1
|
Pajares MÁ. Posttranslational Regulation of Mammalian Sulfur Amino Acid Metabolism. Int J Mol Sci 2025; 26:2488. [PMID: 40141131 PMCID: PMC11942099 DOI: 10.3390/ijms26062488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/05/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
Metabolism of the mammalian proteinogenic sulfur amino acids methionine and cysteine includes the methionine cycle and reverse transsulfuration pathway, establishing many connections with other important metabolic routes. The main source of these amino acids is the diet, which also provides B vitamins required as cofactors for several enzymes of the metabolism of these amino acids. While methionine is considered an essential amino acid, cysteine can be produced from methionine in a series of reactions that also generate homocysteine, a non-proteinogenic amino acid linking reverse transsulfuration with the methionine and folate cycles. These pathways produce key metabolites that participate in synthesizing a large variety of compounds and important regulatory processes (e.g., epigenetic methylations). The impairment of sulfur amino acid metabolism manifests in many pathological processes, mostly correlated with oxidative stress and alterations in glutathione levels that also depend on this part of the cellular metabolism. This review analyzes the current knowledge on the posttranslational regulation of mammalian sulfur amino acid metabolism, highlighting the large number of modification sites reported through high-throughput studies and the surprisingly limited knowledge of their functional impact.
Collapse
Affiliation(s)
- María Ángeles Pajares
- Department of Molecular and Cellular Biosciences, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
2
|
Shen Z, Adams K, Moreno R, Lera R, Kaufman E, Lang JD, Burkard M. Polo-like kinase 1 maintains transcription and chromosomal accessibility during mitosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637959. [PMID: 39990329 PMCID: PMC11844518 DOI: 10.1101/2025.02.12.637959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Transcription persists at low levels in mitotic cells and plays essential roles in mitotic fidelity and chromosomal dynamics. However, the detailed regulatory network of mitotic transcription remains largely unresolved. Here, we report the novel role of Polo-like kinase 1 (Plk1) in maintaining mitotic transcription. Using 5-ethynyl uridine (5-EU) labeling of nascent RNAs, we found that Plk1 inhibition leads to significant downregulation of nascent transcription in prometaphase cells. Chromatin-localized Plk1 activity is required for transcription regulation and mitotic fidelity. Plk1 sustains global chromosomal accessibility in mitosis, especially at promoter and transcription start site (promoter-TSS) regions, facilitating transcription factor binding and ensuring proper transcriptional activity. We identified SMC4, a common subunit of condensin I and II, as a potential Plk1 substrate. Plk1 activity is fundamental to these processes across non-transformed and transformed cell lines, underscoring its critical role in cell cycle regulation. This study elucidates a novel regulatory mechanism of global mitotic transcription, advancing our understanding of cell cycle control. Significance Statement Cells retain a low level of transcription during mitosis, while the regulatory network and specific contributions of mitotic transcription are not well understood.We identify Polo-like kinase 1 (Plk1) as a novel regulator of mitotic transcription, crucial for chromosome condensation, genome accessibility, and maintaining mitotic fidelity.This study enhances our understanding of Plk1's multifaceted role in mitotic progression, advancing cell cycle regulation knowledge, and informing new cancer therapies' development.
Collapse
|
3
|
Meyer‐Gerards C, Bazzi H. Developmental and tissue-specific roles of mammalian centrosomes. FEBS J 2025; 292:709-726. [PMID: 38935637 PMCID: PMC11839934 DOI: 10.1111/febs.17212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/08/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Centrosomes are dominant microtubule organizing centers in animal cells with a pair of centrioles at their core. They template cilia during interphase and help organize the mitotic spindle for a more efficient cell division. Here, we review the roles of centrosomes in the early developing mouse and during organ formation. Mammalian cells respond to centrosome loss-of-function by activating the mitotic surveillance pathway, a timing mechanism that, when a defined mitotic duration is exceeded, leads to p53-dependent cell death in the descendants. Mouse embryos without centrioles are highly susceptible to this pathway and undergo embryonic arrest at mid-gestation. The complete loss of the centriolar core results in earlier and more severe phenotypes than that of other centrosomal proteins. Finally, different developing tissues possess varying thresholds and mount graded responses to the loss of centrioles that go beyond the germ layer of origin.
Collapse
Affiliation(s)
- Charlotte Meyer‐Gerards
- Department of Cell Biology of the Skin, Medical FacultyUniversity of CologneGermany
- Department of Dermatology and Venereology, Medical FacultyUniversity of CologneGermany
- The Cologne Cluster of Excellence in Cellular Stress Responses in Aging‐associated Diseases (CECAD), Medical FacultyUniversity of CologneGermany
- Graduate School for Biological SciencesUniversity of CologneGermany
- Center for Molecular Medicine Cologne (CMMC), Medical FacultyUniversity of CologneGermany
| | - Hisham Bazzi
- Department of Cell Biology of the Skin, Medical FacultyUniversity of CologneGermany
- Department of Dermatology and Venereology, Medical FacultyUniversity of CologneGermany
- The Cologne Cluster of Excellence in Cellular Stress Responses in Aging‐associated Diseases (CECAD), Medical FacultyUniversity of CologneGermany
- Center for Molecular Medicine Cologne (CMMC), Medical FacultyUniversity of CologneGermany
- Present address:
Cell & Developmental BiologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| |
Collapse
|
4
|
Heyza JR, Mikhova M, Perez GI, Broadbent DG, Schmidt JC. The PST repeat region of MDC1 is a tunable multivalent chromatin tethering domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632395. [PMID: 39868091 PMCID: PMC11761366 DOI: 10.1101/2025.01.10.632395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
DNA double strand breaks (DSBs) are widely considered the most cytotoxic DNA lesions occurring in cells because they physically disrupt the connectivity of the DNA double helix. Homologous recombination (HR) is a high-fidelity DSB repair pathway that copies the sequence spanning the DNA break from a homologous template, most commonly the sister chromatid. How both DNA ends, and the sister chromatid are held in close proximity during HR is unknown. Here we demonstrate that the PST repeat region of MDC1 is a mutlivalent nucleosome binding domain, sufficient to tether chromatin in multiple contexts. In mitotic cells the affinity of the PST repeats for chromatin is downregulated by phosphorylation to prevent chromosome missegregation, while still contributing to DNA break tethering by the MDC1-TOPBP1-CIP2A complex. In interphase, the PST repeat region is critical for RAD51 focus formation but not the recruitment of 53BP1 to DNA breaks, consistent with a chromatin tethering function. In total, this work demonstrates that the PST repeat region of MDC1 is a multivalent chromatin binding domain with tunable affinity that contributes to DNA break tethering during HR and in mitosis.
Collapse
Affiliation(s)
- Joshua R. Heyza
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing
| | - Maria Mikhova
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing
| | - Gloria I. Perez
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing
| | - David G. Broadbent
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing
- College of Osteopathic Medicine, Michigan State University, East Lansing
| | - Jens C. Schmidt
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing
| |
Collapse
|
5
|
Aboulache BL, Hoitsma NM, Luger K. Phosphorylation regulates the chromatin remodeler SMARCAD1 in nucleosome binding, ATP hydrolysis, and histone exchange. J Biol Chem 2024; 300:107893. [PMID: 39424143 PMCID: PMC11742319 DOI: 10.1016/j.jbc.2024.107893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
Maintaining the dynamic structure of chromatin is critical for regulating the cellular processes that require access to the DNA template, such as DNA damage repair, transcription, and replication. Histone chaperones and ATP-dependent chromatin remodeling factors facilitate transitions in chromatin structure by assembling and positioning nucleosomes through a variety of enzymatic activities. SMARCAD1 is a unique chromatin remodeler that combines the ATP-dependent ability to exchange histones, with the chaperone-like activity of nucleosome deposition. We have shown previously that phosphorylated SMARCAD1 exhibits reduced binding to nucleosomes. However, it is unknown how phosphorylation affects SMARCAD1's ability to perform its various enzymatic activities. Here we use mutational analysis, activity assays, and mass spectrometry, to probe SMARCAD1 regulation and to investigate the role of its flexible N-terminal region. We show that phosphorylation affects SMARCAD1 binding to nucleosomes, DNA, and histones H2A-H2B, as well as ATP hydrolysis and histone exchange. Conversely, we report only a marginal effect of phosphorylation for histone H3-H4 binding and nucleosome assembly. In addition, the SMARCAD1 N-terminal region is revealed to be critical for nucleosome assembly and histone exchange. Together, this work examines the intricacies of how phosphorylation governs SMARCAD1 activity and provides insight into its complex regulation and diverse activities.
Collapse
Affiliation(s)
- Briana L Aboulache
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Nicole M Hoitsma
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
| |
Collapse
|
6
|
Kwon H, Joh JY, Hong KU. Human CKAP2L shows a cell cycle-dependent expression pattern and exhibits microtubule-stabilizing properties. FEBS Open Bio 2024; 14:1526-1539. [PMID: 39073037 PMCID: PMC11492392 DOI: 10.1002/2211-5463.13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/30/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Cytoskeleton-associated protein 2-like (CKAP2L) is a paralogue of cytoskeleton-associated protein 2 (CKAP2). We characterized the expression pattern, subcellular localization, and microtubule-stabilizing properties of human CKAP2L. The levels of both CKAP2L transcript and protein were cell cycle phase-dependent, peaking during the G2/M phase and relatively high in certain human tissues, including testis, intestine, and spleen. CKAP2L protein was detectable in all human cancer cell lines we tested. CKAP2L localized to the mitotic spindle apparatus during mitosis, as reported previously. During interphase, however, CKAP2L localized mainly to the nucleus. Ectopic overexpression of CKAP2L resulted in 'microtubule bundling', and, consequently, an elevated CKAP2L level led to prolonged mitosis. These findings support the mitotic role of CKAP2L during the human cell cycle.
Collapse
Affiliation(s)
- Hyerim Kwon
- School of MedicineSungkyunkwan UniversitySuwonKorea
| | - Jonathan Y. Joh
- Department of Pharmacology & ToxicologyUniversity of Louisville School of MedicineKYUSA
| | - Kyung U. Hong
- College of Pharmacy and Health SciencesWestern New England UniversitySpringfieldMAUSA
| |
Collapse
|
7
|
Chen KW, Broz P. Gasdermins as evolutionarily conserved executors of inflammation and cell death. Nat Cell Biol 2024; 26:1394-1406. [PMID: 39187689 DOI: 10.1038/s41556-024-01474-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/04/2024] [Indexed: 08/28/2024]
Abstract
The gasdermins are a family of pore-forming proteins that have recently emerged as executors of pyroptosis, a lytic form of cell death that is induced by the innate immune system to eradicate infected or malignant cells. Mammalian gasdermins comprise a cytotoxic N-terminal domain, a flexible linker and a C-terminal repressor domain. Proteolytic cleavage in the linker releases the cytotoxic domain, thereby allowing it to form β-barrel membrane pores. Formation of gasdermin pores in the plasma membrane eventually leads to a loss of the electrochemical gradient, cell death and membrane rupture. Here we review recent work that has expanded our understanding of gasdermin biology and function in mammals by revealing their activation mechanism, their regulation and their roles in autoimmunity, host defence and cancer. We further highlight fungal and bacterial gasdermin pore formation pointing to a conserved mechanism of cell death induction.
