1
|
Srinivasan S, Sherwood DR. The life cycle of type IV collagen. Matrix Biol 2025:S0945-053X(25)00037-X. [PMID: 40306374 DOI: 10.1016/j.matbio.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/21/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Type IV collagen is a large triple helical molecule that forms a covalently cross-linked network within basement membranes (BMs). Type IV collagen networks play key roles in mechanically supporting tissues, shaping organs, filtering blood, and cell signaling. To ensure tissue health and function, all aspects of the type IV collagen life cycle must be carried out accurately. However, the large triple helical structure and complex life-cycle of type IV collagen, poses many challenges to cells and tissues. Type IV collagen predominantly forms heterotrimers and to ensure proper construction, expression of the distinct α-chains that comprise a heterotrimer needs tight regulation. The α-chains must also be accurately modified by several enzymes, some of which are specific to collagens, to build and stabilize the triple helical trimer. In addition, type IV collagen is exceptionally long (400nm) and thus the packaging and trafficking of the triple helical trimer from the ER to the Golgi must be modified to accommodate the large type IV collagen molecule. During ER-to-Golgi trafficking, as well as during secretion and transport in the extracellular space type IV collagen also associates with specific chaperone molecules that maintain the structure and solubility of collagen IV. Type IV collagen trimers are then delivered to BMs from local and distant sources where they are integrated into BMs by interactions with cell surface receptors and many diverse BM resident proteins. Within BMs type IV collagen self-associates into a network and is crosslinked by BM resident enzymes. Finally, homeostatic type IV collagen levels in BMs are maintained by poorly understood mechanisms involving proteolysis and endocytosis. Here, we provide an overview of the life cycle of collagen IV, highlighting unique mechanisms and poorly understood aspects of type IV collagen regulation.
Collapse
Affiliation(s)
- Sandhya Srinivasan
- Department of Biology, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA
| | - David R Sherwood
- Department of Biology, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
2
|
Otsuka Y, Adili A, Momoeda M, Negishi Y, Kaneko H, Yoshinaga C, Kenzaki Y, Negishi-Koga T, Ishijima M, Okada Y. Involvement of Heat Shock Protein 47 in Osteophyte Formation of Knee Joint Osteoarthritis. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00104-X. [PMID: 40204189 DOI: 10.1016/j.ajpath.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 02/19/2025] [Accepted: 03/11/2025] [Indexed: 04/11/2025]
Abstract
Osteophytes contribute to the development and progression of knee osteoarthritis (OA). Although transforming growth factor-β (TGF-β) and bone morphogenic protein-2 (BMP2) are known to induce osteophytes, regulators of osteophyte formation remain elusive. This study aimed to search for molecules that modulate osteophytosis in a mouse knee OA model. Proteomic analysis, followed by immunohistochemistry of osteophyte and articular cartilage, identified heat shock protein 47 (HSP47), a molecular chaperone for procollagens, as a molecule selectively overexpressed by osteophyte fibrocartilaginous cells. The treatment of TGF-β3 and BMP2 to a three-dimensional pellet culture of mouse mesenchymal stem cells caused their differentiation into osteophyte-like cells accompanied with the up-regulation of HSP47. The pellet sizes of stimulated three-dimensional-cultured mesenchymal stem cells were significantly reduced by knockdown of HSP47 or treatment with AK778 (HSP47 inhibitor), because of increased apoptosis. Furthermore, intra-articular AK778 injections suppressed osteophyte formation in a mouse OA model. Importantly, the studies with human samples demonstrated HSP47 overexpression by osteophyte fibrocartilaginous cells in human OA knee joints. Similarly, the overexpression of HSP47 was observed in the TGF-β3- and BMP2-treated human osteophytic cell spheroids as well as the size reduction of spheroids by AK778 treatment. These findings highlight the promoting function of HSP47 in osteophyte formation in OA knee joints and suggest that therapeutic interventions targeting HSP47 may be of clinical value.
Collapse
Affiliation(s)
- Yuta Otsuka
- Department of Pathophysiology for Locomotive Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Arepati Adili
- Department of Pathophysiology for Locomotive Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan; Sportology Center, Juntendo University, Tokyo, Japan
| | - Masahiro Momoeda
- Department of Pathophysiology for Locomotive Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshifumi Negishi
- Department of Pathophysiology for Locomotive Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Haruka Kaneko
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Chiho Yoshinaga
- Department of Pathophysiology for Locomotive Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuka Kenzaki
- Department of Pathophysiology for Locomotive Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takako Negishi-Koga
- Department of Pathophysiology for Locomotive Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Community Medicine and Research for Bone and Joint Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Muneaki Ishijima
- Department of Pathophysiology for Locomotive Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan; Sportology Center, Juntendo University, Tokyo, Japan; Department of Community Medicine and Research for Bone and Joint Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasunori Okada
- Department of Pathophysiology for Locomotive Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
3
|
Zhang M, Liu Y, Wang H, Shi Y, Zhang Y, Ma T, Chen J. Downregulation of HSP47 triggers ER stress-mediated apoptosis of hypertrophic chondrocytes contributing to T-2 toxin-induced cartilage damage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125640. [PMID: 39756565 DOI: 10.1016/j.envpol.2025.125640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/16/2024] [Accepted: 01/03/2025] [Indexed: 01/07/2025]
Abstract
T-2 toxin contamination in food and feed is a growing global concern, with its toxic effects on developing cartilage remaining poorly understood. In this study, we constructed an animal model using 4-week-old male Sprague-Dawley rats, which were administered T-2 toxin (200 ng/g body weight per day) by gavage for one month. Histological analysis showed a significant reduction in hypertrophic chondrocytes and increased caspase-3 expression and TUNEL staining in the deep cartilage zone of T-2 toxin-treated rats. T-2 toxin exposure significantly decreased the expression of heat shock protein 47 (HSP47) and elevated ER stress-mediated apoptosis markers (BiP, caspase-12, and CHOP) in the cartilage of T-2 toxin-treated rats. In an in vitro hypertrophic ATDC5 chondrocyte model, T-2 toxin exposure (10, 25, 50 ng/mL) reduced cell viability and HSP47 expression, while increasing the expression of BiP, caspase-12, and CHOP. Treatment with the ER stress inhibitor Salubrinal suppressed the upregulation of caspase-3 activity, BiP, caspase-12, and CHOP while partially restoring HSP47 expression in T-2 toxin-treated hypertrophic ATDC5 chondrocytes. Furthermore, Hsp47 knockdown in hypertrophic ATDC5 chondrocytes increased the apoptosis ratio, caspase-3 activity, and the expression of BiP, caspase-12, and CHOP. In children with Kashin-Beck disease, a human condition associated with T-2 toxin exposure, reduced HSP47 expression and increased BiP and CHOP expression were observed in the deep zone of articular cartilage. These findings demonstrated that T-2 toxin-induced cartilage damage primarily involves hypertrophic chondrocyte apoptosis in the deep zone. Downregulation of HSP47 leads to ER stress-mediated apoptosis in T-2 toxin-induced cartilage damage. Inhibition of ER stress offers a potential therapeutic approach for mitigating T-2 toxin-induced cartilage damage.
Collapse
Affiliation(s)
- Meng Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, NHC Key Laboratory of Environment and Endemic Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China.
| | - Yinan Liu
- School of Public Health, Health Science Center, Xi'an Jiaotong University, NHC Key Laboratory of Environment and Endemic Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China.
| | - Hui Wang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, NHC Key Laboratory of Environment and Endemic Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China.
| | - Yawen Shi
- School of Public Health, Health Science Center, Xi'an Jiaotong University, NHC Key Laboratory of Environment and Endemic Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China.
| | - Ying Zhang
- School of Nursing, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Tianyou Ma
- School of Public Health, Health Science Center, Xi'an Jiaotong University, NHC Key Laboratory of Environment and Endemic Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China.
| | - Jinghong Chen
- School of Public Health, Health Science Center, Xi'an Jiaotong University, NHC Key Laboratory of Environment and Endemic Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China.
| |
Collapse
|
4
|
Besio R, Garibaldi N, Sala A, Tonelli F, Aresi C, Maffioli E, Casali C, Torriani C, Biggiogera M, Villani S, Rossi A, Tedeschi G, Forlino A. The administration of exogenous HSP47 as a collagen-specific therapeutic approach. JCI Insight 2025; 10:e181570. [PMID: 39913197 PMCID: PMC11949040 DOI: 10.1172/jci.insight.181570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 02/05/2025] [Indexed: 03/25/2025] Open
Abstract
The proof of principle of the therapeutic potential of heat shock protein 47 (HSP47) for diseases characterized by defects in collagen I synthesis is here demonstrated in osteogenesis imperfecta (OI), a prototype of collagen disorders. Most of the OI mutations delay collagen I chain folding, increasing their exposure to posttranslational modifications that affect collagen secretion and impact extracellular matrix fibril assembly. As a model, we used primary fibroblasts from OI individuals with a defect in the collagen prolyl 3-hydroxylation complex, since they are characterized by the synthesis of homogeneously overmodified collagen molecules. We demonstrated that exogenous recombinant HSP47 (rHSP47) is taken up by the cells and localizes at the ER exit sites and ER-Golgi intermediate compartment. rHSP47 treatment increased collagen secretion, reduced collagen posttranslational modifications and intracellular collagen retention, and ameliorated general ER proteostasis, leading to improved cellular homeostasis and vitality. These positive changes were also mirrored by an increased collagen content in the OI matrix. A mutation-dependent effect was found in fibroblasts from 3 probands with collagen I mutations, for which rHSP47 was effective only in cells with the most N-terminal defect. A beneficial effect on bone mineralization was demonstrated in vivo in the zebrafish p3h1-/- OI model.
Collapse
Affiliation(s)
- Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Nadia Garibaldi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Alessandra Sala
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Francesca Tonelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Carla Aresi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Elisa Maffioli
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
- CIMAINA, University of Milan, Milano, Italy
| | | | - Camilla Torriani
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
| | | | - Simona Villani
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
| | - Antonio Rossi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
- CIMAINA, University of Milan, Milano, Italy
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| |
Collapse
|
5
|
Wanjiru DK, Niyonzima YB, Kadokawa H. Lower expression of colony-stimulating factor 2, an embryokine, in the endometrial epithelium of old cows. Reprod Fertil Dev 2025; 37:RD24163. [PMID: 39951370 DOI: 10.1071/rd24163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Context Infertility increases with age in various animals, including cows, owing to unknown mechanisms. The glandular and luminal epithelia of the bovine uterus synthesise and secrete colony-stimulating factor 2 (CSF2), which is a well-studied embryokine. We recently reported the possibility of fibrosis in the uteri of old cows. However, the relationship between CSF2 expression and fibrosis has not yet been clarified. Aims We tested the hypothesis that the endometrial epithelia of old cows have lower CSF2 expression compared to in heifers, and that myofibroblasts [alpha-smooth muscle actin (αSMA)-positive fibroblasts] increase near the epithelium of old cows. Methods We collected caruncle and intercaruncle samples from post-pubertal, growing, nulliparous heifers (n =6; 24.7±1.3months old) and old multiparous cows (n =6; 128.5±15.4months old). We analysed mRNA and protein expression, along with fluorescent immunohistochemistry for CSF2, anti-collagen type IV, anti-Müllerian hormone type 2 receptor, and anti-αSMA. Key results Quantitative reverse transcription polymerase chain reaction and western blot analysis revealed lower CSF2 expression in the caruncle and intercaruncle of old cows than in young heifers. Fluorescence microscopy using the same antibodies and anti-collagen type IV, anti-Müllerian hormone type 2 receptor, and anti-αSMA antibodies showed increased fibroblasts and αSMA signals near the epithelium of old cows compared to young heifers. Conclusion CSF2 expression was lower in endometrial epithelia of old cows compared to those in heifers, and myofibroblasts increased near the epithelia of old cows. Implications Lower CSF2 may play an important role in age-related infertility.
Collapse
Affiliation(s)
- Denis Karani Wanjiru
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan
| | - Yvan Bienvenu Niyonzima
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan
| | - Hiroya Kadokawa
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan
| |
Collapse
|
6
|
Fries LE, Chung A, Chang HK, Yuan TL, Bauer RC. Single-Cell RNA-Seq Reveals Adventitial Fibroblast Alterations during Mouse Atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.05.616802. [PMID: 39868275 PMCID: PMC11761046 DOI: 10.1101/2024.10.05.616802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Background Atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of mortality in the western world despite the success of lipid lowering therapies, highlighting the need for novel lipid-independent therapeutic strategies. Genome-wide association studies (GWAS) have identified numerous genes associated with ASCVD that function in the vessel wall, suggesting that vascular cells mediate ASCVD, and that the genes and pathways essential for this vascular cell function may be novel therapeutic targets for the treatment of ASCVD. Furthermore, some of these implicated genes appear to function in the adventitial layer of the vasculature, suggesting these cells are able to potentiate ASCVD. Methods To investigate the role of adventitial cells in atherosclerosis, we conducted single-cell RNA sequencing (scRNA-seq) of the aortic adventitia during atherogenesis in male Ldlr -/- mice via pools of three mice, two samples per condition. We cross-referenced the scRNA-seq data with human ASCVD GWAS to identify regulators of adventitial responses in ASCVD. These regulators were then validated in vitro in human adventitial fibroblasts. Results We identified four adventitial fibroblast populations, all of which displayed shifts in population size and gene expression over the course of atherogenesis. SERPINH1, an ASCVD-linked GWAS gene, was differentially expressed in adventitial fibroblasts during atherogenesis. Knockdown of SERPINH1 in vitro reduced fibroblast migration and altered subcluster marker gene expression. Conclusions These findings reveal dynamic changes in adventitial fibroblasts during atherosclerosis and suggest that reduced SERPINH1 expression disrupts adventitial fibroblast function, contributing to ASCVD progression.
