1
|
Zhu R, Ye X, Lu X, Xiao L, Yuan M, Zhao H, Guo D, Meng Y, Han H, Luo S, Wu Q, Jiang X, Xu J, Tang Z, Tao YJ, Lu Z. ACSS2 acts as a lactyl-CoA synthetase and couples KAT2A to function as a lactyltransferase for histone lactylation and tumor immune evasion. Cell Metab 2025; 37:361-376.e7. [PMID: 39561764 DOI: 10.1016/j.cmet.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/28/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024]
Abstract
Lactyl-coenzyme A (CoA)-dependent histone lysine lactylation impacts gene expression and plays fundamental roles in biological processes. However, mammalian lactyl-CoA synthetases and their regulation of histone lactylation have not yet been identified. Here, we demonstrate that epidermal growth factor receptor (EGFR) activation induces extracellular signal-regulated kinase (ERK)-mediated S267 phosphorylation of acetyl-CoA synthetase 2 (ACSS2) and its subsequent nuclear translocation and complex formation with lysine acetyltransferase 2A (KAT2A). Importantly, ACSS2 functions as a bona fide lactyl-CoA synthetase and converts lactate to lactyl-CoA, which binds to KAT2A as demonstrated by a co-crystal structure analysis. Consequently, KAT2A acts as a lactyltransferase to lactylate histone H3, leading to the expression of Wnt/β-catenin, NF-κB, and PD-L1 and brain tumor growth and immune evasion. A combination treatment with an ACSS2-KAT2A interaction-blocking peptide and an anti-PD-1 antibody induces an additive tumor-inhibitory effect. These findings uncover ACSS2 and KAT2A as hitherto unidentified lactyl-CoA synthetase and lactyltransferase, respectively, and the significance of the ACSS2-KAT2A coupling in gene expression and tumor development.
Collapse
Affiliation(s)
- Rongxuan Zhu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Xianglai Ye
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Xiaotong Lu
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Liwei Xiao
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Ming Yuan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Hong Zhao
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Dong Guo
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Ying Meng
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Hongkuan Han
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Shudi Luo
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Qingang Wu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Xiaoming Jiang
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Jun Xu
- Genetics and Metabolism Department, The Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Zhonghui Tang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yizhi Jane Tao
- Department of BioSciences, Rice University, Houston, TX 77005, USA.
| | - Zhimin Lu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China.
| |
Collapse
|
2
|
Li L, Luo Q, Yang S, Wang H, Mu Y, Guo J, Zhang F. Unraveling the molecular mechanism of FgGcn5 inhibition by phenazine-1-carboxamide: combined in silico and in vitro studies. PEST MANAGEMENT SCIENCE 2025; 81:937-945. [PMID: 39465489 DOI: 10.1002/ps.8496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Fusarium head blight (FHB), mainly caused by Fusarium graminearum (F. graminearum), remains a devastating disease worldwide. The histone acetyltransferase Gcn5 plays a crucial role in epigenetic regulation. Aberrant Gcn5 acetylation activity can result in serious impacts such as impaired growth and development in organisms. The secondary metabolite phenazine-1-carboxamide (PCN) inhibits F. graminearum by blocking the acetylation process of Gcn5 (FgGcn5), and is currently used to control FHB. However, the molecular basis of acetylation inhibition by PCN remains to be further explored. RESULTS Our molecular dynamics simulations revealed that PCN binds to the cleft in FgGcn5 where histone H3 is bound, with key amino acid residues including Leu96 (L96), Arg121 (R121), Phe133 (F133), Tyr169 (Y169), and Tyr201 (Y201), preventing FgGcn5 from binding to histone H3 and affecting histone H3 from being acetylated. Experimental validation of key amino acid mutations further confirmed the impact of these mutations on the interaction of FgGcn5 with PCN and histone H3 peptide. CONCLUSION In summary, our study sheds light on the mechanism by which PCN inhibits the acetylation function of FgGcn5, providing a foundation for the development of drugs or fungicides targeting histone acetyltransferases. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lei Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qing Luo
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| | - Shuai Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Hancheng Wang
- Upland Flue-Cured Tobacco Quality and Ecology Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jingjing Guo
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| | - Feng Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Chen X, Wu L, Zhang Y, Wang S, Wang S. Importance of benzoyltransferase GcnE and lysine benzoylation of alcohol dehydrogenase AdhB in pathogenesis and aflatoxin production in Aspergillus flavus. mBio 2025; 16:e0266524. [PMID: 39601562 PMCID: PMC11708022 DOI: 10.1128/mbio.02665-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Lysine benzoylation (Kbz) is a newly identified post-translational modification associated with active transcription and metabolism in eukaryotes. However, whether Kbz exists in pathogenic fungi and its function remains unknown. Here, we demonstrated for the first time that Kbz is present in Aspergillus flavus and identified 60 benzoylated sites on 46 benzoylated proteins by global benzoylome analysis. Our data demonstrated that alcohol dehydrogenase B (AdhB) is regulated by benzoylation on lysine 321 (K321), and mutations of Kbz site in AdhB significantly reduced the alcohol dehydrogenase activity in vivo and in vitro. Both adhB deletion mutant and benzoylated site mutants (K321R and K321A) exhibited similar phenotype, including decreased conidiation and seed colonization, increased sclerotia formation and aflatoxin production, and more sensitive to cell wall damage stress. We also found that GcnE has benzoyltransferase activity in vitro and in vivo, and its repression leads to decreased Kbz level and enzymatic activity of AdhB. The catalytic site E139 is important for the benzoyltransferase function of GcnE. Our study uncovers a previously unknown mechanism by which benzoylation regulates AdhB activity to affect the development, secondary metabolism, pathogenicity, and stress response of A. flavus. Meanwhile, it points out the important role of Kbz in the pathogenicity of pathogenic fungi.IMPORTANCEAspergillus flavus is a ubiquitous opportunistic pathogen of plants and animals, which produces carcinogenic and toxic secondary metabolite aflatoxin. A. flavus and aflatoxin contamination have emerged as a global food safety concern. Currently, post-translational modification plays crucial modulatory roles in the fungal development and virulence, but the role of benzoylation in fungal pathogenicity remains undetermined, which limits the development of prevention and control technique. Here, we first identified 46 benzoylated proteins in A. flavus, and found that benzoyltransferase GcnE exerted effects on pathogenicity and aflatoxin production by regulating the benzoylation of AdhB. This finding not only provided valuable information for prevention and control of A. flavus contamination, but also offered basic knowledge for investigation of the regulation mechanism of secondary metabolism in other fungi.
Collapse
Affiliation(s)
- Xuan Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lihan Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuqi Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sen Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
4
|
Pathikonda S, Amirmahani F, Mathew D, Muthukrishnan SD. Histone acetyltransferases as promising therapeutic targets in glioblastoma resistance. Cancer Lett 2024; 604:217269. [PMID: 39326554 DOI: 10.1016/j.canlet.2024.217269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Glioblastoma (GBM) is a fatal adult brain tumor with an extremely poor prognosis. GBM poses significant challenges for targeted therapies due to its intra- and inter-tumoral heterogeneity, a highly immunosuppressive microenvironment, diffuse infiltration into normal brain parenchyma, protection by the blood-brain barrier and acquisition of therapeutic resistance. Recent studies have implicated epigenetic modifiers as key players driving tumorigenesis, resistance, and progression of GBM. While the vast majority of GBM research on epigenetic modifiers thus far has focused predominantly on elucidating the functional roles and targeting of DNA methyltransferases and histone deacetylases, emerging evidence indicates that histone acetyltransferases (HATs) also play a key role in mediating plasticity and therapeutic resistance in GBM. Here, we will provide an overview of HATs, their dual roles and functions in cancer as both tumor suppressors and oncogenes and focus specifically on their implications in GBM resistance. We also discuss the technical challenges in developing selective HAT inhibitors and highlight their promise as potential anti-cancer therapeutics for treating intractable cancers such as GBM.
Collapse
Affiliation(s)
- Spoorthy Pathikonda
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.
| | - Farzaneh Amirmahani
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.
| | - Diya Mathew
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.
| | - Sree Deepthi Muthukrishnan
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.
| |
Collapse
|
5
|
Kong X, Chen Y, Li H, Li M, Liu X, Xia L, Zhang S. Dissociation of transcription factor MYB94 and histone deacetylases HDA907/908 alleviates oxidative damage in poplar. PLANT PHYSIOLOGY 2024; 196:181-194. [PMID: 38850061 DOI: 10.1093/plphys/kiae325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/03/2024] [Accepted: 04/21/2024] [Indexed: 06/09/2024]
Abstract
Drought is one of the major threats to forest productivity. Oxidation stress is common in drought-stressed plants, and plants need to maintain normal life activities through complex reactive oxygen scavenging mechanisms. However, the molecular links between epigenetics, oxidation stress, and drought in poplar (Populus) remain poorly understood. Here, we found that Populus plants overexpressing PtrMYB94, which encodes an R2R3-MYB transcription factor that regulates the abscisic acid signaling pathway, displayed increased tolerance to extreme drought stress via upregulation of embryogenic cell phosphoprotein 44 (PtrECPP44) expression. Further investigation revealed that PtrMYB94 could recruit the histone deacetylases PtrHDA907/908 to the promoter of PtrECPP44 and decrease acetylation at lysine residues 9, 14, and 27 of histone H3, leading to relatively low transcriptional expression levels under normal conditions. Drought induced the expression of PtrMYB94 while preventing interaction of PtrMYB94 with PtrHDA907/908, which relaxed the chromatin structure and facilitated the binding of RNA polymerase II to the PtrECPP44 promoter. The upregulation of PtrECPP44 helped poplar alleviate oxidative damage and maintain normal cell activities. This study establishes a PtrMYB94-PtrECPP44 transcriptional regulatory module modified by PtrHDA907/908 in modulating drought-induced oxidative stress recovery. Therefore, our study reveals an oxidative regulatory mechanism in response to drought stress and provides insights into molecular breeding for stress resistance in poplar.
Collapse
Affiliation(s)
- Xiangge Kong
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yao Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Huanhuan Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Menghan Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xuejiao Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Linchao Xia
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Nguyen MU, Iqbal J, Potgieter S, Huang W, Pfeffer J, Woo S, Zhao C, Lawlor M, Yang R, Rizly R, Halstead A, Dent S, Sáenz JB, Zheng H, Yuan ZF, Sidoli S, Ellison CE, P. Verzi M. KAT2A and KAT2B prevent double-stranded RNA accumulation and interferon signaling to maintain intestinal stem cell renewal. SCIENCE ADVANCES 2024; 10:eadl1584. [PMID: 39110797 PMCID: PMC11305398 DOI: 10.1126/sciadv.adl1584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Histone acetyltransferases KAT2A and KAT2B are paralogs highly expressed in the intestinal epithelium, but their functions are not well understood. In this study, double knockout of murine Kat2 genes in the intestinal epithelium was lethal, resulting in robust activation of interferon signaling and interferon-associated phenotypes including the loss of intestinal stem cells. Use of pharmacological agents and sterile organoid cultures indicated a cell-intrinsic double-stranded RNA trigger for interferon signaling. Acetyl-proteomics and sequencing of immunoprecipitated double-stranded RNA were used to interrogate the mechanism behind this response, which identified mitochondria-encoded double-stranded RNA as the source of intrinsic interferon signaling. Kat2a and Kat2b therefore play an essential role in regulating mitochondrial functions and maintaining intestinal health.
