molecules obtained through molecular docking and one reported TNKS inhibitor) was performed for a 500 ns period. The PDB:ID-7KKP and 3U9H were selected for TNKS1 and TNKS2, respectively. The Molecular Mechanics Generalized Born Surface Area (MM-GBSA) based binding energy data exhibited stronger binding of compound-15 (average values of -102.92 and -104.32 kcal/mol for TNKS1 and TNKS2, respectively) as compared to compound-22 (average values of -82.99 and -85.68 kcal/mol for TNKS1 and TNKS2, respectively) and the reported compound-32 (average values of -81.89 and -74.43 kcal/mol for TNKS1 and TNKS2, respectively). Compound-15 and compound-22 exhibited comparable or superior binding to both receptors forming stable complexes when compared to that of compound-32 upon examining their MD trajectories. The key contributors were hydrophobic stacking and optimum hydrogen bonding allowing these molecules to occupy the adenosine pocket by interfacing D-loop residues. The results of bond distance analysis, radius of gyration, root mean square deviation, root mean square fluctuation, snapshots at different time intervals, LUMO-HUMO energy differences, electrostatic potential calculations, and binding free energy suggested better binding efficiency for compound-15 to TNKS enzymes. The computed physicochemical and ADMET properties of compound-15 were encouraging and could be explored further for drug development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Chirag C Mehta
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | | | - Saumya Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University, Ahmedabad, India
| | - Hardik G Bhatt
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
40
|
Li G, Cheng Y, Han C, Song C, Huang N, Du Y. Pyrazole-containing pharmaceuticals: target, pharmacological activity, and their SAR studies. RSC Med Chem 2022; 13:1300-1321. [PMID: 36439976 PMCID: PMC9667768 DOI: 10.1039/d2md00206j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
Pyrazole is a five-membered heterocycle bearing two adjacent nitrogen atoms. Both pharmaceutical agents and natural products with pyrazole as a nucleus have exhibited a broad spectrum of biological activities. In the last few decades, more than 40 pyrazole-containing drugs have been approved by the FDA for the treatment of a broad range of clinical conditions including celecoxib (anti-inflammatory), CDPPB (antipsychotic), difenamizole (analgesic), etc. Owing to the unique physicochemical properties of the pyrazole core, pyrazole-containing drugs may exert better pharmacokinetics and pharmacological effects compared with drugs containing similar heterocyclic rings. The purpose of this paper is to provide an overview of all the existing drugs bearing a pyrazole nucleus that have been approved or in clinical trials, involving their pharmacological activities and SAR studies.
Collapse
Affiliation(s)
- Guangchen Li
- School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072 China
| | - Yifu Cheng
- School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072 China
| | - Chi Han
- School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072 China
| | - Chun Song
- State Key Laboratory of Microbial Technology, Shandong University Qing Dao City Shandong Province 266237 China
| | - Niu Huang
- National Institution of Biological Sciences Beijing, No. 7 Science Park Road, Zhongguancun Life Science Park Beijing 102206 China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University Beijing 102206 China
| | - Yunfei Du
- School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072 China
| |
Collapse
|
41
|
Ivasechko I, Yushyn I, Roszczenko P, Senkiv J, Finiuk N, Lesyk D, Holota S, Czarnomysy R, Klyuchivska O, Khyluk D, Kashchak N, Gzella A, Bielawski K, Bielawska A, Stoika R, Lesyk R. Development of Novel Pyridine-Thiazole Hybrid Molecules as Potential Anticancer Agents. Molecules 2022; 27:molecules27196219. [PMID: 36234755 PMCID: PMC9570594 DOI: 10.3390/molecules27196219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Novel pyridine-thiazole hybrid molecules were synthesized and subjected to physico-chemical characterization and screening of their cytotoxic action towards a panel of cell lines derived from different types of tumors (carcinomas of colon, breast, and lung, glioblastoma and leukemia), and normal human keratinocytes, for comparison. High antiproliferative activity of the 3-(2-fluorophenyl)-1-[4-methyl-2-(pyridin-2-ylamino)-thiazol-5-yl]-propenone 3 and 4-(2-{1-(2-fluorophenyl)-3-[4-methyl-2-(pyridin-2-ylamino)-thiazol-5-yl]-3-oxopropylsulfanyl}-acetylamino)-benzoic acid ethyl ester 4 was revealed. The IC50 of the compound 3 in HL-60 cells of the acute human promyelocytic leukemia was 0.57 µM, while in the pseudo-normal human cell lines, the IC50 of this compound was >50 µM, which suggests that the compounds 3 and 4 might be perspective anticancer agents. The detected selectivity of the derivatives 3 and 4 for cancer cell lines inspired us to study the mechanisms of their cytotoxic action. It was shown that preincubation of tumor cells with Fluzaparib (inhibitor of PARP1) reduced the cytotoxic activity of the derivatives 3 and 4 by more than twice. The ability of these compounds to affect DNA nativity and cause changes in nucleus morphology allows for the suggestion that the mechanism of action of the novel pyridine-thiazole derivatives might be related to inducing the genetic instability in tumor cells.