Collapse
Affiliation(s)
- Lauren E Fries
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Allen Chung
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Hyun K Chang
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Timothy L Yuan
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Robert C Bauer
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| |
Collapse
|
7
|
Durazzo M, Ferro A, Navarro-Tableros VM, Gaido A, Fornengo P, Altruda F, Romagnoli R, Moestrup SK, Calvo PL, Fagoonee S. Current Treatment Regimens and Promising Molecular Therapies for Chronic Hepatobiliary Diseases. Biomolecules 2025; 15:121. [PMID: 39858515 PMCID: PMC11763965 DOI: 10.3390/biom15010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Chronic hepatobiliary damage progressively leads to fibrosis, which may evolve into cirrhosis and/or hepatocellular carcinoma. The fight against the increasing incidence of liver-related morbidity and mortality is challenged by a lack of clinically validated early-stage biomarkers and the limited availability of effective anti-fibrotic therapies. Current research is focused on uncovering the pathogenetic mechanisms that drive liver fibrosis. Drugs targeting molecular pathways involved in chronic hepatobiliary diseases, such as inflammation, hepatic stellate cell activation and proliferation, and extracellular matrix production, are being developed. Etiology-specific treatments, such as those for hepatitis B and C viruses, are already in clinical use, and efforts to develop new, targeted therapies for other chronic hepatobiliary diseases are ongoing. In this review, we highlight the major molecular changes occurring in patients affected by metabolic dysfunction-associated steatotic liver disease, viral hepatitis (Delta virus), and autoimmune chronic liver diseases (autoimmune hepatitis, primary biliary cholangitis, and primary sclerosing cholangitis). Further, we describe how this knowledge is linked to current molecular therapies as well as ongoing preclinical and clinical research on novel targeting strategies, including nucleic acid-, mesenchymal stromal/stem cell-, and extracellular vesicle-based options. Much clinical development is obviously still missing, but the plethora of promising potential treatment strategies in chronic hepatobiliary diseases holds promise for a future reversal of the current increase in morbidity and mortality in this group of patients.
Collapse
Affiliation(s)
- Marilena Durazzo
- Department of Medical Sciences, University of Turin, C.so A.M. Dogliotti 14, 10126 Turin, Italy; (M.D.); (A.F.); (A.G.); (P.F.)
| | - Arianna Ferro
- Department of Medical Sciences, University of Turin, C.so A.M. Dogliotti 14, 10126 Turin, Italy; (M.D.); (A.F.); (A.G.); (P.F.)
| | - Victor Manuel Navarro-Tableros
- 2i3T, Società per la Gestione dell’Incubatore di Imprese e per il Trasferimento Tecnologico, University of Turin, 10126 Turin, Italy;
| | - Andrea Gaido
- Department of Medical Sciences, University of Turin, C.so A.M. Dogliotti 14, 10126 Turin, Italy; (M.D.); (A.F.); (A.G.); (P.F.)
| | - Paolo Fornengo
- Department of Medical Sciences, University of Turin, C.so A.M. Dogliotti 14, 10126 Turin, Italy; (M.D.); (A.F.); (A.G.); (P.F.)
| | - Fiorella Altruda
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre “Guido Tarone”, University of Turin, 10126 Turin, Italy;
| | - Renato Romagnoli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, University of Turin, Corso Bramante 88-90, 10126 Turin, Italy;
| | - Søren K. Moestrup
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
- Department of Clinical Biochemistry, Aarhus University Hospital, 8000 Aarhus, Denmark
| | - Pier Luigi Calvo
- Pediatric Gastroenterology Unit, Regina Margherita Children’s Hospital, Città della Salute e della Scienza, 10126 Turin, Italy;
| | - Sharmila Fagoonee
- Institute for Biostructure and Bioimaging, National Research Council, Molecular Biotechnology Centre “Guido Tarone”, 10126 Turin, Italy
| |
Collapse
|
8
|
Zhao L, Tang H, Cheng Z. Pharmacotherapy of Liver Fibrosis and Hepatitis: Recent Advances. Pharmaceuticals (Basel) 2024; 17:1724. [PMID: 39770566 PMCID: PMC11677259 DOI: 10.3390/ph17121724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 01/03/2025] Open
Abstract
Liver fibrosis is a progressive scarring process primarily caused by chronic inflammation and injury, often closely associated with viral hepatitis, alcoholic liver disease, metabolic dysfunction-associated steatotic liver disease (MASLD), drug-induced liver injury, and autoimmune liver disease (AILD). Currently, there are very few clinical antifibrotic drugs available, and effective targeted therapy is lacking. Recently, emerging antifibrotic drugs and immunomodulators have shown promising results in animal studies, and some have entered clinical research phases. This review aims to systematically review the molecular mechanisms underlying liver fibrosis, focusing on advancements in drug treatments for hepatic fibrosis. Furthermore, since liver fibrosis is a progression or endpoint of many diseases, it is crucial to address the etiological treatment and secondary prevention for liver fibrosis. We will also review the pharmacological treatments available for common hepatitis leading to liver fibrosis.
Collapse
Affiliation(s)
- Liangtao Zhao
- Hepato-Pancreato-Biliary Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Haolan Tang
- School of Medicine, Southeast University, Nanjing 210009, China;
| | - Zhangjun Cheng
- Hepato-Pancreato-Biliary Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China;
| |
Collapse
|
9
|
Dinesh NEH, Campeau PM, Reinhardt DP. The integral role of fibronectin in skeletal morphogenesis and pathogenesis. Matrix Biol 2024; 134:23-29. [PMID: 39232994 DOI: 10.1016/j.matbio.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Fibronectin (FN) serves as a critical organizer of extracellular matrix networks in two principal isoforms, the plasma FN and the cellular FN. While FN's pivotal role in various organ systems, including the blood vasculature, is well-established, its contribution to the development of the skeletal system is much less explored. Furthermore, the pathomechanisms of spondyloepiphyseal dysplasia caused by FN mutations remain elusive. In this minireview, we discuss findings from our recent two studies using i) an iPSC-based cell culture model to explore how FN mutations in spondyloepiphyseal dysplasia impact mesenchymal cell differentiation into chondrocytes and ii) conditional FN knockout mouse models to determine the physiological roles of FN isoforms during postnatal skeletal development. The data revealed that FN mutations cause severe intracellular and matrix defects in mesenchymal cells and impair their ability to differentiate into chondrocytes. The findings further demonstrate the important roles of both FN isoforms in orchestrating regulated chondrogenesis during skeletal development. We critically discuss the findings in the context of the existing literature.
Collapse
Affiliation(s)
- Neha E H Dinesh
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | | | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
10
|
Zheng B, Zhang X, Kong X, Li J, Huang B, Li H, Ji Z, Wei X, Tao S, Shan Z, Ling Z, Liu J, Chen J, Zhao F. S1P regulates intervertebral disc aging by mediating endoplasmic reticulum-mitochondrial calcium ion homeostasis. JCI Insight 2024; 9:e177789. [PMID: 39316443 PMCID: PMC11601718 DOI: 10.1172/jci.insight.177789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/18/2024] [Indexed: 09/26/2024] Open
Abstract
As the aging process progresses, age-related intervertebral disc degeneration (IVDD) is becoming an emerging public health issue. Site-1 protease (S1P) has recently been found to be associated with abnormal spinal development in patients with mutations and has multiple biological functions. Here, we discovered a reduction of S1P in degenerated and aging intervertebral discs, primarily regulated by DNA methylation. Furthermore, through drug treatment and siRNA-mediated S1P knockdown, nucleus pulposus cells were more prone to exhibit degenerative and aging phenotypes. Conditional KO of S1P in mice resulted in spinal developmental abnormalities and premature aging. Mechanistically, S1P deficiency impeded COP II-mediated transport vesicle formation, which leads to protein retention in the endoplasmic reticulum (ER) and subsequently ER distension. ER distension increased the contact between the ER and mitochondria, disrupting ER-to-mitochondria calcium flow and resulting in mitochondrial dysfunction and energy metabolism disturbance. Finally, using 2-APB to inhibit calcium ion channels and the senolytic drug dasatinib and quercetin (D + Q) partially rescued the aging and degenerative phenotypes caused by S1P deficiency. In conclusion, our findings suggest that S1P is a critical factor in causing IVDD in the process of aging and highlight the potential of targeting S1P as a therapeutic approach for age-related IVDD.
Collapse
Affiliation(s)
- Bingjie Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuyang Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiangxi Kong
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jie Li
- Department of Orthopaedic Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo, China
| | - Bao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hui Li
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhongyin Ji
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaoan Wei
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Siyue Tao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhi Shan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zemin Ling
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Junhui Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jian Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fengdong Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Naba A. Mechanisms of assembly and remodelling of the extracellular matrix. Nat Rev Mol Cell Biol 2024; 25:865-885. [PMID: 39223427 PMCID: PMC11931590 DOI: 10.1038/s41580-024-00767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
The extracellular matrix (ECM) is the complex meshwork of proteins and glycans that forms the scaffold that surrounds and supports cells. It exerts key roles in all aspects of metazoan physiology, from conferring physical and mechanical properties on tissues and organs to modulating cellular processes such as proliferation, differentiation and migration. Understanding the mechanisms that orchestrate the assembly of the ECM scaffold is thus crucial to understand ECM functions in health and disease. This Review discusses novel insights into the compositional diversity of matrisome components and the mechanisms that lead to tissue-specific assemblies and architectures tailored to support specific functions. The Review then highlights recently discovered mechanisms, including post-translational modifications and metabolic pathways such as amino acid availability and the circadian clock, that modulate ECM secretion, assembly and remodelling in homeostasis and human diseases. Last, the Review explores the potential of 'matritherapies', that is, strategies to normalize ECM composition and architecture to achieve a therapeutic benefit.
Collapse
Affiliation(s)
- Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
12
|
Shi Y, He Y, Li Y, Zhang M, Liu Y, Wang H, Shen Z, Zhao X, Wang R, Ma T, Yang P, Chen J. Downregulation of heat shock protein 47 caused lysosomal dysfunction leading to excessive chondrocyte apoptosis. Exp Cell Res 2024; 443:114294. [PMID: 39447624 DOI: 10.1016/j.yexcr.2024.114294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Heat shock protein 47 (HSP47) is a collagen-specific chaperone present in several regions of the endoplasmic reticulum and cytoplasm. Elevated HSP47 expression in cells causes various cancers and fibrotic disorders. However, the consequences of HSP47 downregulation leading to chondrocyte death, as well as the underlying pathways, remain largely unclear. This study presents the first experimental evidence of the localization of HSP47 on lysosomes. Additionally, it successfully designed and generated shRNA HSP47 target sequences to suppress the expression of HSP47 in ATDC5 chondrocytes using lentiviral vectors. By employing a chondrocyte model that has undergone stable downregulation of HSP47, we observed that HSP47 downregulation in chondrocytes, disturbs the acidic homeostatic environment of chondrocyte lysosomes, causes hydrolytic enzyme activity dysregulation, impairs the lysosome-mediated autophagy-lysosome pathway, and causes abnormal expression of lysosomal morphology, number, and functional effector proteins. This implies the significance of the presence of HSP47 in maintaining proper lysosomal function. Significantly, the inhibitor CA-074 Me, which can restore the dysfunction of lysosomes, successfully reversed the negative effects of HSP47 on the autophagy-lysosomal pathway and partially reduced the occurrence of excessive cell death in chondrocytes. This suggests that maintaining proper lysosomal function is crucial for preventing HSP47-induced apoptosis in chondrocytes. The existence of HSP47 is crucial for preserving optimal lysosomal function and autophagic flux, while also inhibiting excessive apoptosis in ATDC5 chondrocytes.
