1
|
Makwana R, Christ C, Patel R, Marchi E, Harpell R, Lyon GJ. Natural History of NAA15 -Related Neurodevelopmental Disorder Through Adolescence. Am J Med Genet A 2025; 197:e64009. [PMID: 39991982 PMCID: PMC12052496 DOI: 10.1002/ajmg.a.64009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/08/2025] [Accepted: 01/18/2025] [Indexed: 02/25/2025]
Abstract
The NatA N-terminal acetyltransferase complex is composed of the NAA10 catalytic subunit and the auxiliary subunits NAA15 and HYPK. While those with variants in the enzymatic subunit develop Ogden Syndrome, individuals with variants in the NAA15 coding region develop NAA15-related neurodevelopmental syndrome, which presents with a wide array of manifestations that affect the heart, brain, musculoskeletal system, and behavioral and cognitive development. We tracked a cohort of 27 participants (9 females and 18 males) with pathogenic NAA15 variants over time and administered the Vineland-3 assessment to assess their adaptive functioning. We found that this cohort performed significantly worse compared to the normalized Vineland values. On average, females performed better than males, and they performed significantly better on the motor domain and fine motor sub-domain portions of the assessment. Over time, females showed a significant decrease in adaptive functioning, primarily in the daily living skills and motor domains. Males (after excluding one outlier) showed a moderate positive correlation between age and adaptive behavior composite (ABC) standard score. Despite a similar etiology caused by dysfunction in the NatA complex, NAA15-related neurodevelopmental disorder appears to have a weaker effect on adaptive behavior than Ogden Syndrome. However, these differences are based on comparisons to similar literature, as opposed to head-to-head testing. Lastly, comparisons between probands with loss of function variants in NAA15 and those with missense variants showed no significant differences in adaptive behavior metrics. Ultimately, additional longitudinal data should be collected to determine the validity of the between sex differences and to better understand the change in adaptive behavioral outcomes of individuals with NAA15-neurodevelopmental disorder as they age.
Collapse
Affiliation(s)
- Rikhil Makwana
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Carolina Christ
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Rahi Patel
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Elaine Marchi
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Randie Harpell
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Gholson J. Lyon
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
- Biology PhD Program, The Graduate Center, The City University of New York, New York, United States of America
| |
Collapse
|
2
|
Makwana R, Patel R, O'Neill R, Marchi E, Lyon GJ. The Cardiovascular Manifestations and Management Recommendations for Ogden Syndrome. Pediatr Cardiol 2025:10.1007/s00246-025-03877-7. [PMID: 40293509 DOI: 10.1007/s00246-025-03877-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
The NatA complex is composed of the NAA10, NAA15, and HYPK sub-units. It is primarily responsible for N-terminal acetylation, a critical post-translational modification in eukaryotes. Pathogenic variants within NAA10 cause Ogden Syndrome (OS), which is characterized by varying degrees of intellectual disability, hypotonia, developmental delay, and cardiac abnormalities. Although the cardiac manifestations of the disease have been described extensively in case reports, there has not been a study focusing on the cardiac manifestations and their recommended clinical cardiac management. In this study, we describe the cardiac manifestations of OS in a cohort of 85 probands. We found increased incidence of structural and electrophysiologic abnormalities, with particularly high prevalence of QT interval prolongation. Sub-analysis showed that male probands and those with variants within the NAA15-binding domain had more severe phenotypes than females or those with variants outside of the NAA15-binding domain. Our results suggest that an OS diagnosis should be accompanied by full cardiac workup with emphasis on echocardiogram for structural defects and EKG/Holter monitoring for electrophysiologic abnormalities. Additionally, we strongly recommend that the use of QT-prolonging drugs be followed up with routine electrophysiological monitoring or consultation with a pediatric cardiologist. We hope this study guides clinicians and caregivers treating patients with OS and moves the field toward a standardized diagnostic workup for patients with this condition.
Collapse
Affiliation(s)
- Rikhil Makwana
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Rahi Patel
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Rosemary O'Neill
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Elaine Marchi
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Gholson J Lyon
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY, USA.
| |
Collapse
|
3
|
Rabl L, Deuerling E. The nascent polypeptide-associated complex (NAC) as regulatory hub on ribosomes. Biol Chem 2025:hsz-2025-0114. [PMID: 40167342 DOI: 10.1515/hsz-2025-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
The correct synthesis of new proteins is essential for maintaining a functional proteome and cell viability. This process is tightly regulated, with ribosomes and associated protein biogenesis factors ensuring proper protein production, modification, and targeting. In eukaryotes, the conserved nascent polypeptide-associated complex (NAC) plays a central role in coordinating early protein processing by regulating the ribosome access of multiple protein biogenesis factors. NAC recruits modifying enzymes to the ribosomal exit site to process the N-terminus of nascent proteins and directs secretory proteins into the SRP-mediated targeting pathway. In this review we will focus on these pathways, which are critical for proper protein production, and summarize recent advances in understanding the cotranslational functions and mechanisms of NAC in higher eukaryotes.
Collapse
Affiliation(s)
- Laurenz Rabl
- Department of Biology, 26567 University of Konstanz , D-78457 Konstanz, Germany
| | - Elke Deuerling
- Department of Biology, 26567 University of Konstanz , D-78457 Konstanz, Germany
| |
Collapse
|
4
|
Øye H, Lundekvam M, Caiella A, Hellesvik M, Arnesen T. Protein N-terminal modifications: molecular machineries and biological implications. Trends Biochem Sci 2025; 50:290-310. [PMID: 39837675 DOI: 10.1016/j.tibs.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025]
Abstract
The majority of eukaryotic proteins undergo N-terminal (Nt) modifications facilitated by various enzymes. These enzymes, which target the initial amino acid of a polypeptide in a sequence-dependent manner, encompass peptidases, transferases, cysteine oxygenases, and ligases. Nt modifications - such as acetylation, fatty acylations, methylation, arginylation, and oxidation - enhance proteome complexity and regulate protein targeting, stability, and complex formation. Modifications at protein N termini are thereby core components of a large number of biological processes, including cell signaling and motility, autophagy regulation, and plant and animal oxygen sensing. Dysregulation of Nt-modifying enzymes is implicated in several human diseases. In this feature review we provide an overview of the various protein Nt modifications occurring either co- or post-translationally, the enzymes involved, and the biological impact.
Collapse
Affiliation(s)
- Hanne Øye
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Malin Lundekvam
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Alessia Caiella
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Surgery, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
5
|
Yu C, Lei H, Hou X, Yan S. Molecular Mechanisms of ARD1 in Tumors. Cancer Med 2025; 14:e70708. [PMID: 40026288 PMCID: PMC11873779 DOI: 10.1002/cam4.70708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 01/14/2025] [Accepted: 02/10/2025] [Indexed: 03/05/2025] Open
Abstract
INTRODUCTION Arrest-deficient protein 1 (ARD1) is an acetyltransferase that acetylates the N-terminal amino acids and internal lysine residues of proteins. It plays a crucial role in various cellular processes. The significance of ARD1 in tumor development has become increasingly evident in recent years. METHODS This review analyzes the regulatory role of ARD1 in tumor progression by examining its involvement in processes such as cell cycle regulation, cell proliferation, metastasis, apoptosis, and autophagy. Additionally, we discuss the expression patterns and molecular mechanisms of ARD1 in different types of cancer. RESULTS Elevated levels of ARD1 have been reported in several cancer types. Its increased expression is associated with various tumor characteristics, suggesting it may serve as a potential prognostic biomarker. Furthermore, ARD1 could be targeted for the development of novel cancer therapies. CONCLUSION Understanding the role of ARD1 in tumor biology provides valuable insights into potential therapeutic targets and biomarkers for cancer treatment. This review highlights the advances in ARD1-related research and suggests that it may be a promising avenue for improving cancer prognosis and treatment strategies.
Collapse
Affiliation(s)
- Chunjiao Yu
- Institute of Biomedical EngineeringKunming Medical UniversityChenggong District, KunmingYunnanPeople's Republic of China
- Yunnan Key Laboratory of Breast Cancer Precision MedicineChenggong District, KunmingYunnanPeople's Republic of China
| | - Hongtao Lei
- Institute of Biomedical EngineeringKunming Medical UniversityChenggong District, KunmingYunnanPeople's Republic of China
- Yunnan Key Laboratory of Breast Cancer Precision MedicineChenggong District, KunmingYunnanPeople's Republic of China
| | - Xuefei Hou
- Institute of Biomedical EngineeringKunming Medical UniversityChenggong District, KunmingYunnanPeople's Republic of China
- Yunnan Key Laboratory of Breast Cancer Precision MedicineChenggong District, KunmingYunnanPeople's Republic of China
| | - Shan Yan
- Institute of Biomedical EngineeringKunming Medical UniversityChenggong District, KunmingYunnanPeople's Republic of China
- Yunnan Key Laboratory of Breast Cancer Precision MedicineChenggong District, KunmingYunnanPeople's Republic of China
| |
Collapse
|
6
|
Calis S, Gevaert K. The role of Nα-terminal acetylation in protein conformation. FEBS J 2025; 292:453-467. [PMID: 38923676 DOI: 10.1111/febs.17209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Especially in higher eukaryotes, the N termini of proteins are subject to enzymatic modifications, with the acetylation of the alpha-amino group of nascent polypeptides being a prominent one. In recent years, the specificities and substrates of the enzymes responsible for this modification, the Nα-terminal acetyltransferases, have been mapped in several proteomic studies. Aberrant expression of, and mutations in these enzymes were found to be associated with several human diseases, explaining the growing interest in protein Nα-terminal acetylation. With some enzymes, such as the Nα-terminal acetyltransferase A complex having thousands of possible substrates, researchers are now trying to decipher the functional outcome of Nα-terminal protein acetylation. In this review, we zoom in on one possible functional consequence of Nα-terminal protein acetylation; its effect on protein folding. Using selected examples of proteins associated with human diseases such as alpha-synuclein and huntingtin, here, we discuss the sometimes contradictory findings of the effects of Nα-terminal protein acetylation on protein (mis)folding and aggregation.
Collapse
Affiliation(s)
- Sam Calis
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Belgium
| |
Collapse
|
7
|
McTiernan N, Kjosås I, Arnesen T. Illuminating the impact of N-terminal acetylation: from protein to physiology. Nat Commun 2025; 16:703. [PMID: 39814713 PMCID: PMC11735805 DOI: 10.1038/s41467-025-55960-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
N-terminal acetylation is a highly abundant protein modification in eukaryotic cells. This modification is catalysed by N-terminal acetyltransferases acting co- or post-translationally. Here, we review the eukaryotic N-terminal acetylation machinery: the enzymes involved and their substrate specificities. We also provide an overview of the impact of N-terminal acetylation, including its effects on protein folding, subcellular targeting, protein complex formation, and protein turnover. In particular, there may be competition between N-terminal acetyltransferases and other enzymes in defining protein fate. At the organismal level, N-terminal acetylation is highly influential, and its impairment was recently linked to cardiac dysfunction and neurodegenerative diseases.
Collapse
Affiliation(s)
- Nina McTiernan
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Ine Kjosås
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway.
- Department of Surgery, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
8
|
Ree R, Lin SJ, Sti Dahl LO, Huang K, Petree C, Varshney GK, Arnesen T. Naa80 is required for actin N-terminal acetylation and normal hearing in zebrafish. Life Sci Alliance 2024; 7:e202402795. [PMID: 39384430 PMCID: PMC11465159 DOI: 10.26508/lsa.202402795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
Actin is a critical component of the eukaryotic cytoskeleton. In animals, actins undergo unique N-terminal processing by dedicated enzymes resulting in mature acidic and acetylated forms. The final step, N-terminal acetylation, is catalyzed by NAA80 in humans. N-terminal acetylation of actin is crucial for maintaining normal cytoskeletal dynamics and cell motility in human cell lines. However, the physiological impact of actin N-terminal acetylation remains to be fully understood. We developed a zebrafish naa80 knockout model and demonstrated that Naa80 acetylates both muscle and non-muscle actins in vivo. Assays with purified Naa80 revealed a preference for acetylating actin N-termini. Zebrafish lacking actin N-terminal acetylation exhibited normal development, morphology, and behavior. In contrast, humans with pathogenic actin variants can present with hypotonia and hearing impairment. Whereas zebrafish lacking naa80 showed no obvious muscle defects or abnormalities, we observed abnormal inner ear development, small otoliths, and impaired response to sound. In conclusion, we have established that zebrafish Naa80 N-terminally acetylates actins in vitro and in vivo, and that actin N-terminal acetylation is essential for normal hearing.