Collapse
Affiliation(s)
- Iryna Ivasechko
- Institute of Cell Biology of National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine
| | - Ihor Yushyn
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Piotr Roszczenko
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Julia Senkiv
- Institute of Cell Biology of National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine
| | - Nataliya Finiuk
- Institute of Cell Biology of National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine
| | - Danylo Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Olga Klyuchivska
- Institute of Cell Biology of National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine
| | - Dmytro Khyluk
- Department of Organic Chemistry, Medical University of Lublin, Aleje Racławickie 1, 20-059 Lublin, Poland
| | - Nataliya Kashchak
- Institute of Cell Biology of National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine
| | - Andrzej Gzella
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Anna Bielawska
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Rostyslav Stoika
- Institute of Cell Biology of National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
- Correspondence: ; Tel.: +380-677038010
| |
Collapse
|
42
|
Xue H, Bhardwaj A, Yin Y, Fijen C, Ephstein A, Zhang L, Ding X, Pascal JM, VanArsdale TL, Rothenberg E. A two-step mechanism governing PARP1-DNA retention by PARP inhibitors. SCIENCE ADVANCES 2022; 8:eabq0414. [PMID: 36070389 PMCID: PMC9451145 DOI: 10.1126/sciadv.abq0414] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
PARP inhibitors (PARPi) have emerged as promising cancer therapeutics capable of targeting specific DNA repair pathways, but their mechanism of action with respect to PARP1-DNA retention remains unclear. Here, we developed single-molecule assays to directly monitor the retention of PARP1 on DNA lesions in real time. Our study reveals a two-step mechanism by which PARPi modulate the retention of PARP1 on DNA lesions, consisting of a primary step of catalytic inhibition via binding competition with NAD+ followed by an allosteric modulation of bound PARPi. While clinically relevant PARPi exhibit distinct allosteric modulation activities that can either increase retention of PARP1 on DNA or induce its release, their retention potencies are predominantly determined by their ability to outcompete NAD+ binding. These findings provide a mechanistic basis for improved PARPi selection according to their characteristic activities and enable further development of more potent inhibitors.
Collapse
Affiliation(s)
- Huijun Xue
- Department of Biochemistry and Molecular Pharmacology and Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Amit Bhardwaj
- Department of Biochemistry and Molecular Pharmacology and Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Yandong Yin
- Department of Biochemistry and Molecular Pharmacology and Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Carel Fijen
- Department of Biochemistry and Molecular Pharmacology and Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anastasiya Ephstein
- Department of Biochemistry and Molecular Pharmacology and Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Lianglin Zhang
- Oncology Research and Development, Pfizer Inc., La Jolla, CA 92121, USA
| | - Xia Ding
- Oncology Research and Development, Pfizer Inc., La Jolla, CA 92121, USA
| | - John M. Pascal
- Département de Biochimie and Médecine Moléculaire, Faculté de Médecine, Université de Montréal, Montréal QC H3C 3J7, Canada
| | - Todd L. VanArsdale
- Oncology Research and Development, Pfizer Inc., La Jolla, CA 92121, USA
- Corresponding author. (T.V.); (E.R.)
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology and Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Corresponding author. (T.V.); (E.R.)
| |
Collapse
|
43
|
Syam YM, Anwar MM, Abd El-Karim SS, Elokely KM, Abdelwahed SH. New Quinoxaline-Based Derivatives as PARP-1 Inhibitors: Design, Synthesis, Antiproliferative, and Computational Studies. Molecules 2022; 27:molecules27154924. [PMID: 35956876 PMCID: PMC9370283 DOI: 10.3390/molecules27154924] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/05/2022] Open
Abstract
Herein, 2,3-dioxo-1,2,3,4-tetrahydroquinoxaline was used as a bio-isosteric scaffold to the phthalazinone motif of the standard drug Olaparib to design and synthesize new derivatives of potential PARP-1 inhibitory activity using the 6-sulfonohydrazide analog 3 as the key intermediate. Although the new compounds represented the PARP-1 suppression impact of IC50 values in the nanomolar range, compounds 8a, 5 were the most promising suppressors, producing IC50 values of 2.31 and 3.05 nM compared to Olaparib with IC50 of 4.40 nM. Compounds 4, 10b, and 11b showed a mild decrease in the potency of the IC50 range of 6.35–8.73 nM. Furthermore, compounds 4, 5, 8a, 10b, and 11b were evaluated as in vitro antiproliferative agents against the mutant BRCA1 (MDA-MB-436, breast cancer) compared to Olaparib as a positive control. Compound 5 exhibited the most significant potency of IC50; 2.57 µM, whereas the IC50 value of Olaparib was 8.90 µM. In addition, the examined derivatives displayed a promising safety profile against the normal WI-38 cell line. Cell cycle, apoptosis, and autophagy analyses were carried out in the MDA-MB-436 cell line for compound 5, which exhibited cell growth arrest at the G2/M phase, in addition to induction of programmed apoptosis and an increase in the autophagic process. Molecular docking of the compounds 4, 5, 8a, 10b, and 11b into the active site of PARP-1 was carried out to determine their modes of interaction. In addition, an in silico ADMET study was performed. The results evidenced that compound 5 could serve as a new framework for discovering new potent anticancer agents targeting the PARP-1 enzyme.