Collapse
Affiliation(s)
- Yawen Shi
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Ying He
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Yanan Li
- School of Energy and Power Engineering, Xi'an Jiaotong University, Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi'an, Shaanxi, 710049, China
| | - Meng Zhang
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Yinan Liu
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Hui Wang
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Zhiran Shen
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Xiaoru Zhao
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Rui Wang
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China; Xi'an No. 3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, China
| | - Tianyou Ma
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Pinglin Yang
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.
| | - Jinghong Chen
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
13
|
Rajalekshmi R, Rai V, Agrawal DK. Deciphering Collagen Phenotype Dynamics Regulators: Insights from In-Silico Analysis. JOURNAL OF BIOINFORMATICS AND SYSTEMS BIOLOGY : OPEN ACCESS 2024; 7:169-181. [PMID: 39484658 PMCID: PMC11526781 DOI: 10.26502/jbsb.5107089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Collagen (Col) types I and III are integral components in wound healing and tissue regeneration, influencing tissue development, homeostasis, and related pathologies. Col I and Col III expression changes during different stages of wound healing and understanding the regulation of collagen phenotype determination is crucial for unraveling the complexities of these processes. Transcription factors and microRNAs, directly and indirectly, play a critical role in regulating collagen expression, however, a comprehensive understanding of the factors regulating Col I and III phenotypes remains elusive. This critically analyzed published reports with focuses on various factors regulating the expression of Col I and Col III at the transcriptional and translational levels. We performed bioinformatics analysis with an input of proinflammatory mediators, growth factors, elastases, and matrix metalloproteinases and predicted transcription factors and microRNAs involved in the regulation of collagen expression. Network analysis revealed an interaction between genes, transcription factors, and microRNAs and provided a holistic view of the regulatory landscape governing collagen expression and unveils intricate interconnections. This analysis lays a founda-tional framework for guiding future research and therapeutic interventions to promote extracellular matrix remodeling, wound healing, and tissue regeneration after an injury by modulating collagen expression. In essence, this scientific groundwork offers a comprehensive exploration of the regulatory dynamics in collagen synthesis, serving as a valuable resource for advancing both basic research and clinical interventions in tissue repair.
Collapse
Affiliation(s)
- Resmi Rajalekshmi
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766 USA
| | - Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766 USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766 USA
| |
Collapse
|
14
|
Kot A, Chun C, Martin JH, Wachtell D, Hudson D, Weis M, Marks H, Srivastava S, Eyre DR, Duran I, Zieba J, Krakow D. Loss of the long form of Plod2 phenocopies contractures of Bruck syndrome-osteogenesis imperfecta. J Bone Miner Res 2024; 39:1240-1252. [PMID: 39088537 PMCID: PMC11371901 DOI: 10.1093/jbmr/zjae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/03/2024]
Abstract
Bruck syndrome is an autosomal recessive form of osteogenesis imperfecta caused by biallelic variants in PLOD2 or FKBP10 and is characterized by joint contractures, bone fragility, short stature, and scoliosis. PLOD2 encodes LH2, which hydroxylates type I collagen telopeptide lysines, a critical step for collagen crosslinking. The Plod2 global knockout mouse model is limited by early embryonic lethality, and thus, the role of PLOD2 in skeletogenesis is not well understood. We generated a novel Plod2 mouse line modeling a variant identified in two unrelated individuals with Bruck syndrome: PLOD2 c.1559dupC, predicting a frameshift and loss of the long isoform LH2b. In the mouse, the duplication led to loss of LH2b mRNA as well as significantly reduced total LH2 protein. This model, Plod2fs/fs, survived up to E18.5 although in non-Mendelian genotype frequencies. The homozygous frameshift model recapitulated the joint contractures seen in Bruck syndrome and had indications of absent type I collagen telopeptide lysine hydroxylation in bone. Genetically labeling tendons with Scleraxis-GFP in Plod2fs/fs mice revealed the loss of extensor tendons in the forelimb by E18.5, and developmental studies showed extensor tendons developed through E14.5 but were absent starting at E16.5. Second harmonic generation showed abnormal tendon type I collagen fiber organization, suggesting structurally abnormal tendons. Characterization of the skeleton by μCT and Raman spectroscopy showed normal bone mineralization levels. This work highlights the importance of properly crosslinked type I collagen in tendon and bone, providing a promising new mouse model to further our understanding of Bruck syndrome.
Collapse
Affiliation(s)
- Alexander Kot
- Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
- Human Genetics, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Cora Chun
- Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Jorge H Martin
- Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Davis Wachtell
- Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - David Hudson
- Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195, United States
| | - MaryAnn Weis
- Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195, United States
| | - Haley Marks
- California NanoSystems Institute, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Siddharth Srivastava
- Materials Science and Engineering, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - David R Eyre
- Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195, United States
| | - Ivan Duran
- Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
- Laboratory of Skeletal Biomedicine, IBIMA Plataforma BIONAND and Department of Cell Biology, Genetics and Physiology, University of Málaga, Málaga, 29071, Spain
| | - Jennifer Zieba
- Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Deborah Krakow
- Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
- Human Genetics, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
- Pediatrics, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
- Obstetrics and Gynecology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
15
|
Ma Y, Zhang J, Wei C, Wang F, Ji H, Zhao J, Wang D, Zhang X, Tang D. Identification and experimental verification of a biomarker by combining the unfolded protein response with the immune cells in colon cancer. BMC Cancer 2024; 24:978. [PMID: 39118103 PMCID: PMC11311949 DOI: 10.1186/s12885-024-12730-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The unfolded protein response (UPR) is associated with immune cells that regulate the biological behavior of tumors. This article aims to combine UPR-associated genes with immune cells to find a prognostic marker and to verify its connection to the UPR. METHODS Univariate cox analysis was used to screen prognostically relevant UPRs and further screened for key UPRs among them by machine learning. ssGSEA was used to calculate immune cell abundance. Univariate cox analysis was used to screen for prognostically relevant immune cells. Multivariate cox analysis was used to calculate UPR_score and Tumor Immune Microenvironment score (TIME_score). WGCNA was used to screen UPR-Immune-related (UI-related) genes. Consensus clustering analysis was used to classify patients into molecular subtype. Based on the UI-related genes, we classified colon adenocarcinoma (COAD) samples by cluster analysis. Single-cell analysis was used to analyze the role of UI-related genes. We detected the function of TIMP1 by cell counting and transwell. Immunoblotting was used to detect whether TIMP1 was regulated by key UPR genes. RESULTS Combined UPR-related genes and immune cells can determine the prognosis of COAD patients. Cluster analysis showed that UI-related genes were associated with clinical features of COAD. Single-cell analysis revealed that UI-related genes may act through stromal cells. We defined three key UI-related genes by machine learning algorithms. Finally, we found that TIMP1, regulated by key genes of UPR, promoted colon cancer proliferation and metastasis. CONCLUSIONS We found that TIMP1 was a prognostic marker and experimentally confirmed that TIMP1 was regulated by key genes of UPR.
Collapse
Affiliation(s)
- Yichao Ma
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Jingqiu Zhang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Chen Wei
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Fei Wang
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Northern Jiangsu People's Hospital, Yangzhou, 116044, Liaoning, P.R. China
| | - Hao Ji
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Jiahao Zhao
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, China
- Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, 225001, China
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Northern Jiangsu People's Hospital, Yangzhou, 116044, Liaoning, P.R. China
- The Yangzhou School of Clinical Medicine of Nanjing Medical University, Northern Jiangsu People's Hospital, Yangzhou, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
- The Yangzhou Clinical Medical College of Xuzhou Medical University, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Xinyue Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, China.
- Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, 225001, China.
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Northern Jiangsu People's Hospital, Yangzhou, 116044, Liaoning, P.R. China.
- The Yangzhou School of Clinical Medicine of Nanjing Medical University, Northern Jiangsu People's Hospital, Yangzhou, China.
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital, Yangzhou, China.
- The Yangzhou Clinical Medical College of Xuzhou Medical University, Northern Jiangsu People's Hospital, Yangzhou, China.
| |
Collapse
|
16
|
Herbert A. Osteogenesis imperfecta type 10 and the cellular scaffolds underlying common immunological diseases. Genes Immun 2024; 25:265-276. [PMID: 38811682 DOI: 10.1038/s41435-024-00277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
Osteogenesis imperfecta type 10 (OI10) is caused by loss of function codon variants in the gene SERPINH1 that encodes heat shock protein 47 (HSP47), rather than in a gene specifying bone formation. The HSP47 variants disrupt the folding of both collagen and the endonuclease IRE1α (inositol-requiring enzyme 1α) that splices X-Box Binding Protein 1 (XBP1) mRNA. Besides impairing bone development, variants likely affect osteoclast differentiation. Three distinct biochemical scaffold play key roles in the differentiation and regulated cell death of osteoclasts. These scaffolds consist of non-templated protein modifications, ordered lipid arrays, and protein filaments. The scaffold components are specified genetically, but assemble in response to extracellular perturbagens, pathogens, and left-handed Z-RNA helices encoded genomically by flipons. The outcomes depend on interactions between RIPK1, RIPK3, TRIF, and ZBP1 through short interaction motifs called RHIMs. The causal HSP47 nonsynonymous substitutions occur in a novel variant leucine repeat region (vLRR) that are distantly related to RHIMs. Other vLRR protein variants are causal for a variety of different mendelian diseases. The same scaffolds that drive mendelian pathology are associated with many other complex disease outcomes. Their assembly is triggered dynamically by flipons and other context-specific switches rather than by causal, mendelian, codon variants.
Collapse
Affiliation(s)
- Alan Herbert
- InsideOutBio, 42 8th Street, Charlestown, MA, USA.
| |
Collapse
|
17
|
Xia S, Liu D, Jiang K, Cao M, Lou Z, Cheng R, Yi J, Yin A, Jiang Y, Cheng K, Weng W, Shi B, Tang B. Photothermal driven BMSCs osteogenesis and M2 macrophage polarization on polydopamine-coated Ti 3C 2 nanosheets/poly(vinylidene fluoride trifluoroethylene) nanocomposite coatings. Mater Today Bio 2024; 27:101156. [PMID: 39081463 PMCID: PMC11287002 DOI: 10.1016/j.mtbio.2024.101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
Mild thermal stimulation plays an active role in bone tissue repair and regeneration. In this work, a bioactive polydopamine/Ti3C2/poly(vinylidene fluoride trifluoroethylene) (PDA/Ti3C2/P(VDF-TrFE)) nanocomposite coating with excellent near-infrared light (NIR)-triggered photothermal effect was designed to improve the osteogenic ability of implants. By incorporating dopamine (DA)-modified Ti3C2 nanosheets into the P(VDF-TrFE) matrix and combining them with alkali initiated in situ polymerization, the resulting PDA/Ti3C2/P(VDF-TrFE) nanocomposite coating gained high adhesion strength on Ti substrate, excellent tribological and corrosion resistance properties, which was quite important for clinical application of implant coatings. Cell biology experiments showed that NIR-triggered mild thermal stimulation on the coating surface promoted cell spreading and growth of BMSCs, and also greatly upregulated the osteogenic markers, including Runt-Related Transcription Factor 2 (RUNX2), alkaline phosphatase (ALP), osteopontin (OPN), osteocalcin (OCN). Simultaneously, the synthesis of heat shock protein 47 (HSP47) was significantly promoted by the mild thermal stimulation, which strengthened the specific interaction between HSP47 and collagen Ⅰ (COL-Ⅰ), thereby activating the integrin-mediated MEK/ERK osteogenic differentiation signaling pathway. In addition, the results also showed that the mild thermal stimulation induced the polarization of macrophages towards M2 phenotype, which can attenuate the inflammatory response of injured bone tissue. Antibacterial results indicated that the coating exhibited an outstanding antibacterial ability against S. aureus and E. coli. Conceivably, the versatile implant bioactive coatings developed in this work will show great application potential for implant osseointegration.
Collapse
Affiliation(s)
- Sanqiang Xia
- School of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
- The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Dun Liu
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Kanling Jiang
- The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Miao Cao
- School of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Zhenqi Lou
- The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Ruobing Cheng
- School of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Jie Yi
- School of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Anlin Yin
- School of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Yi Jiang
- The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Benlong Shi
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Bolin Tang
- School of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
- Nanotechnology Research Institute, G60 STI Valley Industry & Innovation Institute, Jiaxing University, Jiaxing, 314001, China
| |
Collapse
|
18
|
Shi R, Yu R, Lian F, Zheng Y, Feng S, Li C, Zheng X. Targeting HSP47 for cancer treatment. Anticancer Drugs 2024; 35:623-637. [PMID: 38718070 DOI: 10.1097/cad.0000000000001612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Heat shock protein 47 (HSP47) serves as an endoplasmic reticulum residing collagen-specific chaperone and plays an important role in collagen biosynthesis and structural assembly. HSP47 is encoded by the SERPINH1 gene, which is located on chromosome 11q13.5, one of the most frequently amplified regions in human cancers. The expression of HSP47 is regulated by multiple cellular factors, including cytokines, transcription factors, microRNAs, and circular RNAs. HSP47 is frequently upregulated in a variety of cancers and plays an important role in tumor progression. HSP47 promotes tumor stemness, angiogenesis, growth, epithelial-mesenchymal transition, and metastatic capacity. HSP47 also regulates the efficacy of tumor therapies, such as chemotherapy, radiotherapy, and immunotherapy. Inhibition of HSP47 expression has antitumor effects, suggesting that targeting HSP47 is a feasible strategy for cancer treatment. In this review, we highlight the function and expression of regulatory mechanisms of HSP47 in cancer progression and point out the potential development of therapeutic strategies in targeting HSP47 in the future.