Collapse
Affiliation(s)
- Mai-Uyen Nguyen
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Jahangir Iqbal
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Sarah Potgieter
- Department of Animal Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Winston Huang
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Julie Pfeffer
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Sean Woo
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Caifeng Zhao
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Matthew Lawlor
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Richard Yang
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Rahma Rizly
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Angela Halstead
- Division of Gastroenterology, Departments of Medicine and Molecular Cell Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Sharon Dent
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - José B. Sáenz
- Division of Gastroenterology, Departments of Medicine and Molecular Cell Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Zuo-Fei Yuan
- St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Simone Sidoli
- Albert Einstein College of Medicine, The Bronx, NY, USA
| | - Christopher E. Ellison
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Michael P. Verzi
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Rutgers Center for Lipid Research, Division of Environmental & Population Health Biosciences, EOHSI, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
7
|
Charidemou E, Noberini R, Ghirardi C, Georgiou P, Marcou P, Theophanous A, Strati K, Keun H, Behrends V, Bonaldi T, Kirmizis A. Hyperacetylated histone H4 is a source of carbon contributing to lipid synthesis. EMBO J 2024; 43:1187-1213. [PMID: 38383863 PMCID: PMC10987603 DOI: 10.1038/s44318-024-00053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Histone modifications commonly integrate environmental cues with cellular metabolic outputs by affecting gene expression. However, chromatin modifications such as acetylation do not always correlate with transcription, pointing towards an alternative role of histone modifications in cellular metabolism. Using an approach that integrates mass spectrometry-based histone modification mapping and metabolomics with stable isotope tracers, we demonstrate that elevated lipids in acetyltransferase-depleted hepatocytes result from carbon atoms derived from deacetylation of hyperacetylated histone H4 flowing towards fatty acids. Consistently, enhanced lipid synthesis in acetyltransferase-depleted hepatocytes is dependent on histone deacetylases and acetyl-CoA synthetase ACSS2, but not on the substrate specificity of the acetyltransferases. Furthermore, we show that during diet-induced lipid synthesis the levels of hyperacetylated histone H4 decrease in hepatocytes and in mouse liver. In addition, overexpression of acetyltransferases can reverse diet-induced lipogenesis by blocking lipid droplet accumulation and maintaining the levels of hyperacetylated histone H4. Overall, these findings highlight hyperacetylated histones as a metabolite reservoir that can directly contribute carbon to lipid synthesis, constituting a novel function of chromatin in cellular metabolism.
Collapse
Affiliation(s)
- Evelina Charidemou
- Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus
| | - Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139, Milan, Italy
- Department of Oncology and Haematology-Oncology, University of Milano, Via Festa del Perdono 7, 20122, Milano, Italy
| | - Chiara Ghirardi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139, Milan, Italy
- Department of Oncology and Haematology-Oncology, University of Milano, Via Festa del Perdono 7, 20122, Milano, Italy
| | - Polymnia Georgiou
- Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus
| | - Panayiota Marcou
- Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus
| | - Andria Theophanous
- Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus
| | - Katerina Strati
- Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus
| | - Hector Keun
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Volker Behrends
- School of Life and Health Sciences, Whitelands College, University of Roehampton, London, UK
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139, Milan, Italy
- Department of Oncology and Haematology-Oncology, University of Milano, Via Festa del Perdono 7, 20122, Milano, Italy
| | - Antonis Kirmizis
- Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus.
| |
Collapse
|
8
|
Yu Y, Zhao F, Yue Y, Zhao Y, Zhou DX. Lysine acetylation of histone acetyltransferase adaptor protein ADA2 is a mechanism of metabolic control of chromatin modification in plants. NATURE PLANTS 2024; 10:439-452. [PMID: 38326652 DOI: 10.1038/s41477-024-01623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Histone acetylation is a predominant active chromatin mark deposited by histone acetyltransferases (HATs) that transfer the acetyl group from acetyl coenzyme A (acetyl-CoA) to lysine ε-amino groups in histones. GENERAL CONTROL NON-REPRESSED PROTEIN 5 (GCN5) is one of the best-characterized HATs and functions in association with several adaptor proteins such as ADA2 within multiprotein HAT complexes. ADA2-GCN5 interaction increases GCN5 binding to acetyl-CoA and stimulates its HAT activity. It remains unclear whether the HAT activity of GCN5 (which acetylates not only histones but also cellular proteins) is regulated by acetyl-CoA levels, which vary greatly in cells under different metabolic and nutrition conditions. Here we show that the ADA2 protein itself is acetylated by GCN5 in rice cells. Lysine acetylation exposes ADA2 to a specific E3 ubiquitin ligase and reduces its protein stability. In rice plants, ADA2 protein accumulation reversely parallels its lysine acetylation and acetyl-CoA levels, both of which are dynamically regulated under varying growth conditions. Stress-induced ADA2 accumulation could stimulate GCN5 HAT activity to compensate for the reduced acetyl-CoA levels for histone acetylation. These results indicate that ADA2 lysine acetylation that senses cellular acetyl-CoA variations is a mechanism to regulate HAT activity and histone acetylation homeostasis in plants under changing environments.
Collapse
Affiliation(s)
- Yue Yu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Feng Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yaping Yue
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, France.
| |
Collapse
|
9
|
Beaudry A, Jacques-Ricard S, Darracq A, Sgarioto N, Garcia A, García TR, Lemieux W, Béland K, Haddad E, Cordeiro P, Duval M, McGraw S, Richer C, Caron M, Marois F, St-Onge P, Sinnett D, Banquy X, Raynal NJM. Repurposing disulfiram, an alcohol-abuse drug, in neuroblastoma causes KAT2A downregulation and in vivo activity with a water/oil emulsion. Sci Rep 2023; 13:16443. [PMID: 37777587 PMCID: PMC10543387 DOI: 10.1038/s41598-023-43219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023] Open
Abstract
Neuroblastoma, the most common type of pediatric extracranial solid tumor, causes 10% of childhood cancer deaths. Despite intensive multimodal treatment, the outcomes of high-risk neuroblastoma remain poor. We urgently need to develop new therapies with safe long-term toxicity profiles for rapid testing in clinical trials. Drug repurposing is a promising approach to meet these needs. Here, we investigated disulfiram, a safe and successful chronic alcoholism treatment with known anticancer and epigenetic effects. Disulfiram efficiently induced cell cycle arrest and decreased the viability of six human neuroblastoma cell lines at half-maximal inhibitory concentrations up to 20 times lower than its peak clinical plasma level in patients treated for chronic alcoholism. Disulfiram shifted neuroblastoma transcriptome, decreasing MYCN levels and activating neuronal differentiation. Consistently, disulfiram significantly reduced the protein level of lysine acetyltransferase 2A (KAT2A), drastically reducing acetylation of its target residues on histone H3. To investigate disulfiram's anticancer effects in an in vivo model of high-risk neuroblastoma, we developed a disulfiram-loaded emulsion to deliver the highly liposoluble drug. Treatment with the emulsion significantly delayed neuroblastoma progression in mice. These results identify KAT2A as a novel target of disulfiram, which directly impacts neuroblastoma epigenetics and is a promising candidate for repurposing to treat pediatric neuroblastoma.
Collapse
Affiliation(s)
- Annie Beaudry
- Sainte-Justine University Hospital Research Center, 3175, Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Simon Jacques-Ricard
- Sainte-Justine University Hospital Research Center, 3175, Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- Département de Pharmacologie et de Physiologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
| | - Anaïs Darracq
- Sainte-Justine University Hospital Research Center, 3175, Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- Département de Pharmacologie et de Physiologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
| | - Nicolas Sgarioto
- Sainte-Justine University Hospital Research Center, 3175, Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Araceli Garcia
- Faculté de Pharmacie, Université de Montréal, Montreal, QC, Canada
| | | | - William Lemieux
- Sainte-Justine University Hospital Research Center, 3175, Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Kathie Béland
- Sainte-Justine University Hospital Research Center, 3175, Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Elie Haddad
- Sainte-Justine University Hospital Research Center, 3175, Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Paulo Cordeiro
- Sainte-Justine University Hospital Research Center, 3175, Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Michel Duval
- Sainte-Justine University Hospital Research Center, 3175, Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Serge McGraw
- Sainte-Justine University Hospital Research Center, 3175, Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Chantal Richer
- Sainte-Justine University Hospital Research Center, 3175, Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Maxime Caron
- Sainte-Justine University Hospital Research Center, 3175, Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - François Marois
- Sainte-Justine University Hospital Research Center, 3175, Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Pascal St-Onge
- Sainte-Justine University Hospital Research Center, 3175, Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Daniel Sinnett
- Sainte-Justine University Hospital Research Center, 3175, Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- Département de Pédiatrie, Université de Montréal, Montreal, QC, Canada
| | - Xavier Banquy
- Faculté de Pharmacie, Université de Montréal, Montreal, QC, Canada
| | - Noël J-M Raynal
- Sainte-Justine University Hospital Research Center, 3175, Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
- Département de Pharmacologie et de Physiologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
10
|
Nguyen MU, Potgieter S, Huang W, Pfeffer J, Woo S, Zhao C, Lawlor M, Yang R, Halstead A, Dent S, Sáenz JB, Zheng H, Yuan ZF, Sidoli S, Ellison CE, Verzi M. KAT2 paralogs prevent dsRNA accumulation and interferon signaling to maintain intestinal stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.04.556156. [PMID: 37732252 PMCID: PMC10508741 DOI: 10.1101/2023.09.04.556156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Histone acetyltransferases KAT2A and KAT2B are paralogs highly expressed in the intestinal epithelium, but their functions are not well understood. In this study, double knockout of murine Kat2 genes in the intestinal epithelium was lethal, resulting in robust activation of interferon signaling and interferon-associated phenotypes including the loss of intestinal stem cells. Use of pharmacological agents and sterile organoid cultures indicated a cell-intrinsic double-stranded RNA trigger for interferon signaling. Acetyl-proteomics and dsRIP-seq were employed to interrogate the mechanism behind this response, which identified mitochondria-encoded double-stranded RNA as the source of intrinsic interferon signaling. Kat2a and Kat2b therefore play an essential role in regulating mitochondrial functions as well as maintaining intestinal health.
Collapse
Affiliation(s)
- Mai-Uyen Nguyen
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ
| | - Sarah Potgieter
- Department of Animal Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ
| | - Winston Huang
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ
| | - Julie Pfeffer
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ
| | - Sean Woo
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ
| | - Caifeng Zhao
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ
| | - Matthew Lawlor
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ
| | - Richard Yang
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ
| | - Angela Halstead
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Sharon Dent
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - José B. Sáenz
- Division of Gastroenterology, Departments of Medicine and Molecular Cell Biology, Washington University in St. Louis, St. Louis, MO
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ
| | - Zuo-Fei Yuan
- St. Jude Children’s Research Hospital, Memphis, TN
| | | | | | - Michael Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Rutgers Center for Lipid Research, Division of Environmental & Population Health Biosciences, EOHSI, Rutgers, The State University of New Jersey, Piscataway, NJ
| |
Collapse
|
11
|
Li J, Cao Y, Yang Y, Ma H, Zhao J, Zhang Y, Liu N. Quantitative Acetylomics Reveals Substrates of Lysine Acetyltransferase GCN5 in Adult and Aging Drosophila. J Proteome Res 2023; 22:2909-2924. [PMID: 37545086 DOI: 10.1021/acs.jproteome.3c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Protein lysine acetylation is a dynamic post-translational modification (PTM) that regulates a wide spectrum of cellular events including aging. General control nonderepressible 5 (GCN5) is a highly conserved lysine acetyltransferase (KAT). However, the acetylation substrates of GCN5 in vivo remain poorly studied, and moreover, how lysine acetylation changes with age and the contribution of KATs to aging remain to be addressed. Here, using Drosophila, we perform label-free quantitative acetylomic analysis, identifying new substrates of GCN5 in the adult and aging process. We further characterize the dynamics of protein acetylation with age, which exhibits a trend of increase. Since the expression of endogenous fly Gcn5 progressively increases during aging, we reason that, by combining the substrate analysis, the increase in acetylation with age is triggered, at least in part, by GCN5. Collectively, our study substantially expands the atlas of GCN5 substrates in vivo, provides a resource of protein acetylation that naturally occurs with age, and demonstrates how individual KAT contributes to the aging acetylome.