Collapse
Affiliation(s)
- Rasmus Ree
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Sheng-Jia Lin
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | - Kevin Huang
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Cassidy Petree
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Gaurav K Varshney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
9
|
Larsen SK, Bekkelund ÅK, Glomnes N, Arnesen T, Aksnes H. Assessing N-terminal acetylation status of cellular proteins via an antibody specific for acetylated methionine. Biochimie 2024; 226:113-120. [PMID: 39038730 DOI: 10.1016/j.biochi.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
N-terminal acetylation is being recognized as a factor affecting protein lifetime and proteostasis. It is a modification where an acetyl group is added to the N-terminus of proteins, and this occurs in 80 % of the human proteome. N-terminal acetylation is catalyzed by enzymes called N-terminal acetyltransferases (NATs). The various NATs acetylate different N-terminal amino acids, and methionine is a known target for some of the NATs. Currently, the acetylation status of most proteins can only be assessed with a limited number of methods, including mass spectrometry, which although powerful and robust, remains laborious and can only survey a fraction of the proteome. We here present testing of an antibody that was developed to specifically recognize Nt-acetylated methionine-starting proteins. We have used dot blots with synthetic acetylated and non-acetylated peptides in addition to protein analysis of lysates from NAT knockout cell lines to assess the specificity and application of this anti-Nt-acetylated methionine antibody (anti-NtAc-Met). Our results demonstrate that this antibody is indeed NtAc-specific and further show that it has selectivity for some subtypes of methionine-starting N-termini, specifically potential substrates of the NatC, NatE and NatF enzymes. We propose that this antibody may be a powerful tool to identify NAT substrates or to analyse changes in N-terminal acetylation for specific cellular proteins of interest.
Collapse
Affiliation(s)
| | - Åse K Bekkelund
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Nina Glomnes
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Henriette Aksnes
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
10
|
Constantinou M, Charidemou E, Shanlitourk I, Strati K, Kirmizis A. Yeast Nat4 regulates DNA damage checkpoint signaling through its N-terminal acetyltransferase activity on histone H4. PLoS Genet 2024; 20:e1011433. [PMID: 39356727 PMCID: PMC11472955 DOI: 10.1371/journal.pgen.1011433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/14/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
The DNA damage response (DDR) constitutes a vital cellular process that safeguards genome integrity. This biological process involves substantial alterations in chromatin structure, commonly orchestrated by epigenetic enzymes. Here, we show that the epigenetic modifier N-terminal acetyltransferase 4 (Nat4), known to acetylate the alpha-amino group of serine 1 on histones H4 and H2A, is implicated in the response to DNA damage in S. cerevisiae. Initially, we demonstrate that yeast cells lacking Nat4 have an increased sensitivity to DNA damage and accumulate more DNA breaks than wild-type cells. Accordingly, upon DNA damage, NAT4 gene expression is elevated, and the enzyme is specifically recruited at double-strand breaks. Delving deeper into its effects on the DNA damage signaling cascade, nat4-deleted cells exhibit lower levels of the damage-induced modification H2AS129ph (γH2A), accompanied by diminished binding of the checkpoint control protein Rad9 surrounding the double-strand break. Consistently, Mec1 kinase recruitment at double-strand breaks, critical for H2AS129ph deposition and Rad9 retention, is significantly impaired in nat4Δ cells. Consequently, Mec1-dependent phosphorylation of downstream effector kinase Rad53, indicative of DNA damage checkpoint activation, is reduced. Importantly, we found that the effects of Nat4 in regulating the checkpoint signaling cascade are mediated by its N-terminal acetyltransferase activity targeted specifically towards histone H4. Overall, this study points towards a novel functional link between histone N-terminal acetyltransferase Nat4 and the DDR, associating a new histone-modifying activity in the maintenance of genome integrity.
Collapse
Affiliation(s)
| | - Evelina Charidemou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Izge Shanlitourk
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Katerina Strati
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Antonis Kirmizis
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
11
|
Armbruster L, Pożoga M, Wu Z, Eirich J, Thulasi Devendrakumar K, De La Torre C, Miklánková P, Huber M, Bradic F, Poschet G, Weidenhausen J, Merker S, Ruppert T, Sticht C, Sinning I, Finkemeier I, Li X, Hell R, Wirtz M. Nα-acetyltransferase NAA50 mediates plant immunity independent of the Nα-acetyltransferase A complex. PLANT PHYSIOLOGY 2024; 195:3097-3118. [PMID: 38588051 DOI: 10.1093/plphys/kiae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024]
Abstract
In humans and plants, 40% of the proteome is cotranslationally acetylated at the N-terminus by a single Nα-acetyltransferase (Nat) termed NatA. The core NatA complex is comprised of the catalytic subunit Nα-acetyltransferase 10 (NAA10) and the ribosome-anchoring subunit NAA15. The regulatory subunit Huntingtin Yeast Partner K (HYPK) and the acetyltransferase NAA50 join this complex in humans. Even though both are conserved in Arabidopsis (Arabidopsis thaliana), only AtHYPK is known to interact with AtNatA. Here we uncover the AtNAA50 interactome and provide evidence for the association of AtNAA50 with NatA at ribosomes. In agreement with the latter, a split-luciferase approach demonstrated close proximity of AtNAA50 and AtNatA in planta. Despite their interaction, AtNatA/HYPK and AtNAA50 exerted different functions in vivo. Unlike NatA/HYPK, AtNAA50 did not modulate drought tolerance or promote protein stability. Instead, transcriptome and proteome analyses of a novel AtNAA50-depleted mutant (amiNAA50) implied that AtNAA50 negatively regulates plant immunity. Indeed, amiNAA50 plants exhibited enhanced resistance to oomycetes and bacterial pathogens. In contrast to what was observed in NatA-depleted mutants, this resistance was independent of an accumulation of salicylic acid prior to pathogen exposure. Our study dissects the in vivo function of the NatA interactors HYPK and NAA50 and uncovers NatA-independent roles for NAA50 in plants.
Collapse
Affiliation(s)
- Laura Armbruster
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Marlena Pożoga
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Zhongshou Wu
- Michael Smith Laboratories, University of British Columbia, V6T1Z4 Vancouver, BC, Canada
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Münster, 48149 Münster, Germany
| | | | - Carolina De La Torre
- NGS Core Facility, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Pavlina Miklánková
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Monika Huber
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Fabian Bradic
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Jonas Weidenhausen
- Structural Biology, Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Sabine Merker
- Core Facility for Mass Spectrometry and Proteomics, Center for Molecular Biology of Heidelberg University, 69120 Heidelberg, Germany
| | - Thomas Ruppert
- Core Facility for Mass Spectrometry and Proteomics, Center for Molecular Biology of Heidelberg University, 69120 Heidelberg, Germany
| | - Carsten Sticht
- NGS Core Facility, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Irmgard Sinning
- Structural Biology, Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, 48149 Münster, Germany
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, V6T1Z4 Vancouver, BC, Canada
| | - Rüdiger Hell
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
12
|
Gong X, Boyer JB, Gierlich S, Pożoga M, Weidenhausen J, Sinning I, Meinnel T, Giglione C, Wang Y, Hell R, Wirtz M. HYPK controls stability and catalytic activity of the N-terminal acetyltransferase A in Arabidopsis thaliana. Cell Rep 2024; 43:113768. [PMID: 38363676 DOI: 10.1016/j.celrep.2024.113768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/12/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024] Open
Abstract
The ribosome-tethered N-terminal acetyltransferase A (NatA) acetylates 52% of soluble proteins in Arabidopsis thaliana. This co-translational modification of the N terminus stabilizes diverse cytosolic plant proteins. The evolutionary conserved Huntingtin yeast partner K (HYPK) facilitates NatA activity in planta, but in vitro, its N-terminal helix α1 inhibits human NatA activity. To dissect the regulatory function of HYPK protein domains in vivo, we genetically engineer CRISPR-Cas9 mutants expressing a HYPK fragment lacking all functional domains (hypk-cr1) or an internally deleted HYPK variant truncating helix α1 but retaining the C-terminal ubiquitin-associated (UBA) domain (hypk-cr2). We find that the UBA domain of HYPK is vital for stabilizing the NatA complex in an organ-specific manner. The N terminus of HYPK, including helix α1, is critical for promoting NatA activity on substrates starting with various amino acids. Consequently, deleting only 42 amino acids inside the HYPK N terminus causes substantial destabilization of the plant proteome and higher tolerance toward drought stress.
Collapse
Affiliation(s)
- Xiaodi Gong
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Jean-Baptiste Boyer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Simone Gierlich
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Marlena Pożoga
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | | | - Irmgard Sinning
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Yonghong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 271018 Tai'an, China
| | - Rüdiger Hell
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
13
|
Kast DJ, Jansen S. Purification of modified mammalian actin isoforms for in vitro reconstitution assays. Eur J Cell Biol 2023; 102:151363. [PMID: 37778219 PMCID: PMC10872616 DOI: 10.1016/j.ejcb.2023.151363] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/19/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023] Open
Abstract
In vitro reconstitution assays using purified actin have greatly improved our understanding of cytoskeletal dynamics and their regulation by actin-binding proteins. However, early purification methods consisted of harsh conditions to obtain pure actin and often did not include correct maturation and obligate modification of the isolated actin monomers. Novel insights into the folding requirements and N-terminal processing of actin as well as a better understanding of the interaction of actin with monomer sequestering proteins such as DNaseI, profilin and gelsolin, led to the development of more gentle approaches to obtain pure recombinant actin isoforms with known obligate modifications. This review summarizes the approaches that can be employed to isolate natively folded endogenous and recombinant actin from tissues and cells. We further emphasize the use and limitations of each method and describe how these methods can be implemented to study actin PTMs, disease-related actin mutations and novel actin-like proteins.
Collapse
Affiliation(s)
- David J Kast
- Department of Cell Biology and Physiology, Washington University in St. Louis, Saint Louis, MO, 63110, United States.
| | - Silvia Jansen
- Department of Cell Biology and Physiology, Washington University in St. Louis, Saint Louis, MO, 63110, United States.
| |
Collapse
|
14
|
Varland S, Silva RD, Kjosås I, Faustino A, Bogaert A, Billmann M, Boukhatmi H, Kellen B, Costanzo M, Drazic A, Osberg C, Chan K, Zhang X, Tong AHY, Andreazza S, Lee JJ, Nedyalkova L, Ušaj M, Whitworth AJ, Andrews BJ, Moffat J, Myers CL, Gevaert K, Boone C, Martinho RG, Arnesen T. N-terminal acetylation shields proteins from degradation and promotes age-dependent motility and longevity. Nat Commun 2023; 14:6774. [PMID: 37891180 PMCID: PMC10611716 DOI: 10.1038/s41467-023-42342-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Most eukaryotic proteins are N-terminally acetylated, but the functional impact on a global scale has remained obscure. Using genome-wide CRISPR knockout screens in human cells, we reveal a strong genetic dependency between a major N-terminal acetyltransferase and specific ubiquitin ligases. Biochemical analyses uncover that both the ubiquitin ligase complex UBR4-KCMF1 and the acetyltransferase NatC recognize proteins bearing an unacetylated N-terminal methionine followed by a hydrophobic residue. NatC KO-induced protein degradation and phenotypes are reversed by UBR knockdown, demonstrating the central cellular role of this interplay. We reveal that loss of Drosophila NatC is associated with male sterility, reduced longevity, and age-dependent loss of motility due to developmental muscle defects. Remarkably, muscle-specific overexpression of UbcE2M, one of the proteins targeted for NatC KO-mediated degradation, suppresses defects of NatC deletion. In conclusion, NatC-mediated N-terminal acetylation acts as a protective mechanism against protein degradation, which is relevant for increased longevity and motility.