Collapse
Affiliation(s)
- Kaiwen W Chen
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
8
|
Liu W, Dou Z, Wang C, Zhao G, Wu F, Wang C, Aikhionbare F, Ye M, Sedzro DM, Yang Z, Fu C, Wang Z, Gao X, Yao X, Song X, Liu X. Aurora B promotes the CENP-T-CENP-W interaction to guide accurate chromosome segregation in mitosis. J Mol Cell Biol 2024; 16:mjae001. [PMID: 38200711 PMCID: PMC11337009 DOI: 10.1093/jmcb/mjae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 04/06/2023] [Accepted: 01/09/2024] [Indexed: 01/12/2024] Open
Abstract
Accurate chromosome segregation in mitosis depends on kinetochores that connect centromeric chromatin to spindle microtubules. Centromeres are captured by individual microtubules via a kinetochore constitutive centromere-associated network (CCAN) during chromosome segregation. CCAN contains 16 subunits, including CENP-W and CENP-T. However, the molecular recognition and mitotic regulation of the CCAN assembly remain elusive. Here, we revealed that CENP-W binds to the histone fold domain and an uncharacterized N-terminal region of CENP-T. Aurora B phosphorylates CENP-W at threonine 60, which enhances the interaction between CENP-W and CENP-T to ensure robust metaphase chromosome alignment and accurate chromosome segregation in mitosis. These findings delineate a conserved signaling cascade that integrates protein phosphorylation with CCAN integrity for the maintenance of genomic stability.
Collapse
Affiliation(s)
- Wei Liu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Keck Center for Cellular Dynamics and Organoids Plasticity, Atlanta, GA 30310, USA
| | - Zhen Dou
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230026, China
| | - Chunyue Wang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| | - Gangyin Zhao
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| | - Fengge Wu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| | - Chunli Wang
- National Chromatographic Research and Analysis Center, Chinese Academy of Sciences, Dalian 116023, China
| | - Felix Aikhionbare
- Keck Center for Cellular Dynamics and Organoids Plasticity, Atlanta, GA 30310, USA
| | - Mingliang Ye
- National Chromatographic Research and Analysis Center, Chinese Academy of Sciences, Dalian 116023, China
| | - Divine Mensah Sedzro
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| | - Zhenye Yang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| | - Zhikai Wang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Keck Center for Cellular Dynamics and Organoids Plasticity, Atlanta, GA 30310, USA
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230026, China
| | - Xinjiao Gao
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230026, China
| | - Xiaoyu Song
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230026, China
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230026, China
| |
Collapse
|
9
|
Houston J, Vissotsky C, Deep A, Hakozaki H, Crews E, Oegema K, Corbett KD, Lara-Gonzalez P, Kim T, Desai A. Phospho-KNL-1 recognition by a TPR domain targets the BUB-1-BUB-3 complex to C. elegans kinetochores. J Cell Biol 2024; 223:e202402036. [PMID: 38578284 PMCID: PMC10996584 DOI: 10.1083/jcb.202402036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
During mitosis, the Bub1-Bub3 complex concentrates at kinetochores, the microtubule-coupling interfaces on chromosomes, where it contributes to spindle checkpoint activation, kinetochore-spindle microtubule interactions, and protection of centromeric cohesion. Bub1 has a conserved N-terminal tetratricopeptide repeat (TPR) domain followed by a binding motif for its conserved interactor Bub3. The current model for Bub1-Bub3 localization to kinetochores is that Bub3, along with its bound motif from Bub1, recognizes phosphorylated "MELT" motifs in the kinetochore scaffold protein Knl1. Motivated by the greater phenotypic severity of BUB-1 versus BUB-3 loss in C. elegans, we show that the BUB-1 TPR domain directly recognizes a distinct class of phosphorylated motifs in KNL-1 and that this interaction is essential for BUB-1-BUB-3 localization and function. BUB-3 recognition of phospho-MELT motifs additively contributes to drive super-stoichiometric accumulation of BUB-1-BUB-3 on its KNL-1 scaffold during mitotic entry. Bub1's TPR domain interacts with Knl1 in other species, suggesting that collaboration of TPR-dependent and Bub3-dependent interfaces in Bub1-Bub3 localization and functions may be conserved.
Collapse
Affiliation(s)
- Jack Houston
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | | | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Hiroyuki Hakozaki
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Enice Crews
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Karen Oegema
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kevin D. Corbett
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Pablo Lara-Gonzalez
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Taekyung Kim
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Department of Biology Education, Pusan National University, Busan, Republic of Korea
| | - Arshad Desai
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
10
|
Endsley CE, Moore KA, Townsley TD, Durston KK, Deweese JE. Bioinformatic Analysis of Topoisomerase IIα Reveals Interdomain Interdependencies and Critical C-Terminal Domain Residues. Int J Mol Sci 2024; 25:5674. [PMID: 38891861 PMCID: PMC11172036 DOI: 10.3390/ijms25115674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
DNA Topoisomerase IIα (Top2A) is a nuclear enzyme that is a cancer drug target, and there is interest in identifying novel sites on the enzyme to inhibit cancer cells more selectively and to reduce off-target toxicity. The C-terminal domain (CTD) is one potential target, but it is an intrinsically disordered domain, which prevents structural analysis. Therefore, we set out to analyze the sequence of Top2A from 105 species using bioinformatic analysis, including the PSICalc algorithm, Shannon entropy analysis, and other approaches. Our results demonstrate that large (10th-order) interdependent clusters are found including non-proximal positions across the major domains of Top2A. Further, CTD-specific clusters of the third, fourth, and fifth order, including positions that had been previously analyzed via mutation and biochemical assays, were identified. Some of these clusters coincided with positions that, when mutated, either increased or decreased relaxation activity. Finally, sites of low Shannon entropy (i.e., low variation in amino acids at a given site) were identified and mapped as key positions in the CTD. Included in the low-entropy sites are phosphorylation sites and charged positions. Together, these results help to build a clearer picture of the critical positions in the CTD and provide potential sites/regions for further analysis.
Collapse
Affiliation(s)
- Clark E. Endsley
- Biological, Physical, and Human Sciences Department, Freed-Hardeman University, Henderson, TN 38340, USA
| | - Kori A. Moore
- Biological, Physical, and Human Sciences Department, Freed-Hardeman University, Henderson, TN 38340, USA
| | | | - Kirk K. Durston
- Department of Research and Publications, Digital Strategies, Langley, BC V2Y 1N5, Canada
| | - Joseph E. Deweese
- Biological, Physical, and Human Sciences Department, Freed-Hardeman University, Henderson, TN 38340, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
11
|
Zhu C, Xu S, Jiang R, Yu Y, Bian J, Zou Z. The gasdermin family: emerging therapeutic targets in diseases. Signal Transduct Target Ther 2024; 9:87. [PMID: 38584157 PMCID: PMC10999458 DOI: 10.1038/s41392-024-01801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
The gasdermin (GSDM) family has garnered significant attention for its pivotal role in immunity and disease as a key player in pyroptosis. This recently characterized class of pore-forming effector proteins is pivotal in orchestrating processes such as membrane permeabilization, pyroptosis, and the follow-up inflammatory response, which are crucial self-defense mechanisms against irritants and infections. GSDMs have been implicated in a range of diseases including, but not limited to, sepsis, viral infections, and cancer, either through involvement in pyroptosis or independently of this process. The regulation of GSDM-mediated pyroptosis is gaining recognition as a promising therapeutic strategy for the treatment of various diseases. Current strategies for inhibiting GSDMD primarily involve binding to GSDMD, blocking GSDMD cleavage or inhibiting GSDMD-N-terminal (NT) oligomerization, albeit with some off-target effects. In this review, we delve into the cutting-edge understanding of the interplay between GSDMs and pyroptosis, elucidate the activation mechanisms of GSDMs, explore their associations with a range of diseases, and discuss recent advancements and potential strategies for developing GSDMD inhibitors.
Collapse
Affiliation(s)
- Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Sheng Xu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Ruoyu Jiang
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Yizhi Yu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China.
| | - Jinjun Bian
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
12
|
Vicente JJ, Wagenbach M, Decarreau J, Zelter A, MacCoss MJ, Davis TN, Wordeman L. The kinesin motor Kif9 regulates centriolar satellite positioning and mitotic progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587821. [PMID: 38617353 PMCID: PMC11014612 DOI: 10.1101/2024.04.03.587821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Centrosomes are the principal microtubule-organizing centers of the cell and play an essential role in mitotic spindle function. Centrosome biogenesis is achieved by strict control of protein acquisition and phosphorylation prior to mitosis. Defects in this process promote fragmentation of pericentriolar material culminating in multipolar spindles and chromosome missegregation. Centriolar satellites, membrane-less aggrupations of proteins involved in the trafficking of proteins toward and away from the centrosome, are thought to contribute to centrosome biogenesis. Here we show that the microtubule plus-end directed kinesin motor Kif9 localizes to centriolar satellites and regulates their pericentrosomal localization during interphase. Lack of Kif9 leads to aggregation of satellites closer to the centrosome and increased centrosomal protein degradation that disrupts centrosome maturation and results in chromosome congression and segregation defects during mitosis. Our data reveal roles for Kif9 and centriolar satellites in the regulation of cellular proteostasis and mitosis.