Collapse
Affiliation(s)
- Jingshu Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Cao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanhuan Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
- Shanghai Key Laboratory of Aging Studies, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
| | - Nan Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
- Shanghai Key Laboratory of Aging Studies, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
| |
Collapse
|
12
|
Bardani E, Kallemi P, Tselika M, Katsarou K, Kalantidis K. Spotlight on Plant Bromodomain Proteins. BIOLOGY 2023; 12:1076. [PMID: 37626962 PMCID: PMC10451976 DOI: 10.3390/biology12081076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023]
Abstract
Bromodomain-containing proteins (BRD-proteins) are the "readers" of histone lysine acetylation, translating chromatin state into gene expression. They act alone or as components of larger complexes and exhibit diverse functions to regulate gene expression; they participate in chromatin remodeling complexes, mediate histone modifications, serve as scaffolds to recruit transcriptional regulators or act themselves as transcriptional co-activators or repressors. Human BRD-proteins have been extensively studied and have gained interest as potential drug targets for various diseases, whereas in plants, this group of proteins is still not well investigated. In this review, we aimed to concentrate scientific knowledge on these chromatin "readers" with a focus on Arabidopsis. We organized plant BRD-proteins into groups based on their functions and domain architecture and summarized the published work regarding their interactions, activity and diverse functions. Overall, it seems that plant BRD-proteins are indispensable components and fine-tuners of the complex network plants have built to regulate development, flowering, hormone signaling and response to various biotic or abiotic stresses. This work will facilitate the understanding of their roles in plants and highlight BRD-proteins with yet undiscovered functions.
Collapse
Affiliation(s)
- Eirini Bardani
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece
| | - Paraskevi Kallemi
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
| | - Martha Tselika
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
| | - Konstantina Katsarou
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece
| | - Kriton Kalantidis
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece
| |
Collapse
|
13
|
Xu M, Lin L, Ram BM, Shriwas O, Chuang KH, Dai S, Su KH, Tang Z, Dai C. Heat shock factor 1 (HSF1) specifically potentiates c-MYC-mediated transcription independently of the canonical heat shock response. Cell Rep 2023; 42:112557. [PMID: 37224019 PMCID: PMC10592515 DOI: 10.1016/j.celrep.2023.112557] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/27/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
Despite its pivotal roles in biology, how the transcriptional activity of c-MYC is tuned quantitatively remains poorly defined. Here, we show that heat shock factor 1 (HSF1), the master transcriptional regulator of the heat shock response, acts as a prime modifier of the c-MYC-mediated transcription. HSF1 deficiency diminishes c-MYC DNA binding and dampens its transcriptional activity genome wide. Mechanistically, c-MYC, MAX, and HSF1 assemble into a transcription factor complex on genomic DNAs, and surprisingly, the DNA binding of HSF1 is dispensable. Instead, HSF1 physically recruits the histone acetyltransferase general control nonderepressible 5 (GCN5), promoting histone acetylation and augmenting c-MYC transcriptional activity. Thus, we find that HSF1 specifically potentiates the c-MYC-mediated transcription, discrete from its canonical role in countering proteotoxic stress. Importantly, this mechanism of action engenders two distinct c-MYC activation states, primary and advanced, which may be important to accommodate diverse physiological and pathological conditions.
Collapse
Affiliation(s)
- Meng Xu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Ling Lin
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Babul Moni Ram
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Omprakash Shriwas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Kun-Han Chuang
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Siyuan Dai
- Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Kuo-Hui Su
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Zijian Tang
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Chengkai Dai
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
14
|
Haile ST, Rahman S, Fields JK, Orsburn BC, Bumpus NN, Wolberger C. The SAGA HAT module is tethered by its SWIRM domain and modulates activity of the SAGA DUB module. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194929. [PMID: 36965704 PMCID: PMC10226619 DOI: 10.1016/j.bbagrm.2023.194929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/12/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
The SAGA (Spt-Ada-Gcn5 acetyltransferase) complex is a transcriptional co-activator that both acetylates and deubiquitinates histones. The histone acetyltransferase (HAT) subunit, Gcn5, is part of a subcomplex of SAGA called the HAT module. A minimal HAT module complex containing Gcn5 bound to Ada2 and Ada3 is required for full Gcn5 activity on nucleosomes. Deletion studies have suggested that the Ada2 SWIRM domain plays a role in tethering the HAT module to the remainder of SAGA. While recent cryo-EM studies have resolved the structure of the core of the SAGA complex, the HAT module subunits and molecular details of its interactions with the SAGA core could not be resolved. Here we show that the SWIRM domain is required for incorporation of the HAT module into the yeast SAGA complex, but not the ADA complex, a distinct six-protein acetyltransferase complex that includes the SAGA HAT module proteins. In the isolated Gcn5/Ada2/Ada3 HAT module, deletion of the SWIRM domain modestly increased activity but had negligible effect on nucleosome binding. Loss of the HAT module due to deletion of the SWIRM domain decreases the H2B deubiquitinating activity of SAGA, indicating a role for the HAT module in regulating SAGA DUB module activity. A model of the HAT module created with Alphafold Multimer provides insights into the structural basis for our biochemical data, as well as prior deletion studies.
Collapse
Affiliation(s)
- Sara T Haile
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, United States of America
| | - Sanim Rahman
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, United States of America
| | - James K Fields
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, United States of America
| | - Benjamin C Orsburn
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, United States of America
| | - Namandjé N Bumpus
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, United States of America
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, United States of America.
| |
Collapse
|
15
|
Mondal P, Tiwary N, Sengupta A, Dhang S, Roy S, Das C. Epigenetic Reprogramming of the Glucose Metabolic Pathways by the Chromatin Effectors During Cancer. Subcell Biochem 2022; 100:269-336. [PMID: 36301498 DOI: 10.1007/978-3-031-07634-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glucose metabolism plays a vital role in regulating cellular homeostasis as it acts as the central axis for energy metabolism, alteration in which may lead to serious consequences like metabolic disorders to life-threatening diseases like cancer. Malignant cells, on the other hand, help in tumor progression through abrupt cell proliferation by adapting to the changed metabolic milieu. Metabolic intermediates also vary from normal cells to cancerous ones to help the tumor manifestation. However, metabolic reprogramming is an important phenomenon of cells through which they try to maintain the balance between normal and carcinogenic outcomes. In this process, transcription factors and chromatin modifiers play an essential role to modify the chromatin landscape of important genes related directly or indirectly to metabolism. Our chapter surmises the importance of glucose metabolism and the role of metabolic intermediates in the cell. Also, we summarize the influence of histone effectors in reprogramming the cancer cell metabolism. An interesting aspect of this chapter includes the detailed methods to detect the aberrant metabolic flux, which can be instrumental for the therapeutic regimen of cancer.
Collapse
Affiliation(s)
- Payel Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Niharika Tiwary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Amrita Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Sinjini Dhang
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Siddhartha Roy
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India.
- Homi Bhaba National Institute, Mumbai, India.
| |
Collapse
|
16
|
Guo Q, Kang H, Wang J, Dong Y, Peng R, Zhao H, Wu W, Guan H, Li F. Inhibition of ACLY Leads to Suppression of Osteoclast Differentiation and Function Via Regulation of Histone Acetylation. J Bone Miner Res 2021; 36:2065-2080. [PMID: 34155695 DOI: 10.1002/jbmr.4399] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/17/2022]
Abstract
ATP-citrate lyase (ACLY), generating most of the nucleocytosolic acetyl coenzyme A (acetyl-CoA) for histone acetylation, links cell metabolism to epigenetic regulation. Recent investigations demonstrated that ACLY activated by metabolic reprogramming played an essential role in both M1 and M2 macrophage activation via histone acetylation. Previous studies also revealed that histone methylation and acetylation were critical for transcriptional regulation of osteoclast-specific genes. Considering that osteoclast differentiation also undergoes metabolic reprogramming and the activity of ACLY is always Akt-dependent, we inferred that receptor activator of NF-κB (RANK) activation might enhance the activity of ACLY through downstream pathways and ACLY might play a role in osteoclast formation. In the current study, we found that ACLY was gradually activated during RANK ligand (RANKL)-induced osteoclast differentiation from bone marrow-derived macrophages (BMMs). Both ACLY knock-down and small molecular ACLY inhibitor BMS-303141 significantly decreased nucleocytosolic acetyl-CoA in BMMs and osteoclasts and suppressed osteoclast formation in vitro. BMS-303141 also suppressed osteoclast formation in vivo and prevents ovariectomy (OVX)-induced bone loss. Further investigations showed that RANKL triggered ACLY translocation into nucleus, consistent with increasing histone H3 acetylation, which was correlated to ACLY. The H3 lysine residues influenced by ACLY were in accordance with GCN5 targets. Using GCN5 knock-down and overexpression, we showed that ACLY and GCN5 functioned in the same pathway for histone H3 acetylation. Analysis of pathways downstream of RANK activation revealed that ACLY was Akt-dependent and predominately affected Akt pathway. With the help of RNA-sequencing, we discovered Rac1 as a downstream regulator of ACLY, which was involved in shACLY-mediated suppression of osteoclast differentiation, cytoskeleton organization, and signal transduction and was transcriptionally regulated by ACLY via histone H3 acetylation. To summarize, our results proved that inhibition of ATP-citrate lyase led to suppression of osteoclast differentiation and function via regulation of histone acetylation. Rac1 could be a downstream regulator of ACLY. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Qian Guo
- Department of Orthopedic Surgery and Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honglei Kang
- Department of Orthopedic Surgery and Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Wang
- Department of Orthopedic Surgery and Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yimin Dong
- Department of Orthopedic Surgery and Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renpeng Peng
- Department of Orthopedic Surgery and Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjian Zhao
- Department of Orthopedic Surgery and Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wu
- Department of Orthopedic Surgery and Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanfeng Guan
- Department of Orthopedic Surgery and Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Li
- Department of Orthopedic Surgery and Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
The GCN5: its biological functions and therapeutic potentials. Clin Sci (Lond) 2021; 135:231-257. [PMID: 33443284 DOI: 10.1042/cs20200986] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022]
Abstract
General control non-depressible 5 (GCN5) or lysine acetyltransferase 2A (KAT2A) is one of the most highly studied histone acetyltransferases. It acts as both histone acetyltransferase (HAT) and lysine acetyltransferase (KAT). As an HAT it plays a pivotal role in the epigenetic landscape and chromatin modification. Besides, GCN5 regulates a wide range of biological events such as gene regulation, cellular proliferation, metabolism and inflammation. Imbalance in the GCN5 activity has been reported in many disorders such as cancer, metabolic disorders, autoimmune disorders and neurological disorders. Therefore, unravelling the role of GCN5 in different diseases progression is a prerequisite for both understanding and developing novel therapeutic agents of these diseases. In this review, we have discussed the structural features, the biological function of GCN5 and the mechanical link with the diseases associated with its imbalance. Moreover, the present GCN5 modulators and their limitations will be presented in a medicinal chemistry perspective.