Collapse
Affiliation(s)
- Run Shi
- School of Medicine, Pingdingshan University, Pingdingshan, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Khan ES, Däinghaus T. HSP47 in human diseases: Navigating pathophysiology, diagnosis and therapy. Clin Transl Med 2024; 14:e1755. [PMID: 39135385 PMCID: PMC11319607 DOI: 10.1002/ctm2.1755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 08/16/2024] Open
Abstract
Heat shock protein 47 (HSP47) is a chaperone protein responsible for regulating collagen maturation and transport, directly impacting collagen synthesis levels. Aberrant HSP47 expression or malfunction has been associated with collagen-related disorders, most notably fibrosis. Recent reports have uncovered new functions of HSP47 in various cellular processes. Hsp47 dysregulation in these alternative roles has been linked to various diseases, such as cancer, autoimmune and neurodegenerative disorders, thereby highlighting its potential as both a diagnostic biomarker and a therapeutic target. In this review, we discuss the pathophysiological roles of HSP47 in human diseases, its potential as a diagnostic tool, clinical screening techniques and its role as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Essak. S. Khan
- Posttranscriptional Gene RegulationCancer Research and Experimental HemostasisUniversity Medical Center Mainz (UMCM)MainzGermany
- Center for Thrombosis and Hemostasis (CTH)UMCMMainzGermany
- German Consortium for Translational Cancer Research (DKTK)DKFZ Frankfurt‐MainzFrankfurt am MainGermany
| | - Tobias Däinghaus
- Posttranscriptional Gene RegulationCancer Research and Experimental HemostasisUniversity Medical Center Mainz (UMCM)MainzGermany
- Center for Thrombosis and Hemostasis (CTH)UMCMMainzGermany
| |
Collapse
|
20
|
Wang YJ, Di XJ, Zhang PP, Chen X, Williams MP, Han DY, Nashmi R, Henderson BJ, Moss FJ, Mu TW. Hsp47 promotes biogenesis of multi-subunit neuroreceptors in the endoplasmic reticulum. eLife 2024; 13:e84798. [PMID: 38963323 PMCID: PMC11257679 DOI: 10.7554/elife.84798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.
Collapse
Affiliation(s)
- Ya-Juan Wang
- Department of Physiology and Biophysics, Case Western Reserve UniversityClevelandUnited States
| | - Xiao-Jing Di
- Department of Physiology and Biophysics, Case Western Reserve UniversityClevelandUnited States
| | - Pei-Pei Zhang
- Department of Physiology and Biophysics, Case Western Reserve UniversityClevelandUnited States
| | - Xi Chen
- Department of Physiology and Biophysics, Case Western Reserve UniversityClevelandUnited States
| | - Marnie P Williams
- Department of Physiology and Biophysics, Case Western Reserve UniversityClevelandUnited States
| | - Dong-Yun Han
- Department of Physiology and Biophysics, Case Western Reserve UniversityClevelandUnited States
| | - Raad Nashmi
- Department of Biology, University of VictoriaVictoriaCanada
| | - Brandon J Henderson
- Department of Biomedical Sciences, Marshall UniversityHuntingtonUnited States
| | - Fraser J Moss
- Department of Physiology and Biophysics, Case Western Reserve UniversityClevelandUnited States
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, Case Western Reserve UniversityClevelandUnited States
| |
Collapse
|
21
|
Sun Z, Ge Y, Cai X, Liu Q, Yang Z, Chen X, Zheng Z. A non-covalent binding strategy for the stabilization of fish collagen triple helices to promote its applications. Food Hydrocoll 2024; 152:109896. [DOI: 10.1016/j.foodhyd.2024.109896] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
22
|
Janciauskiene S, Lechowicz U, Pelc M, Olejnicka B, Chorostowska-Wynimko J. Diagnostic and therapeutic value of human serpin family proteins. Biomed Pharmacother 2024; 175:116618. [PMID: 38678961 DOI: 10.1016/j.biopha.2024.116618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
SERPIN (serine proteinase inhibitors) is an acronym for the superfamily of structurally similar proteins found in animals, plants, bacteria, viruses, and archaea. Over 1500 SERPINs are known in nature, while only 37 SERPINs are found in humans, which participate in inflammation, coagulation, angiogenesis, cell viability, and other pathophysiological processes. Both qualitative or quantitative deficiencies or overexpression and/or abnormal accumulation of SERPIN can lead to diseases commonly referred to as "serpinopathies". Hence, strategies involving SERPIN supplementation, elimination, or correction are utilized and/or under consideration. In this review, we discuss relationships between certain SERPINs and diseases as well as putative strategies for the clinical explorations of SERPINs.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany; Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland
| | - Urszula Lechowicz
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland
| | - Magdalena Pelc
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland
| | - Beata Olejnicka
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland.
| |
Collapse
|
23
|
Zhou Z, Zhang Y, Zeng Y, Yang D, Mo J, Zheng Z, Zhang Y, Xiao P, Zhong X, Yan W. Effects of Nanomaterials on Synthesis and Degradation of the Extracellular Matrix. ACS NANO 2024; 18:7688-7710. [PMID: 38436232 DOI: 10.1021/acsnano.3c09954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Extracellular matrix (ECM) remodeling is accompanied by the continuous synthesis and degradation of the ECM components. This dynamic process plays an important role in guiding cell adhesion, migration, proliferation, and differentiation, as well as in tissue development, body repair, and maintenance of homeostasis. Nanomaterials, due to their photoelectric and catalytic properties and special structure, have garnered much attention in biomedical fields for use in processes such as tissue engineering and disease treatment. Nanomaterials can reshape the cell microenvironment by changing the synthesis and degradation of ECM-related proteins, thereby indirectly changing the behavior of the surrounding cells. This review focuses on the regulatory role of nanomaterials in the process of cell synthesis of different ECM-related proteins and extracellular protease. We discuss influencing factors and possible related mechanisms of nanomaterials in ECM remodeling, which may provide different insights into the design and development of nanomaterials for the treatment of ECM disorder-related diseases.
Collapse
Affiliation(s)
- Zhiyan Zhou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanli Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510260, China
| | - Yuting Zeng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dehong Yang
- Department of Orthopedics - Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiayao Mo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ziting Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuxin Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ping Xiao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xincen Zhong
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenjuan Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
24
|
Ham SY, Pyo MJ, Kang M, Kim YS, Lee DH, Chung JH, Lee ST. HSP47 Increases the Expression of Type I Collagen in Fibroblasts through IRE1α Activation, XBP1 Splicing, and Nuclear Translocation of β-Catenin. Cells 2024; 13:527. [PMID: 38534372 PMCID: PMC10969015 DOI: 10.3390/cells13060527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Heat shock protein 47 (HSP47), also known as SERPINH1, functions as a collagen-specific molecular chaperone protein essential for the formation and stabilization of the collagen triple helix. Here, we delved into the regulatory pathways governed by HSP47, shedding light on collagen homeostasis. Our investigation revealed a significant reduction in HSP47 mRNA levels in the skin tissue of older mice as compared to their younger counterparts. The augmented expression of HSP47 employing lentivirus infection in fibroblasts resulted in an increased secretion of type I collagen. Intriguingly, the elevated expression of HSP47 in fibroblasts correlated with increased protein and mRNA levels of type I collagen. The exposure of fibroblasts to IRE1α RNase inhibitors resulted in the reduced manifestation of HSP47-induced type I collagen secretion and expression. Notably, HSP47-overexpressing fibroblasts exhibited increased XBP1 mRNA splicing. The overexpression of HSP47 or spliced XBP1 facilitated the nuclear translocation of β-catenin and transactivated a reporter harboring TCF binding sites on the promoter. Furthermore, the overexpression of HSP47 or spliced XBP1 or the augmentation of nuclear β-catenin through Wnt3a induced the expression of type I collagen. Our findings substantiate that HSP47 enhances type I collagen expression and secretion in fibroblasts by orchestrating a mechanism that involves an increase in nuclear β-catenin through IRE1α activation and XBP1 splicing. This study therefore presents potential avenues for an anti-skin-aging strategy targeting HSP47-mediated processes.
Collapse
Affiliation(s)
- So Young Ham
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (S.Y.H.); (M.J.P.)
| | - Min Ju Pyo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (S.Y.H.); (M.J.P.)
| | - Moonkyung Kang
- R&D Center, artiCure Inc., Daejeon 34134, Republic of Korea
| | - Yeon-Soo Kim
- R&D Center, artiCure Inc., Daejeon 34134, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (D.H.L.); (J.H.C.)
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (D.H.L.); (J.H.C.)
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
- Institute on Aging, Seoul National University, Seoul 03080, Republic of Korea
| | - Seung-Taek Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (S.Y.H.); (M.J.P.)
| |
Collapse
|
25
|
Pérez-Carrión MD, Posadas I, Ceña V. Nanoparticles and siRNA: A new era in therapeutics? Pharmacol Res 2024; 201:107102. [PMID: 38331236 DOI: 10.1016/j.phrs.2024.107102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Since its discovery in 1998, the use of small interfering RNA (siRNA) has been increasing in biomedical studies because of its ability to very selectively inhibit the expression of any target gene. Thus, siRNAs can be used to generate therapeutic compounds for different diseases, including those that are currently 'undruggable'. This has led siRNA-based therapeutic compounds to break into clinical settings, with them holding the promise to potentially revolutionise therapeutic approaches. To date, the United States Food and Drug Administration (FDA) have approved 5 compounds for treating different diseases including hypercholesterolemia, transthyretin-mediated amyloidosis (which leads to polyneuropathy), hepatic porphyria, and hyperoxaluria. This current article presents an overview of the molecular mechanisms involved in the selective pharmacological actions of siRNA-based compounds. It also describes the ongoing clinical trials of siRNA-based therapeutic compounds for hepatic diseases, pulmonary diseases, atherosclerosis, hypertriglyceridemia, transthyretin-mediated amyloidosis, and hyperoxaluria, kidney diseases, and haemophilia, as well as providing a description of FDA-approved siRNA therapies. Because of space constraints and to provide an otherwise comprehensive review, siRNA-based compounds applied to cancer therapies have been excluded. Finally, we discuss how the use of lipid-based nanoparticles to deliver siRNAs holds promise for selectively targeting mRNA-encoding proteins associated with the genesis of different diseases. Thus, siRNAs can help reduce the cellular levels of these proteins, thereby contributing to disease treatment. As consequence, a marked increase in the number of marketed siRNA-based medicines is expected in the next two decades, which will likely open up a new era of therapeutics.
Collapse
Affiliation(s)
- María Dolores Pérez-Carrión
- Unidad Asociada CSIC-UCLM Neurodeath. Instituto de Nanociencia Molecular (INAMOL). Universidad de Castilla-La Mancha, Albacete, Spain; CIBER, Instituto de Salud Carlos III, Madrid, Spain
| | - Inmaculada Posadas
- Unidad Asociada CSIC-UCLM Neurodeath. Instituto de Nanociencia Molecular (INAMOL). Universidad de Castilla-La Mancha, Albacete, Spain; CIBER, Instituto de Salud Carlos III, Madrid, Spain
| | - Valentín Ceña
- Unidad Asociada CSIC-UCLM Neurodeath. Instituto de Nanociencia Molecular (INAMOL). Universidad de Castilla-La Mancha, Albacete, Spain; CIBER, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
26
|
Wareham LK, Baratta RO, Del Buono BJ, Schlumpf E, Calkins DJ. Collagen in the central nervous system: contributions to neurodegeneration and promise as a therapeutic target. Mol Neurodegener 2024; 19:11. [PMID: 38273335 PMCID: PMC10809576 DOI: 10.1186/s13024-024-00704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
The extracellular matrix is a richly bioactive composition of substrates that provides biophysical stability, facilitates intercellular signaling, and both reflects and governs the physiological status of the local microenvironment. The matrix in the central nervous system (CNS) is far from simply an inert scaffold for mechanical support, instead conducting an active role in homeostasis and providing broad capacity for adaptation and remodeling in response to stress that otherwise would challenge equilibrium between neuronal, glial, and vascular elements. A major constituent is collagen, whose characteristic triple helical structure renders mechanical and biochemical stability to enable bidirectional crosstalk between matrix and resident cells. Multiple members of the collagen superfamily are critical to neuronal maturation and circuit formation, axon guidance, and synaptogenesis in the brain. In mature tissue, collagen interacts with other fibrous proteins and glycoproteins to sustain a three-dimensional medium through which complex networks of cells can communicate. While critical for matrix scaffolding, collagen in the CNS is also highly dynamic, with multiple binding sites for partnering matrix proteins, cell-surface receptors, and other ligands. These interactions are emerging as critical mediators of CNS disease and injury, particularly regarding changes in matrix stiffness, astrocyte recruitment and reactivity, and pro-inflammatory signaling in local microenvironments. Changes in the structure and/or deposition of collagen impact cellular signaling and tissue biomechanics in the brain, which in turn can alter cellular responses including antigenicity, angiogenesis, gliosis, and recruitment of immune-related cells. These factors, each involving matrix collagen, contribute to the limited capacity for regeneration of CNS tissue. Emerging therapeutics that attempt to rebuild the matrix using peptide fragments, including collagen-enriched scaffolds and mimetics, hold great potential to promote neural repair and regeneration. Recent evidence from our group and others indicates that repairing protease-degraded collagen helices with mimetic peptides helps restore CNS tissue and promote neuronal survival in a broad spectrum of degenerative conditions. Restoration likely involves bolstering matrix stiffness to reduce the potential for astrocyte reactivity and local inflammation as well as repairing inhibitory binding sites for immune-signaling ligands. Facilitating repair rather than endogenous replacement of collagen degraded by disease or injury may represent the next frontier in developing therapies based on protection, repair, and regeneration of neurons in the central nervous system.