Collapse
|
13
|
Overduin M, Bhat R. Recognition and remodeling of endosomal zones by sorting nexins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184305. [PMID: 38408696 DOI: 10.1016/j.bbamem.2024.184305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 02/28/2024]
Abstract
The proteolipid code determines how cytosolic proteins find and remodel membrane surfaces. Here, we investigate how this process works with sorting nexins Snx1 and Snx3. Both proteins form sorting machines by recognizing membrane zones enriched in phosphatidylinositol 3-phosphate (PI3P), phosphatidylserine (PS) and cholesterol. This co-localized combination forms a unique "lipid codon" or lipidon that we propose is responsible for endosomal targeting, as revealed by structures and interactions of their PX domain-based readers. We outline a membrane recognition and remodeling mechanism for Snx1 and Snx3 involving this code element alongside transmembrane pH gradients, dipole moment-guided docking and specific protein-protein interactions. This generates an initial membrane-protein assembly (memtein) that then recruits retromer and additional PX proteins to recruit cell surface receptors for sorting to the trans-Golgi network (TGN), lysosome and plasma membranes. Post-translational modification (PTM) networks appear to regulate how the sorting machines form and operate at each level. The commonalities and differences between these sorting nexins show how the proteolipid code orchestrates parallel flows of molecular information from ribosome emergence to organelle genesis, and illuminates a universally applicable model of the membrane.
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Rakesh Bhat
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Koch LB, Spanos C, Kelly V, Ly T, Marston AL. Rewiring of the phosphoproteome executes two meiotic divisions in budding yeast. EMBO J 2024; 43:1351-1383. [PMID: 38413836 PMCID: PMC10987667 DOI: 10.1038/s44318-024-00059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/29/2024] Open
Abstract
The cell cycle is ordered by a controlled network of kinases and phosphatases. To generate gametes via meiosis, two distinct and sequential chromosome segregation events occur without an intervening S phase. How canonical cell cycle controls are modified for meiosis is not well understood. Here, using highly synchronous budding yeast populations, we reveal how the global proteome and phosphoproteome change during the meiotic divisions. While protein abundance changes are limited to key cell cycle regulators, dynamic phosphorylation changes are pervasive. Our data indicate that two waves of cyclin-dependent kinase (Cdc28Cdk1) and Polo (Cdc5Polo) kinase activity drive successive meiotic divisions. These two distinct phases of phosphorylation are ensured by the meiosis-specific Spo13 protein, which rewires the phosphoproteome. Spo13 binds to Cdc5Polo to promote phosphorylation in meiosis I, particularly of substrates containing a variant of the canonical Cdc5Polo motif. Overall, our findings reveal that a master regulator of meiosis directs the activity of a kinase to change the phosphorylation landscape and elicit a developmental cascade.
Collapse
Affiliation(s)
- Lori B Koch
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Christos Spanos
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Van Kelly
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Tony Ly
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Adele L Marston
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
15
|
Burigotto M, Vigorito V, Gliech C, Mattivi A, Ghetti S, Bisio A, Lolli G, Holland AJ, Fava LL. PLK1 promotes the mitotic surveillance pathway by controlling cytosolic 53BP1 availability. EMBO Rep 2023; 24:e57234. [PMID: 37888778 PMCID: PMC10702821 DOI: 10.15252/embr.202357234] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
53BP1 acts at the crossroads between DNA repair and p53-mediated stress response. With its interactors p53 and USP28, it is part of the mitotic surveillance (or mitotic stopwatch) pathway (MSP), a sensor that monitors the duration of cell division, promoting p53-dependent cell cycle arrest when a critical time threshold is surpassed. Here, we show that Polo-like kinase 1 (PLK1) activity is essential for the time-dependent release of 53BP1 from kinetochores. PLK1 inhibition, which leads to 53BP1 persistence at kinetochores, prevents cytosolic 53BP1 association with p53 and results in a blunted MSP. Strikingly, the identification of CENP-F as the kinetochore docking partner of 53BP1 enabled us to show that measurement of mitotic timing by the MSP does not take place at kinetochores, as perturbing CENP-F-53BP1 binding had no measurable impact on the MSP. Taken together, we propose that PLK1 supports the MSP by generating a cytosolic pool of 53BP1 and that an unknown cytosolic mechanism enables the measurement of mitotic duration.
Collapse
Affiliation(s)
- Matteo Burigotto
- Armenise‐Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology – CIBIOUniversity of TrentoTrentoItaly
- Present address:
Comprehensive Cancer Centre, School of Cancer and Pharmaceutical SciencesKing's CollegeLondonUK
- Present address:
Organelle Dynamics LaboratoryThe Francis Crick InstituteLondonUK
| | - Vincenza Vigorito
- Armenise‐Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology – CIBIOUniversity of TrentoTrentoItaly
| | - Colin Gliech
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Alessia Mattivi
- Armenise‐Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology – CIBIOUniversity of TrentoTrentoItaly
| | - Sabrina Ghetti
- Armenise‐Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology – CIBIOUniversity of TrentoTrentoItaly
- Present address:
Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Alessandra Bisio
- Laboratory of Radiobiology, Department of Cellular, Computational and Integrative Biology – CIBIOUniversity of TrentoTrentoItaly
| | - Graziano Lolli
- Laboratory of Protein Crystallography and Structure‐Based Drug Design, Department of Cellular, Computational and Integrative Biology – CIBIOUniversity of TrentoTrentoItaly
| | | | - Luca L Fava
- Armenise‐Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology – CIBIOUniversity of TrentoTrentoItaly
| |
Collapse
|
16
|
Gluszek‐Kustusz A, Craske B, Legal T, McHugh T, Welburn JPI. Phosphorylation controls spatial and temporal activities of motor-PRC1 complexes to complete mitosis. EMBO J 2023; 42:e113647. [PMID: 37592895 PMCID: PMC10620760 DOI: 10.15252/embj.2023113647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/30/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023] Open
Abstract
During mitosis, spindle architecture alters as chromosomes segregate into daughter cells. The microtubule crosslinker protein regulator of cytokinesis 1 (PRC1) is essential for spindle stability, chromosome segregation and completion of cytokinesis, but how it recruits motors to the central spindle to coordinate the segregation of chromosomes is unknown. Here, we combine structural and cell biology approaches to show that the human CENP-E motor, which is essential for chromosome capture and alignment by microtubules, binds to PRC1 through a conserved hydrophobic motif. This binding mechanism is also used by Kinesin-4 Kif4A:PRC1. Using in vitro reconstitution, we demonstrate that CENP-E slides antiparallel PRC1-crosslinked microtubules. We find that the regulation of CENP-E -PRC1 interaction is spatially and temporally coupled with relocalization to overlapping microtubules in anaphase. Finally, we demonstrate that the PRC1-microtubule motor interaction is essential in anaphase to control chromosome partitioning, retain central spindle integrity and ensure cytokinesis. Taken together our findings reveal the molecular basis for the cell cycle regulation of motor-PRC1 complexes to couple chromosome segregation and cytokinesis.
Collapse
Affiliation(s)
- Agata Gluszek‐Kustusz
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Benjamin Craske
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Thibault Legal
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
- McGill UniversityMontrealQCCanada
| | - Toni McHugh
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Julie PI Welburn
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
17
|
Rojas J, Oz T, Jonak K, Lyzak O, Massaad V, Biriuk O, Zachariae W. Spo13/MEIKIN ensures a Two-Division meiosis by preventing the activation of APC/C Ama1 at meiosis I. EMBO J 2023; 42:e114288. [PMID: 37728253 PMCID: PMC10577557 DOI: 10.15252/embj.2023114288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023] Open
Abstract
Genome haploidization at meiosis depends on two consecutive nuclear divisions, which are controlled by an oscillatory system consisting of Cdk1-cyclin B and the APC/C bound to the Cdc20 activator. How the oscillator generates exactly two divisions has been unclear. We have studied this question in yeast where exit from meiosis involves accumulation of the APC/C activator Ama1 at meiosis II. We show that inactivation of the meiosis I-specific protein Spo13/MEIKIN results in a single-division meiosis due to premature activation of APC/CAma1 . In the wild type, Spo13 bound to the polo-like kinase Cdc5 prevents Ama1 synthesis at meiosis I by stabilizing the translational repressor Rim4. In addition, Cdc5-Spo13 inhibits the activity of Ama1 by converting the B-type cyclin Clb1 from a substrate to an inhibitor of Ama1. Cdc20-dependent degradation of Spo13 at anaphase I unleashes a feedback loop that increases Ama1's synthesis and activity, leading to irreversible exit from meiosis at the second division. Thus, by repressing the exit machinery at meiosis I, Cdc5-Spo13 ensures that cells undergo two divisions to produce haploid gametes.
Collapse
Affiliation(s)
- Julie Rojas
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
Laboratory of GeneticsUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Tugce Oz
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Katarzyna Jonak
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Oleksii Lyzak
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Vinal Massaad
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Olha Biriuk
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Wolfgang Zachariae
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| |
Collapse
|
18
|
Fletcher CE, Taylor MA, Bevan CL. PLK1 Regulates MicroRNA Biogenesis through Drosha Phosphorylation. Int J Mol Sci 2023; 24:14290. [PMID: 37762595 PMCID: PMC10531876 DOI: 10.3390/ijms241814290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Polo-Like Kinase 1 (PLK1), a key mediator of cell-cycle progression, is associated with poor prognosis and is a therapeutic target in a number of malignancies. Putative phosphorylation sites for PLK1 have been identified on Drosha, the main catalytic component of the microprocessor responsible for miR biogenesis. Several kinases, including GSK3β, p70 S6 kinase, ABL, PAK5, p38 MAPK, CSNK1A1 and ANKRD52-PPP6C, have been shown to phosphorylate components of the miR biogenesis machinery, altering their activity and/or localisation, and therefore the biogenesis of distinct miR subsets. We hypothesised that PLK1 regulates miR biogenesis through Drosha phosphorylation. In vitro kinase assays confirmed PLK1 phosphorylation of Drosha at S300 and/or S302. PLK1 inhibition reduced serine-phosphorylated levels of Drosha and its RNA-dependent association with DGCR8. In contrast, a "phospho-mimic" Drosha mutant showed increased association with DGCR8. PLK1 phosphorylation of Drosha alters Drosha Microprocessor complex subcellular localisation, since PLK1 inhibition increased cytosolic protein levels of both DGCR8 and Drosha, whilst nuclear levels were decreased. Importantly, the above effects are independent of PLK1's cell cycle-regulatory role, since altered Drosha:DGCR8 localisation upon PLK1 inhibition occurred prior to significant accumulation of cells in M-phase, and PLK1-regulated miRs were not increased in M-phase-arrested cells. Small RNA sequencing and qPCR validation were used to assess downstream consequences of PLK1 activity on miR biogenesis, identifying a set of ten miRs (miR-1248, miR-1306-5p, miR-2277-5p, miR-29c-5p, miR-93-3p, miR-152-3p, miR-509-3-5p, miR-511-5p, miR-891a-5p and miR-892a) whose expression levels were statistically significantly downregulated by two pharmacological PLK1 kinase domain inhibitors, RO-5203280 and GSK461364. Opposingly, increased levels of these miRs were observed upon transfection of wild-type or constitutively active PLK1. Importantly, pre-miR levels were reduced upon PLK1 inhibition, and pri-miR levels decreased upon PLK1 activation, and hence, PLK1 Drosha phosphorylation regulates MiR biogenesis at the level of pri-miR-to-pre-miR processing. In combination with prior studies, this work identifies Drosha S300 and S302 as major integration points for signalling by several kinases, whose relative activities will determine the relative biogenesis efficiency of different miR subsets. Identified kinase-regulated miRs have potential for use as kinase inhibitor response-predictive biomarkers, in cancer and other diseases.