Collapse
|
18
|
Epigenetics Identifier screens reveal regulators of chromatin acylation and limited specificity of acylation antibodies. Sci Rep 2021; 11:12795. [PMID: 34140538 PMCID: PMC8211816 DOI: 10.1038/s41598-021-91359-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/20/2021] [Indexed: 11/15/2022] Open
Abstract
The collection of known posttranslational modifications (PTMs) has expanded rapidly with the identification of various non-acetyl histone lysine acylations, such as crotonylation, succinylation and butyrylation, yet their regulation is still not fully understood. Through an unbiased chromatin immunoprecipitation (ChIP)-based approach called Epigenetics-IDentifier (Epi-ID), we aimed to identify regulators of crotonylation, succinylation and butyrylation in thousands of yeast mutants simultaneously. However, highly correlative results led us to further investigate the specificity of the pan-K-acyl antibodies used in our Epi-ID studies. This revealed cross-reactivity and lack of specificity of pan-K-acyl antibodies in various assays. Our findings suggest that the antibodies might recognize histone acetylation in vivo, in addition to histone acylation, due to the vast overabundance of acetylation compared to other acylation modifications in cells. Consequently, our Epi-ID screen mostly identified factors affecting histone acetylation, including known (e.g. GCN5, HDA1, and HDA2) and unanticipated (MET7, MTF1, CLB3, and RAD26) factors, expanding the repertoire of acetylation regulators. Antibody-independent follow-up experiments on the Gcn5-Ada2-Ada3 (ADA) complex revealed that, in addition to acetylation and crotonylation, ADA has the ability to butyrylate histones. Thus, our Epi-ID screens revealed limits of using pan-K-acyl antibodies in epigenetics research, expanded the repertoire of regulators of histone acetylation, and attributed butyrylation activity to the ADA complex.
Collapse
|
19
|
Dong J, LeBlanc C, Poulet A, Mermaz B, Villarino G, Webb KM, Joly V, Mendez J, Voigt P, Jacob Y. H3.1K27me1 maintains transcriptional silencing and genome stability by preventing GCN5-mediated histone acetylation. THE PLANT CELL 2021; 33:961-979. [PMID: 33793815 PMCID: PMC8226292 DOI: 10.1093/plcell/koaa027] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/25/2020] [Indexed: 05/17/2023]
Abstract
Epigenetic mechanisms play diverse roles in the regulation of genome stability in eukaryotes. In Arabidopsis thaliana, genome stability is maintained during DNA replication by the H3.1K27 methyltransferases ARABIDOPSIS TRITHORAX-RELATED PROTEIN 5 (ATXR5) and ATXR6, which catalyze the deposition of K27me1 on replication-dependent H3.1 variants. The loss of H3.1K27me1 in atxr5 atxr6 double mutants leads to heterochromatin defects, including transcriptional de-repression and genomic instability, but the molecular mechanisms involved remain largely unknown. In this study, we identified the transcriptional co-activator and conserved histone acetyltransferase GCN5 as a mediator of transcriptional de-repression and genomic instability in the absence of H3.1K27me1. GCN5 is part of a SAGA-like complex in plants that requires the GCN5-interacting protein ADA2b and the chromatin remodeler CHR6 to mediate the heterochromatic defects in atxr5 atxr6 mutants. Our results also indicate that Arabidopsis GCN5 acetylates multiple lysine residues on H3.1 variants, but H3.1K27 and H3.1K36 play essential functions in inducing genomic instability in the absence of H3.1K27me1. Finally, we show that H3.1K36 acetylation by GCN5 is negatively regulated by H3.1K27me1 in vitro. Overall, this work reveals a key molecular role for H3.1K27me1 in maintaining transcriptional silencing and genome stability in heterochromatin by restricting GCN5-mediated histone acetylation in plants.
Collapse
Affiliation(s)
- Jie Dong
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, 260 Whitney Avenue, New Haven, CN 06511
| | - Chantal LeBlanc
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, 260 Whitney Avenue, New Haven, CN 06511
| | - Axel Poulet
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, 260 Whitney Avenue, New Haven, CN 06511
| | - Benoit Mermaz
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, 260 Whitney Avenue, New Haven, CN 06511
| | - Gonzalo Villarino
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, 260 Whitney Avenue, New Haven, CN 06511
| | - Kimberly M Webb
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF
| | - Valentin Joly
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, 260 Whitney Avenue, New Haven, CN 06511
| | - Josefina Mendez
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, 260 Whitney Avenue, New Haven, CN 06511
| | - Philipp Voigt
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF
| | - Yannick Jacob
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, 260 Whitney Avenue, New Haven, CN 06511
| |
Collapse
|
20
|
Huang LY, Hsu DW, Pears CJ. Methylation-directed acetylation of histone H3 regulates developmental sensitivity to histone deacetylase inhibition. Nucleic Acids Res 2021; 49:3781-3795. [PMID: 33721015 PMCID: PMC8053100 DOI: 10.1093/nar/gkab154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 01/26/2023] Open
Abstract
Hydroxamate-based lysine deacetylase inhibitors (KDACis) are approved for clinical use against certain cancers. However, intrinsic and acquired resistance presents a major problem. Treatment of cells with hydroxamates such as trichostatin A (TSA) leads to rapid preferential acetylation of histone H3 already trimethylated on lysine 4 (H3K4me3), although the importance of this H3K4me3-directed acetylation in the biological consequences of KDACi treatment is not known. We address this utilizing Dictyostelium discoideum strains lacking H3K4me3 due to disruption of the gene encoding the Set1 methyltransferase or mutations in endogenous H3 genes. Loss of H3K4me3 confers resistance to TSA-induced developmental inhibition and delays accumulation of H3K9Ac and H3K14Ac. H3K4me3-directed H3Ac is mediated by Sgf29, a subunit of the SAGA acetyltransferase complex that interacts with H3K4me3 via a tandem tudor domain (TTD). We identify an Sgf29 orthologue in Dictyostelium with a TTD that specifically recognizes the H3K4me3 modification. Disruption of the gene encoding Sgf29 delays accumulation of H3K9Ac and abrogates H3K4me3-directed H3Ac. Either loss or overexpression of Sgf29 confers developmental resistance to TSA. Our results demonstrate that rapid acetylation of H3K4me3 histones regulates developmental sensitivity to TSA. Levels of H3K4me3 or Sgf29 will provide useful biomarkers for sensitivity to this class of chemotherapeutic drug.
Collapse
Affiliation(s)
- Li-Yao Huang
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Duen-Wei Hsu
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Catherine J Pears
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
21
|
Adamus K, Reboul C, Voss J, Huang C, Schittenhelm RB, Le SN, Ellisdon AM, Elmlund H, Boudes M, Elmlund D. SAGA and SAGA-like SLIK transcriptional coactivators are structurally and biochemically equivalent. J Biol Chem 2021; 296:100671. [PMID: 33864814 PMCID: PMC8131915 DOI: 10.1016/j.jbc.2021.100671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/03/2022] Open
Abstract
The SAGA-like complex SLIK is a modified version of the Spt-Ada-Gcn5-Acetyltransferase (SAGA) complex. SLIK is formed through C-terminal truncation of the Spt7 SAGA subunit, causing loss of Spt8, one of the subunits that interacts with the TATA-binding protein (TBP). SLIK and SAGA are both coactivators of RNA polymerase II transcription in yeast, and both SAGA and SLIK perform chromatin modifications. The two complexes have been speculated to uniquely contribute to transcriptional regulation, but their respective contributions are not clear. To investigate, we assayed the chromatin modifying functions of SAGA and SLIK, revealing identical kinetics on minimal substrates in vitro. We also examined the binding of SAGA and SLIK to TBP and concluded that interestingly, both protein complexes have similar affinity for TBP. Additionally, despite the loss of Spt8 and C-terminus of Spt7 in SLIK, TBP prebound to SLIK is not released in the presence of TATA-box DNA, just like TBP prebound to SAGA. Furthermore, we determined a low-resolution cryo-EM structure of SLIK, revealing a modular architecture identical to SAGA. Finally, we performed a comprehensive study of DNA-binding properties of both coactivators. Purified SAGA and SLIK both associate with ssDNA and dsDNA with high affinity (KD = 10–17 nM), and the binding is sequence-independent. In conclusion, our study shows that the cleavage of Spt7 and the absence of the Spt8 subunit in SLIK neither drive any major conformational differences in its structure compared with SAGA, nor significantly affect HAT, DUB, or DNA-binding activities in vitro.
Collapse
Affiliation(s)
- Klaudia Adamus
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Cyril Reboul
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jarrod Voss
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Cheng Huang
- Monash Proteomics & Metabolomics Facility, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Facility, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sarah N Le
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Andrew M Ellisdon
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Hans Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Marion Boudes
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| | - Dominika Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
22
|
Shi J, Ma Y, Hua H, Liu Y, Li W, Yu H, Liu C. Dynamic Histone H3 Modifications Regulate Meiosis Initiation via Respiration. Front Cell Dev Biol 2021; 9:646214. [PMID: 33869198 PMCID: PMC8047140 DOI: 10.3389/fcell.2021.646214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/08/2021] [Indexed: 01/02/2023] Open
Abstract
Meiosis is essential for genetic stability and diversity during sexual reproduction in most eukaryotes. Chromatin structure and gene expression are drastically changed during meiosis, and various histone modifications have been reported to participate in this unique process. However, the dynamic of histone modifications during meiosis is still not well investigated. Here, by using multiple reaction monitoring (MRM) based LC-MS/MS, we detected dynamic changes of histone H3 lysine post-translational modifications (PTMs). We firstly quantified the precise percentage of H3 modifications on different lysine sites during mouse and yeast meiosis, and found H3 acetylation and methylation were dramatically changed. To further study the potential functions of H3 acetylation and methylation in meiosis, we performed histone H3 lysine mutant screening in yeast, and found that yeast strains lacking H3K18 acetylation (H3K18ac) failed to initiate meiosis due to insufficient IME1 expression. Further studies showed that the absence of H3K18ac impaired respiration, leading to the reduction of Rim101p, which further upregulated a negative regulator of IME1 transcription, Smp1p. Together, our studies reveal a novel meiosis initiation pathway mediated by histone H3 modifications.
Collapse
Affiliation(s)
- Jian Shi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China
| | - Yanjie Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China
| | - Hui Hua
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Yujiao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China
| | - Hongxiu Yu
- Shanghai Stomatological Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
The Role of Histone Acetylation-/Methylation-Mediated Apoptotic Gene Regulation in Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:ijms21238894. [PMID: 33255318 PMCID: PMC7727670 DOI: 10.3390/ijms21238894] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Epigenetics, an inheritable phenomenon, which influences the expression of gene without altering the DNA sequence, offers a new perspective on the pathogenesis of hepatocellular carcinoma (HCC). Nonalcoholic steatohepatitis (NASH) is projected to account for a significant share of HCC incidence due to the growing prevalence of various metabolic disorders. One of the major molecular mechanisms involved in epigenetic regulation, post-translational histone modification seems to coordinate various aspects of NASH which will further progress to HCC. Mounting evidence suggests that the orchestrated events of cellular and nuclear changes during apoptosis can be regulated by histone modifications. This review focuses on the current advances in the study of acetylation-/methylation-mediated histone modification in apoptosis and the implication of these epigenetic regulations in HCC. The reversibility of epigenetic alterations and the agents that can target these alterations offers novel therapeutic approaches and strategies for drug development. Further molecular mechanistic studies are required to enhance information governing these epigenetic modulators, which will facilitate the design of more effective diagnosis and treatment options.