Collapse
Affiliation(s)
- Lauren K Wareham
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute , Vanderbilt University Medical Center, 1161 21st Avenue S, 37232, Nashville, TN, USA
| | - Robert O Baratta
- Stuart Therapeutics, Inc., 411 SE Osceola St, 34994, Stuart, FL, USA
| | - Brian J Del Buono
- Stuart Therapeutics, Inc., 411 SE Osceola St, 34994, Stuart, FL, USA
| | - Eric Schlumpf
- Stuart Therapeutics, Inc., 411 SE Osceola St, 34994, Stuart, FL, USA
| | - David J Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute , Vanderbilt University Medical Center, 1161 21st Avenue S, 37232, Nashville, TN, USA
| |
Collapse
|
27
|
Boo YC. Insights into How Plant-Derived Extracts and Compounds Can Help in the Prevention and Treatment of Keloid Disease: Established and Emerging Therapeutic Targets. Int J Mol Sci 2024; 25:1235. [PMID: 38279232 PMCID: PMC10816582 DOI: 10.3390/ijms25021235] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Keloid is a disease in which fibroblasts abnormally proliferate and synthesize excessive amounts of extracellular matrix, including collagen and fibronectin, during the healing process of skin wounds, causing larger scars that exceed the boundaries of the original wound. Currently, surgical excision, cryotherapy, radiation, laser treatment, photodynamic therapy, pressure therapy, silicone gel sheeting, and pharmacotherapy are used alone or in combinations to treat this disease, but the outcomes are usually unsatisfactory. The purpose of this review is to examine whether natural products can help treat keloid disease. I introduce well-established therapeutic targets for this disease and various other emerging therapeutic targets that have been proposed based on the phenotypic difference between keloid-derived fibroblasts (KFs) and normal epidermal fibroblasts (NFs). We then present recent studies on the biological effects of various plant-derived extracts and compounds on KFs and NFs. Associated ex vivo, in vivo, and clinical studies are also presented. Finally, we discuss the mechanisms of action of the plant-derived extracts and compounds, the pros and cons, and the future tasks for natural product-based therapy for keloid disease, as compared with existing other therapies. Extracts of Astragalus membranaceus, Salvia miltiorrhiza, Aneilema keisak, Galla Chinensis, Lycium chinense, Physalis angulate, Allium sepa, and Camellia sinensis appear to modulate cell proliferation, migration, and/or extracellular matrix (ECM) production in KFs, supporting their therapeutic potential. Various phenolic compounds, terpenoids, alkaloids, and other plant-derived compounds could modulate different cell signaling pathways associated with the pathogenesis of keloids. For now, many studies are limited to in vitro experiments; additional research and development are needed to proceed to clinical trials. Many emerging therapeutic targets could accelerate the discovery of plant-derived substances for the prevention and treatment of keloid disease. I hope that this review will bridge past, present, and future research on this subject and provide insight into new therapeutic targets and pharmaceuticals, aiming for effective keloid treatment.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea;
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| |
Collapse
|
28
|
Shi W, Chen J, Zhao N, Xing Y, Liu S, Chen M, Fang W, Zhang T, Li L, Zhang H, Zhang M, Zeng X, Chen S, Wang S, Xie S, Deng W. Targeting heat shock protein 47 alleviated doxorubicin-induced cardiotoxicity and remodeling in mice through suppression of the NLRP3 inflammasome. J Mol Cell Cardiol 2024; 186:81-93. [PMID: 37995517 DOI: 10.1016/j.yjmcc.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
AIM Doxorubicin-induced cardiotoxicity (DIC) is an increasing problem, occurring in many cancer patients receiving anthracycline chemotherapy, ultimately leading to heart failure (HF). Unfortunately, DIC remains difficult to manage due to an ignorance regarding pathophysiological mechanisms. Our work aimed to evaluate the role of HSP47 in doxorubicin-induced HF, and to explore the molecular mechanisms. METHODS AND RESULTS Mice were exposed to multi-intraperitoneal injection of doxorubicin (DOX, 4mg/kg/week, for 6 weeks continuously) to produce DIC. HSP47 expression was significantly upregulated in serum and in heart tissue in DOX-treated mice and in isolated cardiomyocytes. Mice with cardiac-specific HSP47 overexpression and knockdown were generated using recombinant adeno-associated virus (rAVV9) injection. Importantly, cardiac-specific HSP47 overexpression exacerbated cardiac dysfunction in DIC, while HSP47 knockdown prevented DOX-induced cardiac dysfunction, cardiac atrophy and fibrosis in vivo and in vitro. Mechanistically, we identified that HSP47 directly interacted with IRE1α in cardiomyocytes. Furthermore, we provided powerful evidence that HSP47-IRE1α complex promoted TXNIP/NLRP3 inflammasome and reinforced USP1-mediated NLRP3 ubiquitination. Moreover, NLRP3 deficiency in vivo conspicuously abolished HSP47-mediated cardiac atrophy and fibrogenesis under DOX condition. CONCLUSION HSP47 was highly expressed in serum and cardiac tissue after doxorubicin administration. HSP47 contributed to long-term anthracycline chemotherapy-associated cardiac dysfunction in an NLRP3-dependent manner. HSP47 therefore represents a plausible target for future therapy of doxorubicin-induced HF.
Collapse
Affiliation(s)
- Wenke Shi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Jiaojiao Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Nan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Yun Xing
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Shiqiang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Mengya Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Wenxi Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Tong Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Lanlan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Heng Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Min Zhang
- Department of Endocrinology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, PR China
| | - Xiaofeng Zeng
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, PR China
| | - Si Chen
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, PR China
| | - Shasha Wang
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, PR China
| | - Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China.
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China.
| |
Collapse
|
29
|
Caon E, Forlano R, Mullish BH, Manousou P, Rombouts K. Liver sinusoidal cells in the diagnosis and treatment of liver diseases: Role of hepatic stellate cells. SINUSOIDAL CELLS IN LIVER DISEASES 2024:513-532. [DOI: 10.1016/b978-0-323-95262-0.00025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
30
|
Wang Q, Wang Z. Serpin family H member 1 and its related collagen gene network are the potential prognostic biomarkers and anticancer targets for glioma. J Biochem Mol Toxicol 2024; 38:e23541. [PMID: 37712121 DOI: 10.1002/jbt.23541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 08/02/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
Serpin family H member 1 (SERPINH1) is responsible for encoding the protein known as heat shock protein 47, which functions as a molecular chaperone specific to collagen (COL). This protein has been identified as a potential therapeutic target for COL-related disorders. In this study, we aimed to investigate the role of SERPINH1 in the tumorigenicity of gliomas. To achieve this, we utilized various bioinformatics tools to analyze gene expression, overall survival, protein-protein interactions, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and Gene Set Enrichment Analysis (GSEA). Based on The Cancer Genome Atlas database revealed that SERPINH1 and four COL family members (COL1A1, COL3A1, COL4A1, and COL4A2) expression are significantly upregulated in glioma tissues compared with normal nontumor tissues. GO, KEGG, and GSEA analyses exhibited that SERPINH1 is implicated in the establishment and degradation of COL-containing extracellular matrix (ECM), focal adhesion, and ECM-receptor interaction in glioma. SERPINH1 is an independent prognostic factor, exhibiting a positive association with the augmentation of neutrophils and macrophages, as well as the manifestation of immune checkpoint molecules within glioma. Experimental assessments conducted both in vitro and in vivo demonstrated that the suppression of SERPINH1 impeded the migratory, invasive, and proliferative capacities of glioma cells, while concurrently fostering cellular apoptosis. Consequently, SERPINH1 emerges as an oncogenic gene and an independent prognostic marker for glioma, potentially facilitating the advancement of immunotherapeutic interventions for the treatment of glioma.
Collapse
Affiliation(s)
- Qi Wang
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhe Wang
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
31
|
Shiroma R, Niyonzima YB, Kadokawa H. Denatured collagen in keratin layers and smooth muscles of teats with low or high teat apex scores in Holstein dairy cows. Anim Sci J 2024; 95:e13969. [PMID: 38923230 DOI: 10.1111/asj.13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
We hypothesized that teats with a teat apex score (TAS) of 4 on a 4-point scale would exhibit elevated levels of denatured collagen compared with teats with lower TAS. We procured keratin layer and smooth muscle samples from Holsteins with TAS ranging from 1 to 4, as well as from crossbred heifers (Japanese Black male and Holstein female) with TAS of 1. Teats with a TAS of 4 demonstrated increased total collagen content, higher amounts of type I collagen (the harder, thicker variant), and reduced amounts of type III collagen (the softer, thinner variant) compared with teats with lower TAS. Teats with TAS of 3 and 4 exhibited evidence of damaged collagen in smooth muscle layers compared with teats with TAS of 1. Additionally, we identified 47-kDa heat shock protein-positive fibroblasts in the smooth muscles of teats with TAS of 3 and 4. Therefore, the smooth muscle of teats with a TAS of 4 exhibited increased amounts of denatured collagen in comparison to teats with lower TAS.
Collapse
Affiliation(s)
- Ritsuki Shiroma
- Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken, Japan
| | - Yvan Bienvenu Niyonzima
- Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken, Japan
| | - Hiroya Kadokawa
- Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken, Japan
| |
Collapse
|
32
|
Sinha D, Nagy-Mehesz A, Simionescu D, Mayer JE, Vyavahare N. Pentagalloyl glucose-stabilized decellularized bovine jugular vein valved conduits as pulmonary conduit replacement. Acta Biomater 2023; 170:97-110. [PMID: 37619898 PMCID: PMC10592392 DOI: 10.1016/j.actbio.2023.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Congenital heart diseases (CHD) are one of the most frequently diagnosed congenital disorders, affecting approximately 40,000 live births annually in the United States. Out of the new patients diagnosed with CHD yearly, an estimated 2,500 patients require a substitute, non-native conduit artery to replace structures congenitally absent or hypoplastic. Devices used for conduit replacement encounter limitations exhibiting varying degrees of stiffness, calcification, susceptibility to infection, thrombosis, and a lack of implant growth capacity. Here, we report the functionality of pentagalloyl glucose (PGG) stabilized decellularized valved bovine jugular vein conduit (PGG-DBJVC). The PGG-DBJVC tissues demonstrated mechanical properties comparable to native and glutaraldehyde fixed tissues, while exhibiting resistance to both collagenase and elastase enzymatic degradation. Subcutaneous implantation of tissues established their biocompatibility and resistance to calcification, while implantation in sheep in the pulmonary position demonstrated adequate implant functionality, and repopulation of host cells, without excessive inflammation. In conclusion, this PGG-DBJVC device could be a favorable replacement option for pediatric patients, reducing the need for reoperations required with current devices. STATEMENT OF SIGNIFICANCE: Congenital Heart Disease (CHD) is a common congenital disorder affecting many newborns in the United States each year. The use of substitute conduit arteries is necessary for some patients with CHD who have missing or underdeveloped structures. Current conduit replacement devices have limitations, including stiffness, susceptibility to infection and thrombosis, and lack of implant growth capacity. Pentagalloyl glucose-stabilized bovine jugular vein valved tissue (PGG-DBJVC) offers a promising solution as it is resistant to calcification, and biocompatible. When implanted in rats and as pulmonary conduit replacement in sheep, the PGG-DBJVC demonstrated cellular infiltration without excessive inflammation, which could lead to remodeling and integration with host tissue and eliminate the need for replacement as the child grows.