Collapse
Affiliation(s)
- Claire Emily Fletcher
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | | | - Charlotte Lynne Bevan
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
19
|
Shah K, Nasimian A, Ahmed M, Al Ashiri L, Denison L, Sime W, Bendak K, Kolosenko I, Siino V, Levander F, Palm-Apergi C, Massoumi R, Lock RB, Kazi JU. PLK1 as a cooperating partner for BCL2-mediated antiapoptotic program in leukemia. Blood Cancer J 2023; 13:139. [PMID: 37679323 PMCID: PMC10484999 DOI: 10.1038/s41408-023-00914-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
The deregulation of BCL2 family proteins plays a crucial role in leukemia development. Therefore, pharmacological inhibition of this family of proteins is becoming a prevalent treatment method. However, due to the emergence of primary and acquired resistance, efficacy is compromised in clinical or preclinical settings. We developed a drug sensitivity prediction model utilizing a deep tabular learning algorithm for the assessment of venetoclax sensitivity in T-cell acute lymphoblastic leukemia (T-ALL) patient samples. Through analysis of predicted venetoclax-sensitive and resistant samples, PLK1 was identified as a cooperating partner for the BCL2-mediated antiapoptotic program. This finding was substantiated by additional data obtained through phosphoproteomics and high-throughput kinase screening. Concurrent treatment using venetoclax with PLK1-specific inhibitors and PLK1 knockdown demonstrated a greater therapeutic effect on T-ALL cell lines, patient-derived xenografts, and engrafted mice compared with using each treatment separately. Mechanistically, the attenuation of PLK1 enhanced BCL2 inhibitor sensitivity through upregulation of BCL2L13 and PMAIP1 expression. Collectively, these findings underscore the dependency of T-ALL on PLK1 and postulate a plausible regulatory mechanism.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Ahmad Nasimian
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Mehreen Ahmed
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Lina Al Ashiri
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Linn Denison
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Wondossen Sime
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Katerina Bendak
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Iryna Kolosenko
- Department of Laboratory Medicine, Biomolecular & Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Valentina Siino
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund, Sweden
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, Lund, Sweden
| | - Caroline Palm-Apergi
- Department of Laboratory Medicine, Biomolecular & Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ramin Massoumi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
20
|
Milletti G, Colicchia V, Cecconi F. Cyclers' kinases in cell division: from molecules to cancer therapy. Cell Death Differ 2023; 30:2035-2052. [PMID: 37516809 PMCID: PMC10482880 DOI: 10.1038/s41418-023-01196-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
Faithful eucaryotic cell division requires spatio-temporal orchestration of multiple sequential events. To ensure the dynamic nature of these molecular and morphological transitions, a swift modulation of key regulatory pathways is necessary. The molecular process that most certainly fits this description is phosphorylation, the post-translational modification provided by kinases, that is crucial to allowing the progression of the cell cycle and that culminates with the separation of two identical daughter cells. In detail, from the early stages of the interphase to the cytokinesis, each critical step of this process is tightly regulated by multiple families of kinases including the Cyclin-dependent kinases (CDKs), kinases of the Aurora, Polo, Wee1 families, and many others. While cell-cycle-related CDKs control the timing of the different phases, preventing replication machinery errors, the latter modulate the centrosome cycle and the spindle function, avoiding karyotypic abnormalities typical of chromosome instability. Such chromosomal abnormalities may result from replication stress (RS) and chromosome mis-segregation and are considered a hallmark of poor prognosis, therapeutic resistance, and metastasis in cancer patients. Here, we discuss recent advances in the understanding of how different families of kinases concur to govern cell cycle, preventing RS and mitotic infidelity. Additionally, considering the growing number of clinical trials targeting these molecules, we review to what extent and in which tumor context cell-cycle-related kinases inhibitors are worth exploiting as an effective therapeutic strategy.
Collapse
Affiliation(s)
- Giacomo Milletti
- DNA Replication and Cancer Group, Danish Cancer Institute, 2100, Copenhagen, Denmark.
- Department of Pediatric Hematology and Oncology and of Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy.
| | - Valeria Colicchia
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- IRBM S.p.A., Via Pontina Km 30.60, 00070, Pomezia, Italy
| | - Francesco Cecconi
- Cell Stress and Survival Group, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Institute, Copenhagen, Denmark.
- Università Cattolica del Sacro Cuore and Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
21
|
Abstract
Gasdermins are effectors of pyroptosis downstream of diverse signaling pathways. Emerging evidence suggests that a number of post-translational modifications regulate the function of gasdermins in pyroptosis, a highly inflammatory form of cell death, and lytic or non-lytic secretion of intracellular contents. These include processing by different caspases and other proteases that may activate or suppress pyroptosis, ubiquitination by a bacterial E3 ligase that suppresses pyroptosis as an immune evasion mechanism, modifications at Cys residues in mammalian or microbial gasdermins that promote or inhibit pyroptosis, and potential phosphorylation that represses pyroptosis. Such diverse regulatory mechanisms by host and microbial proteases, ubiquitin ligases, acyltransferases, kinases and phosphatases may underlie the divergent physiological and pathological functions of gasdermins, and furnish opportunities for therapeutic targeting of gasdermins in infectious diseases and inflammatory disorders.
Collapse
Affiliation(s)
- Sai Li
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Syrena Bracey
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Zhonghua Liu
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States.
| | - Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States.
| |
Collapse
|
22
|
Zhang L, Stauffer WT, Wang JS, Wu F, Yu Z, Liu C, Kim HJ, Dernburg AF. Recruitment of Polo-like kinase couples synapsis to meiotic progression via inactivation of CHK-2. eLife 2023; 12:e84492. [PMID: 36700544 PMCID: PMC9998088 DOI: 10.7554/elife.84492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/25/2023] [Indexed: 01/27/2023] Open
Abstract
Meiotic chromosome segregation relies on synapsis and crossover (CO) recombination between homologous chromosomes. These processes require multiple steps that are coordinated by the meiotic cell cycle and monitored by surveillance mechanisms. In diverse species, failures in chromosome synapsis can trigger a cell cycle delay and/or lead to apoptosis. How this key step in 'homolog engagement' is sensed and transduced by meiotic cells is unknown. Here we report that in C. elegans, recruitment of the Polo-like kinase PLK-2 to the synaptonemal complex triggers phosphorylation and inactivation of CHK-2, an early meiotic kinase required for pairing, synapsis, and double-strand break (DSB) induction. Inactivation of CHK-2 terminates DSB formation and enables CO designation and cell cycle progression. These findings illuminate how meiotic cells ensure CO formation and accurate chromosome segregation.
Collapse
Affiliation(s)
- Liangyu Zhang
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative BiosciencesBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Weston T Stauffer
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
| | - John S Wang
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Fan Wu
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Zhouliang Yu
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative BiosciencesBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Chenshu Liu
- California Institute for Quantitative BiosciencesBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Hyung Jun Kim
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Abby F Dernburg
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative BiosciencesBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| |
Collapse
|
23
|
Kucharski TJ, Hards R, Vandal SE, Abad MA, Jeyaprakash AA, Kaye E, al-Rawi A, Ly T, Godek KM, Gerber SA, Compton DA. Small changes in phospho-occupancy at the kinetochore-microtubule interface drive mitotic fidelity. J Cell Biol 2022; 221:213364. [PMID: 35878017 PMCID: PMC9351707 DOI: 10.1083/jcb.202107107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 04/19/2022] [Accepted: 07/05/2022] [Indexed: 01/24/2023] Open
Abstract
Kinetochore protein phosphorylation promotes the correction of erroneous microtubule attachments to ensure faithful chromosome segregation during cell division. Determining how phosphorylation executes error correction requires an understanding of whether kinetochore substrates are completely (i.e., all-or-none) or only fractionally phosphorylated. Using quantitative mass spectrometry (MS), we measured phospho-occupancy on the conserved kinetochore protein Hec1 (NDC80) that directly binds microtubules. None of the positions measured exceeded ∼50% phospho-occupancy, and the cumulative phospho-occupancy changed by only ∼20% in response to changes in microtubule attachment status. The narrow dynamic range of phospho-occupancy is maintained, in part, by the ongoing phosphatase activity. Further, both Cdk1-Cyclin B1 and Aurora kinases phosphorylate Hec1 to enhance error correction in response to different types of microtubule attachment errors. The low inherent phospho-occupancy promotes microtubule attachment to kinetochores while the high sensitivity of kinetochore-microtubule attachments to small changes in phospho-occupancy drives error correction and ensures high mitotic fidelity.
Collapse
Affiliation(s)
- Thomas J. Kucharski
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Rufus Hards
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Sarah E. Vandal
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Maria Alba Abad
- Wellcome Centre For Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | - Edward Kaye
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
| | - Aymen al-Rawi
- Wellcome Centre For Cell Biology, University of Edinburgh, Edinburgh, UK
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
| | - Tony Ly
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
| | - Kristina M. Godek
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Scott A. Gerber
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Duane A. Compton
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH
- Correspondence to Duane A. Compton:
| |
Collapse
|
24
|
Sulimenko V, Dráberová E, Dráber P. γ-Tubulin in microtubule nucleation and beyond. Front Cell Dev Biol 2022; 10:880761. [PMID: 36158181 PMCID: PMC9503634 DOI: 10.3389/fcell.2022.880761] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Microtubules composed of αβ-tubulin dimers are dynamic cytoskeletal polymers that play key roles in essential cellular processes such as cell division, organelle positioning, intracellular transport, and cell migration. γ-Tubulin is a highly conserved member of the tubulin family that is required for microtubule nucleation. γ-Tubulin, together with its associated proteins, forms the γ-tubulin ring complex (γ-TuRC), that templates microtubules. Here we review recent advances in the structure of γ-TuRC, its activation, and centrosomal recruitment. This provides new mechanistic insights into the molecular mechanism of microtubule nucleation. Accumulating data suggest that γ-tubulin also has other, less well understood functions. We discuss emerging evidence that γ-tubulin can form oligomers and filaments, has specific nuclear functions, and might be involved in centrosomal cross-talk between microtubules and microfilaments.