Collapse
|
24
|
Chromatin regulatory genes differentially interact in networks to facilitate distinct GAL1 activity and noise profiles. Curr Genet 2020; 67:267-281. [PMID: 33159551 DOI: 10.1007/s00294-020-01124-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 10/23/2022]
Abstract
Controlling chromatin state constitutes a major regulatory step in gene expression regulation across eukaryotes. While global cellular features or processes are naturally impacted by chromatin state alterations, little is known about how chromatin regulatory genes interact in networks to dictate downstream phenotypes. Using the activity of the canonical galactose network in yeast as a model, here, we measured the impact of the disruption of key chromatin regulatory genes on downstream gene expression, genetic noise and fitness. Using Trichostatin A and nicotinamide, we characterized how drug-based modulation of global histone deacetylase activity affected these phenotypes. Performing epistasis analysis, we discovered phenotype-specific genetic interaction networks of chromatin regulators. Our work provides comprehensive insights into how the galactose network activity is affected by protein interaction networks formed by chromatin regulators.
Collapse
|
25
|
Lin CJ, Hou YH, Chen YL. The histone acetyltransferase GcnE regulates conidiation and biofilm formation in Aspergillus fumigatus. Med Mycol 2020; 58:248-259. [PMID: 31100153 DOI: 10.1093/mmy/myz043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/22/2019] [Accepted: 04/11/2019] [Indexed: 01/03/2023] Open
Abstract
Histone modifications play a crucial role in eukaryotic gene regulation. The Spt-Ada-Gcn5-acetyltransferase (SAGA) complex controls histone acetylation, with Gcn5 (GcnE) acting as the acetyltransferase. In the Aspergillus species, GcnE has been shown to regulate asexual development and secondary metabolism. Apart from this, GcnE is required for pathogenicity in plant fungal pathogen A. flavus; however, the role of GcnE in the pathogenicity of human pathogenic fungus A. fumigatus is unknown. In this study, we uncovered the key roles of GcnE in A. fumigatus conidiation, stress responses, and biofilm formation. We observed that deletion of gcnE resulted in aberrant conidiation in which conidiophores displayed abnormal phialide formation. In addition, the ΔgcnE mutant grew slightly faster under limited nitrogen sources (1 mM of ammonium or nitrate) compared to the wild type. The ΔgcnE mutant exhibited increased susceptibility to cell wall-perturbing agents, H2O2 and menadione but enhanced tolerance to LiCl. Furthermore, we showed that GcnE is involved in biofilm formation, and overexpression of adherence-related genes such as somA or uge3 partially rescued biofilm formation defects in the ΔgcnE mutant background. Interestingly, GcnE was not required for virulence in a neutropenic murine model of invasive aspergillosis. These results suggest that GcnE is critical for conidiation and biofilm formation but not virulence in A. fumigatus.
Collapse
Affiliation(s)
- Chi-Jan Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan
| | - Yi-Hsuan Hou
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan
| | - Ying-Lien Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan
| |
Collapse
|
26
|
Espinola-Lopez JM, Tan S. The Ada2/Ada3/Gcn5/Sgf29 histone acetyltransferase module. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194629. [PMID: 32890768 DOI: 10.1016/j.bbagrm.2020.194629] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/14/2023]
Abstract
Histone post-translational modifications are essential for the regulation of gene expression in eukaryotes. Gcn5 (KAT2A) is a histone acetyltransferase that catalyzes the post-translational modification at multiple positions of histone H3 through the transfer of acetyl groups to the free amino group of lysine residues. Gcn5 catalyzes histone acetylation in the context of a HAT module containing the Ada2, Ada3 and Sgf29 subunits of the parent megadalton SAGA transcriptional coactivator complex. Biochemical and structural studies have elucidated mechanisms for Gcn5's acetyl- and other acyltransferase activities on histone substrates, for histone H3 phosphorylation and histone H3 methylation crosstalks with histone H3 acetylation, and for how Ada2 increases Gcn5's histone acetyltransferase activity. Other studies have identified Ada2 isoforms in SAGA-related complexes and characterized variant Gcn5 HAT modules containing these Ada2 isoforms. In this review, we highlight biochemical and structural studies of Gcn5 and its functional interactions with Ada2, Ada3 and Sgf29.
Collapse
Affiliation(s)
- Jose M Espinola-Lopez
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Song Tan
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
27
|
Catalysis by protein acetyltransferase Gcn5. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194627. [PMID: 32841743 DOI: 10.1016/j.bbagrm.2020.194627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 02/04/2023]
Abstract
Gcn5 serves as the defining member of the Gcn5-related N-acetyltransferase (GNAT) superfamily of proteins that display a common structural fold and catalytic mechanism involving the transfer of the acyl-group, primarily acetyl-, from CoA to an acceptor nucleophile. In the case of Gcn5, the target is the ε-amino group of lysine primarily on histones. Over the years, studies on Gcn5 structure-function have often formed the basis by which we understand the complex activities and regulation of the entire protein acetyltransferase family. It is now appreciated that protein acetylation occurs on thousands of proteins and can reversibly regulate the function of many cellular processes. In this review, we provide an overview of our fundamental understanding of catalysis, regulation of activity and substrate selection, and inhibitor development for this archetypal acetyltransferase.
Collapse
|
28
|
Wang ZA, Cole PA. The Chemical Biology of Reversible Lysine Post-translational Modifications. Cell Chem Biol 2020; 27:953-969. [PMID: 32698016 PMCID: PMC7487139 DOI: 10.1016/j.chembiol.2020.07.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/09/2020] [Accepted: 07/01/2020] [Indexed: 12/31/2022]
Abstract
Lysine (Lys) residues in proteins undergo a wide range of reversible post-translational modifications (PTMs), which can regulate enzyme activities, chromatin structure, protein-protein interactions, protein stability, and cellular localization. Here we discuss the "writers," "erasers," and "readers" of some of the common protein Lys PTMs and summarize examples of their major biological impacts. We also review chemical biology approaches, from small-molecule probes to protein chemistry technologies, that have helped to delineate Lys PTM functions and show promise for a diverse set of biomedical applications.
Collapse
Affiliation(s)
- Zhipeng A Wang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 77 Avenue Louis Pasteur NRB, Boston, MA 02115, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 77 Avenue Louis Pasteur NRB, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Gong X, Yu Q, Duan K, Tong Y, Zhang X, Mei Q, Lu L, Yu X, Li S. Histone acetyltransferase Gcn5 regulates gene expression by promoting the transcription of histone methyltransferase SET1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194603. [PMID: 32663628 DOI: 10.1016/j.bbagrm.2020.194603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/20/2020] [Accepted: 07/08/2020] [Indexed: 01/26/2023]
Abstract
Many chromatin modifying factors regulate gene expression in an as-yet-unknown indirect manner. Revealing the molecular basis for this indirect gene regulation will help understand their precise roles in gene regulation and associated biological processes. Here, we studied histone modifying enzymes that indirectly regulate gene expression by modulating the expression of histone methyltransferase, Set1. Through unbiased screening of the histone H3/H4 mutant library, we identified 13 histone substitution mutations with reduced levels of Set1 and H3K4 trimethylation (H3K4me3) and 2 mutations with increased levels of Set1 and H3K4me3, which concentrate at 3 structure clusters. Among these substitutions, the H3K14A mutant substantially reduces SET1 transcription and H3K4me3. H3K14 is acetylated by histone acetyltransferase Gcn5 at SET1 promoter, which then promotes SET1 transcription to maintain normal H3K4me3 levels. In contrast, the histone deacetylase Rpd3 deacetylates H3K14 to repress SET1 transcription and hence reduce H3K4me3 levels, establishing a dynamic crosstalk between H3K14ac and H3K4me3. By promoting the transcription of SET1 and maintaining H3K4me3 levels, Gcn5 regulates the transcription of a subset gene in an indirect manner. Collectively, we propose a model wherein Gcn5 promotes the expression of chromatin modifiers to regulate histone crosstalk and gene transcription.
Collapse
Affiliation(s)
- Xuanyunjing Gong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Qi Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Kai Duan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yue Tong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Xinyu Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Qianyun Mei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Li Lu
- Institute of TCM and Natural Products, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, China
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| |
Collapse
|
30
|
Strahl BD, Briggs SD. The SAGA continues: The rise of cis- and trans-histone crosstalk pathways. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194600. [PMID: 32645359 DOI: 10.1016/j.bbagrm.2020.194600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 01/30/2023]
Abstract
Fueled by key technological innovations during the last several decades, chromatin-based research has greatly advanced our mechanistic understanding of how genes are regulated by epigenetic factors and their associated histone-modifying activities. Most notably, the landmark finding that linked histone acetylation by Gcn5 of the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex to gene activation ushered in a new area of chromatin research and a realization that histone-modifying activities have integral genome functions. This review will discuss past and recent studies that have shaped our understanding of how the histone-modifying activities of SAGA are regulated by, and modulate the outcomes of, other histone modifications during gene transcription. Because much of our understanding of SAGA was established with budding yeast, we will focus on yeast as a model. We discuss the actions of cis- and trans-histone crosstalk pathways that involve the histone acetyltransferase, deubiquitylase, and reader domains of SAGA. We conclude by considering unanswered questions about SAGA and related complexes.
Collapse
Affiliation(s)
- Brian D Strahl
- Department of Biochemistry and Biophysics, 120 Mason Farm Rd, University of North Carolina at Chapel Hill, NC 27599, USA.
| | - Scott D Briggs
- Department of Biochemistry and Purdue University Center for Cancer Research, Purdue University, Hansen Life Science Research Building, 201S, University Street, West Lafayette, IN 47907; USA.
| |
Collapse
|
31
|
Su S, Li X, Yang X, Li Y, Chen X, Sun S, Jia S. Histone acetylation/deacetylation in Candida albicans and their potential as antifungal targets. Future Microbiol 2020; 15:1075-1090. [PMID: 32854542 DOI: 10.2217/fmb-2019-0343] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recently, the incidence of invasive fungal infections has significantly increased. Candida albicans (C. albicans) is the most common opportunistic fungal pathogen that infects humans. The limited number of available antifungal agents and the emergence of drug resistance pose difficulties to treatment, thus new antifungals are urgently needed. Through their functions in DNA replication, DNA repair and transcription, histone acetyltransferases (HATs) and histone deacetylases (HDACs) perform essential functions relating to growth, virulence, drug resistance and stress responses of C. albicans. Here, we summarize the physiological and pathological functions of HATs/HDACs, potential antifungal targets and underlying antifungal compounds that impact histone acetylation and deacetylation. We anticipate this review will stimulate the identification of new HAT/HDAC-related antifungal targets and antifungal agents.