Collapse
Affiliation(s)
- Yasmin M. Syam
- Department of Therapeutic Chemistry, National Research Center, Dokki, Cairo 12622, Egypt; (M.M.A.); (S.S.A.E.-K.)
- Correspondence: (Y.M.S.); (S.H.A.)
| | - Manal M. Anwar
- Department of Therapeutic Chemistry, National Research Center, Dokki, Cairo 12622, Egypt; (M.M.A.); (S.S.A.E.-K.)
| | - Somaia S. Abd El-Karim
- Department of Therapeutic Chemistry, National Research Center, Dokki, Cairo 12622, Egypt; (M.M.A.); (S.S.A.E.-K.)
| | - Khaled M. Elokely
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122, USA;
| | - Sameh H. Abdelwahed
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA
- Correspondence: (Y.M.S.); (S.H.A.)
| |
Collapse
|
44
|
Maigali SS, El‐Shanawany HR, El‐Sayed NF, Youssef MA, Fouad MA. Synthesis and Evaluation of a New Series of Spiro Aryl Dioxolane Compounds: A New Scaffold as Potential
PARP
‐1 Inhibitors. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Soher S. Maigali
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 33 ElBohouth St., (Former El Tahrir, Dokki,12622 Giza Egypt
| | - Hala R. El‐Shanawany
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 33 ElBohouth St., (Former El Tahrir, Dokki,12622 Giza Egypt
| | - Naglaa F. El‐Sayed
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 33 ElBohouth St., (Former El Tahrir, Dokki,12622 Giza Egypt
| | - Mohamed. A. Youssef
- Chemistry Department, Faculty of Science Helwan University, Economic Housing, QismHelwan Cairo Egypt
| | - Marwa A. Fouad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy Cairo University, Kasr El‐Aini St. Cairo Egypt
| |
Collapse
|
45
|
Rational design, synthesis and biological evaluation of dual PARP-1/2 and TNKS1/2 inhibitors for cancer therapy. Eur J Med Chem 2022; 237:114417. [DOI: 10.1016/j.ejmech.2022.114417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/25/2022]
|
46
|
Mgoboza C, Okunlola FO, Akawa OB, Aljoundi A, Soliman MES. Talazoparib Dual-targeting on Poly (ADP-ribose) Polymerase-1 and -16 Enzymes Offers a Promising Therapeutic Strategy in Small Cell Lung Cancer Therapy: Insight from Biophysical Computations. Cell Biochem Biophys 2022; 80:495-504. [PMID: 35588345 DOI: 10.1007/s12013-022-01075-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/02/2022] [Indexed: 11/27/2022]
Abstract
In recent times, inhibition of poly (ADP-ribose) polymerase (PARP) enzymes by pharmacological drugs has attracted much attention as an anticancer therapy. As reported, PARP-16 has been discovered as a novel anticancer target for small cell lung cancer, and that the inhibition of both PARP-16 and PARP-1 by talazoparib can increase the overall effectiveness of talazoparib in the SCLC treatment. In this study, we employed computational approaches to investigate the differential inhibitory potency of Talazoparib on PARP-1 and PARP-16. Talazoparib has excellent PARP-1 and PARP-16 binding activities, as revealed by the ΔGbind (total binding energy). Pp16-tpb had binding energy of -34.85 kcal/mol, while pp1-tpb had a binding energy of -26.36 kcal/mol. The binding activity of Talazoparib on both PARP-1 and PARP-16 was significantly influenced by van der Waal and electrostatic interactions. Correspondingly, according to the findings of this study, binding residues with total binding energy greater than 1.00 kcal/mol contributed considerably to the Talazoparib's binding activities on PARP-1 and PARP-16. We believe the findings of this study will pave the way for developing dual targeting of PARP enzymes as a strategy for small-cell lung cancer treatment.