Collapse
Affiliation(s)
- Sylvia Varland
- Department of Biomedicine, University of Bergen, N-5021, Bergen, Norway.
- Department of Biological Sciences, University of Bergen, N-5006, Bergen, Norway.
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.
| | - Rui Duarte Silva
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139, Faro, Portugal.
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139, Faro, Portugal.
| | - Ine Kjosås
- Department of Biomedicine, University of Bergen, N-5021, Bergen, Norway
| | - Alexandra Faustino
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139, Faro, Portugal
| | - Annelies Bogaert
- VIB-UGent Center for Medical Biotechnology, B-9052, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, B-9052, Ghent, Belgium
| | - Maximilian Billmann
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, D-53127, Bonn, Germany
| | - Hadi Boukhatmi
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes 1, CNRS, UMR6290, 35065, Rennes, France
| | - Barbara Kellen
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139, Faro, Portugal
| | - Michael Costanzo
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Adrian Drazic
- Department of Biomedicine, University of Bergen, N-5021, Bergen, Norway
| | - Camilla Osberg
- Department of Biomedicine, University of Bergen, N-5021, Bergen, Norway
| | - Katherine Chan
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Xiang Zhang
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Amy Hin Yan Tong
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Simonetta Andreazza
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Juliette J Lee
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Lyudmila Nedyalkova
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Matej Ušaj
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | | | - Brenda J Andrews
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Jason Moffat
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Program in Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 1×8, Canada
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, B-9052, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, B-9052, Ghent, Belgium
| | - Charles Boone
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
- RIKEN Centre for Sustainable Resource Science, Wako, Saitama, 351-0106, Japan
| | - Rui Gonçalo Martinho
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139, Faro, Portugal.
- Departmento de Ciências Médicas, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
- iBiMED - Institute of Biomedicine, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, N-5021, Bergen, Norway.
- Department of Biological Sciences, University of Bergen, N-5006, Bergen, Norway.
- Department of Surgery, Haukeland University Hospital, N-5021, Bergen, Norway.
| |
Collapse
|
15
|
Abstract
Most proteins receive an acetyl group at the N terminus while in their nascency as the result of modification by co-translationally acting N-terminal acetyltransferases (NATs). The N-terminal acetyl group can influence several aspects of protein functionality. From studies of NAT-lacking cells, it is evident that several cellular processes are affected by this modification. More recently, an increasing number of genetic cases have demonstrated that N-terminal acetylation has crucial roles in human physiology and pathology. In this Cell Science at a Glance and the accompanying poster, we provide an overview of the human NAT enzymes and their properties, substrate coverage, cellular roles and connections to human disease.
Collapse
Affiliation(s)
- Henriette Aksnes
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Nina McTiernan
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- Department of Biological Sciences, University of Bergen, 5009 Bergen, Norway
- Department of Surgery, Haukeland University Hospital, 5009 Bergen, Norway
| |
Collapse
|
16
|
Lundekvam M, Arnesen T, McTiernan N. Using cell lysates to assess N-terminal acetyltransferase activity and impairment. Methods Enzymol 2023; 686:29-43. [PMID: 37532404 DOI: 10.1016/bs.mie.2023.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The vast majority of eukaryotic proteins are subjected to N-terminal (Nt) acetylation. This reaction is catalyzed by a group of N-terminal acetyltransferases (NATs), which co- or post-translationally transfer an acetyl group from Acetyl coenzyme A to the protein N-terminus. Nt-acetylation plays an important role in many cellular processes, but the functional consequences of this widespread protein modification are still undefined for most proteins. Several in vitro acetylation assays have been developed to study the catalytic activity and substrate specificity of NATs or other acetyltransferases. These assays are valuable tools that can be used to define substrate specificities of yet uncharacterized NAT candidates, assess catalytic impairment of pathogenic NAT variants, and determine the potency of chemical inhibitors. The enzyme input in acetylation assays is typically acetyltransferases that have been recombinantly expressed and purified or immunoprecipitated proteins. In this chapter, we highlight how cell lysates can also be used to assess NAT catalytic activity and impairment when used as input in a previously described isotope-based in vitro Nt-acetylation assay. This is a fast and highly sensitive method that utilizes isotope labeled 14C-Ac-CoA and scintillation to detect the formation of Nt-acetylated peptide products.
Collapse
Affiliation(s)
- Malin Lundekvam
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Biological Sciences, University of Bergen, Bergen, Norway; Department of Surgery, Haukeland University Hospital, Bergen, Norway.
| | - Nina McTiernan
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
17
|
Deng S, Gardner SM, Gottlieb L, Pan B, Petersson EJ, Marmorstein R. Molecular role of NAA38 in thermostability and catalytic activity of the human NatC N-terminal acetyltransferase. Structure 2023; 31:166-173.e4. [PMID: 36638802 PMCID: PMC9898148 DOI: 10.1016/j.str.2022.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/22/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023]
Abstract
N-terminal acetylation occurs on over 80% of human proteins and is catalyzed by a family of N-terminal acetyltransferases (NATs). All NATs contain a small catalytic subunit, while some also contain a large auxiliary subunit that facilitates catalysis and ribosome targeting for co-translational acetylation. NatC is one of the major NATs containing an NAA30 catalytic subunit, but uniquely contains two auxiliary subunits, large NAA35 and small NAA38. Here, we report the cryo-EM structures of human NatC (hNatC) complexes with and without NAA38, together with biochemical studies, to reveal that NAA38 increases the thermostability and broadens the substrate-specificity profile of NatC by ordering an N-terminal segment of NAA35 and reorienting an NAA30 N-terminal peptide binding loop for optimal catalysis, respectively. We also note important differences in engagement with a stabilizing inositol hexaphosphate molecule between human and yeast NatC. These studies provide new insights for the function and evolution of the NatC complex.
Collapse
Affiliation(s)
- Sunbin Deng
- Department of Chemistry, University of Pennsylvania, 231 South 34(th) Street, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah M Gardner
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Leah Gottlieb
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Buyan Pan
- Department of Chemistry, University of Pennsylvania, 231 South 34(th) Street, Philadelphia, PA 19104, USA
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34(th) Street, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Ronen Marmorstein
- Department of Chemistry, University of Pennsylvania, 231 South 34(th) Street, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Van Damme P, Osberg C, Jonckheere V, Glomnes N, Gevaert K, Arnesen T, Aksnes H. Expanded in vivo substrate profile of the yeast N-terminal acetyltransferase NatC. J Biol Chem 2023; 299:102824. [PMID: 36567016 PMCID: PMC9867985 DOI: 10.1016/j.jbc.2022.102824] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
N-terminal acetylation is a conserved protein modification among eukaryotes. The yeast Saccharomyces cerevisiae is a valuable model system for studying this modification. The bulk of protein N-terminal acetylation in S. cerevisiae is catalyzed by the N-terminal acetyltransferases NatA, NatB, and NatC. Thus far, proteome-wide identification of the in vivo protein substrates of yeast NatA and NatB has been performed by N-terminomics. Here, we used S. cerevisiae deleted for the NatC catalytic subunit Naa30 and identified 57 yeast NatC substrates by N-terminal combined fractional diagonal chromatography analysis. Interestingly, in addition to the canonical N-termini starting with ML, MI, MF, and MW, yeast NatC substrates also included MY, MK, MM, MA, MV, and MS. However, for some of these substrate types, such as MY, MK, MV, and MS, we also uncovered (residual) non-NatC NAT activity, most likely due to the previously established redundancy between yeast NatC and NatE/Naa50. Thus, we have revealed a complex interplay between different NATs in targeting methionine-starting N-termini in yeast. Furthermore, our results showed that ectopic expression of human NAA30 rescued known NatC phenotypes in naa30Δ yeast, as well as partially restored the yeast NatC Nt-acetylome. Thus, we demonstrate an evolutionary conservation of NatC from yeast to human thereby underpinning future disease models to study pathogenic NAA30 variants. Overall, this work offers increased biochemical and functional insights into NatC-mediated N-terminal acetylation and provides a basis for future work to pinpoint the specific molecular mechanisms that link the lack of NatC-mediated N-terminal acetylation to phenotypes of NatC deletion yeast.
Collapse
Affiliation(s)
- Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
| | - Camilla Osberg
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Veronique Jonckheere
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Nina Glomnes
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Biological Sciences, University of Bergen, Bergen, Norway; Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Henriette Aksnes
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
19
|
Meinnel T, Boyer JB, Giglione C. The Global Acetylation Profiling Pipeline for Quick Assessment of Protein N-Acetyltransferase Specificity In Cellulo. Methods Mol Biol 2023; 2718:137-150. [PMID: 37665458 DOI: 10.1007/978-1-0716-3457-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Global acetylation profiling (GAP) consists of heterologous expression of a given N-acetyltransferase (NAT) in Escherichia coli to assess its specificity. The remarkable sensitivity and robustness of the GAP pipeline relies on the very low frequency of known N-terminal acetylated proteins in E. coli, including their degree of N-terminal acetylation. Using the SILProNAQ mass spectrometry strategy on bacterial protein extracts, GAP permits easy acquisition of both qualitative and quantitative data to decipher the impact of any putative NAT of interest on the N-termini of newly acetylated proteins. This strategy allows rapid determination of the substrate specificity of any NAT.
Collapse
Affiliation(s)
- Thierry Meinnel
- Université Paris Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| | - Jean-Baptiste Boyer
- Université Paris Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Carmela Giglione
- Université Paris Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| |
Collapse
|
20
|
Donnarumma F, Tucci V, Ambrosino C, Altucci L, Carafa V. NAA60 (HAT4): the newly discovered bi-functional Golgi member of the acetyltransferase family. Clin Epigenetics 2022; 14:182. [PMID: 36539894 PMCID: PMC9769039 DOI: 10.1186/s13148-022-01402-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Chromatin structural organization, gene expression and proteostasis are intricately regulated in a wide range of biological processes, both physiological and pathological. Protein acetylation, a major post-translational modification, is tightly involved in interconnected biological networks, modulating the activation of gene transcription and protein action in cells. A very large number of studies describe the pivotal role of the so-called acetylome (accounting for more than 80% of the human proteome) in orchestrating different pathways in response to stimuli and triggering severe diseases, including cancer. NAA60/NatF (N-terminal acetyltransferase F), also named HAT4 (histone acetyltransferase type B protein 4), is a newly discovered acetyltransferase in humans modifying N-termini of transmembrane proteins starting with M-K/M-A/M-V/M-M residues and is also thought to modify lysine residues of histone H4. Because of its enzymatic features and unusual cell localization on the Golgi membrane, NAA60 is an intriguing acetyltransferase that warrants biochemical and clinical investigation. Although it is still poorly studied, this review summarizes current findings concerning the structural hallmarks and biological role of this novel targetable epigenetic enzyme.