Collapse
Affiliation(s)
- Shan Su
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, People’s Republic of China
| | - Xiuyun Li
- Department of Pharmacy, Qilu Children’s Hospital, Shandong University, Jinan 250022, China
| | - Xinmei Yang
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong Province, People’s Republic of China
| | - Yiman Li
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, People’s Republic of China
| | - Xueqi Chen
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, People’s Republic of China
| | - Shujuan Sun
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong Province, People’s Republic of China
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, People’s Republic of China
| | - Shuang Jia
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, People’s Republic of China
| |
Collapse
|
32
|
Wahab S, Saettone A, Nabeel-Shah S, Dannah N, Fillingham J. Exploring the Histone Acetylation Cycle in the Protozoan Model Tetrahymena thermophila. Front Cell Dev Biol 2020; 8:509. [PMID: 32695779 PMCID: PMC7339932 DOI: 10.3389/fcell.2020.00509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022] Open
Abstract
The eukaryotic histone acetylation cycle is composed of three classes of proteins, histone acetyltransferases (HATs) that add acetyl groups to lysine amino acids, bromodomain (BRD) containing proteins that are one of the most characterized of several protein domains that recognize acetyl-lysine (Kac) and effect downstream function, and histone deacetylases (HDACs) that catalyze the reverse reaction. Dysfunction of selected proteins of these three classes is associated with human disease such as cancer. Additionally, the HATs, BRDs, and HDACs of fungi and parasitic protozoa present potential drug targets. Despite their importance, the function and mechanisms of HATs, BRDs, and HDACs and how they relate to chromatin remodeling (CR) remain incompletely understood. Tetrahymena thermophila (Tt) provides a highly tractable single-celled free-living protozoan model for studying histone acetylation, featuring a massively acetylated somatic genome, a property that was exploited in the identification of the first nuclear/type A HAT Gcn5 in the 1990s. Since then, Tetrahymena remains an under-explored model for the molecular analysis of HATs, BRDs, and HDACs. Studies of HATs, BRDs, and HDACs in Tetrahymena have the potential to reveal the function of HATs and BRDs relevant to both fundamental eukaryotic biology and to the study of disease mechanisms in parasitic protozoa.
Collapse
Affiliation(s)
| | | | | | | | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| |
Collapse
|
33
|
Liu LK, Gao RL, Gao Y, Xu JY, Guo LM, Wang KJ, Liu HP. A histone K-lysine acetyltransferase CqKAT2A-like gene promotes white spot syndrome virus infection by enhancing histone H3 acetylation in red claw crayfish Cherax quadricarinatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 107:103640. [PMID: 32078959 DOI: 10.1016/j.dci.2020.103640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
In contrast to that hypoacetylation of histones is associated with condensed chromatin and gene silencing, the hyperacetylation of histones can promote an "open chromatin" conformation and transcriptional activation, which is recruited by some viruses to enhance the viral genome replication in host cells. However, the function of histone acetylation modification in the infection of white spot syndrome virus (WSSV), one of the most virulent pathogens for crustaceans like shrimp and crayfish at present, is still unknown. Previously, we found that the transcript of a histone K-Lysine acetyltransferase CqKAT2A-like gene was down-regulated in a differentially expressed transcriptome library of the haematopietic tissue (Hpt) cells from red claw crayfish Cherax quadricarinatus upon WSSV infection at 12 hpi. To further reveal its possible role in anti-WSSV response, CqKAT2A-like gene was then identified with an open reading frame (ORF) of 2523 bp encoding 840 amino acids, which contained a conserved PCAF-N domain, acetyltransf1 domain and bromo domain. Gene expression analysis showed that CqKAT2A-like was distributed in all tissues examined with high presence in haemocyte and muscle, and the transcript was significantly down-regulated after WSSV infection in Hpt cells. Furthermore, the level of histone H3 acetylation (H3ac) was strongly reduced by gene silencing of CqKAT2A-like, which was accompanied with the significantly decreased gene expression of WSSV in Hpt cells, suggesting that CqKAT2A-like gene can promote the activity H3ac and the replication of WSSV. When the H3ac was induced by histone deacetyltransferase inhibitor TSA, the transcription of WSSV genes including both IE1 and VP28 genes was significantly increased, indicating that H3ac participated in WSSV infection in Hpt cells. Taken together, these data suggest that CqKAT2A-like gene might promote the replication of WSSV by regulating H3ac, which sheds new light on the pathogenesis of WSSV in crustaceans.
Collapse
Affiliation(s)
- Ling-Ke Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Rui-Lin Gao
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yan Gao
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jiao-Yang Xu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Li-Mei Guo
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hai-Peng Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
34
|
Meriesh HA, Lerner AM, Chandrasekharan MB, Strahl BD. The histone H4 basic patch regulates SAGA-mediated H2B deubiquitination and histone acetylation. J Biol Chem 2020; 295:6561-6569. [PMID: 32245891 DOI: 10.1074/jbc.ra120.013196] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/31/2020] [Indexed: 01/18/2023] Open
Abstract
Histone H2B monoubiquitylation (H2Bub1) has central functions in multiple DNA-templated processes, including gene transcription, DNA repair, and replication. H2Bub1 also is required for the trans-histone regulation of H3K4 and H3K79 methylation. Although previous studies have elucidated the basic mechanisms that establish and remove H2Bub1, we have only an incomplete understanding of how H2Bub1 is regulated. We report here that the histone H4 basic patch regulates H2Bub1. Yeast cells with arginine-to-alanine mutations in the H4 basic patch (H42RA) exhibited a significant loss of global H2Bub1. H42RA mutant yeast strains also displayed chemotoxin sensitivities similar to, but less severe than, strains containing a complete loss of H2Bub1. We found that the H4 basic patch regulates H2Bub1 levels independently of interactions with chromatin remodelers and separately from its regulation of H3K79 methylation. To measure H2B ubiquitylation and deubiquitination kinetics in vivo, we used a rapid and reversible optogenetic tool, the light-inducible nuclear exporter, to control the subcellular location of the H2Bub1 E3 ligase, Bre1. The ability of Bre1 to ubiquitylate H2B was unaffected in the H42RA mutant. In contrast, H2Bub1 deubiquitination by SAGA-associated Ubp8, but not by Ubp10, increased in the H42RA mutant. Consistent with a function for the H4 basic patch in regulating SAGA deubiquitinase activity, we also detected increased SAGA-mediated histone acetylation in H4 basic patch mutants. Our findings uncover that the H4 basic patch has a regulatory function in SAGA-mediated histone modifications.
Collapse
Affiliation(s)
- Hashem A Meriesh
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Andrew M Lerner
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Mahesh B Chandrasekharan
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| |
Collapse
|
35
|
Huang B, Zhong D, Zhu J, An Y, Gao M, Zhu S, Dang W, Wang X, Yang B, Xie Z. Inhibition of histone acetyltransferase GCN5 extends lifespan in both yeast and human cell lines. Aging Cell 2020; 19:e13129. [PMID: 32157780 PMCID: PMC7189995 DOI: 10.1111/acel.13129] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 12/12/2022] Open
Abstract
Histone acetyltransferases (HATs) are important enzymes that transfer acetyl groups onto histones and thereby regulate both gene expression and chromosomal structures. Previous work has shown that the activation of sirtuins, which are histone deacetylases, can extend lifespan. This suggests that inhibiting HATs may have a similar beneficial effect. In the present study, we utilized a range of HAT inhibitors or heterozygous Gcn5 and Ngg1 mutants to demonstrate marked yeast life extension. In human cell lines, HAT inhibitors and selective RNAi‐mediated Gcn5 or Ngg1 knockdown reduced the levels of aging markers and promoted proliferation in senescent cells. Furthermore, this observed lifespan extension was associated with the acetylation of histone H3 rather than that of H4. Specifically, it was dependent upon H3K9Ac and H3K18Ac modifications. We also found that the ability of caloric restriction to prolong lifespan is Gcn5‐, Ngg1‐, H3K9‐, and H3K18‐dependent. Transcriptome analysis revealed that these changes were similar to those associated with heat shock and were inversely correlated with the gene expression profiles of aged yeast and aged worms. Through a bioinformatic analysis, we also found that HAT inhibition activated subtelomeric genes in human cell lines. Together, our results suggest that inhibiting the HAT Gcn5 may be an effective means of increasing longevity.
Collapse
Affiliation(s)
- Boyue Huang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Pharmacology School of Basic Medical Sciences Peking University Beijing China
| | - Dandan Zhong
- State Key Laboratory of Natural and Biomimetic Drugs Department of Pharmacology School of Basic Medical Sciences Peking University Beijing China
| | - Jie Zhu
- State Key Laboratory of Natural and Biomimetic Drugs Department of Pharmacology School of Basic Medical Sciences Peking University Beijing China
| | - Yongpan An
- State Key Laboratory of Natural and Biomimetic Drugs Department of Pharmacology School of Basic Medical Sciences Peking University Beijing China
| | - Miaomiao Gao
- State Key Laboratory of Natural and Biomimetic Drugs Department of Pharmacology School of Basic Medical Sciences Peking University Beijing China
| | - Shuai Zhu
- State Key Laboratory of Natural and Biomimetic Drugs Department of Pharmacology School of Basic Medical Sciences Peking University Beijing China
| | - Weiwei Dang
- Huffington Center on Aging Baylor College of Medicine Houston TX USA
| | - Xin Wang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Pharmacology School of Basic Medical Sciences Peking University Beijing China
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Pharmacology School of Basic Medical Sciences Peking University Beijing China
- Key Laboratory of Molecular Cardiovascular Sciences Ministry of Education Beijing China
| | - Zhengwei Xie
- State Key Laboratory of Natural and Biomimetic Drugs Department of Pharmacology School of Basic Medical Sciences Peking University Beijing China
- Peking University International Cancer Institute Peking University Beijing China
| |
Collapse
|
36
|
Jiao M, Xia L, Chen J, Cui Z. WITHDRAWN: Demethylation of Di-Methylation of Lysine 4 on Histone 3 Is Inhibited by General Control Nondepressible 5-Induced Acetylation of Lysine-Specific Demethylase 1. Am J Med Sci 2020:S0002-9629(20)30003-3. [PMID: 31982102 DOI: 10.1016/j.amjms.2020.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/26/2019] [Accepted: 01/02/2020] [Indexed: 10/25/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Mingwen Jiao
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Lijian Xia
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jingbo Chen
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Zhonghui Cui
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.