Collapse
Affiliation(s)
| | | | - Pavel Dráber
- *Correspondence: Vadym Sulimenko, ; Pavel Dráber,
| |
Collapse
|
25
|
Kim T. Recent Progress on the Localization of PLK1 to the Kinetochore and Its Role in Mitosis. Int J Mol Sci 2022; 23:ijms23095252. [PMID: 35563642 PMCID: PMC9102930 DOI: 10.3390/ijms23095252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/10/2022] Open
Abstract
The accurate distribution of the replicated genome during cell division is essential for cell survival and healthy organismal development. Errors in this process have catastrophic consequences, such as birth defects and aneuploidy, a hallmark of cancer cells. PLK1 is one of the master kinases in mitosis and has multiple functions, including mitotic entry, chromosome segregation, spindle assembly checkpoint, and cytokinesis. To dissect the role of PLK1 in mitosis, it is important to understand how PLK1 localizes in the specific region in cells. PLK1 localizes at the kinetochore and is essential in spindle assembly checkpoint and chromosome segregation. However, how PLK1 localizes at the kinetochore remains elusive. Here, we review the recent literature on the kinetochore recruitment mechanisms of PLK1 and its roles in spindle assembly checkpoint and attachment between kinetochores and spindle microtubules. Together, this review provides an overview of how the local distribution of PLK1 could regulate major pathways in mitosis.
Collapse
Affiliation(s)
- Taekyung Kim
- Department of Biology Education, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| |
Collapse
|
26
|
Xu W, Huang Y. Regulation of Inflammatory Cell Death by Phosphorylation. Front Immunol 2022; 13:851169. [PMID: 35300338 PMCID: PMC8921259 DOI: 10.3389/fimmu.2022.851169] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
Cell death is a necessary event in multi-cellular organisms to maintain homeostasis by eliminating unrequired or damaged cells. Currently, there are many forms of cell death, and several of them, such as necroptosis, pyroptosis and ferroptosis, even apoptosis trigger an inflammatory response by releasing damage-associated molecular patterns (DAMPs), which are involved in the pathogenesis of a variety of human inflammatory diseases, including autoimmunity disease, diabetes, Alzheimer’s disease and cancer. Therefore, the occurrence of inflammatory cell death must be strictly regulated. Recently, increasing studies suggest that phosphorylation plays a critical role in inflammatory cell death. In this review, we will summarize current knowledge of the regulatory role of phosphorylation in inflammatory cell death and also discuss the promising treatment strategy for inflammatory diseases by targeting related protein kinases that mediate phosphorylation or phosphatases that mediate dephosphorylation.
Collapse
Affiliation(s)
- Wen Xu
- Neurology Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yi Huang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
27
|
Liao XX, Dai YZ, Zhao YZ, Nie K. Gasdermin E: A Prospective Target for Therapy of Diseases. Front Pharmacol 2022; 13:855828. [PMID: 35462927 PMCID: PMC9019550 DOI: 10.3389/fphar.2022.855828] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/21/2022] [Indexed: 12/04/2022] Open
Abstract
Gasdermin E (GSDME) is a member of the gasdermin protein family, which mediates programmed cell death including apoptosis and pyroptosis. Recently, it was suggested that GSDME is activated by chemotherapeutic drugs to stimulate pyroptosis of cancer cells and trigger anti-tumor immunity, which is identified as a tumor suppressor. However, GSDME-mediated pyroptosis contributes to normal tissue damage, leading to pathological inflammations. Inhibiting GSDME-mediated pyroptosis might be a potential target in ameliorating inflammatory diseases. Therefore, targeting GSDME is a promising option for the treatment of diseases in the future. In this review, we introduce the roles of GSDME-driven programmed cell death in different diseases and the potential targeted therapies of GSDME, so as to provide a foundation for future research.
Collapse
|
28
|
Brooks KE, Daughtry BL, Davis B, Yan MY, Fei SS, Shepherd S, Carbone L, Chavez SL. Molecular contribution to embryonic aneuploidy and karyotypic complexity in initial cleavage divisions of mammalian development. Development 2022; 149:dev198341. [PMID: 35311995 PMCID: PMC9058497 DOI: 10.1242/dev.198341] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/04/2022] [Indexed: 01/05/2023]
Abstract
Embryonic aneuploidy is highly complex, often leading to developmental arrest, implantation failure or spontaneous miscarriage in both natural and assisted reproduction. Despite our knowledge of mitotic mis-segregation in somatic cells, the molecular pathways regulating chromosome fidelity during the error-prone cleavage-stage of mammalian embryogenesis remain largely undefined. Using bovine embryos and live-cell fluorescent imaging, we observed frequent micro-/multi-nucleation of mis-segregated chromosomes in initial mitotic divisions that underwent unilateral inheritance, re-fused with the primary nucleus or formed a chromatin bridge with neighboring cells. A correlation between a lack of syngamy, multipolar divisions and asymmetric genome partitioning was also revealed, and single-cell DNA-seq showed propagation of primarily non-reciprocal mitotic errors. Depletion of the mitotic checkpoint protein BUB1B (also known as BUBR1) resulted in similarly abnormal nuclear structures and cell divisions, as well as chaotic aneuploidy and dysregulation of the kinase-substrate network that mediates mitotic progression, all before zygotic genome activation. This demonstrates that embryonic micronuclei sustain multiple fates, provides an explanation for blastomeres with uniparental origins, and substantiates defective checkpoints and likely other maternally derived factors as major contributors to the karyotypic complexity afflicting mammalian preimplantation development.
Collapse
Affiliation(s)
- Kelsey E. Brooks
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Brittany L. Daughtry
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Brett Davis
- Bioinformatics and Biostatistics Unit, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Melissa Y. Yan
- Bioinformatics and Biostatistics Unit, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Suzanne S. Fei
- Bioinformatics and Biostatistics Unit, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Selma Shepherd
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Lucia Carbone
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Department of Medical Informatics and Clinical Epidemiology, Division of Bioinformatics and Computational Biomedicine, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Shawn L. Chavez
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
29
|
Barbosa J, Sunkel CE, Conde C. The Role of Mitotic Kinases and the RZZ Complex in Kinetochore-Microtubule Attachments: Doing the Right Link. Front Cell Dev Biol 2022; 10:787294. [PMID: 35155423 PMCID: PMC8832123 DOI: 10.3389/fcell.2022.787294] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/13/2022] [Indexed: 12/31/2022] Open
Abstract
During mitosis, the interaction of kinetochores (KTs) with microtubules (MTs) drives chromosome congression to the spindle equator and supports the segregation of sister chromatids. Faithful genome partition critically relies on the ability of chromosomes to establish and maintain proper amphitelic end-on attachments, a configuration in which sister KTs are connected to robust MT fibers emanating from opposite spindle poles. Because the capture of spindle MTs by KTs is error prone, cells use mechanisms that sense and correct inaccurate KT-MT interactions before committing to segregate sister chromatids in anaphase. If left unresolved, these errors can result in the unequal distribution of chromosomes and lead to aneuploidy, a hallmark of cancer. In this review, we provide an overview of the molecular strategies that monitor the formation and fine-tuning of KT-MT attachments. We describe the complex network of proteins that operates at the KT-MT interface and discuss how AURORA B and PLK1 coordinate several concurrent events so that the stability of KT-MT attachments is precisely modulated throughout mitotic progression. We also outline updated knowledge on how the RZZ complex is regulated to ensure the formation of end-on attachments and the fidelity of mitosis.
Collapse
Affiliation(s)
- João Barbosa
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Claudio E. Sunkel
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Carlos Conde
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
30
|
PHOrming the inflammasome: phosphorylation is a critical switch in inflammasome signalling. Biochem Soc Trans 2021; 49:2495-2507. [PMID: 34854899 PMCID: PMC8786285 DOI: 10.1042/bst20200987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
Inflammasomes are protein complexes in the innate immune system that regulate the production of pro-inflammatory cytokines and inflammatory cell death. Inflammasome activation and subsequent cell death often occur within minutes to an hour, so the pathway must be dynamically controlled to prevent excessive inflammation and the development of inflammatory diseases. Phosphorylation is a fundamental post-translational modification that allows rapid control over protein function and the phosphorylation of inflammasome proteins has emerged as a key regulatory step in inflammasome activation. Phosphorylation of inflammasome sensor and adapter proteins regulates their inter- and intra-molecular interactions, subcellular localisation, and function. The control of inflammasome phosphorylation may thus provide a new strategy for the development of anti-inflammatory therapeutics. Herein we describe the current knowledge of how phosphorylation operates as a critical switch for inflammasome signalling.
Collapse
|
31
|
Bailey LJ, Teague R, Kolesar P, Bainbridge LJ, Lindsay HD, Doherty AJ. PLK1 regulates the PrimPol damage tolerance pathway during the cell cycle. SCIENCE ADVANCES 2021; 7:eabh1004. [PMID: 34860556 PMCID: PMC8641930 DOI: 10.1126/sciadv.abh1004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 10/14/2021] [Indexed: 05/14/2023]
Abstract
Replication stress and DNA damage stall replication forks and impede genome synthesis. During S phase, damage tolerance pathways allow lesion bypass to ensure efficient genome duplication. One such pathway is repriming, mediated by Primase-Polymerase (PrimPol) in human cells. However, the mechanisms by which PrimPol is regulated are poorly understood. Here, we demonstrate that PrimPol is phosphorylated by Polo-like kinase 1 (PLK1) at a conserved residue between PrimPol’s RPA binding motifs. This phosphorylation is differentially modified throughout the cell cycle, which prevents aberrant recruitment of PrimPol to chromatin. Phosphorylation can also be delayed and reversed in response to replication stress. The absence of PLK1-dependent regulation of PrimPol induces phenotypes including chromosome breaks, micronuclei, and decreased survival after treatment with camptothecin, olaparib, and UV-C. Together, these findings establish that deregulated repriming leads to genomic instability, highlighting the importance of regulating this damage tolerance pathway following fork stalling and throughout the cell cycle.