Collapse
Affiliation(s)
- Federica Donnarumma
- grid.428067.f0000 0004 4674 1402Biogem, Molecular Biology and Genetics Research Institute, Ariano Irpino, Italy
| | - Valeria Tucci
- grid.428067.f0000 0004 4674 1402Biogem, Molecular Biology and Genetics Research Institute, Ariano Irpino, Italy ,grid.9841.40000 0001 2200 8888Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio7, 80138 Naples, Italy
| | - Concetta Ambrosino
- grid.428067.f0000 0004 4674 1402Biogem, Molecular Biology and Genetics Research Institute, Ariano Irpino, Italy ,grid.47422.370000 0001 0724 3038Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Lucia Altucci
- grid.428067.f0000 0004 4674 1402Biogem, Molecular Biology and Genetics Research Institute, Ariano Irpino, Italy ,grid.9841.40000 0001 2200 8888Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio7, 80138 Naples, Italy
| | - Vincenzo Carafa
- grid.9841.40000 0001 2200 8888Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio7, 80138 Naples, Italy
| |
Collapse
|
21
|
Naa10p promotes cell invasiveness of esophageal cancer by coordinating the c-Myc and PAI1 regulatory axis. Cell Death Dis 2022; 13:995. [PMID: 36433943 PMCID: PMC9700753 DOI: 10.1038/s41419-022-05441-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
Abstract
N-α-acetyltransferase 10 protein, Naa10p, is involved in various cellular functions impacting tumor progression. Due to its capacity to acetylate a large spectrum of proteins, both oncogenic and tumor-suppressive roles of Naa10p have been documented. Here, we report an oncogenic role of Naa10p in promoting metastasis of esophageal cancer. NAA10 is more highly expressed in esophageal cancer tissues compared to normal tissues. Higher NAA10 expression also correlates with poorer survival of esophageal cancer patients. We found that NAA10 expression was transcriptionally regulated by the critical oncogene c-Myc in esophageal cancer. Furthermore, activation of the c-Myc-Naa10p axis resulted in upregulated cell invasiveness of esophageal cancer. This increased cell invasiveness was also elucidated to depend on the enzymatic activity of Naa10p. Moreover, Naa10p cooperated with Naa15p to interact with the protease inhibitor, PAI1, and prevent its secretion. This inhibition of PAI1 secretion may derive from the N-terminal acetylation effect of the Naa10p/Naa15p complex. Our results establish the significance of Naa10p in driving metastasis in esophageal cancer by coordinating the c-Myc-PAI1 axis, with implications for its potential use as a prognostic biomarker and therapeutic target for esophageal cancer.
Collapse
|
22
|
Pożoga M, Armbruster L, Wirtz M. From Nucleus to Membrane: A Subcellular Map of the N-Acetylation Machinery in Plants. Int J Mol Sci 2022; 23:ijms232214492. [PMID: 36430970 PMCID: PMC9692967 DOI: 10.3390/ijms232214492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
N-terminal acetylation (NTA) is an ancient protein modification conserved throughout all domains of life. N-terminally acetylated proteins are present in the cytosol, the nucleus, the plastids, mitochondria and the plasma membrane of plants. The frequency of NTA differs greatly between these subcellular compartments. While up to 80% of cytosolic and 20-30% of plastidic proteins are subject to NTA, NTA of mitochondrial proteins is rare. NTA alters key characteristics of proteins such as their three-dimensional structure, binding properties and lifetime. Since the majority of proteins is acetylated by five ribosome-bound N-terminal acetyltransferases (Nats) in yeast and humans, NTA was long perceived as an exclusively co-translational process in eukaryotes. The recent characterization of post-translationally acting plant Nats, which localize to the plasma membrane and the plastids, has challenged this view. Moreover, findings in humans, yeast, green algae and higher plants uncover differences in the cytosolic Nat machinery of photosynthetic and non-photosynthetic eukaryotes. These distinctive features of the plant Nat machinery might constitute adaptations to the sessile lifestyle of plants. This review sheds light on the unique role of plant N-acetyltransferases in development and stress responses as well as their evolution-driven adaptation to function in different cellular compartments.
Collapse
|
23
|
Meinnel T, Giglione C. N-terminal modifications, the associated processing machinery, and their evolution in plastid-containing organisms. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6013-6033. [PMID: 35768189 DOI: 10.1093/jxb/erac290] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The N-terminus is a frequent site of protein modifications. Referring primarily to knowledge gained from land plants, here we review the modifications that change protein N-terminal residues and provide updated information about the associated machinery, including that in Archaeplastida. These N-terminal modifications include many proteolytic events as well as small group additions such as acylation or arginylation and oxidation. Compared with that of the mitochondrion, the plastid-dedicated N-terminal modification landscape is far more complex. In parallel, we extend this review to plastid-containing Chromalveolata including Stramenopiles, Apicomplexa, and Rhizaria. We report a well-conserved machinery, especially in the plastid. Consideration of the two most abundant proteins on Earth-Rubisco and actin-reveals the complexity of N-terminal modification processes. The progressive gene transfer from the plastid to the nuclear genome during evolution is exemplified by the N-terminus modification machinery, which appears to be one of the latest to have been transferred to the nuclear genome together with crucial major photosynthetic landmarks. This is evidenced by the greater number of plastid genes in Paulinellidae and red algae, the most recent and fossil recipients of primary endosymbiosis.
Collapse
Affiliation(s)
- Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
24
|
Xue M, Feng T, Chen Z, Yan Y, Chen Z, Dai J. Protein Acetylation Going Viral: Implications in Antiviral Immunity and Viral Infection. Int J Mol Sci 2022; 23:11308. [PMID: 36232610 PMCID: PMC9570087 DOI: 10.3390/ijms231911308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/10/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
During viral infection, both host and viral proteins undergo post-translational modifications (PTMs), including phosphorylation, ubiquitination, methylation, and acetylation, which play critical roles in viral replication, pathogenesis, and host antiviral responses. Protein acetylation is one of the most important PTMs and is catalyzed by a series of acetyltransferases that divert acetyl groups from acetylated molecules to specific amino acid residues of substrates, affecting chromatin structure, transcription, and signal transduction, thereby participating in the cell cycle as well as in metabolic and other cellular processes. Acetylation of host and viral proteins has emerging roles in the processes of virus adsorption, invasion, synthesis, assembly, and release as well as in host antiviral responses. Methods to study protein acetylation have been gradually optimized in recent decades, providing new opportunities to investigate acetylation during viral infection. This review summarizes the classification of protein acetylation and the standard methods used to map this modification, with an emphasis on viral and host protein acetylation during viral infection.
Collapse
Affiliation(s)
- Minfei Xue
- Department of Respiratory Medicine, Children’s Hospital of Soochow University, Soochow University, Suzhou 215025, China
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Tingting Feng
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Zhiqiang Chen
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Yongdong Yan
- Department of Respiratory Medicine, Children’s Hospital of Soochow University, Soochow University, Suzhou 215025, China
| | - Zhengrong Chen
- Department of Respiratory Medicine, Children’s Hospital of Soochow University, Soochow University, Suzhou 215025, China
| | - Jianfeng Dai
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
25
|
Hofman J, Hutny M, Chwialkowska K, Korotko U, Loranc K, Kruk A, Lechowicz U, Rozy A, Gajdanowicz P, Kwasniewski M, Krajewska-Walasek M, Paprocka J, Jezela-Stanek A. Case report: Rare among ultrarare—Clinical odyssey of a new patient with Ogden syndrome. Front Genet 2022; 13:979377. [PMID: 36134023 PMCID: PMC9483008 DOI: 10.3389/fgene.2022.979377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: The definition of ultra-rare disease in terms of its prevalence varies between the sources, usually amounting to ca. 1 in 1.000.000 births. Nonetheless, there are even less frequent disorders, such as Ogden syndrome, which up to this day was diagnosed in less than 10 patients worldwide. They present typically with a variety of developmental defects, including postnatal growth retardation, psychomotor delay and hypotonia. This disorder is caused by the heterozygous mutations in NAA10 gene, which encodes N-alpha-acetyltransferase 10, involved in protein biosynthesis. Therefore, Ogden syndrome belongs to the broader group of genetic disorders, collectively described as NAA10-related syndrome.Case report: We present a case of a Polish male infant, born in 39. GW with c-section due to the pathological cardiotocography signal. Hypotrophy (2400 g) and facial dysmorphism were noted in the physical examination. From the first minute, the child required mechanical ventilation - a nasal continuous positive airway pressure. For the first 27 days, the patient was treated in a neonatal intensive care unit, where a series of examinations were conducted. On their basis, the presence of the following defects was determined: muscular ventricular septal defects, patent foramen ovale, pectus excavatum, clubfoot and axial hypotonia. Child was then consequently referred to the genetic clinic for counselling. Results of the tests allowed the diagnosis of Ogden syndrome. In the following months the patient’s condition worsened due to the numerous pulmonary infections. Despite the advanced treatment including the variety of medications, the patient eventually died at the age of 10 months.Conclusion: This case report presents a tenth patient diagnosed with Ogden syndrome reported worldwide. It expands the morphologic and clinical phenotype, emphasizing the possible severity of pneumonological disorders in these patients, which may pose a greater threat to a child’s life than more frequently described cardiovascular dysfunctions associated with this syndrome.
Collapse
Affiliation(s)
- Jagoda Hofman
- Students’ Scientific Society, Department of Paediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Michal Hutny
- Students’ Scientific Society, Department of Paediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Karolina Chwialkowska
- IMAGENE.ME SA, Bialystok, Poland
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
| | - Urszula Korotko
- IMAGENE.ME SA, Bialystok, Poland
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
| | | | | | - Urszula Lechowicz
- IMAGENE.ME SA, Bialystok, Poland
- Department of Genetics and Clinical Immunology, Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Adriana Rozy
- IMAGENE.ME SA, Bialystok, Poland
- Department of Genetics and Clinical Immunology, Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Pawel Gajdanowicz
- IMAGENE.ME SA, Bialystok, Poland
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Miroslaw Kwasniewski
- IMAGENE.ME SA, Bialystok, Poland
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
| | | | - Justyna Paprocka
- Department of Paediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aleksandra Jezela-Stanek
- IMAGENE.ME SA, Bialystok, Poland
- Department of Genetics and Clinical Immunology, Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
- *Correspondence: Aleksandra Jezela-Stanek,
| |
Collapse
|
26
|
Sindlinger J, Schön S, Eirich J, Kirchgäßner S, Finkemeier I, Schwarzer D. Investigating peptide-Coenzyme A-conjugates as chemical probes for proteomic profiling of N-terminal and lysine acetyltransferases. Chembiochem 2022; 23:e202200255. [PMID: 35776679 PMCID: PMC9541820 DOI: 10.1002/cbic.202200255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/01/2022] [Indexed: 11/18/2022]
Abstract
Acetyl groups are transferred from acetyl‐coenzyme A (Ac‐CoA) to protein N‐termini and lysine side chains by N‐terminal acetyltransferases (NATs) and lysine acetyltransferases (KATs), respectively. Building on lysine‐CoA conjugates as KAT probes, we have synthesized peptide probes with CoA conjugated to N‐terminal alanine (α‐Ala‐CoA), proline (α‐Pro‐CoA) or tri‐glutamic acid (α‐3Glu‐CoA) units for interactome profiling of NAT complexes. The α‐Ala‐CoA probe enriched the majority of NAT catalytic and auxiliary subunits, while a lysine CoA‐conjugate bound only a subset of endogenous KATs. Interactome profiling with the α‐Pro‐CoA probe showed reduced NAT recruitment in favor of metabolic CoA binding proteins and α‐3Glu‐CoA steered the interactome towards NAA80 and NatB. These findings agreed with the inherent substrate specificities of the target proteins and showed that N‐terminal CoA‐conjugated peptides are versatile probes for NAT complex profiling in lysates of physiological and pathological backgrounds.