Collapse
Affiliation(s)
- Dipasha Sinha
- Department of Bioengineering, College of Engineering, Computing and Applied Sciences, Clemson University, Clemson, South Carolina 29634, USA
| | - Agnes Nagy-Mehesz
- Department of Bioengineering, College of Engineering, Computing and Applied Sciences, Clemson University, Clemson, South Carolina 29634, USA
| | - Dan Simionescu
- Department of Bioengineering, College of Engineering, Computing and Applied Sciences, Clemson University, Clemson, South Carolina 29634, USA
| | - John E Mayer
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Naren Vyavahare
- Department of Bioengineering, College of Engineering, Computing and Applied Sciences, Clemson University, Clemson, South Carolina 29634, USA.
| |
Collapse
|
33
|
Ishikawa Y, Bonna A, Gould DB, Farndale RW. Local Net Charge State of Collagen Triple Helix Is a Determinant of FKBP22 Binding to Collagen III. Int J Mol Sci 2023; 24:15156. [PMID: 37894834 PMCID: PMC10607241 DOI: 10.3390/ijms242015156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Mutations in the FKBP14 gene encoding the endoplasmic reticulum resident collagen-related proline isomerase FK506 binding protein 22 kDa (FKBP22) result in kyphoscoliotic Ehlers-Danlos Syndrome (EDS), which is characterized by a broad phenotypic outcome. A plausible explanation for this outcome is that FKBP22 participates in the biosynthesis of subsets of collagen types: FKBP22 selectively binds to collagens III, IV, VI, and X, but not to collagens I, II, V, and XI. However, these binding mechanisms have never been explored, and they may underpin EDS subtype heterogeneity. Here, we used collagen Toolkit peptide libraries to investigate binding specificity. We observed that FKBP22 binding was distributed along the collagen helix. Further, it (1) was higher on collagen III than collagen II peptides and it (2) was correlated with a positive peptide charge. These findings begin to elucidate the mechanism by which FKBP22 interacts with collagen.
Collapse
Affiliation(s)
- Yoshihiro Ishikawa
- Department of Ophthalmology, University of California San Francisco, School of Medicine, San Francisco, CA 941583, USA
| | - Arkadiusz Bonna
- Department of Biochemistry, Downing Site, Cambridge CB2 1QW, UK
| | - Douglas B. Gould
- Department of Ophthalmology, University of California San Francisco, School of Medicine, San Francisco, CA 941583, USA
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
- Bakar Aging Research Institute, University of California, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|
34
|
Grover SP, Mackman N, Bendapudi PK. Heat shock protein 47 and venous thrombosis: letting sleeping bears lie. J Thromb Haemost 2023; 21:2648-2652. [PMID: 37473845 DOI: 10.1016/j.jtha.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Affiliation(s)
- Steven P Grover
- University of North Carolina Blood Research Center, The University of North Carolina at Chapel Hill, North Carolina, USA; Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill, North Carolina, USA.
| | - Nigel Mackman
- University of North Carolina Blood Research Center, The University of North Carolina at Chapel Hill, North Carolina, USA; Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill, North Carolina, USA
| | - Pavan K Bendapudi
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Division of Hematology and Blood Transfusion Service, Massachusetts General Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Center for the Development of Therapeutics, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
35
|
Qosa H, de Oliveira CHMC, Cizza G, Lawitz EJ, Colletti N, Wetherington J, Charles ED, Tirucherai GS. Pharmacokinetics, safety, and tolerability of BMS-986263, a lipid nanoparticle containing HSP47 siRNA, in participants with hepatic impairment. Clin Transl Sci 2023; 16:1791-1802. [PMID: 37654022 PMCID: PMC10582666 DOI: 10.1111/cts.13581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 09/02/2023] Open
Abstract
BMS-986263 is a retinoid-conjugated lipid nanoparticle delivering small interfering RNA designed to inhibit synthesis of HSP47 protein, a collagen-specific chaperone protein involved in fibrosis development. This is a phase I, open-label, two-part study evaluating pharmacokinetics and safety of BMS-986263 in participants with hepatic impairment (HI). Part 1 (n = 24) of this study enrolled two cohorts with mild and moderate HI and a separate cohort of age- and body mass index (BMI)-matched participants with normal hepatic function. Part 2 enrolled eight participants with severe HI and eight age- and BMI-matched participants with normal hepatic function. All participants received a single intravenous 90 mg BMS-986263 infusion. Compared with normal-matched participants, geometric mean area under the plasma concentration-time curve time zero to the time of the last quantifiable concentration (AUC(0-T) ) and AUC from zero to infinity (AUC(INF) ) of HSP47 siRNA were similar in participants with mild HI and 34% and 163% greater in those with moderate and severe HI, respectively, whereas the maximum plasma concentration was ~25% lower in mild and moderate HI groups but 58% higher in the severe HI group than in the normal group. Adverse events were reported by two of eight, four of eight, and three of eight participants with mild, moderate, or severe HI, respectively; none were reported in the normal-matched group. Overall, single-dose BMS-986263 was generally safe and well-tolerated and dose adjustment is not considered necessary for participants with mild or moderate HI. Although available data do not indicate that dose adjustment should be performed in patients with severe HI; the optimal posology of BMS-986263 in patients with severe HI may be determined later in its clinical development when additional data to establish exposure-safety/efficacy relationship becomes available.
Collapse
Affiliation(s)
| | | | | | - Eric J. Lawitz
- The Texas Liver Institute, University of Texas Health San AntonioSan AntonioTexasUSA
| | | | | | | | | |
Collapse
|
36
|
Luangmonkong T, Parichatikanond W, Olinga P. Targeting collagen homeostasis for the treatment of liver fibrosis: Opportunities and challenges. Biochem Pharmacol 2023; 215:115740. [PMID: 37567319 DOI: 10.1016/j.bcp.2023.115740] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Liver fibrosis is an excessive production, aberrant deposition, and deficit degradation of extracellular matrix (ECM). Patients with unresolved fibrosis ultimately undergo end-stage liver diseases. To date, the effective and safe strategy to cease fibrosis progression remains an unmet clinical need. Since collagens are the most abundant ECM protein which play an essential role in fibrogenesis, the suitable regulation of collagen homeostasis could be an effective strategy for the treatment of liver fibrosis. Therefore, this review provides a brief overview on the dysregulation of ECM homeostasis, focusing on collagens, in the pathogenesis of liver fibrosis. Most importantly, promising therapeutic mechanisms related to biosynthesis, deposition and extracellular interactions, and degradation of collagens, together with preclinical and clinical antifibrotic evidence of drugs affecting each target are orderly criticized. In addition, challenges for targeting collagen homeostasis in the treatment of liver fibrosis are discussed.
Collapse
Affiliation(s)
- Theerut Luangmonkong
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Thailand; Centre of Biopharmaceutical Science for Healthy Ageing (BSHA), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.
| | - Warisara Parichatikanond
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Thailand; Centre of Biopharmaceutical Science for Healthy Ageing (BSHA), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, The Netherlands
| |
Collapse
|
37
|
Sakamoto N, Okuno D, Tokito T, Yura H, Kido T, Ishimoto H, Tanaka Y, Mukae H. HSP47: A Therapeutic Target in Pulmonary Fibrosis. Biomedicines 2023; 11:2387. [PMID: 37760828 PMCID: PMC10525413 DOI: 10.3390/biomedicines11092387] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by a progressive decline in lung function and poor prognosis. The deposition of the extracellular matrix (ECM) by myofibroblasts contributes to the stiffening of lung tissue and impaired oxygen exchange in IPF. Type I collagen is the major ECM component and predominant collagen protein deposited in chronic fibrosis, suggesting that type I collagen could be a target of drugs for fibrosis treatment. Heat shock protein 47 (HSP47), encoded by the serpin peptidase inhibitor clade H, member 1 gene, is a stress-inducible collagen-binding protein. It is an endoplasmic reticulum-resident molecular chaperone essential for the correct folding of procollagen. HSP47 expression is increased in cellular and animal models of pulmonary fibrosis and correlates with pathological manifestations in human interstitial lung diseases. Various factors affect HSP47 expression directly or indirectly in pulmonary fibrosis models. Overall, understanding the relationship between HSP47 expression and pulmonary fibrosis may contribute to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Noriho Sakamoto
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Daisuke Okuno
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Takatomo Tokito
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Hirokazu Yura
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Takashi Kido
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Hiroshi Ishimoto
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, Nagasaki 852-8588, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| |
Collapse
|
38
|
Kanazawa Y, Miyachi R, Higuchi T, Sato H. Effects of Aging on Collagen in the Skeletal Muscle of Mice. Int J Mol Sci 2023; 24:13121. [PMID: 37685934 PMCID: PMC10487623 DOI: 10.3390/ijms241713121] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Aging affects several tissues in the body, including skeletal muscle. Multiple types of collagens are localized in the skeletal muscle and contribute to the maintenance of normal muscle structure and function. Since the effects of aging on muscle fibers vary by muscle fiber type, it is expected that the effects of aging on intramuscular collagen might be influenced by muscle fiber type. In this study, we examined the effect of aging on collagen levels in the soleus (slow-twitch muscle) and gastrocnemius (fast-twitch muscle) muscles of 3-, 10-, 24-, and 28-month-old male C57BL/6J mice using molecular and morphological analysis. It was found that aging increased collagen I, III, and VI gene expression and immunoreactivity in both slow- and fast-twitch muscles and collagen IV expression in slow-twitch muscles. However, collagen IV gene expression and immunoreactivity in fast-twitch muscle were unaffected by aging. In contrast, the expression of the collagen synthesis marker heat shock protein 47 in both slow- and fast-twitch muscles decreased with aging, while the expression of collagen degradation markers increased with aging. Overall, these results suggest that collagen gene expression and immunoreactivity are influenced by muscle fiber type and collagen type and that the balance between collagen synthesis and degradation tends to tilt toward degradation with aging.
Collapse
Affiliation(s)
- Yuji Kanazawa
- Department of Physical Therapy, Hokuriku University, Kanazawa 920-1180, Ishikawa, Japan;
| | - Ryo Miyachi
- Department of Physical Therapy, Hokuriku University, Kanazawa 920-1180, Ishikawa, Japan;
| | - Takashi Higuchi
- Department of Physical Therapy, Osaka University of Human Sciences, Settsu 566-8501, Osaka, Japan;
| | - Hiaki Sato
- Department of Medical Technology and Clinical Engineering, Hokuriku University, Kanazawa 920-1180, Ishikawa, Japan;
| |
Collapse
|
39
|
Lim MYT, Bernier NJ. Intergenerational plasticity to cycling high temperature and hypoxia affects offspring stress responsiveness and tolerance in zebrafish. J Exp Biol 2023; 226:jeb245583. [PMID: 37497728 PMCID: PMC10482009 DOI: 10.1242/jeb.245583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023]
Abstract
Predicted climate change-induced increases in heat waves and hypoxic events will have profound effects on fishes, yet the capacity of parents to alter offspring phenotype via non-genetic inheritance and buffer against these combined stressors is not clear. This study tested how prolonged adult zebrafish exposure to combined diel cycles of thermal stress and hypoxia affect offspring early survival and development, parental investment of cortisol and heat shock proteins (HSPs), larval offspring stress responses, and both parental and offspring heat and hypoxia tolerance. Parental exposure to the combined stressor did not affect fecundity, but increased mortality, produced smaller embryos and delayed hatching. The combined treatment also reduced maternal deposition of cortisol and increased embryo hsf1, hsp70a, HSP70, hsp90aa and HSP90 levels. In larvae, basal cortisol levels did not differ between treatments, but acute exposure to combined heat stress and hypoxia increased cortisol levels in control larvae with no effect on larvae from exposed parents. In contrast, whereas larval basal hsf1, hsp70a and hsp90aa levels differed between parental treatments, the combined acute stressor elicited similar transcriptional responses across treatments. Moreover, the combined acute stressor only induced a marked increase in HSP47 levels in the larvae derived from exposed parents. Finally, combined hypoxia and elevated temperatures increased both thermal and hypoxia tolerance in adults and conferred an increase in offspring thermal but not hypoxia tolerance. These results demonstrate that intergenerational acclimation to combined thermal stress and hypoxia elicit complex carryover effects on stress responsiveness and offspring tolerance with potential consequences for resilience.
Collapse
Affiliation(s)
- Michael Y.-T. Lim
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Nicholas J. Bernier
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
40
|
Jovanovic M, Mitra A, Besio R, Contento BM, Wong KW, Derkyi A, To M, Forlino A, Dale RK, Marini JC. Absence of TRIC-B from type XIV Osteogenesis Imperfecta osteoblasts alters cell adhesion and mitochondrial function - A multi-omics study. Matrix Biol 2023; 121:127-148. [PMID: 37348683 PMCID: PMC10634967 DOI: 10.1016/j.matbio.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Osteogenesis Imperfecta (OI) is a heritable collagen-related bone dysplasia characterized by bone fractures, growth deficiency and skeletal deformity. Type XIV OI is a recessive OI form caused by null mutations in TMEM38B, which encodes the ER membrane intracellular cation channel TRIC-B. Previously, we showed that absence of TMEM38B alters calcium flux in the ER of OI patient osteoblasts and fibroblasts, which further disrupts collagen synthesis and secretion. How the absence of TMEM38B affects osteoblast function is still poorly understood. Here we further investigated the role of TMEM38B in human osteoblast differentiation and mineralization. TMEM38B-null osteoblasts showed altered expression of osteoblast marker genes and decreased mineralization. RNA-Seq analysis revealed that cell-cell adhesion was one of the most downregulated pathways in TMEM38B-null osteoblasts, with further validation by real-time PCR and Western blot. Gap and tight junction proteins were also decreased by TRIC-B absence, both in patient osteoblasts and in calvarial osteoblasts of Tmem38b-null mice. Disrupted cell adhesion decreased mutant cell proliferation and cell cycle progression. An important novel finding was that TMEM38B-null osteoblasts had elongated mitochondria with altered fusion and fission markers, MFN2 and DRP1. In addition, TMEM38B-null osteoblasts exhibited a significant increase in superoxide production in mitochondria, further supporting mitochondrial dysfunction. Together these results emphasize the novel role of TMEM38B/TRIC-B in osteoblast differentiation, affecting cell-cell adhesion processes, gap and tight junction, proliferation, cell cycle, and mitochondrial function.