Collapse
Affiliation(s)
- Laura J. Bailey
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Rebecca Teague
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Peter Kolesar
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Lewis J. Bainbridge
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Howard D. Lindsay
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Aidan J. Doherty
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| |
Collapse
|
32
|
Lee HS, Min S, Jung YE, Chae S, Heo J, Lee JH, Kim T, Kang HC, Nakanish M, Cha SS, Cho H. Spatiotemporal coordination of the RSF1-PLK1-Aurora B cascade establishes mitotic signaling platforms. Nat Commun 2021; 12:5931. [PMID: 34635673 PMCID: PMC8505570 DOI: 10.1038/s41467-021-26220-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 09/15/2021] [Indexed: 12/03/2022] Open
Abstract
The chromatin remodeler RSF1 enriched at mitotic centromeres is essential for proper chromosome alignment and segregation and underlying mechanisms remain to be disclosed. We here show that PLK1 recruitment by RSF1 at centromeres creates an activating phosphorylation on Thr236 in the activation loop of Aurora B and this is indispensable for the Aurora B activation. In structural modeling the phosphorylated Thr236 enhances the base catalysis by Asp200 nearby, facilitating the Thr232 autophosphorylation. Accordingly, RSF1-PLK1 is central for Aurora B-mediated microtubule destabilization in error correction. However, under full microtubule-kinetochore attachment RSF1-PLK1 positions at kinetochores, halts activating Aurora B and phosphorylates BubR1, regardless of tension. Spatial movement of RSF1-PLK1 to kinetochores is triggered by Aurora B-mediated phosphorylation of centromeric histone H3 on Ser28. We propose a regulatory RSF1-PLK1 axis that spatiotemporally controls on/off switch on Aurora B. This feedback circuit among RSF1-PLK1-Aurora B may coordinate dynamic microtubule-kinetochore attachment in early mitosis when full tension yet to be generated.
Collapse
Affiliation(s)
- Ho-Soo Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea.
| | - Sunwoo Min
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Ye-Eun Jung
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sunyoung Chae
- Institute of Medical Science, Ajou University School of Medicine, Suwon, 16499, Korea
| | - June Heo
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, 16499, Korea
| | - Jae-Ho Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
- Institute of Medical Science, Ajou University School of Medicine, Suwon, 16499, Korea
| | - TaeSoo Kim
- Department of Life Science, Ewha Womans University, Seoul, 03760, Korea
| | - Ho-Chul Kang
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea
| | - Makoto Nakanish
- Division of Cancer Cell Biology, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Sun-Shin Cha
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Hyeseong Cho
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea.
| |
Collapse
|
33
|
Wnt signaling recruits KIF2A to the spindle to ensure chromosome congression and alignment during mitosis. Proc Natl Acad Sci U S A 2021; 118:2108145118. [PMID: 34417301 DOI: 10.1073/pnas.2108145118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Canonical Wnt signaling plays critical roles in development and tissue renewal by regulating β-catenin target genes. Recent evidence showed that β-catenin-independent Wnt signaling is also required for faithful execution of mitosis. However, the targets and specific functions of mitotic Wnt signaling still remain uncharacterized. Using phosphoproteomics, we identified that Wnt signaling regulates the microtubule depolymerase KIF2A during mitosis. We found that Dishevelled recruits KIF2A via its N-terminal and motor domains, which is further promoted upon LRP6 signalosome formation during cell division. We show that Wnt signaling modulates KIF2A interaction with PLK1, which is critical for KIF2A localization at the spindle. Accordingly, inhibition of basal Wnt signaling leads to chromosome misalignment in somatic cells and pluripotent stem cells. We propose that Wnt signaling monitors KIF2A activity at the spindle poles during mitosis to ensure timely chromosome alignment. Our findings highlight a function of Wnt signaling during cell division, which could have important implications for genome maintenance, notably in stem cells.
Collapse
|
34
|
Abstract
As one of four filament types, microtubules are a core component of the cytoskeleton and are essential for cell function. Yet how microtubules are nucleated from their building blocks, the αβ-tubulin heterodimer, has remained a fundamental open question since the discovery of tubulin 50 years ago. Recent structural studies have shed light on how γ-tubulin and the γ-tubulin complex proteins (GCPs) GCP2 to GCP6 form the γ-tubulin ring complex (γ-TuRC). In parallel, functional and single-molecule studies have informed on how the γ-TuRC nucleates microtubules in real time, how this process is regulated in the cell and how it compares to other modes of nucleation. Another recent surprise has been the identification of a second essential nucleation factor, which turns out to be the well-characterized microtubule polymerase XMAP215 (also known as CKAP5, a homolog of chTOG, Stu2 and Alp14). This discovery helps to explain why the observed nucleation activity of the γ-TuRC in vitro is relatively low. Taken together, research in recent years has afforded important insight into how microtubules are made in the cell and provides a basis for an exciting era in the cytoskeleton field.
Collapse
Affiliation(s)
- Akanksha Thawani
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
35
|
Catena V, Bruno T, Iezzi S, Matteoni S, Salis A, Sorino C, Damonte G, Fanciulli M. CK2-mediated phosphorylation of Che-1/AATF is required for its pro-proliferative activity. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:232. [PMID: 34266450 PMCID: PMC8281565 DOI: 10.1186/s13046-021-02038-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/06/2021] [Indexed: 11/23/2022]
Abstract
Background Che-1/AATF (Che-1) is an RNA polymerase II binding protein involved in several cellular processes, including proliferation, apoptosis and response to stress. We have recently demonstrated that Che-1 is able to promote cell proliferation by sustaining global histone acetylation in multiple myeloma (MM) cells where it interacts with histone proteins and competes with HDAC class I members for binding. Methods Site-directed Mutagenesis was performed to generate a Che-1 mutant (Che-1 3S) lacking three serine residues (Ser316, Ser320 and Ser321) in 308–325 aa region. Western blot experiments were conducted to examine the effect of depletion or over-expression of Che-1 and Che-1 3S mutant on histone acetylation, in different human cancer cell lines. Proliferation assays were assessed to estimate the change in cells number when Che-1 was over-expressed or deleted. Immunoprecipitation assays were performed to evaluate Che-1/histone H3 interaction when Ser316, Ser320 and Ser321 were removed. The involvement of CK2 kinase in Che-1 phosphorylation at these residues was analysed by in vitro kinase, 2D gel electrophoresis assays and mass spectrometry analysis. Results Here, we confirmed that Che-1 depletion reduces cell proliferation with a concomitant general histone deacetylation in several tumor cell lines. Furthermore, we provided evidence that CK2 protein kinase phosphorylates Che-1 at Ser316, Ser320 and Ser321 and that these modifications are required for Che-1/histone H3 binding. These results improve our understanding onto the mechanisms by which Che-1 regulates histone acetylation and cell proliferation. Conclusions Che-1 phosphorylation at Ser316, Ser320 and Ser321 by CK2 promotes the interaction with histone H3 and represents an essential requirement for Che-1 pro-proliferative ability. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02038-x.
Collapse
Affiliation(s)
- Valeria Catena
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy.
| | - Tiziana Bruno
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Simona Iezzi
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Silvia Matteoni
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Annalisa Salis
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genoa, Viale Benedetto XV 1, 16132, Genoa, Italy
| | - Cristina Sorino
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Gianluca Damonte
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genoa, Viale Benedetto XV 1, 16132, Genoa, Italy
| | - Maurizio Fanciulli
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
36
|
Arslanhan MD, Rauniyar N, Yates JR, Firat-Karalar EN. Aurora Kinase A proximity map reveals centriolar satellites as regulators of its ciliary function. EMBO Rep 2021; 22:e51902. [PMID: 34169630 PMCID: PMC8339716 DOI: 10.15252/embr.202051902] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 12/30/2022] Open
Abstract
Aurora kinase A (AURKA) is a conserved kinase that plays crucial roles in numerous cellular processes. Although AURKA overexpression is frequent in human cancers, its pleiotropic functions and multifaceted regulation present challenges in its therapeutic targeting. Key to overcoming these challenges is to identify and characterize the full range of AURKA interactors, which are often weak and transient. Previous proteomic studies were limited in monitoring dynamic and non-mitotic AURKA interactions. Here, we generate the proximity interactome of AURKA in asynchronous cells, which consists of 440 proteins involving multiple biological processes and cellular compartments. Importantly, AURKA has extensive proximate and physical interactions to centriolar satellites, key regulators of the primary cilium. Loss-of-function experiments identify satellites as negative regulators of AURKA activity, abundance, and localization in quiescent cells. Notably, loss of satellites activates AURKA at the basal body, decreases centrosomal IFT88 levels, and causes ciliogenesis defects. Collectively, our results provide a resource for dissecting spatiotemporal regulation of AURKA and uncover its proteostatic regulation by satellites as a new mechanism for its ciliary functions.
Collapse
Affiliation(s)
- Melis D Arslanhan
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Navin Rauniyar
- Department of Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - John R Yates
- Department of Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
37
|
Alfaro E, López‐Jiménez P, González‐Martínez J, Malumbres M, Suja JA, Gómez R. PLK1 regulates centrosome migration and spindle dynamics in male mouse meiosis. EMBO Rep 2021; 22:e51030. [PMID: 33615693 PMCID: PMC8025030 DOI: 10.15252/embr.202051030] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Cell division requires the regulation of karyokinesis and cytokinesis, which includes an essential role of the achromatic spindle. Although the functions of centrosomes are well characterised in somatic cells, their role during vertebrate spermatogenesis remains elusive. We have studied the dynamics of the meiotic centrosomes in male mouse during both meiotic divisions. Results show that meiotic centrosomes duplicate twice: first duplication occurs in the leptotene/zygotene transition, while the second occurs in interkinesis. The maturation of duplicated centrosomes during the early stages of prophase I and II are followed by their separation and migration to opposite poles to form bipolar spindles I and II. The study of the genetic mouse model Plk1(Δ/Δ) indicates a central role of Polo-like kinase 1 in pericentriolar matrix assembly, in centrosome maturation and migration, and in the formation of the bipolar spindles during spermatogenesis. In addition, in vitro inhibition of Polo-like kinase 1 and Aurora A in organotypic cultures of seminiferous tubules points out to a prominent role of both kinases in the regulation of the formation of meiotic bipolar spindles.