Collapse
Affiliation(s)
- Julia Sindlinger
- Eberhard Karls Universitat Tubingen Mathematisch-Naturwissenschaftliche Fakultat, Interfaculty Institute of Biochemistry, GERMANY
| | - Stefan Schön
- Eberhard Karls Universitat Tubingen Mathematisch-Naturwissenschaftliche Fakultat, Interfakultäres Institut für Biochemie, GERMANY
| | - Jürgen Eirich
- WWU Münster FB 13 Biologie: Westfalische Wilhelms-Universitat Munster Fachbereich 13 Biologie, Institute of Plant Biology and Biotechnology, GERMANY
| | - Sören Kirchgäßner
- Eberhard Karls Universität Tübingen: Eberhard Karls Universitat Tubingen, Interfakultäres Institut für Biochemie, GERMANY
| | - Iris Finkemeier
- WWU Münster FB 13 Biologie: Westfalische Wilhelms-Universitat Munster Fachbereich 13 Biologie, Institute of Plant Biology and Biotechnology, GERMANY
| | - Dirk Schwarzer
- Interfakultäres Institut für Biochemie Eberhard Karls Universität Tübingen, Chemical Biology, Hoppe-Seyler-Str. 4, 72076, Tübingen, GERMANY
| |
Collapse
|
27
|
Possible Catch-Up Developmental Trajectories for Children with Mild Developmental Delay Caused by NAA15 Pathogenic Variants. Genes (Basel) 2022; 13:genes13030536. [PMID: 35328089 PMCID: PMC8954815 DOI: 10.3390/genes13030536] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
Variants in NAA15 are closely related to neurodevelopmental disorders (NDDs). In this study, we investigated the spectrum and clinical features of NAA15 variants in a Chinese NDD cohort of 769 children. Four novel NAA15 pathogenic variants were detected by whole-exome sequencing, including three de novo variants and one maternal variant. The in vitro minigene splicing assay confirmed one noncanonical splicing variant (c.1410+5G>C), which resulted in abnormal mRNA splicing. All affected children presented mild developmental delay, and catch-up trajectories were noted in three patients based on their developmental scores at different ages. Meanwhile, the literature review also showed that half of the reported patients with NAA15 variants presented mild/moderate developmental delay or intellectual disability, and possible catch-up sign was indicated for three affected patients. Taken together, our study expanded the spectrum of NAA15 variants in NDD patients. The affected patients presented mild developmental delay, and possible catch-up developmental trajectories were suggested. Studying the natural neurodevelopmental trajectories of NDD patients with pathogenic variants and their benefits from physical rehabilitations are needed in the future for precise genetic counseling and clinical management.
Collapse
|
28
|
Biochemical analysis of novel NAA10 variants suggests distinct pathogenic mechanisms involving impaired protein N-terminal acetylation. Hum Genet 2022; 141:1355-1369. [PMID: 35039925 PMCID: PMC9304055 DOI: 10.1007/s00439-021-02427-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/23/2021] [Indexed: 01/18/2023]
Abstract
NAA10 is the catalytic subunit of the N-terminal acetyltransferase complex, NatA, which is responsible for N-terminal acetylation of nearly half the human proteome. Since 2011, at least 21 different NAA10 missense variants have been reported as pathogenic in humans. The clinical features associated with this X-linked condition vary, but commonly described features include developmental delay, intellectual disability, cardiac anomalies, brain abnormalities, facial dysmorphism and/or visual impairment. Here, we present eight individuals from five families with five different de novo or inherited NAA10 variants. In order to determine their pathogenicity, we have performed biochemical characterisation of the four novel variants c.16G>C p.(A6P), c.235C>T p.(R79C), c.386A>C p.(Q129P) and c.469G>A p.(E157K). Additionally, we clinically describe one new case with a previously identified pathogenic variant, c.384T>G p.(F128L). Our study provides important insight into how different NAA10 missense variants impact distinct biochemical functions of NAA10 involving the ability of NAA10 to perform N-terminal acetylation. These investigations may partially explain the phenotypic variability in affected individuals and emphasise the complexity of the cellular pathways downstream of NAA10.
Collapse
|
29
|
Asensio T, Dian C, Boyer JB, Rivière F, Meinnel T, Giglione C. A Continuous Assay Set to Screen and Characterize Novel Protein N-Acetyltransferases Unveils Rice General Control Non-repressible 5-Related N-Acetyltransferase2 Activity. FRONTIERS IN PLANT SCIENCE 2022; 13:832144. [PMID: 35273627 PMCID: PMC8902505 DOI: 10.3389/fpls.2022.832144] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/20/2022] [Indexed: 05/19/2023]
Abstract
Protein N-acetyltransferases (NATs) belong to the general control non-repressible 5 (Gcn5)-related N-acetyltransferases (GNATs) superfamily. GNATs catalyze the transfer of acetyl from acetyl-CoA to the reactive amine moiety of a wide range of acceptors. NAT sequences are difficult to distinguish from other members of the GNAT superfamily and there are many uncharacterized GNATs. To facilitate the discovery and characterization of new GNATs, we have developed a new continuous, non-radioactive assay. This assay is virtually independent of the substrate and can be used to get substrate specificity hints. We validated first the assay with the well-characterized Schizosaccharomyces pombe NatA (SpNatA). The SpNatA kinetic parameters were determined with various peptides confirming the robustness of the new assay. We reveal that the longer the peptide substrate the more efficient the enzyme. As a proof of concept of the relevance of the new assay, we characterized a NAA90 member from rice (Oryza sativa), OsGNAT2. We took advantage of an in vivo medium-scale characterization of OsGNAT2 specificity to identify and then validate in vitro several specific peptide substrates. With this assay, we reveal long-range synergic effects of basic residues on OsGNAT2 activity. Overall, this new, high-throughput assay allows better understanding of the substrate specificity and activity of any GNAT.
Collapse
|
30
|
Parks AR, Escalante-Semerena JC. Protein N-terminal acylation: An emerging field in bacterial cell physiology. CURRENT TRENDS IN MICROBIOLOGY 2022; 16:1-18. [PMID: 37009250 PMCID: PMC10062008 DOI: 10.31300/ctmb.16.2022.1-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
N-terminal (Nt)-acylation is the irreversible addition of an acyl moiety to the terminal alpha amino group of a peptide chain. This type of modification alters the nature of the N terminus, which can interfere with the function of the modified protein by disrupting protein interactions, function, localization, degradation, hydrophobicity, or charge. Nt acylation is found in all domains of life and is a highly common occurrence in eukaryotic cells. However, in prokaryotes very few cases of Nt acylation have been reported. It was once thought that Nt acylation of proteins, other than ribosomal proteins, was uncommon in prokaryotes, but recent evidence suggests that this modification may be more common than once realized. In this review, we discuss what is known about prokaryotic Nt acetylation and the acetyltransferases that are responsible, as well as recent advancements in this field and currently used methods to study Nt acetylation.
Collapse
Affiliation(s)
- Anastacia R. Parks
- Department of Microbiology, University of Georgia, Athens, GA 30606, USA
| | | |
Collapse
|
31
|
Shen T, Jiang L, Wang X, Xu Q, Han L, Liu S, Huang T, Li H, Dai L, Li H, Lu K. Function and molecular mechanism of N-terminal acetylation in autophagy. Cell Rep 2021; 37:109937. [PMID: 34788606 DOI: 10.1016/j.celrep.2021.109937] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/16/2021] [Accepted: 10/12/2021] [Indexed: 02/08/2023] Open
Abstract
Acetyl ligation to the amino acids in a protein is an important posttranslational modification. However, in contrast to lysine acetylation, N-terminal acetylation is elusive in terms of its cellular functions. Here, we identify Nat3 as an N-terminal acetyltransferase essential for autophagy, a catabolic pathway for bulk transport and degradation of cytoplasmic components. We identify the actin cytoskeleton constituent Act1 and dynamin-like GTPase Vps1 (vacuolar protein sorting 1) as substrates for Nat3-mediated N-terminal acetylation of the first methionine. Acetylated Act1 forms actin filaments and therefore promotes the transport of Atg9 vesicles for autophagosome formation; acetylated Vps1 recruits and facilitates bundling of the SNARE (soluble N-ethylmaleimide-sensitive factor activating protein receptor) complex for autophagosome fusion with vacuoles. Abolishment of the N-terminal acetylation of Act1 and Vps1 is associated with blockage of upstream and downstream steps of the autophagy process. Therefore, our work shows that protein N-terminal acetylation plays a critical role in controlling autophagy by fine-tuning multiple steps in the process.
Collapse
Affiliation(s)
- Tianyun Shen
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Lan Jiang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Xinyuan Wang
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Qingjia Xu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Lu Han
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Shiyan Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Ting Huang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Hongyan Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.
| | - Huihui Li
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China; West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China.
| |
Collapse
|
32
|
Hydroxylation of the Acetyltransferase NAA10 Trp38 Is Not an Enzyme-Switch in Human Cells. Int J Mol Sci 2021; 22:ijms222111805. [PMID: 34769235 PMCID: PMC8583962 DOI: 10.3390/ijms222111805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
NAA10 is a major N-terminal acetyltransferase (NAT) that catalyzes the cotranslational N-terminal (Nt-) acetylation of 40% of the human proteome. Several reports of lysine acetyltransferase (KAT) activity by NAA10 exist, but others have not been able to find any NAA10-derived KAT activity, the latter of which is supported by structural studies. The KAT activity of NAA10 towards hypoxia-inducible factor 1α (HIF-1α) was recently found to depend on the hydroxylation at Trp38 of NAA10 by factor inhibiting HIF-1α (FIH). In contrast, we could not detect hydroxylation of Trp38 of NAA10 in several human cell lines and found no evidence that NAA10 interacts with or is regulated by FIH. Our data suggest that NAA10 Trp38 hydroxylation is not a switch in human cells and that it alters its catalytic activity from a NAT to a KAT.
Collapse
|
33
|
Tang Y, Zhou K, Guo Q, Chen C, Jia J, Guo Q, Lu K, Li H, Fu Z, Liu J, Lin J, Yu X, Hong Y. Characterisation and preliminary functional analysis of N-acetyltransferase 13 from Schistosoma japonicum. BMC Vet Res 2021; 17:335. [PMID: 34686208 PMCID: PMC8540080 DOI: 10.1186/s12917-021-03045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/07/2021] [Indexed: 11/24/2022] Open
Abstract
Background N-acetyltransferase 13 (NAT13) is a probable catalytic component of the ARD1A-NARG1 complex possessing alpha (N-terminal) acetyltransferase activity. Results In this study, a full-length complementary DNA (cDNA) encoding Schistosoma japonicum NAT13 (SjNAT13) was isolated from schistosome cDNAs. The 621 bp open reading frame of SjNAT13 encodes a polypeptide of 206 amino acids. Real-time PCR analysis revealed SjNAT13 expression in all tested developmental stages. Transcript levels were highest in cercariae and 21-day-old worms, and higher in male adult worms than female adult worms. The rSjNAT13 protein induced high levels of anti-rSjNAT13 IgG antibodies. In two independent immunoprotection trials, rSjNAT13 induced 24.23% and 24.47% reductions in the numbers of eggs in liver. RNA interference (RNAi) results showed that small interfering RNA (siRNA) Sj-514 significantly reduced SjNAT13 transcript levels in worms and decreased egg production in vitro. Conclusions Thus, rSjNAT13 might play an important role in the development and reproduction of schistosomes. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-03045-y.
Collapse
Affiliation(s)
- Yalan Tang
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Kerou Zhou
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Qingqing Guo
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Cheng Chen
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Jing Jia
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Qinghong Guo
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Ke Lu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Hao Li
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Zhiqiang Fu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Jinming Liu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Jiaojiao Lin
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Xingang Yu
- College of Life Science and Engineering, Foshan University, Foshan, 528231, People's Republic of China.
| | - Yang Hong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China. .,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
34
|
Van Damme P. Charting the N-Terminal Acetylome: A Comprehensive Map of Human NatA Substrates. Int J Mol Sci 2021; 22:ijms221910692. [PMID: 34639033 PMCID: PMC8509067 DOI: 10.3390/ijms221910692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/10/2021] [Accepted: 09/29/2021] [Indexed: 11/29/2022] Open
Abstract
N-terminal acetylation (Nt-acetylation) catalyzed by conserved N-terminal acetyltransferases or NATs embodies a modification with one of the highest stoichiometries reported for eukaryotic protein modifications to date. Comprising the catalytic N-alpha acetyltransferase (NAA) subunit NAA10 plus the ribosome anchoring regulatory subunit NAA15, NatA represents the major acetyltransferase complex with up to 50% of all mammalian proteins representing potential substrates. Largely in consequence of the essential nature of NatA and its high enzymatic activity, its experimentally confirmed mammalian substrate repertoire remained poorly charted. In this study, human NatA knockdown conditions achieving near complete depletion of NAA10 and NAA15 expression resulted in lowered Nt-acetylation of over 25% out of all putative NatA targets identified, representing an up to 10-fold increase in the reported number of substrate N-termini affected upon human NatA perturbation. Besides pointing to less efficient NatA substrates being prime targets, several putative NatE substrates were shown to be affected upon human NatA knockdown. Intriguingly, next to a lowered expression of ribosomal proteins and proteins constituting the eukaryotic 48S preinitiation complex, steady-state levels of protein N-termini additionally point to NatA Nt-acetylation deficiency directly impacting protein stability of knockdown affected targets.