| |
Collapse
|
37
|
Cheng Z, Li X, Hou S, Wu Y, Sun Y, Liu B. K-Ras-ERK1/2 accelerates lung cancer cell development via mediating H3 K18ac through the MDM2-GCN5-SIRT7 axis. PHARMACEUTICAL BIOLOGY 2019; 57:701-709. [PMID: 31613681 PMCID: PMC6807650 DOI: 10.1080/13880209.2019.1672756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/26/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
Context: H3K18ac is linked to gene expression and DNA damage. Nevertheless, whether H3K18ac participates in regulating Ras-ERK1/2-affected lung cancer cell phenotypes remains unclear. Objective: We explored the effects of H3K18ac on Ras-ERK1/2-affected lung cancer cell phenotypes. Material and methods: NCI-H2126 cells were transfected with, pEGFP-K-RasWT and pEGFP-K-RasG12V/T35S plasmids for 48 h, and transfection with pEGFP-N1 served as a blank control. Then H3K18ac and AKT and ERK1/2 pathways-associated factors were examined. Different amounts of the H3K18Q (0.5, 1, and 2 μg) plasmids and RasG12V/T35S were co-transfected into NCI-H2126 cells, cell viability, cell colonies and migration were analyzed for exploring the biological functions of H3K18ac in NCI-H2126 cells. The ERK1/2 pathway downstream factors were detected by RT-PCR and ChIP assays. The regulatory functions of SIRT7, GCN5 and MDM2 in Ras-ERK1/2-regulated H3K18ac expression were finally uncovered. Results: RasG12V/T35S transfection decreased the expression of H3K18ac about 2.5 times compared with the pEGFP-N1 transfection group, and activated ERK1/2 and AKT pathways. Moreover, H3K18ac reduced cell viability, colonies, migration, and altered ERK1/2 downstream transcription in NCI-H2126 cells. Additionally, SIRT7 knockdown increased H3K18ac expression and repressed cell viability, migration and the percentage of cells in S phase by about 50% compared to the control group, as well as changed ERK1/2 downstream factor expression. Besides, Ras-ERK1/2 decreased H3K18ac was linked to MDM2-regulated GCN5 degradation. Conclusion: These observations disclosed that Ras-ERK1/2 promoted the development of lung cancer via decreasing H3K18ac through MDM2-mediated GCN5 degradation. These findings might provide a new therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Ziming Cheng
- Department of Thoracic Surgery, Linyi Central Hospital, Linyi, China
| | - Xiufeng Li
- Department of Thoracic Surgery, Linyi Central Hospital, Linyi, China
| | - Shizhen Hou
- Department of Thoracic Surgery, Linyi Central Hospital, Linyi, China
| | - Yubing Wu
- Department of Thoracic Surgery, Linyi Central Hospital, Linyi, China
| | - Yi Sun
- Department of Thoracic Surgery, Linyi Central Hospital, Linyi, China
| | - Bing Liu
- Department of Thoracic Surgery, Linyi Central Hospital, Linyi, China
| |
Collapse
|
38
|
Kollenstart L, de Groot AJL, Janssen GMC, Cheng X, Vreeken K, Martino F, Côté J, van Veelen PA, van Attikum H. Gcn5 and Esa1 function as histone crotonyltransferases to regulate crotonylation-dependent transcription. J Biol Chem 2019; 294:20122-20134. [PMID: 31699900 PMCID: PMC6937567 DOI: 10.1074/jbc.ra119.010302] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/10/2019] [Indexed: 12/22/2022] Open
Abstract
Histone post-translational modifications (PTMs) are critical for processes such as transcription. The more notable among these are the nonacetyl histone lysine acylation modifications such as crotonylation, butyrylation, and succinylation. However, the biological relevance of these PTMs is not fully understood because their regulation is largely unknown. Here, we set out to investigate whether the main histone acetyltransferases in budding yeast, Gcn5 and Esa1, possess crotonyltransferase activity. In vitro studies revealed that the Gcn5-Ada2-Ada3 (ADA) and Esa1-Yng2-Epl1 (Piccolo NuA4) histone acetyltransferase complexes have the capacity to crotonylate histones. Mass spectrometry analysis revealed that ADA and Piccolo NuA4 crotonylate lysines in the N-terminal tails of histone H3 and H4, respectively. Functionally, we show that crotonylation selectively affects gene transcription in vivo in a manner dependent on Gcn5 and Esa1. Thus, we identify the Gcn5- and Esa1-containing ADA and Piccolo NuA4 complexes as bona fide crotonyltransferases that promote crotonylation-dependent transcription.
Collapse
Affiliation(s)
- Leonie Kollenstart
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Anton J L de Groot
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - George M C Janssen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZC, Leiden, The Netherlands
| | - Xue Cheng
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Axe Oncologie, Québec City, QC G1R 3S3, Canada
| | - Kees Vreeken
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Fabrizio Martino
- Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (Spanish National Research Council), (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Jacques Côté
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Axe Oncologie, Québec City, QC G1R 3S3, Canada
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZC, Leiden, The Netherlands
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| |
Collapse
|
39
|
Duan R, Ryu HY, Ahn SH. Symmetric dimethylation on histone H4R3 associates with histone deacetylation to maintain properly polarized cell growth. Res Microbiol 2019; 171:91-98. [PMID: 31574302 DOI: 10.1016/j.resmic.2019.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/20/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022]
Abstract
Yeast Hsl7 is recognized as a homolog of human arginine methyltransferase 5 (PRMT5) and shows type II PRMT activity by forming symmetric dimethylarginine residues on histones. Previously, we reported that Hsl7 is responsible for in vivo symmetric dimethylation on histone H4 arginine 3 (H4R3me2s) in a transcriptionally repressed state, possibly in association with histone deacetylation by Rpd3. Here, we investigated the function of Hsl7 during cell cycle progression. We found that the accumulation of Hsl7-mediated H4R3me2s is maintained by the histone deacetylase Rpd3 during transcriptional repression and that the low level of H4R3me2s is required for proper asymmetric cell growth during cell division. Our results suggest that the hypoacetylated state of histones is connected to the function of Hsl7 in regulating properly polarized cell growth during cell division and provide new insight into the epigenetic modifications that are important for cell cycle morphogenesis checkpoint control based on the repressive histone crosstalk between symmetric arginine methylation of H4 and histone deacetylation.
Collapse
Affiliation(s)
- Ruxin Duan
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University, Ansan, Republic of Korea
| | - Hong-Yeoul Ryu
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University, Ansan, Republic of Korea
| | - Seong Hoon Ahn
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University, Ansan, Republic of Korea.
| |
Collapse
|
40
|
Mustachio LM, Roszik J, Farria AT, Guerra K, Dent SYR. Repression of GCN5 expression or activity attenuates c-MYC expression in non-small cell lung cancer. Am J Cancer Res 2019; 9:1830-1845. [PMID: 31497362 PMCID: PMC6726999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023] Open
Abstract
Lung cancer causes the highest mortality in cancer-related deaths. As these cancers often become resistant to existing therapies, definition of novel molecular targets is needed. Epigenetic modifiers may provide such targets. Recent reports suggest that the histone acetyltransferase (HAT) module within the transcriptional coactivator SAGA complex plays a role in cancer, creating a new link between epigenetic regulators and this disease. GCN5 serves as a coactivator for MYC target genes, and here we investigate links between GCN5 and c-MYC in non-small cell lung cancer (NSCLC). Our data indicate that both GCN5 and c-MYC proteins are upregulated in mouse and human NSCLC cells compared to normal lung epithelial cells. This trend is observable only at the protein level, indicating that this upregulation occurs post-transcriptionally. Human NSCLC tissue data provided by The Cancer Genome Atlas (TCGA) indicates that GCN5 and c-MYC expression are positively associated with one another and with the expression of c-MYC target genes. Depletion of GCN5 in NSCLC cells reduces c-MYC expression, cell proliferation, and increases the population of necrotic cells. Similarly, inhibition of the GCN5 catalytic site using a commercially available probe reduces c-MYC expression, cell proliferation, and increases the percentage of cells undergoing apoptosis. Our findings suggest that GCN5 might provide a novel target for inhibition of NSCLC growth and progression.
Collapse
Affiliation(s)
- Lisa Maria Mustachio
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
- Department of Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
| | - Aimee T Farria
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
- Department of Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
- Department of Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
| | - Karla Guerra
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
| | - Sharon YR Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
- Department of Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
- Department of Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
| |
Collapse
|
41
|
Sheikh BN, Akhtar A. The many lives of KATs - detectors, integrators and modulators of the cellular environment. Nat Rev Genet 2019; 20:7-23. [PMID: 30390049 DOI: 10.1038/s41576-018-0072-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Research over the past three decades has firmly established lysine acetyltransferases (KATs) as central players in regulating transcription. Recent advances in genomic sequencing, metabolomics, animal models and mass spectrometry technologies have uncovered unexpected new roles for KATs at the nexus between the environment and transcriptional regulation. Thousands of reversible acetylation sites have been mapped in the proteome that respond dynamically to the cellular milieu and maintain major processes such as metabolism, autophagy and stress response. Concurrently, researchers are continuously uncovering how deregulation of KAT activity drives disease, including cancer and developmental syndromes characterized by severe intellectual disability. These novel findings are reshaping our view of KATs away from mere modulators of chromatin to detectors of the cellular environment and integrators of diverse signalling pathways with the ability to modify cellular phenotype.
Collapse
Affiliation(s)
- Bilal N Sheikh
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany.
| |
Collapse
|
42
|
Shivarathri R, Tscherner M, Zwolanek F, Singh NK, Chauhan N, Kuchler K. The Fungal Histone Acetyl Transferase Gcn5 Controls Virulence of the Human Pathogen Candida albicans through Multiple Pathways. Sci Rep 2019; 9:9445. [PMID: 31263212 PMCID: PMC6603162 DOI: 10.1038/s41598-019-45817-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/14/2019] [Indexed: 12/28/2022] Open
Abstract
Fungal virulence is regulated by a tight interplay of transcriptional control and chromatin remodelling. Despite compelling evidence that lysine acetylation modulates virulence of pathogenic fungi such as Candida albicans, the underlying mechanisms have remained largely unexplored. We report here that Gcn5, a paradigm lysyl-acetyl transferase (KAT) modifying both histone and non-histone targets, controls fungal morphogenesis - a key virulence factor of C. albicans. Our data show that genetic removal of GCN5 abrogates fungal virulence in mice, suggesting strongly diminished fungal fitness in vivo. This may at least in part arise from increased susceptibility to killing by macrophages, as well as by other phagocytes such as neutrophils or monocytes. Loss of GCN5 also causes hypersensitivity to the fungicidal drug caspofungin. Caspofungin hypersusceptibility requires the master regulator Efg1, working in concert with Gcn5. Moreover, Gcn5 regulates multiple independent pathways, including adhesion, cell wall-mediated MAP kinase signaling, hypersensitivity to host-derived oxidative stress, and regulation of the Fks1 glucan synthase, all of which play critical roles in virulence and antifungal susceptibility. Hence, Gcn5 regulates fungal virulence through multiple mechanisms, suggesting that specific inhibition of Gcn5 could offer new therapeutic strategies to combat invasive fungal infections.
Collapse
Affiliation(s)
- Raju Shivarathri
- Medical University of Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, A-1030, Vienna, Austria
| | - Michael Tscherner
- Medical University of Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, A-1030, Vienna, Austria
| | - Florian Zwolanek
- Medical University of Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, A-1030, Vienna, Austria
| | | | - Neeraj Chauhan
- Public Health Research Institute, New Jersey Medical School, Rutgers The State University of New Jersey, Newark, NJ, 07103, USA.
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers The State University of New Jersey, Newark, NJ, 07103, USA.
| | - Karl Kuchler
- Medical University of Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, A-1030, Vienna, Austria.
| |
Collapse
|
43
|
Rössl A, Denoncourt A, Lin MS, Downey M. A synthetic non-histone substrate to study substrate targeting by the Gcn5 HAT and sirtuin HDACs. J Biol Chem 2019; 294:6227-6239. [PMID: 30804216 DOI: 10.1074/jbc.ra118.006051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/01/2019] [Indexed: 12/11/2022] Open
Abstract
Gcn5 and sirtuins are highly conserved histone acetyltransferase (HAT) and histone deacetylase (HDAC) enzymes that were first characterized as regulators of gene expression. Although histone tails are important substrates of these enzymes, they also target many nonhistone proteins that function in diverse biological processes. However, the mechanisms used by these enzymes to choose their nonhistone substrates are unknown. Previously, we used SILAC-based MS to identify novel nonhistone substrates of Gcn5 and sirtuins in yeast and found a shared target consensus sequence. Here, we use a synthetic biology approach to demonstrate that this consensus sequence can direct acetylation and deacetylation targeting by these enzymes in vivo Remarkably, fusion of the sequence to a nonsubstrate confers de novo acetylation that is regulated by both Gcn5 and sirtuins. We exploit this synthetic fusion substrate as a tool to define subunits of the Gcn5-containing SAGA and ADA complexes required for nonhistone protein acetylation. In particular, we find a key role for the Ada2 and Ada3 subunits in regulating acetylations on our fusion substrate. In contrast, other subunits tested were largely dispensable, including those required for SAGA stability. In an extended analysis, defects in proteome-wide acetylation observed in ada3Δ mutants mirror those in ada2Δ mutants. Altogether, our work argues that nonhistone protein acetylation by Gcn5 is determined in part by specific amino acids surrounding target lysines but that even optimal sequences require both Ada2 and Ada3 for robust acetylation. The synthetic fusion substrate we describe can serve as a tool to further dissect the regulation of both Gcn5 and sirtuin activities in vivo.