Collapse
Affiliation(s)
- Enrique Alfaro
- Departamento de BiologíaFacultad de CienciasUnidad de Biología CelularUniversidad Autónoma de MadridMadridSpain
| | - Pablo López‐Jiménez
- Departamento de BiologíaFacultad de CienciasUnidad de Biología CelularUniversidad Autónoma de MadridMadridSpain
| | | | - Marcos Malumbres
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - José A Suja
- Departamento de BiologíaFacultad de CienciasUnidad de Biología CelularUniversidad Autónoma de MadridMadridSpain
| | - Rocío Gómez
- Departamento de BiologíaFacultad de CienciasUnidad de Biología CelularUniversidad Autónoma de MadridMadridSpain
| |
Collapse
|
38
|
Vasquez-Limeta A, Loncarek J. Human centrosome organization and function in interphase and mitosis. Semin Cell Dev Biol 2021; 117:30-41. [PMID: 33836946 DOI: 10.1016/j.semcdb.2021.03.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/15/2023]
Abstract
Centrosomes were first described by Edouard Van Beneden and named and linked to chromosome segregation by Theodor Boveri around 1870. In the 1960-1980s, electron microscopy studies have revealed the remarkable ultrastructure of a centriole -- a nine-fold symmetrical microtubular assembly that resides within a centrosome and organizes it. Less than two decades ago, proteomics and genomic screens conducted in multiple species identified hundreds of centriole and centrosome core proteins and revealed the evolutionarily conserved nature of the centriole assembly pathway. And now, super resolution microscopy approaches and improvements in cryo-tomography are bringing an unparalleled nanoscale-detailed picture of the centriole and centrosome architecture. In this chapter, we summarize the current knowledge about the architecture of human centrioles. We discuss the structured organization of centrosome components in interphase, focusing on localization/function relationship. We discuss the process of centrosome maturation and mitotic spindle pole assembly in centriolar and acentriolar cells, emphasizing recent literature.
Collapse
Affiliation(s)
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, NIH/NCI, Frederick 21702, MD, USA.
| |
Collapse
|
39
|
Fischer FA, Chen KW, Bezbradica JS. Posttranslational and Therapeutic Control of Gasdermin-Mediated Pyroptosis and Inflammation. Front Immunol 2021; 12:661162. [PMID: 33868312 PMCID: PMC8050342 DOI: 10.3389/fimmu.2021.661162] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/19/2021] [Indexed: 12/30/2022] Open
Abstract
Pyroptosis is a proinflammatory form of cell death, mediated by membrane pore-forming proteins called gasdermins. Gasdermin pores allow the release of the pro-inflammatory cytokines IL-1β and IL-18 and cause cell swelling and cell lysis leading to release of other intracellular proteins that act as alarmins to perpetuate inflammation. The best characterized, gasdermin D, forms pores via its N-terminal domain, generated after the cleavage of full length gasdermin D by caspase-1 or -11 (caspase-4/5 in humans) typically upon sensing of intracellular pathogens. Thus, gasdermins were originally thought to largely contribute to pathogen-induced inflammation. We now know that gasdermin family members can also be cleaved by other proteases, such as caspase-3, caspase-8 and granzymes, and that they contribute to sterile inflammation as well as inflammation in autoinflammatory diseases or during cancer immunotherapy. Here we briefly review how and when gasdermin pores are formed, and then focus on emerging endogenous mechanisms and therapeutic approaches that could be used to control pore formation, pyroptosis and downstream inflammation.
Collapse
Affiliation(s)
- Fabian A. Fischer
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Kaiwen W. Chen
- Immunology Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jelena S. Bezbradica
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
40
|
Cell-cycle phospho-regulation of the kinetochore. Curr Genet 2021; 67:177-193. [PMID: 33221975 DOI: 10.1007/s00294-020-01127-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
The kinetochore is a mega-dalton protein assembly that forms within centromeric regions of chromosomes and directs their segregation during cell division. Here we review cell cycle-mediated phosphorylation events at the kinetochore, with a focus on the budding yeast Saccharomyces cerevisiae and the insight gained from forced associations of kinases and phosphatases. The point centromeres found in the budding yeast S. cerevisiae are one of the simplest such structures found in eukaryotes. The S. cerevisiae kinetochore comprises a single nucleosome, containing a centromere-specific H3 variant Cse4CENP-A, bound to a set of kinetochore proteins that connect to a single microtubule. Despite the simplicity of the budding yeast kinetochore, the proteins are mostly homologous with their mammalian counterparts. In some cases, human proteins can complement their yeast orthologs. Like its mammalian equivalent, the regulation of the budding yeast kinetochore is complex: integrating signals from the cell cycle, checkpoints, error correction, and stress pathways. The regulatory signals from these diverse pathways are integrated at the kinetochore by post-translational modifications, notably phosphorylation and dephosphorylation, to control chromosome segregation. Here we highlight the complex interplay between the activity of the different cell-cycle kinases and phosphatases at the kinetochore, emphasizing how much more we have to understand this essential structure.
Collapse
|
41
|
Leaving no-one behind: how CENP-E facilitates chromosome alignment. Essays Biochem 2021; 64:313-324. [PMID: 32347304 PMCID: PMC7475649 DOI: 10.1042/ebc20190073] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Chromosome alignment and biorientation is essential for mitotic progression and genomic stability. Most chromosomes align at the spindle equator in a motor-independent manner. However, a subset of polar kinetochores fail to bi-orient and require a microtubule motor-based transport mechanism to move to the cell equator. Centromere Protein E (CENP-E/KIF10) is a kinesin motor from the Kinesin-7 family, which localizes to unattached kinetochores during mitosis and utilizes plus-end directed microtubule motility to slide mono-oriented chromosomes to the spindle equator. Recent work has revealed how CENP-E cooperates with chromokinesins and dynein to mediate chromosome congression and highlighted its role at aligned chromosomes. Additionally, we have gained new mechanistic insights into the targeting and regulation of CENP-E motor activity at the kinetochore. Here, we will review the function of CENP-E in chromosome congression, the pathways that contribute to CENP-E loading at the kinetochore, and how CENP-E activity is regulated during mitosis.
Collapse
|
42
|
Geraghty Z, Barnard C, Uluocak P, Gruneberg U. The association of Plk1 with the astrin-kinastrin complex promotes formation and maintenance of a metaphase plate. J Cell Sci 2021; 134:jcs251025. [PMID: 33288550 PMCID: PMC7803464 DOI: 10.1242/jcs.251025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/30/2020] [Indexed: 11/20/2022] Open
Abstract
Errors in mitotic chromosome segregation can lead to DNA damage and aneuploidy, both hallmarks of cancer. To achieve synchronous error-free segregation, mitotic chromosomes must align at the metaphase plate with stable amphitelic attachments to microtubules emanating from opposing spindle poles. The astrin-kinastrin (astrin is also known as SPAG5 and kinastrin as SKAP) complex, also containing DYNLL1 and MYCBP, is a spindle and kinetochore protein complex with important roles in bipolar spindle formation, chromosome alignment and microtubule-kinetochore attachment. However, the molecular mechanisms by which astrin-kinastrin fulfils these diverse roles are not fully understood. Here, we characterise a direct interaction between astrin and the mitotic kinase Plk1. We identify the Plk1-binding site on astrin as well as four Plk1 phosphorylation sites on astrin. Regulation of astrin by Plk1 is dispensable for bipolar spindle formation and bulk chromosome congression, but promotes stable microtubule-kinetochore attachments and metaphase plate maintenance. It is known that Plk1 activity is required for effective microtubule-kinetochore attachment formation, and we suggest that astrin phosphorylation by Plk1 contributes to this process.
Collapse
Affiliation(s)
- Zoë Geraghty
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Christina Barnard
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Pelin Uluocak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Ulrike Gruneberg
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
43
|
Ong JY, Bradley MC, Torres JZ. Phospho-regulation of mitotic spindle assembly. Cytoskeleton (Hoboken) 2020; 77:558-578. [PMID: 33280275 PMCID: PMC7898546 DOI: 10.1002/cm.21649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/08/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022]
Abstract
The assembly of the bipolar mitotic spindle requires the careful orchestration of a myriad of enzyme activities like protein posttranslational modifications. Among these, phosphorylation has arisen as the principle mode for spatially and temporally activating the proteins involved in early mitotic spindle assembly processes. Here, we review key kinases, phosphatases, and phosphorylation events that regulate critical aspects of these processes. We highlight key phosphorylation substrates that are important for ensuring the fidelity of centriole duplication, centrosome maturation, and the establishment of the bipolar spindle. We also highlight techniques used to understand kinase-substrate relationships and to study phosphorylation events. We conclude with perspectives on the field of posttranslational modifications in early mitotic spindle assembly.
Collapse
Affiliation(s)
- Joseph Y Ong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Michelle C Bradley
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| |
Collapse
|
44
|
De Schutter E, Croes L, Ibrahim J, Pauwels P, Op de Beeck K, Vandenabeele P, Van Camp G. GSDME and its role in cancer: From behind the scenes to the front of the stage. Int J Cancer 2020; 148:2872-2883. [PMID: 33186472 DOI: 10.1002/ijc.33390] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022]
Abstract
Gasdermin E (GSDME), a gene originally involved in hereditary hearing loss, has been associated with several types of cancer in the last two decades. Recently, GSDME was identified as a pore-forming molecule, which is activated following caspase-3-mediated cleavage resulting in so-called secondary necrosis following apoptotic cell death, or in primary necrotic cell death without an apoptotic phase, so-called pyroptosis-like. This implication in cell death execution suggests its potential role as a tumor suppressor. GSDME also exhibited a cancer type-specific differential methylation pattern between tumor tissues and normal cells, implying GSDME gene methylation as both a pan-cancer and cancer type-specific detection biomarker. A bit paradoxically, GSDME protein expression is considered to be less suited as biomarker, and although its ablation does not protect the cell against eventual cell death, its protein expression might still operate in tumor immunogenicity due to its capacity to induce (secondary) necrotic cell death, which has enhanced immunogenic properties. Additionally, GSDME gene expression has been shown to be associated with favorable prognosis following chemotherapy, and it could therefore be a potential predictive biomarker. We provide an overview of the different associations between GSDME gene methylation, gene expression and tumorigenesis, and explore their potential use in the clinic. Our review only focuses on GSDME and summarizes the current knowledge and most recent advances on GSDME's role in cancer formation, its potential as a biomarker in cancer and on its promising role in immunotherapies and antitumor immune response.
Collapse
Affiliation(s)
- Elke De Schutter
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.,Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Gent University, Ghent, Belgium
| | - Lieselot Croes
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.,Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Joe Ibrahim
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.,Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Patrick Pauwels
- Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Ken Op de Beeck
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.,Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Gent University, Ghent, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.,Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
45
|
Velez-Aguilera G, Nkombo Nkoula S, Ossareh-Nazari B, Link J, Paouneskou D, Van Hove L, Joly N, Tavernier N, Verbavatz JM, Jantsch V, Pintard L. PLK-1 promotes the merger of the parental genome into a single nucleus by triggering lamina disassembly. eLife 2020; 9:59510. [PMID: 33030429 PMCID: PMC7544505 DOI: 10.7554/elife.59510] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
Life of sexually reproducing organisms starts with the fusion of the haploid egg and sperm gametes to form the genome of a new diploid organism. Using the newly fertilized Caenorhabditis elegans zygote, we show that the mitotic Polo-like kinase PLK-1 phosphorylates the lamin LMN-1 to promote timely lamina disassembly and subsequent merging of the parental genomes into a single nucleus after mitosis. Expression of non-phosphorylatable versions of LMN-1, which affect lamina depolymerization during mitosis, is sufficient to prevent the mixing of the parental chromosomes into a single nucleus in daughter cells. Finally, we recapitulate lamina depolymerization by PLK-1 in vitro demonstrating that LMN-1 is a direct PLK-1 target. Our findings indicate that the timely removal of lamin is essential for the merging of parental chromosomes at the beginning of life in C. elegans and possibly also in humans, where a defect in this process might be fatal for embryo development.