Collapse
Affiliation(s)
- Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
35
|
Kweon HY, Lee MN, Dorfel M, Seo S, Gottlieb L, PaPazyan T, McTiernan N, Ree R, Bolton D, Garcia A, Flory M, Crain J, Sebold A, Lyons S, Ismail A, Marchi E, Sonn SK, Jeong SJ, Jeon S, Ju S, Conway SJ, Kim T, Kim HS, Lee C, Roh TY, Arnesen T, Marmorstein R, Oh GT, Lyon GJ. Naa12 compensates for Naa10 in mice in the amino-terminal acetylation pathway. eLife 2021; 10:e65952. [PMID: 34355692 PMCID: PMC8376253 DOI: 10.7554/elife.65952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 08/05/2021] [Indexed: 01/17/2023] Open
Abstract
Amino-terminal acetylation is catalyzed by a set of N-terminal acetyltransferases (NATs). The NatA complex (including X-linked Naa10 and Naa15) is the major acetyltransferase, with 40-50% of all mammalian proteins being potential substrates. However, the overall role of amino-terminal acetylation on a whole-organism level is poorly understood, particularly in mammals. Male mice lacking Naa10 show no globally apparent in vivo amino-terminal acetylation impairment and do not exhibit complete embryonic lethality. Rather Naa10 nulls display increased neonatal lethality, and the majority of surviving undersized mutants exhibit a combination of hydrocephaly, cardiac defects, homeotic anterior transformation, piebaldism, and urogenital anomalies. Naa12 is a previously unannotated Naa10-like paralog with NAT activity that genetically compensates for Naa10. Mice deficient for Naa12 have no apparent phenotype, whereas mice deficient for Naa10 and Naa12 display embryonic lethality. The discovery of Naa12 adds to the currently known machinery involved in amino-terminal acetylation in mice.
Collapse
Affiliation(s)
- Hyae Yon Kweon
- Department of Life Science and College of Natural Sciences, Ewha Womans UniversitySeoulRepublic of Korea
| | - Mi-Ni Lee
- Department of Life Science and College of Natural Sciences, Ewha Womans UniversitySeoulRepublic of Korea
- Laboratory Animal Resource Center Korea ResearchInstitute of Bioscience and BiotechnologyChungbukRepublic of Korea
| | - Max Dorfel
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor LaboratoryWoodburyUnited States
| | - Seungwoon Seo
- Department of Life Science and College of Natural Sciences, Ewha Womans UniversitySeoulRepublic of Korea
| | - Leah Gottlieb
- Department of Chemistry, University of PennsylvaniaPhiladelphiaUnited States
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Thomas PaPazyan
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor LaboratoryWoodburyUnited States
| | - Nina McTiernan
- Department of Biomedicine, University of BergenBergenNorway
| | - Rasmus Ree
- Department of Biomedicine, University of BergenBergenNorway
| | - David Bolton
- Department of Molecular Biology, New York State Institute for Basic Research in Developmental DisabilitiesStaten IslandUnited States
| | - Andrew Garcia
- Department of Human Genetics, New York State Institute for Basic Research in Developmental DisabilitiesStaten IslandUnited States
| | - Michael Flory
- Research Design and Analysis Service, New York State Institute for Basic Research in Developmental DisabilitiesStaten IslandUnited States
| | - Jonathan Crain
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor LaboratoryWoodburyUnited States
| | - Alison Sebold
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor LaboratoryWoodburyUnited States
| | - Scott Lyons
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor LaboratoryWoodburyUnited States
| | - Ahmed Ismail
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor LaboratoryWoodburyUnited States
| | - Elaine Marchi
- Department of Human Genetics, New York State Institute for Basic Research in Developmental DisabilitiesStaten IslandUnited States
| | - Seong-keun Sonn
- Department of Life Science and College of Natural Sciences, Ewha Womans UniversitySeoulRepublic of Korea
| | - Se-Jin Jeong
- Center for Cardiovascular Research, Washington University School of MedicineSaint LouisUnited States
| | - Sejin Jeon
- Department of Life Science and College of Natural Sciences, Ewha Womans UniversitySeoulRepublic of Korea
| | - Shinyeong Ju
- Center for Theragnosis, Korea Institute of Science and TechnologySeoulRepublic of Korea
| | - Simon J Conway
- Herman B. Wells Center for Pediatric Research, Indiana University School of MedicineIndianapolisUnited States
| | - Taesoo Kim
- Department of Life Science and College of Natural Sciences, Ewha Womans UniversitySeoulRepublic of Korea
| | - Hyun-Seok Kim
- Department of Life Science and College of Natural Sciences, Ewha Womans UniversitySeoulRepublic of Korea
| | - Cheolju Lee
- Center for Theragnosis, Korea Institute of Science and TechnologySeoulRepublic of Korea
- Department of Converging Science and Technology, KHU-KIST, Kyung Hee UniversitySeoulRepublic of Korea
| | - Tae-Young Roh
- Department of Life Sciences, Pohang University of Science and TechnologyPohangRepublic of Korea
| | - Thomas Arnesen
- Department of Biomedicine, University of BergenBergenNorway
- Department of Biological Sciences, University of BergenBergenNorway
- Department of Surgery, Haukeland University HospitalBergenNorway
| | - Ronen Marmorstein
- Department of Chemistry, University of PennsylvaniaPhiladelphiaUnited States
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Goo Taeg Oh
- Department of Life Science and College of Natural Sciences, Ewha Womans UniversitySeoulRepublic of Korea
| | - Gholson J Lyon
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor LaboratoryWoodburyUnited States
- Department of Human Genetics, New York State Institute for Basic Research in Developmental DisabilitiesStaten IslandUnited States
- Biology PhD Program, The Graduate Center, The City University of New YorkNew YorkUnited States
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental DisabilitiesStaten IslandUnited States
| |
Collapse
|
36
|
Chen L, Kashina A. Post-translational Modifications of the Protein Termini. Front Cell Dev Biol 2021; 9:719590. [PMID: 34395449 PMCID: PMC8358657 DOI: 10.3389/fcell.2021.719590] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Post-translational modifications (PTM) involve enzyme-mediated covalent addition of functional groups to proteins during or after synthesis. These modifications greatly increase biological complexity and are responsible for orders of magnitude change between the variety of proteins encoded in the genome and the variety of their biological functions. Many of these modifications occur at the protein termini, which contain reactive amino- and carboxy-groups of the polypeptide chain and often are pre-primed through the actions of cellular machinery to expose highly reactive residues. Such modifications have been known for decades, but only a few of them have been functionally characterized. The vast majority of eukaryotic proteins are N- and C-terminally modified by acetylation, arginylation, tyrosination, lipidation, and many others. Post-translational modifications of the protein termini have been linked to different normal and disease-related processes and constitute a rapidly emerging area of biological regulation. Here we highlight recent progress in our understanding of post-translational modifications of the protein termini and outline the role that these modifications play in vivo.
Collapse
Affiliation(s)
| | - Anna Kashina
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
37
|
Gogoll L, Steindl K, Joset P, Zweier M, Baumer A, Gerth-Kahlert C, Tutschek B, Rauch A. Confirmation of Ogden syndrome as an X-linked recessive fatal disorder due to a recurrent NAA10 variant and review of the literature. Am J Med Genet A 2021; 185:2546-2560. [PMID: 34075687 PMCID: PMC8361982 DOI: 10.1002/ajmg.a.62351] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/07/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022]
Abstract
Ogden syndrome is a rare lethal X‐linked recessive disorder caused by a recurrent missense variant (Ser37Pro) in the NAA10 gene, encoding the catalytic subunit of the N‐terminal acetyltransferase A complex (NatA). So far eight boys of two different families have been described in the literature, all presenting the distinctive and recognizable phenotype, which includes mostly postnatal growth retardation, global severe developmental delay, characteristic craniofacial features, and structural cardiac anomalies and/or arrhythmias. Here, we report the ninth case of Ogden syndrome with an independent recurrence of the Ser37Pro variant. We were able to follow the clinical course of the affected boy and delineate the evolving phenotype from his birth until his unfortunate death at 7 months. We could confirm the associated phenotype as well as the natural history of this severe disease. By describing new presenting features, we are further expanding the clinical spectrum associated with Ogden syndrome and review other phenotypes associated with NAA10 variants.
Collapse
Affiliation(s)
- Laura Gogoll
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Pascal Joset
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Markus Zweier
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Alessandra Baumer
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | | | - Boris Tutschek
- Prenatal Zürich, Zürich, Switzerland.,Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland.,University Children's Hospital, Zurich, Switzerland
| |
Collapse
|
38
|
Giglione C, Meinnel T. Evolution-Driven Versatility of N Terminal Acetylation in Photoautotrophs. TRENDS IN PLANT SCIENCE 2021; 26:375-391. [PMID: 33384262 DOI: 10.1016/j.tplants.2020.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/27/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
N terminal protein α-acetylation (NTA) is a pervasive protein modification that has recently attracted renewed interest. Early studies on NTA were mostly conducted in yeast and metazoans, providing a detailed portrait of the modification, which was indirectly applied to all eukaryotes. However, new findings originating from photosynthetic organisms have expanded our knowledge of this modification, revealing strong similarities as well as idiosyncratic features. Here, we review the most recent advances on NTA and its dedicated machinery in photosynthetic organisms. We discuss the cytosolic and unique plastid NTA machineries and their critical biological roles in development, stress responses, protein translocation, and stability. These new findings suggest that the multitasking plastid and cytosolic machineries evolved to support the specific needs of photoautotrophs.
Collapse
Affiliation(s)
- Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
39
|
McTiernan N, Gill H, Prada CE, Pachajoa H, Lores J, Arnesen T. NAA10 p.(N101K) disrupts N-terminal acetyltransferase complex NatA and is associated with developmental delay and hemihypertrophy. Eur J Hum Genet 2021; 29:280-288. [PMID: 32973342 PMCID: PMC7868364 DOI: 10.1038/s41431-020-00728-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/31/2020] [Accepted: 09/08/2020] [Indexed: 01/23/2023] Open
Abstract
Nearly half of all human proteins are acetylated at their N-termini by the NatA N-terminal acetyltransferase complex. NAA10 is evolutionarily conserved as the catalytic subunit of NatA in complex with NAA15, but may also have NatA-independent functions. Several NAA10 variants are associated with genetic disorders. The phenotypic spectrum includes developmental delay, intellectual disability, and cardiac abnormalities. Here, we have identified the previously undescribed NAA10 c.303C>A and c.303C>G p.(N101K) variants in two unrelated girls. These girls have developmental delay, but they both also display hemihypertrophy a feature normally not observed or registered among these cases. Functional studies revealed that NAA10 p.(N101K) is completely impaired in its ability to bind NAA15 and to form an enzymatically active NatA complex. In contrast, the integrity of NAA10 p.(N101K) as a monomeric acetyltransferase is intact. Thus, this NAA10 variant may represent the best example of the impact of NatA mediated N-terminal acetylation, isolated from other potential NAA10-mediated cellular functions and may provide important insights into the phenotypes observed in individuals expressing pathogenic NAA10 variants.