Collapse
Affiliation(s)
- Milena Jovanovic
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | | | - Ka Wai Wong
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China; Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Alberta Derkyi
- Office of the Clinical Director, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Michael To
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China; Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States.
| |
Collapse
|
41
|
Yanli Z, Jiayao M, Chunqing Z, Yuting Z, Zhiyan Z, Yulin Z, Minghan L, Longquan S, Dehong Y, Wenjuan Y. MY-1-Loaded Nano-Hydroxyapatite Accelerated Bone Regeneration by Increasing Type III Collagen Deposition in Early-Stage ECM via a Hsp47-Dependent Mechanism. Adv Healthc Mater 2023; 12:e2300332. [PMID: 36999955 DOI: 10.1002/adhm.202300332] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Indexed: 04/01/2023]
Abstract
The extracellular matrix (ECM) plays a crucial part in regulating stem cell function through its distinctive mechanical and chemical effect. Therefore, it is worth studying how to activate the driving force of osteoblast cells by dynamic changing of ECM and accelerate the bone regeneration. In this research, a novel peptide MY-1 is designed and synthesized. To achieve its sustained releasing, the nano-hydroxyapatite (nHA) is chosen as the carrier of MY-1 by mixed adsorption. The results reveal that the sustainable releasing of MY-1 regulates the synthesis and secretion of ECM from rat bone marrow mesenchymal stem cells (rBMSCs), which promotes the cell migration and osteogenic differentiation in the early stage of bone regeneration. Further analyses demonstrate that MY-1 increases the expression and nuclear translocation of β-catenin, and then upregulates the level of heat shock protein 47 (Hsp47), thereby accelerating the synthesis and secretion of type III collagen (Col III) at the early stage. Finally, the promoted rapid transformation of Col III to Col I at late stage benefits the bone regeneration. Hence, this study can provide a theoretical basis for the local application of MY-1 in bone regeneration.
Collapse
Affiliation(s)
- Zhang Yanli
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Mo Jiayao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zheng Chunqing
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zeng Yuting
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zhou Zhiyan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zhang Yulin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Li Minghan
- Department of Orthopedics - Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Shao Longquan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yang Dehong
- Department of Orthopedics - Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yan Wenjuan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
42
|
Machihara K, Oki S, Maejima Y, Kageyama S, Onda A, Koseki Y, Imai Y, Namba T. Restoration of mitochondrial function by Spirulina polysaccharide via upregulated SOD2 in aging fibroblasts. iScience 2023; 26:107113. [PMID: 37416477 PMCID: PMC10319841 DOI: 10.1016/j.isci.2023.107113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/21/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
Reactive oxygen species (ROS), such as superoxide, are crucial factors involved in the stimulation of cellular aging. Mitochondria, which are important organelles responsible for various metabolic processes in cells, produce ROS. These ROS impair mitochondrial function, thereby accelerating aging-related cellular dysfunction. Herein, we demonstrated that the Spirulina polysaccharide complex (SPC) restores mitochondrial function and collagen production by scavenging superoxide via the upregulation of superoxide dismutase 2 (SOD2) in aging fibroblasts. We observed that SOD2 expression was linked to inflammatory pathways; however, SPC did not upregulate the expression of most inflammatory cytokines produced as a result of induction of LPS in aging fibroblasts, indicating that SPC induces SOD2 without activation of inflammatory pathways. Furthermore, SPC stimulated endoplasmic reticulum (ER) protein folding by upregulating ER chaperones expression. Thus, SPC is proposed to be an antiaging material that rejuvenates aging fibroblasts by increasing their antioxidant potential via the upregulation of SOD2.
Collapse
Affiliation(s)
- Kayo Machihara
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, Kochi 783-8505, Japan
| | - Shoma Oki
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, Kochi 783-8502, Japan
| | - Yuka Maejima
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, Kochi 783-8502, Japan
| | - Sou Kageyama
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, Kochi 783-8502, Japan
| | - Ayumu Onda
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, Kochi 783-8505, Japan
| | - Yurino Koseki
- Health Care Technical G, Chiba Plants, DIC Corporation, Ichihara, Chiba 290-8585, Japan
| | - Yasuyuki Imai
- Health Care Technical G, Chiba Plants, DIC Corporation, Ichihara, Chiba 290-8585, Japan
| | - Takushi Namba
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, Kochi 783-8505, Japan
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, Kochi 783-8502, Japan
| |
Collapse
|
43
|
Ocker M, Neureiter D. Gene expression inhibitors for the treatment of liver fibrosis: drugs under preclinical and early clinical investigation. Expert Opin Investig Drugs 2023; 32:1133-1141. [PMID: 37997755 DOI: 10.1080/13543784.2023.2288075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
INTRODUCTION Liver fibrosis represents an unmet medical condition with growing incidence and only limited therapeutic options. Interfering with dysregulated gene expression was considered a specific treatment approach, and we are here reviewing the current options to modulate transcription and translation with small molecule inhibitors of involved enzymes, transcription factors or by using non-coding RNA molecules (RNA interference) or DNA antisense oligonucleotides. Despite promising results in preclinical models, only limited data are available from studies in humans. AREAS COVERED This expert opinion provides a general overview of how to interfere with gene expression (transcription and translation) and highlighting recent achievements in liver fibrosis. EXPERT OPINION Many compounds that were explored to modulate gene expression in liver fibrosis (models) were developed as anti-cancer agents. Their use in humans with impaired liver function is often impaired by the lack of specificity to inhibit only fibrosis-related genes in the liver and by associated general toxicity and narrow therapeutic windows. RNAi approaches show a higher degree of specificity and potentially less systemic toxicity. Clinical development in liver fibrosis requires close interaction between pharmaceutical companies and regulatory authorities to address topics like relevant (surrogate) endpoints to achieve meaningful readouts faster.
Collapse
Affiliation(s)
- Matthias Ocker
- Medical Department, Division of Hematology, Oncology, and Cancer Immunology, Campus Charité Mitte, Charité University Medicine Berlin, Berlin, Germany
- EO Translational Insights Consulting GmbH, Berlin, Germany
- Tacalyx GmbH, Berlin, Germany
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/University Hospital Salzburg (SALK), Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
44
|
da Costa BC, Dourado MR, de Moraes EF, Panini LM, Elseragy A, Téo FH, Guimarães GN, Machado RA, Risteli M, Gurgel Rocha CA, Paranaíba LMR, González-Arriagada WA, da Silva SD, Rangel ALCA, Marques MR, Salo T, Coletta RD. Overexpression of heat-shock protein 47 impacts survival of patients with oral squamous cell carcinoma. J Oral Pathol Med 2023. [PMID: 37247331 DOI: 10.1111/jop.13455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND The expression of heat-shock protein 47 (HSP47) has been linked to collagen synthesis control and implicated in fibrotic disorders, but more recent studies have demonstrated its role in solid tumors. In this study, we explored the prognostic impact of HSP47 in oral squamous cell carcinomas (OSCC) and determined the in vitro effects of its loss-of-function on viability, proliferation, migration, invasion, and resistance to cisplatin of OSCC cells. METHODS The HSP47 expression in tumor samples was assessed by immunohistochemistry in two independent cohorts totaling 339 patients with OSCC, and protein levels were associated with clinicopathological features and survival outcomes. The OSCC cell lines HSC3 and SCC9 were transduced with lentivirus expressing short hairpin RNA to stably silence HSP47 and used in assays to measure cellular viability, proliferation, migration, and invasion. RESULTS HSP47 was overexpressed in OSCC samples, and its overexpression was significantly and independently associated with poor disease-specific survival and shortened disease-free survival in both OSCC cohorts. The knockdown of HSP47 showed no effects on cell viability or cisplatin sensitivity, but impaired significantly proliferation, migration, and invasion of OSCC cells, with stronger effects on SCC9 cells. CONCLUSION Our results show a significant prognostic impact of HSP47 overexpression in OSCC and reveal that HSP47 inhibition impairs the proliferation, migration, and invasion of OSCC cells. HSP47 may represent a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Bruno Cesar da Costa
- Department of Oral Diagnosis and Graduate Program in Oral Biology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Mauricio Rocha Dourado
- Department of Oral Diagnosis and Graduate Program in Oral Biology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Everton Freitas de Moraes
- Department of Oral Diagnosis and Graduate Program in Oral Biology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Luana Marí Panini
- Department of Oral Diagnosis and Graduate Program in Oral Biology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Amr Elseragy
- Research Unit of Population Health, University of Oulu, Medical Research Centre and Oulu University Hospital, Oulu, Finland
| | - Fábio Haach Téo
- Department of Oral Diagnosis and Graduate Program in Oral Biology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Gustavo Narvaes Guimarães
- Department of Biosciences and Graduate Program in Oral Biology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Renato Assis Machado
- Department of Oral Diagnosis and Graduate Program in Oral Biology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Maija Risteli
- Research Unit of Population Health, University of Oulu, Medical Research Centre and Oulu University Hospital, Oulu, Finland
| | - Clarissa Araujo Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Federal University of Bahia and Dor Institute, Salvador, Bahia, Brazil
| | - Lívia Máris Ribeiro Paranaíba
- Department of Pathology and Parasitology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | - Sabrina Daniela da Silva
- Lady Davis Institute for Medical Research and Segal Cancer Center, Jewish General Hospital, and Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Quebec, Canada
| | | | - Marcelo Rocha Marques
- Department of Biosciences and Graduate Program in Oral Biology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Tuula Salo
- Research Unit of Population Health, University of Oulu, Medical Research Centre and Oulu University Hospital, Oulu, Finland
- Department of Oral and Maxillofacial Diseases and Department of Pathology, Helsinki University Central Hospital, and Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Ricardo D Coletta
- Department of Oral Diagnosis and Graduate Program in Oral Biology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| |
Collapse
|
45
|
Shao C, Liu Y, Zhao Y, Jing Y, Li J, Lv Z, Fu T, Wang Z, Li G. DNA methyltransferases inhibitor azacitidine improves the skeletal phenotype of mild osteogenesis imperfecta by reversing the impaired osteogenesis and excessive osteoclastogenesis. Bone 2023; 170:116706. [PMID: 36822490 DOI: 10.1016/j.bone.2023.116706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Osteogenesis imperfecta (OI), as a disease of congenital bone dysplasia, is often accompanied by the abnormal alteration of bone absorption and bone formation. DNA methyltransferases (Dnmts) can regulate the gene expression involved in osteogenesis and osteoclastogenesis. Dnmts changes and their effects on bone cells under OI is poorly understood. METHODS The Dnmts expression in adipose derived mesenchymal stem cells (ADSCs), bone marrow derived pre-osteoclasts (pre-Ocs) and femurs of Col1a2oim/+ and Col1a1+/-365 mice, both modeling mild OI types, were determined. The effects of azacitidine (Aza) administration and Dnmt3a knockdown by ShRNA on the osteogenic differentiation of ADSCs together with osteoclasts (Ocs) production of pre-Ocs were studied in vitro. The synthesis and secretion of collagen fibers of OI derived ADSCs were examined. The therapeutic outcomes of intraperitoneal (i.p.) infused Aza (1 mg/kg/2d) for 30 days were evaluated in OI mice. RESULTS Obviously elevated expression of Dnmts, especially Dnmt3a, existed in ADSCs, pre-Ocs, and femurs isolated from OI modeled mice. Much more collagen molecules of mutant ADSCs were secreted into the extracellular medium post Aza addition. Both Aza administration and Dnmt3a knockdown effectively enhanced the bone-forming capacity of affected ADSCs and reduced Ocs formation of OI mice in vitro. Aza treatment apparently improved the femora microstructure and biomechanical properties, increased bone formation and decreased the number of Ocs in mice with OI. CONCLUSION Highly expressed Dnmt3a contributed to the impaired osteogenesis and enhanced osteoclastogenesis of collagen defect-related OI. Aza medication effectively improved the femora phenotype of the two types of OI modeled mice partly by Dnmts inhibition and modulating cell stress response. These findings facilitated understanding the role of Dnmts alteration in skeletal pathological development of mild OI and preliminary confirmed the therapeutic potential of Dnmts depressants in mild OI treatment. Still, further researches are needed to explore the specific function of Dnmts in OI bones and clarify the benefits of Aza administration in OI treatment.