Collapse
Affiliation(s)
- Chwayita Mgoboza
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Felix O Okunlola
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Oluwole B Akawa
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Aimen Aljoundi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa.
| |
Collapse
|
47
|
Pan C, Chen L, Zhang X, Zhang D, Song Q, Peng J, Li Q. Molecular insight into the
π‐stacking
interactions of human ovarian cancer
PARP
‐1 with its small‐molecule inhibitors and rational design of aromatic amino acid‐rich peptides to target
PARP
‐1 based on the
π‐stacking
network. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chunxia Pan
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences Jinan China
| | - Lei Chen
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences Jinan China
| | - Xinxin Zhang
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences Jinan China
| | - Depu Zhang
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences Jinan China
| | - Quqing Song
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences Jinan China
| | - Jingwei Peng
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences Jinan China
| | - Qingshui Li
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences Jinan China
| |
Collapse
|
48
|
Hu X, Zhang J, Zhang Y, Jiao F, Wang J, Chen H, Ouyang L, Wang Y. Dual-target inhibitors of poly (ADP-ribose) polymerase-1 for cancer therapy: Advances, challenges, and opportunities. Eur J Med Chem 2022; 230:114094. [PMID: 34998039 DOI: 10.1016/j.ejmech.2021.114094] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 02/08/2023]
Abstract
PARP1 plays a crucial role in DNA damage repair, making it an essential target for cancer therapy. PARP1 inhibitors are widely used to treat BRCA-deficient malignancies, and six PARP inhibitors have been approved for clinical use. However, excluding the great clinical success of PARP inhibitors, the concomitant toxicity, drug resistance, and limited scope of application restrict their clinical efficacy. To find solutions to these problems, dual-target inhibitors have shown great potential. In recent years, several studies have linked PAPR1 to other primary cancer targets. Many dual-target inhibitors have been developed using structural fusion, linkage, or library construction methods, overcoming the defects of many single-target inhibitors of PARP1 and achieving great success in clinical cancer therapy. This review summarizes the advance of dual-target PARP1 inhibitors in recent years, focusing on their structural optimization process, structure-activity relationships (SARs), and in vitro or in vivo analysis results.
Collapse
Affiliation(s)
- Xinyue Hu
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ya Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Fulun Jiao
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Liang Ouyang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
49
|
Design and synthesis of novel caffeic acid phenethyl ester (CAPE) derivatives and their biological Activity studies in glioblastoma (GBM) cancer cell lines. J Mol Graph Model 2022; 113:108160. [DOI: 10.1016/j.jmgm.2022.108160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/16/2022] [Accepted: 02/14/2022] [Indexed: 12/20/2022]
|
50
|
Bowden GD, Stotz S, Kinzler J, Geibel C, Lämmerhofer M, Pichler BJ, Maurer A. DoE Optimization Empowers the Automated Preparation of Enantiomerically Pure [ 18F]Talazoparib and its In Vivo Evaluation as a PARP Radiotracer. J Med Chem 2021; 64:15690-15701. [PMID: 34672571 DOI: 10.1021/acs.jmedchem.1c00903] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Given the clinical potential of poly(ADP-ribose) polymerases (PARP) imaging for the detection and stratification of various cancers, the development of novel PARP imaging probes with improved pharmacological profiles over established PARP imaging agents is warranted. Here, we present a novel 18F-labeled PARP radiotracer based on the clinically superior PARP inhibitor talazoparib. An automated radiosynthesis of [18F]talazoparib (RCY: 13 ± 3.4%; n = 4) was achieved using a "design of experiments" (DoE) optimized copper-mediated radiofluorination reaction. The chiral product was isolated from the reaction mixture using 2D reversed-phase/chiral radio-HPLC (>99% ee). (8S,9R)-[18F]Talazoparib demonstrated PARP binding in HCC1937 cells in vitro and showed an excellent tumor-to-blood ratio in xenograft-bearing mice (10.2 ± 1.5). Additionally, a favorable pharmacological profile in terms of excretion, metabolism, and target engagement was observed. This synthesis of [18F]talazoparib exemplifies how DoE can enable the radiosyntheses of synthetically challenging radiolabeled compounds of high interest to the imaging community.
Collapse
Affiliation(s)
- Gregory D Bowden
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Roentgenweg 15, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Roentgenweg 13, 72076 Tuebingen, Germany
| | - Sophie Stotz
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Roentgenweg 15, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Roentgenweg 13, 72076 Tuebingen, Germany
| | - Johannes Kinzler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Roentgenweg 15, 72076 Tuebingen, Germany
| | - Christian Geibel
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical (Bio-)Analysis, Eberhard Karls University, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical (Bio-)Analysis, Eberhard Karls University, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Roentgenweg 15, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Roentgenweg 13, 72076 Tuebingen, Germany
- German Cancer Research Center, German Cancer Consortium DKTK, Partner Site Tuebingen, Roentgenweg 13, 72076 Tuebingen, Germany
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Roentgenweg 15, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Roentgenweg 13, 72076 Tuebingen, Germany
| |
Collapse
|