Collapse
Affiliation(s)
- Nina McTiernan
- Department of Biomedicine, University of Bergen, N-5020, Bergen, Norway
| | - Harinder Gill
- Department of Medical Genetics, Children's and Women's Health Centre of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - Carlos E Prada
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 45229, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 45229, Cincinnati, OH, USA
- Centro de Medicina Genomica y Metabolismo, Fundacion Cardiovascular de Colombia, Floridablanca, Colombia
| | - Harry Pachajoa
- Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras Universidad Icesi, Cali, Colombia
- Fundación Clínica Valle del Lili, Cali, Colombia
| | - Juliana Lores
- Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras Universidad Icesi, Cali, Colombia
- Fundación Clínica Valle del Lili, Cali, Colombia
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, N-5020, Bergen, Norway.
- Department of Biological Sciences, University of Bergen, N-5020, Bergen, Norway.
- Department of Surgery, Haukeland University Hospital, N-5021, Bergen, Norway.
| |
Collapse
|
40
|
Jing Y, Montano JL, Levy M, Lopez JE, Kung PP, Richardson P, Krajewski K, Florens L, Washburn MP, Meier JL. Harnessing Ionic Selectivity in Acetyltransferase Chemoproteomic Probes. ACS Chem Biol 2021; 16:27-34. [PMID: 33373188 PMCID: PMC9093059 DOI: 10.1021/acschembio.0c00766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chemical proteomics provides a powerful strategy for the high-throughput assignment of enzyme function or inhibitor selectivity. However, identifying optimized probes for an enzyme family member of interest and differentiating signal from the background remain persistent challenges in the field. To address this obstacle, here we report a physiochemical discernment strategy for optimizing chemical proteomics based on the coenzyme A (CoA) cofactor. First, we synthesize a pair of CoA-based sepharose pulldown resins differentiated by a single negatively charged residue and find this change alters their capture properties in gel-based profiling experiments. Next, we integrate these probes with quantitative proteomics and benchmark analysis of "probe selectivity" versus traditional "competitive chemical proteomics." This reveals that the former is well-suited for the identification of optimized pulldown probes for specific enzyme family members, while the latter may have advantages in discovery applications. Finally, we apply our anionic CoA pulldown probe to evaluate the selectivity of a recently reported small molecule N-terminal acetyltransferase inhibitor. These studies further validate the use of physical discriminant strategies in chemoproteomic hit identification and demonstrate how CoA-based chemoproteomic probes can be used to evaluate the selectivity of small molecule protein acetyltransferase inhibitors, an emerging class of preclinical therapeutic agents.
Collapse
Affiliation(s)
- Yihang Jing
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Jose L Montano
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Michaella Levy
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, United States
| | - Jeffrey E Lopez
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Pei-Pei Kung
- Worldwide Research and Development, Pfizer Inc., San Diego, California 92121, United States
| | - Paul Richardson
- Worldwide Research and Development, Pfizer Inc., San Diego, California 92121, United States
| | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina 27514, United States
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, United States
| | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, United States
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Jordan L Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
41
|
Structural basis of Naa20 activity towards a canonical NatB substrate. Commun Biol 2021; 4:2. [PMID: 33398031 PMCID: PMC7782713 DOI: 10.1038/s42003-020-01546-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/30/2020] [Indexed: 01/29/2023] Open
Abstract
N-terminal acetylation is one of the most common protein modifications in eukaryotes and is carried out by N-terminal acetyltransferases (NATs). It plays important roles in protein homeostasis, localization, and interactions and is linked to various human diseases. NatB, one of the major co-translationally active NATs, is composed of the catalytic subunit Naa20 and the auxiliary subunit Naa25, and acetylates about 20% of the proteome. Here we show that NatB substrate specificity and catalytic mechanism are conserved among eukaryotes, and that Naa20 alone is able to acetylate NatB substrates in vitro. We show that Naa25 increases the Naa20 substrate affinity, and identify residues important for peptide binding and acetylation activity. We present the first Naa20 crystal structure in complex with the competitive inhibitor CoA-Ac-MDEL. Our findings demonstrate how Naa20 binds its substrates in the absence of Naa25 and support prospective endeavors to derive specific NAT inhibitors for drug development.
Collapse
|
42
|
Weidenhausen J, Kopp J, Armbruster L, Wirtz M, Lapouge K, Sinning I. Structural and functional characterization of the N-terminal acetyltransferase Naa50. Structure 2021; 29:413-425.e5. [PMID: 33400917 DOI: 10.1016/j.str.2020.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/28/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022]
Abstract
The majority of eukaryotic proteins is modified by N-terminal acetylation, which plays a fundamental role in protein homeostasis, localization, and complex formation. N-terminal acetyltransferases (NATs) mainly act co-translationally on newly synthesized proteins at the ribosomal tunnel exit. NatA is the major NAT consisting of Naa10 catalytic and Naa15 auxiliary subunits, and with Naa50 forms the NatE complex. Naa50 has recently been identified in Arabidopsis thaliana and is important for plant development and stress response regulation. Here, we determined high-resolution X-ray crystal structures of AtNaa50 in complex with AcCoA and a bisubstrate analog. We characterized its substrate specificity, determined its enzymatic parameters, and identified functionally important residues. Even though Naa50 is conserved among species, we highlight differences between Arabidopsis and yeast, where Naa50 is catalytically inactive but binds CoA conjugates. Our study provides insights into Naa50 conservation, species-specific adaptations, and serves as a basis for further studies of NATs in plants.
Collapse
Affiliation(s)
| | - Jürgen Kopp
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Laura Armbruster
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Karine Lapouge
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany.
| |
Collapse
|
43
|
Mueller F, Friese A, Pathe C, da Silva RC, Rodriguez KB, Musacchio A, Bange T. Overlap of NatA and IAP substrates implicates N-terminal acetylation in protein stabilization. SCIENCE ADVANCES 2021; 7:7/3/eabc8590. [PMID: 33523899 PMCID: PMC7810383 DOI: 10.1126/sciadv.abc8590] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/24/2020] [Indexed: 05/15/2023]
Abstract
SMAC/DIABLO and HTRA2 are mitochondrial proteins whose amino-terminal sequences, known as inhibitor of apoptosis binding motifs (IBMs), bind and activate ubiquitin ligases known as inhibitor of apoptosis proteins (IAPs), unleashing a cell's apoptotic potential. IBMs comprise a four-residue, loose consensus sequence, and binding to IAPs requires an unmodified amino terminus. Closely related, IBM-like N termini are present in approximately 5% of human proteins. We show that suppression of the N-alpha-acetyltransferase NatA turns these cryptic IBM-like sequences into very efficient IAP binders in cell lysates and in vitro and ultimately triggers cellular apoptosis. Thus, amino-terminal acetylation of IBM-like motifs in NatA substrates shields them from IAPs. This previously unrecognized relationship suggests that amino-terminal acetylation is generally protective against protein degradation in human cells. It also identifies IAPs as agents of a general quality control mechanism targeting unacetylated rogues in metazoans.
Collapse
Affiliation(s)
- Franziska Mueller
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Alexandra Friese
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Claudio Pathe
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Richard Cardoso da Silva
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Kenny Bravo Rodriguez
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany.
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitaetsstrasse, 45141 Essen, Germany
| | - Tanja Bange
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany.
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich
| |
Collapse
|
44
|
Krtenic B, Drazic A, Arnesen T, Reuter N. Classification and phylogeny for the annotation of novel eukaryotic GNAT acetyltransferases. PLoS Comput Biol 2020; 16:e1007988. [PMID: 33362253 PMCID: PMC7790372 DOI: 10.1371/journal.pcbi.1007988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 01/07/2021] [Accepted: 10/16/2020] [Indexed: 11/19/2022] Open
Abstract
The enzymes of the GCN5-related N-acetyltransferase (GNAT) superfamily count more than 870 000 members through all kingdoms of life and share the same structural fold. GNAT enzymes transfer an acyl moiety from acyl coenzyme A to a wide range of substrates including aminoglycosides, serotonin, glucosamine-6-phosphate, protein N-termini and lysine residues of histones and other proteins. The GNAT subtype of protein N-terminal acetyltransferases (NATs) alone targets a majority of all eukaryotic proteins stressing the omnipresence of the GNAT enzymes. Despite the highly conserved GNAT fold, sequence similarity is quite low between members of this superfamily even when substrates are similar. Furthermore, this superfamily is phylogenetically not well characterized. Thus functional annotation based on sequence similarity is unreliable and strongly hampered for thousands of GNAT members that remain biochemically uncharacterized. Here we used sequence similarity networks to map the sequence space and propose a new classification for eukaryotic GNAT acetyltransferases. Using the new classification, we built a phylogenetic tree, representing the entire GNAT acetyltransferase superfamily. Our results show that protein NATs have evolved more than once on the GNAT acetylation scaffold. We use our classification to predict the function of uncharacterized sequences and verify by in vitro protein assays that two fungal genes encode NAT enzymes targeting specific protein N-terminal sequences, showing that even slight changes on the GNAT fold can lead to change in substrate specificity. In addition to providing a new map of the relationship between eukaryotic acetyltransferases the classification proposed constitutes a tool to improve functional annotation of GNAT acetyltransferases. Enzymes of the GCN5-related N-acetyltransferase (GNAT) superfamily transfer an acetyl group from one molecule to another. This reaction is called acetylation and is one of the most common reactions inside the cell. The GNAT superfamily counts more than 870 000 members through all kingdoms of life. Despite sharing the same fold the GNAT superfamily is very diverse in terms of amino acid sequence and substrates. The eight N-terminal acetyltransferases (NatA, NatB, etc.. to NatH) are a GNAT subtype which acetylates the free amine group of polypeptide chains. This modification is called N-terminal acetylation and is one of the most abundant protein modifications in eukaryotic cells. This subtype is also characterized by a high sequence diversity even though they share the same substrate. In addition, the phylogeny of the superfamily is not characterized. This hampers functional annotation based on sequence similarity, and discovery of novel NATs. In this work we set out to solve the problem of the classification of eukaryotic GCN5-related acetyltransferases and report the first classification framework of the superfamily. This framework can be used as a tool for annotation of all GCN5-related acetyltransferases. As an example of what can be achieved we report in this paper the computational prediction and in vitro verification of the function of two previously uncharacterized N-terminal acetyltransferases. We also report the first acetyltransferase phylogenetic tree of the GCN5 superfamily. It indicates that N-terminal acetyltransferases do not constitute one homogeneous protein family, but that the ability to bind and acetylate protein N-termini had evolved more than once on the same acetylation scaffold. We also show that even small changes in key positions can lead to altered enzyme specificity.
Collapse
Affiliation(s)
- Bojan Krtenic
- Department of Biological Sciences, University of Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Norway
- * E-mail: (BK); (NR)
| | - Adrian Drazic
- Department of Biomedicine, University of Bergen, Norway
| | - Thomas Arnesen
- Department of Biological Sciences, University of Bergen, Norway
- Department of Biomedicine, University of Bergen, Norway
- Department of Surgery, Haukeland University Hospital, Norway
| | - Nathalie Reuter
- Computational Biology Unit, Department of Informatics, University of Bergen, Norway
- Department of Chemistry, University of Bergen, Norway
- * E-mail: (BK); (NR)
| |
Collapse
|
45
|
NAA10 p.(D10G) and NAA10 p.(L11R) Variants Hamper Formation of the NatA N-Terminal Acetyltransferase Complex. Int J Mol Sci 2020; 21:ijms21238973. [PMID: 33255974 PMCID: PMC7730585 DOI: 10.3390/ijms21238973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 11/21/2022] Open
Abstract
The majority of the human proteome is subjected to N-terminal (Nt) acetylation catalysed by N-terminal acetyltransferases (NATs). The NatA complex is composed of two core subunits—the catalytic subunit NAA10 and the ribosomal anchor NAA15. Furthermore, NAA10 may also have catalytic and non-catalytic roles independent of NatA. Several inherited and de novo NAA10 variants have been associated with genetic disease in humans. In this study, we present a functional analysis of two de novo NAA10 variants, c.29A>G p.(D10G) and c.32T>G p.(L11R), previously identified in a male and a female, respectively. Both of these neighbouring amino acids are highly conserved in NAA10. Immunoprecipitation experiments revealed that both variants hamper complex formation with NAA15 and are thus likely to impair NatA-mediated Nt-acetylation in vivo. Despite their common impact on NatA formation, in vitro Nt-acetylation assays showed that the variants had opposing impacts on NAA10 catalytic activity. While NAA10 c.29A>G p.(D10G) exhibits normal intrinsic NatA activity and reduced monomeric NAA10 NAT activity, NAA10 c.32T>G p.(L11R) displays reduced NatA activity and normal NAA10 NAT activity. This study expands the scope of research into the functional consequences of NAA10 variants and underlines the importance of understanding the diverse cellular roles of NAA10 in disease mechanisms.