Collapse
Affiliation(s)
- Griselda Velez-Aguilera
- Programme Equipe Labéllisée Ligue Contre le Cancer - Team Cell Cycle & Development - Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Sylvia Nkombo Nkoula
- Programme Equipe Labéllisée Ligue Contre le Cancer - Team Cell Cycle & Development - Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Batool Ossareh-Nazari
- Programme Equipe Labéllisée Ligue Contre le Cancer - Team Cell Cycle & Development - Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Jana Link
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Dimitra Paouneskou
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Lucie Van Hove
- Programme Equipe Labéllisée Ligue Contre le Cancer - Team Cell Cycle & Development - Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Nicolas Joly
- Programme Equipe Labéllisée Ligue Contre le Cancer - Team Cell Cycle & Development - Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Nicolas Tavernier
- Programme Equipe Labéllisée Ligue Contre le Cancer - Team Cell Cycle & Development - Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | | | - Verena Jantsch
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Lionel Pintard
- Programme Equipe Labéllisée Ligue Contre le Cancer - Team Cell Cycle & Development - Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| |
Collapse
|
46
|
Abstract
Fodrin and its erythroid cell-specific isoform spectrin are actin-associated fibrous proteins that play crucial roles in the maintenance of structural integrity in mammalian cells, which is necessary for proper cell function. Normal cell morphology is altered in diseases such as various cancers and certain neuronal disorders. Fodrin and spectrin are two-chain (αβ) molecules that are encoded by paralogous genes and share many features but also demonstrate certain differences. Fodrin (in humans, typically a heterodimer of the products of the SPTAN1 and SPTBN1 genes) is expressed in nearly all cell types and is especially abundant in neuronal tissues, whereas spectrin (in humans, a heterodimer of the products of the SPTA1 and SPTB1 genes) is expressed almost exclusively in erythrocytes. To fulfill a role in such a variety of different cell types, it was anticipated that fodrin would need to be a more versatile scaffold than spectrin. Indeed, as summarized here, domains unique to fodrin and its regulation by Ca2+, calmodulin, and a variety of posttranslational modifications (PTMs) endow fodrin with additional specific functions. However, how fodrin structural variations and misregulated PTMs may contribute to the etiology of various cancers and neurodegenerative diseases needs to be further investigated.
Collapse
|
47
|
Sullenberger C, Vasquez-Limeta A, Kong D, Loncarek J. With Age Comes Maturity: Biochemical and Structural Transformation of a Human Centriole in the Making. Cells 2020; 9:cells9061429. [PMID: 32526902 PMCID: PMC7349492 DOI: 10.3390/cells9061429] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Centrioles are microtubule-based cellular structures present in most human cells that build centrosomes and cilia. Proliferating cells have only two centrosomes and this number is stringently maintained through the temporally and spatially controlled processes of centriole assembly and segregation. The assembly of new centrioles begins in early S phase and ends in the third G1 phase from their initiation. This lengthy process of centriole assembly from their initiation to their maturation is characterized by numerous structural and still poorly understood biochemical changes, which occur in synchrony with the progression of cells through three consecutive cell cycles. As a result, proliferating cells contain three structurally, biochemically, and functionally distinct types of centrioles: procentrioles, daughter centrioles, and mother centrioles. This age difference is critical for proper centrosome and cilia function. Here we discuss the centriole assembly process as it occurs in somatic cycling human cells with a focus on the structural, biochemical, and functional characteristics of centrioles of different ages.
Collapse
|
48
|
Washington C, Chernet R, Gokhale RH, Martino-Cortez Y, Liu HY, Rosenberg AM, Shahar S, Pfleger CM. A conserved, N-terminal tyrosine signal directs Ras for inhibition by Rabex-5. PLoS Genet 2020; 16:e1008715. [PMID: 32559233 PMCID: PMC7329146 DOI: 10.1371/journal.pgen.1008715] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 07/01/2020] [Accepted: 03/13/2020] [Indexed: 01/08/2023] Open
Abstract
Dysregulation of the Ras oncogene in development causes developmental disorders, "Rasopathies," whereas mutational activation or amplification of Ras in differentiated tissues causes cancer. Rabex-5 (also called RabGEF1) inhibits Ras by promoting Ras mono- and di-ubiquitination. We report here that Rabex-5-mediated Ras ubiquitination requires Ras Tyrosine 4 (Y4), a site of known phosphorylation. Ras substitution mutants insensitive to Y4 phosphorylation did not undergo Rabex-5-mediated ubiquitination in cells and exhibited Ras gain-of-function phenotypes in vivo. Ras Y4 phosphomimic substitution increased Rabex-5-mediated ubiquitination in cells. Y4 phosphomimic substitution in oncogenic Ras blocked the morphological phenotypes associated with oncogenic Ras in vivo dependent on the presence of Rabex-5. We developed polyclonal antibodies raised against an N-terminal Ras peptide phosphorylated at Y4. These anti-phospho-Y4 antibodies showed dramatic recognition of recombinant wild-type Ras and RasG12V proteins when incubated with JAK2 or SRC kinases but not of RasY4F or RasY4F,G12V recombinant proteins suggesting that JAK2 and SRC could promote phosphorylation of Ras proteins at Y4 in vitro. Anti-phospho-Y4 antibodies also showed recognition of RasG12V protein, but not wild-type Ras, when incubated with EGFR. A role for JAK2, SRC, and EGFR (kinases with well-known roles to activate signaling through Ras), to promote Ras Y4 phosphorylation could represent a feedback mechanism to limit Ras activation and thus establish Ras homeostasis. Notably, rare variants of Ras at Y4 have been found in cerebellar glioblastomas. Therefore, our work identifies a physiologically relevant Ras ubiquitination signal and highlights a requirement for Y4 for Ras inhibition by Rabex-5 to maintain Ras pathway homeostasis and to prevent tissue transformation.
Collapse
Affiliation(s)
- Chalita Washington
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Rachel Chernet
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Rewatee H. Gokhale
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Yesenia Martino-Cortez
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Hsiu-Yu Liu
- Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Ashley M. Rosenberg
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Columbia University, New York, New York, United States of America
| | - Sivan Shahar
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- New York Medical College, Valhalla, New York, United States of America
| | - Cathie M. Pfleger
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
49
|
Zuhra K, Augsburger F, Majtan T, Szabo C. Cystathionine-β-Synthase: Molecular Regulation and Pharmacological Inhibition. Biomolecules 2020; 10:E697. [PMID: 32365821 PMCID: PMC7277093 DOI: 10.3390/biom10050697] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Cystathionine-β-synthase (CBS), the first (and rate-limiting) enzyme in the transsulfuration pathway, is an important mammalian enzyme in health and disease. Its biochemical functions under physiological conditions include the metabolism of homocysteine (a cytotoxic molecule and cardiovascular risk factor) and the generation of hydrogen sulfide (H2S), a gaseous biological mediator with multiple regulatory roles in the vascular, nervous, and immune system. CBS is up-regulated in several diseases, including Down syndrome and many forms of cancer; in these conditions, the preclinical data indicate that inhibition or inactivation of CBS exerts beneficial effects. This article overviews the current information on the expression, tissue distribution, physiological roles, and biochemistry of CBS, followed by a comprehensive overview of direct and indirect approaches to inhibit the enzyme. Among the small-molecule CBS inhibitors, the review highlights the specificity and selectivity problems related to many of the commonly used "CBS inhibitors" (e.g., aminooxyacetic acid) and provides a comprehensive review of their pharmacological actions under physiological conditions and in various disease models.
Collapse
Affiliation(s)
- Karim Zuhra
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Fiona Augsburger
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| |
Collapse
|
50
|
Johnson JM, Hebert AS, Drane QH, Lera RF, Wan J, Weaver BA, Coon JJ, Burkard ME. A Genetic Toggle for Chemical Control of Individual Plk1 Substrates. Cell Chem Biol 2020; 27:350-362.e8. [PMID: 32017920 PMCID: PMC7239509 DOI: 10.1016/j.chembiol.2020.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/15/2019] [Accepted: 01/07/2020] [Indexed: 11/17/2022]
Abstract
Polo-like kinase 1 has hundreds of substrates and multiple functions that operate within the ∼60 min of mitosis. Herein, we describe a chemical-genetic system that allows particular substrates to be "toggled" into or out of chemical control using engineered phosphoacceptor selectivity. Biochemical assays and phosphoproteomic analysis of mitotic cell extracts showed that Plk1S (L197F) and Plk1T (L197S/L211A) selectively phosphorylate Ser and Thr, respectively. Plk1S but not Plk1T sustains mitotic progression to anaphase, affording the opportunity to toggle substrate residues between Ser and Thr to place them under chemical control. Using this system, we evaluated Kif2b, a known substrate of Plk1 that regulates chromosome alignment. Toggling Ser to Thr on Kif2b places these phosphorylation sites under reversible chemical control, as indicated by a sharp increase in the frequency of misaligned chromosomes and prometaphase arrest. Thus, we demonstrate the ability to chemically control a single substrate by a genetic Ser/Thr toggle.
Collapse
Affiliation(s)
- James M Johnson
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin, 1111 Highland Avenue, WIMR 6059, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| | - Alexander S Hebert
- Genome Center, University of Wisconsin, Madison, WI 53705, USA; Morgridge Institute for Research, Madison, WI 53705, USA
| | - Quentin H Drane
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin, 1111 Highland Avenue, WIMR 6059, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| | - Robert F Lera
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin, 1111 Highland Avenue, WIMR 6059, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| | - Jun Wan
- Physiology Training Program, University of Wisconsin, Madison, WI 53705, USA
| | - Beth A Weaver
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705, USA; Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53705, USA
| | - Joshua J Coon
- Genome Center, University of Wisconsin, Madison, WI 53705, USA; Department of Chemistry, University of Wisconsin, Madison, WI 53705, USA; Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53705, USA; Morgridge Institute for Research, Madison, WI 53705, USA
| | - Mark E Burkard
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin, 1111 Highland Avenue, WIMR 6059, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA; Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|