Collapse
Affiliation(s)
- Chenyi Shao
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yi Liu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yuxia Zhao
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yaqing Jing
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jiaci Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Zhe Lv
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Ting Fu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Zihan Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Guang Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China.
| |
Collapse
|
46
|
Arnolds O, Stoll R. Characterization of a fold in TANGO1 evolved from SH3 domains for the export of bulky cargos. Nat Commun 2023; 14:2273. [PMID: 37080980 PMCID: PMC10119292 DOI: 10.1038/s41467-023-37705-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/28/2023] [Indexed: 04/22/2023] Open
Abstract
Bulky cargos like procollagens, apolipoproteins, and mucins exceed the size of conventional COPII vesicles. During evolution a process emerged in metazoans, predominantly governed by the TANGO1 protein family, that organizes cargo at the exit sites of the endoplasmic reticulum and facilitates export by the formation of tunnel-like connections between the ER and Golgi. Hitherto, cargo-recognition appeared to be mediated by an SH3-like domain. Based on structural and dynamic data as well as interaction studies from NMR spectroscopy and microscale thermophoresis presented here, we show that the luminal cargo-recognition domain of TANGO1 adopts a new functional fold for which we suggest the term MOTH (MIA, Otoraplin, TALI/TANGO1 homology) domain. These MOTH domains, as well as an evolutionary intermediate found in invertebrates, constitute a distinct domain family that emerged from SH3 domains and acquired the ability to bind collagen.
Collapse
Affiliation(s)
- Oliver Arnolds
- Biomolecular Spectroscopy and RUBiospek|NMR, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Bochum, Germany
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Raphael Stoll
- Biomolecular Spectroscopy and RUBiospek|NMR, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Bochum, Germany.
| |
Collapse
|
47
|
Thienel M, Müller-Reif JB, Zhang Z, Ehreiser V, Huth J, Shchurovska K, Kilani B, Schweizer L, Geyer PE, Zwiebel M, Novotny J, Lüsebrink E, Little G, Orban M, Nicolai L, El Nemr S, Titova A, Spannagl M, Kindberg J, Evans AL, Mach O, Vogel M, Tiedt S, Ormanns S, Kessler B, Dueck A, Friebe A, Jørgensen PG, Majzoub-Altweck M, Blutke A, Polzin A, Stark K, Kääb S, Maier D, Gibbins JM, Limper U, Frobert O, Mann M, Massberg S, Petzold T. Immobility-associated thromboprotection is conserved across mammalian species from bear to human. Science 2023; 380:178-187. [PMID: 37053338 DOI: 10.1126/science.abo5044] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/10/2023] [Indexed: 04/15/2023]
Abstract
Venous thromboembolism (VTE) comprising deep venous thrombosis and pulmonary embolism is a major cause of morbidity and mortality. Short-term immobility-related conditions are a major risk factor for the development of VTE. Paradoxically, long-term immobilized free-ranging hibernating brown bears and paralyzed spinal cord injury (SCI) patients are protected from VTE. We aimed to identify mechanisms of immobility-associated VTE protection in a cross-species approach. Mass spectrometry-based proteomics revealed an antithrombotic signature in platelets of hibernating brown bears with heat shock protein 47 (HSP47) as the most substantially reduced protein. HSP47 down-regulation or ablation attenuated immune cell activation and neutrophil extracellular trap formation, contributing to thromboprotection in bears, SCI patients, and mice. This cross-species conserved platelet signature may give rise to antithrombotic therapeutics and prognostic markers beyond immobility-associated VTE.
Collapse
Affiliation(s)
- Manuela Thienel
- Department of Cardiology, University Hospital, LMU Munich, 81377 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802 Munich, Germany
| | - Johannes B Müller-Reif
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
- Omicera Diagnostics, 82152 Martinsried, Germany
| | - Zhe Zhang
- Department of Cardiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Vincent Ehreiser
- Department of Cardiology, University Hospital, LMU Munich, 81377 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802 Munich, Germany
| | - Judith Huth
- Department of Cardiology, University Hospital, LMU Munich, 81377 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802 Munich, Germany
| | - Khrystyna Shchurovska
- Department of Cardiology, University Hospital, LMU Munich, 81377 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802 Munich, Germany
| | - Badr Kilani
- Department of Cardiology, University Hospital, LMU Munich, 81377 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802 Munich, Germany
| | - Lisa Schweizer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Philipp E Geyer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
- Omicera Diagnostics, 82152 Martinsried, Germany
| | - Maximilian Zwiebel
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Julia Novotny
- Department of Cardiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Enzo Lüsebrink
- Department of Cardiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Gemma Little
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, RG6 6UR, UK
| | - Martin Orban
- Department of Cardiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Leo Nicolai
- Department of Cardiology, University Hospital, LMU Munich, 81377 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802 Munich, Germany
| | - Shaza El Nemr
- Department of Cardiology, University Hospital, LMU Munich, 81377 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802 Munich, Germany
| | - Anna Titova
- Department of Cardiology, University Hospital, LMU Munich, 81377 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802 Munich, Germany
| | - Michael Spannagl
- Anesthesiology and Transfusion Medicine, Cell Therapeutics and Hemostaseology, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Jonas Kindberg
- Norwegian Institute for Nature Research, 7034 Trondheim, Norway
- Scandinavian Brown Bear Research Project, Tackåsen 2, SE-79498 Orsa, Sweden
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - Alina L Evans
- Department of Forestry and Wildlife Management, Faculty of Applied Ecology and Agricultural Sciences, Inland Norway University of Applied Sciences, 2480 Koppang, Norway
| | - Orpheus Mach
- Zentrum für Rückenmarkverletzte mit Neuro-Urologie, BG Unfallklinik Murnau, 82418 Murnau am Staffelsee, Germany
| | - Matthias Vogel
- Zentrum für Rückenmarkverletzte mit Neuro-Urologie, BG Unfallklinik Murnau, 82418 Murnau am Staffelsee, Germany
| | - Steffen Tiedt
- Neurologische Klinik und Poliklinik, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - Steffen Ormanns
- Pathologisches Institut, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - Barbara Kessler
- Gene Center, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Anne Dueck
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802 Munich, Germany
- Institute of Pharmacology and Toxicology, Technical University of Munich, 80802 Munich, Germany
| | - Andrea Friebe
- Norwegian Institute for Nature Research, 7034 Trondheim, Norway
- Scandinavian Brown Bear Research Project, Tackåsen 2, SE-79498 Orsa, Sweden
| | - Peter Godsk Jørgensen
- Herlev and Gentofte University Hospital, Borgmester Ib Juuls Vej 1, DK-2730, Herlev, Copenhagen, Denmark
| | - Monir Majzoub-Altweck
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany
| | - Andreas Blutke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany
| | - Amin Polzin
- Division of Cardiology, Pulmonology, and Vascular Medicine, Heinrich Heine University Medical Center Dusseldorf, 40225 Dusseldorf, Germany
| | - Konstantin Stark
- Department of Cardiology, University Hospital, LMU Munich, 81377 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802 Munich, Germany
| | - Stefan Kääb
- Department of Cardiology, University Hospital, LMU Munich, 81377 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802 Munich, Germany
| | - Doris Maier
- Zentrum für Rückenmarkverletzte mit Neuro-Urologie, BG Unfallklinik Murnau, 82418 Murnau am Staffelsee, Germany
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, RG6 6UR, UK
| | - Ulrich Limper
- Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
- Department of Anesthesiology and Intensive Care Medicine, Merheim Medical Center, Hospitals of Cologne, University of Witten/Herdecke, 51109 Cologne, Germany
| | - Ole Frobert
- Faculty of Health, Department of Cardiology, Örebro University, 701 85 Örebro, Sweden
- Department of Clinical Medicine, Faculty of Health, Aarhus University, 8000 Aarhus, Denmark
- Department of Clinical Pharmacology, Aarhus University Hospital, 8000 Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8000 Aarhus, Denmark
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Steffen Massberg
- Department of Cardiology, University Hospital, LMU Munich, 81377 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802 Munich, Germany
| | - Tobias Petzold
- Department of Cardiology, University Hospital, LMU Munich, 81377 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802 Munich, Germany
| |
Collapse
|
48
|
Wiering L, Subramanian P, Hammerich L. Hepatic Stellate Cells: Dictating Outcome in Nonalcoholic Fatty Liver Disease. Cell Mol Gastroenterol Hepatol 2023; 15:1277-1292. [PMID: 36828280 PMCID: PMC10148161 DOI: 10.1016/j.jcmgh.2023.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a fast growing, chronic liver disease affecting ∼25% of the global population. Nonalcoholic fatty liver disease severity ranges from the less severe simple hepatic steatosis to the more advanced nonalcoholic steatohepatitis (NASH). The presence of NASH predisposes individuals to liver fibrosis, which can further progress to cirrhosis and hepatocellular carcinoma. This makes hepatic fibrosis an important indicator of clinical outcomes in patients with NASH. Hepatic stellate cell activation dictates fibrosis development during NASH. Here, we discuss recent advances in the analysis of the profibrogenic pathways and mediators of hepatic stellate cell activation and inactivation, which ultimately determine the course of disease in nonalcoholic fatty liver disease/NASH.
Collapse
Affiliation(s)
- Leke Wiering
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Berlin, Germany
| | - Pallavi Subramanian
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Linda Hammerich
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| |
Collapse
|
49
|
Ferdousy RN, Suong NT, Kadokawa H. Specific locations and amounts of denatured collagen and collagen-specific chaperone HSP47 in the uterine cervices of old cows compared with those of heifers. Theriogenology 2023; 196:10-17. [PMID: 36375211 DOI: 10.1016/j.theriogenology.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022]
Abstract
Collagen, the most abundant extra-cellular matrix in the reproductive tract, performs a critical role in pregnancy. Although detecting damaged collagen in tissues is challenging, we recently developed a new in situ detection method using a denatured collagen detection reagent in bovine oviducts and uteri. Utilizing this method, we evaluated the hypothesis that the locations and amounts of denatured collagen in the uterine cervices of old cows are different from those in young heifers as a result of repeated pregnancies and deliveries. We compared damaged collagen in the uterine cervix at the mid-luteal phase between post-pubertal growing nulliparous heifers (22.1 ± 1.0 months old; n = 5) and old multiparous cows (143.1 ± 15.6 months old; 9 ± 1 parities; sacrificed at least 3 months after the last parturition by vaginal delivery; n = 5). Picrosirius red staining showed collagen in almost all parts of the cervices. Expectedly, the amount of damaged collagen was increased in the cervices of old cows. Additionally, we combined in situ detection and fluorescence immunohistochemistry of the collagen-specific molecular chaperone, the 47 kDa heat shock protein (HSP47). Increased HSP47 amounts were observed in the cervices from the old cows, but damaged collagen and HSP47 were not located in the same areas. The age differences were confirmed by western blotting using the anti-HSP47 antibody. These findings revealed the specific location and amounts of denatured collagen in the uterine cervices of old cows compared with those of heifers.
Collapse
Affiliation(s)
- Raihana Nasrin Ferdousy
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken, 1677-1, Japan
| | - Nguyen Thi Suong
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken, 1677-1, Japan
| | - Hiroya Kadokawa
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken, 1677-1, Japan.
| |
Collapse
|
50
|
Duncan DI, Busso M. Effectiveness of combined use of targeted pressure energy, radiofrequency, and high-intensity focused electromagnetic fields to improve skin quality and appearance of fat and muscle tissue in different body parts. J Cosmet Dermatol 2023; 22:200-205. [PMID: 36045512 PMCID: PMC10087797 DOI: 10.1111/jocd.15280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/21/2022] [Accepted: 07/15/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Inevitable signs of aging are especially noticeable in middle to elder age when stretch marks, loose skin, cellulite, and body-contour changes naturally appear. AIMS To verify efficacy of high-intensity focused electromagnetic field (HIFEM), radiofrequency (RF), and Targeted Pressure Energy (TPE) combination treatment to address unfavorable changes in skin, fat, and muscle tissue. METHODS The device simultaneously emitting monopolar RF and TPE energies was consecutively combined with simultaneous HIFEM+RF procedure in 32 subjects (21-64 years, 17.4-33.5 kg/m2 ) for treatment of thighs (N = 15; back, inner, or front), buttocks/saddlebags (N = 7), abdomen (N = 8), and upper arms (N = 2). All patients underwent four weekly, combined treatments of 30-min HIFEM+RF procedure followed by 15-30 min RF+TPE, depending on treatment area. Circumferential measurements, digital photographs, subject satisfaction, and comfort questionnaires were assessed up to 3-months post-treatment. RESULTS Majority of participants found treatments comfortable, no adverse events occurred. Subjects showed substantial improvement in all treated areas from 1-month follow-up. Combination of HIFEM+RF, monopolar RF, and TPE resulted in significant circumference decrease. Generally, more pronounced results were seen at 3 months when subjects showed -5.2 cm on abdomen, -3.0 cm on thighs, and -5.5 cm on saddlebags, respectively. Ninety-four percent of subjects were satisfied with treatment results, most noticed improvement in cellulite, skin laxity, and muscle definition. CONCLUSIONS Results showed high patient satisfaction and efficacy in improving body contour and skin quality. Combining simultaneous HIFEM+RF procedure with simultaneous monopolar RF+TPE treatments considerably enhanced body contour and skin tissue. The procedure proved versatile and may effectively treat multiple body parts.
Collapse
|