Collapse
|
46
|
Ritter A, Berger JH, Deardorff M, Izumi K, Lin KY, Medne L, Ahrens-Nicklas RC. Variants in NAA15 cause pediatric hypertrophic cardiomyopathy. Am J Med Genet A 2020; 185:228-233. [PMID: 33103328 DOI: 10.1002/ajmg.a.61928] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 01/28/2023]
Abstract
The NatA N-acetyltransferase complex is important for cotranslational protein modification and regulation of multiple cellular processes. The NatA complex includes the core components of NAA10, the catalytic subunit, and NAA15, the auxiliary component. Both NAA10 and NAA15 have been associated with neurodevelopmental disorders with overlapping clinical features, including variable intellectual disability, dysmorphic facial features, and, less commonly, congenital anomalies such as cleft lip or palate. Cardiac arrhythmias, including long QT syndrome, ventricular tachycardia, and ventricular fibrillation were among the first reported cardiac manifestations in patients with NAA10-related syndrome. Recently, three individuals with NAA10-related syndrome have been reported to also have hypertrophic cardiomyopathy (HCM). The general and cardiac phenotypes of NAA15-related syndrome are not as well described as NAA10-related syndrome. Congenital heart disease, including ventricular septal defects, and arrhythmias, such as ectopic atrial tachycardia, have been reported in a small proportion of patients with NAA15-related syndrome. Given the relationship between NAA10 and NAA15, we propose that HCM is also likely to occur in NAA15-related disorder. We present two patients with pediatric HCM found to have NAA15-related disorder via exome sequencing, providing the first evidence that variants in NAA15 can cause HCM.
Collapse
Affiliation(s)
- Alyssa Ritter
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Divison of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Justin H Berger
- Divison of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Matthew Deardorff
- Department of Pathology and Laboratory Medicine and Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Kosuke Izumi
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kimberly Y Lin
- Divison of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Livija Medne
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Rebecca C Ahrens-Nicklas
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
47
|
Linster E, Layer D, Bienvenut WV, Dinh TV, Weyer FA, Leemhuis W, Brünje A, Hoffrichter M, Miklankova P, Kopp J, Lapouge K, Sindlinger J, Schwarzer D, Meinnel T, Finkemeier I, Giglione C, Hell R, Sinning I, Wirtz M. The Arabidopsis N α -acetyltransferase NAA60 locates to the plasma membrane and is vital for the high salt stress response. THE NEW PHYTOLOGIST 2020; 228:554-569. [PMID: 32548857 DOI: 10.1111/nph.16747] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
In humans and plants, N-terminal acetylation plays a central role in protein homeostasis, affects 80% of proteins in the cytoplasm and is catalyzed by five ribosome-associated N-acetyltransferases (NatA-E). Humans also possess a Golgi-associated NatF (HsNAA60) that is essential for Golgi integrity. Remarkably, NAA60 is absent in fungi and has not been identified in plants. Here we identify and characterize the first plasma membrane-anchored post-translationally acting N-acetyltransferase AtNAA60 in the reference plant Arabidopsis thaliana by the combined application of reverse genetics, global proteomics, live-cell imaging, microscale thermophoresis, circular dichroism spectroscopy, nano-differential scanning fluorometry, intrinsic tryptophan fluorescence and X-ray crystallography. We demonstrate that AtNAA60, like HsNAA60, is membrane-localized in vivo by an α-helical membrane anchor at its C-terminus, but in contrast to HsNAA60, AtNAA60 localizes to the plasma membrane. The AtNAA60 crystal structure provides insights into substrate-binding, the broad substrate specificity and the catalytic mechanism probed by structure-based mutagenesis. Characterization of the NAA60 loss-of-function mutants (naa60-1 and naa60-2) uncovers a plasma membrane-localized substrate of AtNAA60 and the importance of NAA60 during high salt stress. Our findings provide evidence for the plant-specific evolution of a plasma membrane-anchored N-acetyltransferase that is vital for adaptation to stress.
Collapse
Affiliation(s)
- Eric Linster
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, 69120, Germany
| | - Dominik Layer
- Heidelberg University Biochemistry Center, Heidelberg, 69120, Germany
| | - Willy V Bienvenut
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris Saclay, Gif-sur-Yvette Cedex, 91198, France
| | - Trinh V Dinh
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, 69120, Germany
| | - Felix A Weyer
- Heidelberg University Biochemistry Center, Heidelberg, 69120, Germany
| | - Wiebke Leemhuis
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, 69120, Germany
| | - Annika Brünje
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Münster, 48149, Germany
| | - Marion Hoffrichter
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, 69120, Germany
| | - Pavlina Miklankova
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, 69120, Germany
| | - Jürgen Kopp
- Heidelberg University Biochemistry Center, Heidelberg, 69120, Germany
| | - Karine Lapouge
- Heidelberg University Biochemistry Center, Heidelberg, 69120, Germany
| | - Julia Sindlinger
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, 72076, Germany
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, 72076, Germany
| | - Thierry Meinnel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris Saclay, Gif-sur-Yvette Cedex, 91198, France
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Münster, 48149, Germany
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris Saclay, Gif-sur-Yvette Cedex, 91198, France
| | - Ruediger Hell
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, 69120, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center, Heidelberg, 69120, Germany
| | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, 69120, Germany
| |
Collapse
|
48
|
Protein N-Terminal Acetylation: Structural Basis, Mechanism, Versatility, and Regulation. Trends Biochem Sci 2020; 46:15-27. [PMID: 32912665 DOI: 10.1016/j.tibs.2020.08.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022]
Abstract
N-terminal acetylation (NTA) is one of the most widespread protein modifications, which occurs on most eukaryotic proteins, but is significantly less common on bacterial and archaea proteins. This modification is carried out by a family of enzymes called N-terminal acetyltransferases (NATs). To date, 12 NATs have been identified, harboring different composition, substrate specificity, and in some cases, modes of regulation. Recent structural and biochemical analysis of NAT proteins allows for a comparison of their molecular mechanisms and modes of regulation, which are described here. Although sharing an evolutionarily conserved fold and related catalytic mechanism, each catalytic subunit uses unique elements to mediate substrate-specific activity, and use NAT-type specific auxiliary and regulatory subunits, for their cellular functions.
Collapse
|
49
|
Neubauer M, Innes RW. Loss of the Acetyltransferase NAA50 Induces Endoplasmic Reticulum Stress and Immune Responses and Suppresses Growth. PLANT PHYSIOLOGY 2020; 183:1838-1854. [PMID: 32457093 PMCID: PMC7401112 DOI: 10.1104/pp.20.00225] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/19/2020] [Indexed: 05/15/2023]
Abstract
Stress signaling in plants is carefully regulated to ensure proper development and reproductive fitness. Overactive defense signaling can result in dwarfism as well as developmental defects. In addition to requiring a substantial amount of energy, plant stress responses place a burden upon the cellular machinery, which can result in the accumulation of misfolded proteins and endoplasmic reticulum (ER) stress. Negative regulators of stress signaling, such as ENHANCED DISEASE RESISTANCE 1 (EDR1), ensure that stress responses are properly suspended when they are not needed, thereby conserving energy for growth and development. Here, we describe the role of an uncharacterized N-terminal acetyltransferase, NAA50, in the regulation of plant development and stress responses in Arabidopsis (Arabidopsis thaliana). Our results demonstrate that NAA50, an interactor of EDR1, plays an important role in regulating the tradeoff between plant growth and defense. Plants lacking NAA50 display severe developmental defects as well as induced stress responses. Reduction of NAA50 expression results in arrested stem and root growth as well as senescence. Furthermore, our results demonstrate that the loss of NAA50 results in constitutive ER stress signaling, indicating that NAA50 may be required for the suppression of ER stress. This work establishes NAA50 as essential for plant development and the suppression of stress responses, potentially through the regulation of ER stress.
Collapse
Affiliation(s)
- Matthew Neubauer
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
50
|
Armbruster L, Linster E, Boyer JB, Brünje A, Eirich J, Stephan I, Bienvenut WV, Weidenhausen J, Meinnel T, Hell R, Sinning I, Finkemeier I, Giglione C, Wirtz M. NAA50 Is an Enzymatically Active N α-Acetyltransferase That Is Crucial for Development and Regulation of Stress Responses. PLANT PHYSIOLOGY 2020; 183:1502-1516. [PMID: 32461302 PMCID: PMC7401105 DOI: 10.1104/pp.20.00222] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/15/2020] [Indexed: 05/11/2023]
Abstract
Nα-terminal acetylation (NTA) is a prevalent protein modification in eukaryotes. In plants, the biological function of NTA remains enigmatic. The dominant N-acetyltransferase (Nat) in Arabidopsis (Arabidopsis thaliana) is NatA, which cotranslationally catalyzes acetylation of ∼40% of the proteome. The core NatA complex consists of the catalytic subunit NAA10 and the ribosome-anchoring subunit NAA15. In human (Homo sapiens), fruit fly (Drosophila melanogaster), and yeast (Saccharomyces cerevisiae), this core NatA complex interacts with NAA50 to form the NatE complex. While in metazoa, NAA50 has N-acetyltransferase activity, yeast NAA50 is catalytically inactive and positions NatA at the ribosome tunnel exit. Here, we report the identification and characterization of Arabidopsis NAA50 (AT5G11340). Consistent with its putative function as a cotranslationally acting Nat, AtNAA50-EYFP localized to the cytosol and the endoplasmic reticulum but also to the nuclei. We demonstrate that purified AtNAA50 displays Nα-terminal acetyltransferase and lysine-ε-autoacetyltransferase activity in vitro. Global N-acetylome profiling of Escherichia coli cells expressing AtNAA50 revealed conservation of NatE substrate specificity between plants and humans. Unlike the embryo-lethal phenotype caused by the absence of AtNAA10 and AtNAA15, loss of NAA50 expression resulted in severe growth retardation and infertility in two Arabidopsis transfer DNA insertion lines (naa50-1 and naa50-2). The phenotype of naa50-2 was rescued by the expression of HsNAA50 or AtNAA50. In contrast, the inactive ScNAA50 failed to complement naa50-2 Remarkably, loss of NAA50 expression did not affect NTA of known NatA substrates and caused the accumulation of proteins involved in stress responses. Overall, our results emphasize a relevant role of AtNAA50 in plant defense and development, which is independent of the essential NatA activity.
Collapse
Affiliation(s)
- Laura Armbruster
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Eric Linster
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Jean-Baptiste Boyer
- Université Paris-Saclay, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Institute for Integrative Biology of the Cell, 91198 Gif-sur-Yvette, France
| | - Annika Brünje
- Institute for Plant Biology and Biotechnology, University of Münster, Muenster 48149, Germany
| | - Jürgen Eirich
- Institute for Plant Biology and Biotechnology, University of Münster, Muenster 48149, Germany
| | - Iwona Stephan
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Willy V Bienvenut
- Université Paris-Saclay, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Institute for Integrative Biology of the Cell, 91198 Gif-sur-Yvette, France
| | | | - Thierry Meinnel
- Université Paris-Saclay, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Institute for Integrative Biology of the Cell, 91198 Gif-sur-Yvette, France
| | - Ruediger Hell
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Iris Finkemeier
- Institute for Plant Biology and Biotechnology, University of Münster, Muenster 48149, Germany
| | - Carmela Giglione
- Université Paris-Saclay, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Institute for Integrative Biology of the Cell, 91198 Gif-sur-Yvette, France
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|