Collapse
Affiliation(s)
- Anthony Rössl
- From the Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario K1H 8M5, Canada, and
| | - Alix Denoncourt
- From the Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario K1H 8M5, Canada, and
| | | | - Michael Downey
- From the Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada, .,Ottawa Institute of Systems Biology, Ottawa, Ontario K1H 8M5, Canada, and
| |
Collapse
|
44
|
West KL, Byrum SD, Mackintosh SG, Edmondson RD, Taverna SD, Tackett AJ. Proteomic characterization of the arsenic response locus in S. cerevisiae. Epigenetics 2019; 14:130-145. [PMID: 30739529 PMCID: PMC6557609 DOI: 10.1080/15592294.2019.1580110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 10/27/2022] Open
Abstract
Arsenic exposure is a global health problem. Millions of people encounter arsenic through contaminated drinking water, consumption, and inhalation. The arsenic response locus in budding yeast is responsible for the detoxification of arsenic and its removal from the cell. This locus constitutes a conserved pathway ranging from prokaryotes to higher eukaryotes. The goal of this study was to identify how transcription from the arsenic response locus is regulated in an arsenic dependent manner. An affinity enrichment strategy called CRISPR-Chromatin Affinity Purification with Mass Spectrometry (CRISPR-ChAP-MS) was used, which provides for the proteomic characterization of a targeted locus. CRISPR-ChAP-MS was applied to the promoter regions of the activated arsenic response locus and uncovered 40 nuclear-annotated proteins showing enrichment. Functional assays identified the histone acetyltransferase SAGA and the chromatin remodelling complex SWI/SNF to be required for activation of the locus. Furthermore, SAGA and SWI/SNF were both found to specifically organize the chromatin structure at the arsenic response locus for activation of gene transcription. This study provides the first proteomic characterization of an arsenic response locus and key insight into the mechanisms of transcriptional activation that are necessary for detoxification of arsenic from the cell.
Collapse
Affiliation(s)
- Kirk L. West
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children’s Research Institute, Little Rock, AR, USA
| | - Samuel G. Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rick D. Edmondson
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sean D. Taverna
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Epigenetics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alan J. Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children’s Research Institute, Little Rock, AR, USA
| |
Collapse
|
45
|
Histone acetyltransferase CBP-related H3K23 acetylation contributes to courtship learning in Drosophila. BMC DEVELOPMENTAL BIOLOGY 2018; 18:20. [PMID: 30458702 PMCID: PMC6247617 DOI: 10.1186/s12861-018-0179-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 11/05/2018] [Indexed: 12/16/2022]
Abstract
Background Histone modifications are critical in regulating neuronal processes. However, the impacts of individual histone modifications on learning and memory are elusive. Here, we investigated the contributions of histone H3 lysine modifications to learning and memory in Drosophila by using histone lysine-to-alanine mutants. Results Behavioural analysis indicated that compared to the H3WT group, mutants overexpressing H3K23A displayed impaired courtship learning. Chromatin immunoprecipitation analysis of H3K23A mutants showed that H3K23 acetylation (H3K23ac) levels were decreased on learning-related genes. Knockdown of CREB-binding protein (CBP) decreased H3K23ac levels, attenuated the expression of learning-related genes, led to a courtship learning defect and altered development of the mushroom bodies. A decline in courtship learning ability was observed in both larvae and adult treatments with ICG-001. Furthermore, treatment of Drosophila overexpressing mutated H3K23A with a CBP inhibitor did not aggravate the learning defect. Conclusions H3K23ac, catalysed by the acetyltransferases dCBP, contributes to Drosophila learning, likely by controlling the expression of specific genes. This is a novel epigenetic regulatory mechanism underlying neuronal behaviours. Electronic supplementary material The online version of this article (10.1186/s12861-018-0179-z) contains supplementary material, which is available to authorized users.
Collapse
|
46
|
Label-Free Quantitative Proteomics of Lysine Acetylome Identifies Substrates of Gcn5 in Magnaporthe oryzae Autophagy and Epigenetic Regulation. mSystems 2018; 3:mSystems00270-18. [PMID: 30505942 PMCID: PMC6247014 DOI: 10.1128/msystems.00270-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 11/25/2022] Open
Abstract
Gcn5 is a histone acetyltransferase that was previously shown to regulate phototropic and starvation-induced autophagy in the rice blast fungus Magnaporthe oryzae, likely via modification on autophagy protein Atg7. In this study, we identified more potential substrates of Gcn5-mediated acetylation by quantitative and comparative acetylome analyses. By epifluorescence microscopy and biochemistry experiments, we verified that Gcn5 may regulate autophagy induction at both the epigenetic and posttranslational levels and regulate autophagic degradation of a critical metabolic enzyme pyruvate kinase (Pk) likely via acetylation. Overall, our findings reveal comprehensive posttranslational modification executed by Gcn5, in response to various external stimuli, to synergistically promote cellular differentiation in a fungal pathogen. The rice blast fungus Magnaporthe oryzae poses a great threat to global food security. During its conidiation (asexual spore formation) and appressorium (infecting structure) formation, autophagy is induced, serving glycogen breakdown or programmed cell death function, both essential for M. oryzae pathogenicity. Recently, we identified an M. oryzae histone acetyltransferase (HAT) Gcn5 as a key regulator in phototropic induction of autophagy and asexual spore formation while serving a cellular function other than autophagy induction during M. oryzae infection. To further understand the regulatory mechanism of Gcn5 on M. oryzae pathogenicity, we set out to identify more Gcn5 substrates by comparative acetylome between the wild-type (WT) and GCN5 overexpression (OX) mutant and between OX mutant and GCN5 deletion (knockout [KO]) mutant. Our results showed that Gcn5 regulates autophagy induction and other important aspects of fungal pathogenicity, including energy metabolism, stress response, cell toxicity and death, likely via both epigenetic regulation (histone acetylation) and posttranslational modification (nonhistone protein acetylation). IMPORTANCE Gcn5 is a histone acetyltransferase that was previously shown to regulate phototropic and starvation-induced autophagy in the rice blast fungus Magnaporthe oryzae, likely via modification on autophagy protein Atg7. In this study, we identified more potential substrates of Gcn5-mediated acetylation by quantitative and comparative acetylome analyses. By epifluorescence microscopy and biochemistry experiments, we verified that Gcn5 may regulate autophagy induction at both the epigenetic and posttranslational levels and regulate autophagic degradation of a critical metabolic enzyme pyruvate kinase (Pk) likely via acetylation. Overall, our findings reveal comprehensive posttranslational modification executed by Gcn5, in response to various external stimuli, to synergistically promote cellular differentiation in a fungal pathogen.
Collapse
|
47
|
Kotak J, Saisana M, Gegas V, Pechlivani N, Kaldis A, Papoutsoglou P, Makris A, Burns J, Kendig AL, Sheikh M, Kuschner CE, Whitney G, Caiola H, Doonan JH, Vlachonasios KE, McCain ER, Hark AT. The histone acetyltransferase GCN5 and the transcriptional coactivator ADA2b affect leaf development and trichome morphogenesis in Arabidopsis. PLANTA 2018; 248:613-628. [PMID: 29846775 DOI: 10.1007/s00425-018-2923-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
The histone acetyltransferase GCN5 and associated transcriptional coactivator ADA2b are required to couple endoreduplication and trichome branching. Mutation of ADA2b also disrupts the relationship between ploidy and leaf cell size. Dynamic chromatin structure has been established as a general mechanism by which gene function is temporally and spatially regulated, but specific chromatin modifier function is less well understood. To address this question, we have investigated the role of the histone acetyltransferase GCN5 and the associated coactivator ADA2b in developmental events in Arabidopsis thaliana. Arabidopsis plants with T-DNA insertions in GCN5 (also known as HAG1) or ADA2b (also known as PROPORZ1) display pleiotropic phenotypes including dwarfism and floral defects affecting fertility. We undertook a detailed characterization of gcn5 and ada2b phenotypic effects in rosette leaves and trichomes to establish a role for epigenetic control in these developmental processes. ADA2b and GCN5 play specific roles in leaf tissue, affecting cell growth and division in rosette leaves often in complex and even opposite directions. Leaves of gcn5 plants display overall reduced ploidy levels, while ada2b-1 leaves show increased ploidy. Endoreduplication leading to increased ploidy is also known to contribute to normal trichome morphogenesis. We demonstrate that gcn5 and ada2b mutants display alterations in the number and patterning of trichome branches, with ada2b-1 and gcn5-1 trichomes being significantly less branched, while gcn5-6 trichomes show increased branching. Elongation of the trichome stalk and branches also vary in different mutant backgrounds, with stalk length having an inverse relationship with branch number. Taken together, our data indicate that, in Arabidopsis, leaves and trichomes ADA2b and GCN5 are required to couple nuclear content with cell growth and morphogenesis.
Collapse
Affiliation(s)
- Jenna Kotak
- Biology Department, Muhlenberg College, Allentown, PA, USA
- Molecular Biology, Cell Biology, and Biochemistry Department, Brown University, Providence, RI, USA
| | - Marina Saisana
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasilis Gegas
- National Plant Phenomics Centre, Aberystwyth University, Aberystwyth, UK
- Limagrain UK Ltd, Joseph Nickerson Research Centre, Rothwell, Market Rasen, Lincolnshire, UK
| | - Nikoletta Pechlivani
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Kaldis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis Papoutsoglou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Makris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Julia Burns
- Biology Department, Muhlenberg College, Allentown, PA, USA
| | | | - Minnah Sheikh
- Biology Department, Muhlenberg College, Allentown, PA, USA
| | | | | | - Hanna Caiola
- Biology Department, Muhlenberg College, Allentown, PA, USA
| | - John H Doonan
- National Plant Phenomics Centre, Aberystwyth University, Aberystwyth, UK
| | | | | | - Amy T Hark
- Biology Department, Muhlenberg College, Allentown, PA, USA.
| |
Collapse
|
48
|
Alaskhar Alhamwe B, Khalaila R, Wolf J, von Bülow V, Harb H, Alhamdan F, Hii CS, Prescott SL, Ferrante A, Renz H, Garn H, Potaczek DP. Histone modifications and their role in epigenetics of atopy and allergic diseases. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2018; 14:39. [PMID: 29796022 PMCID: PMC5966915 DOI: 10.1186/s13223-018-0259-4] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 04/24/2018] [Indexed: 12/16/2022]
Abstract
This review covers basic aspects of histone modification and the role of posttranslational histone modifications in the development of allergic diseases, including the immune mechanisms underlying this development. Together with DNA methylation, histone modifications (including histone acetylation, methylation, phosphorylation, ubiquitination, etc.) represent the classical epigenetic mechanisms. However, much less attention has been given to histone modifications than to DNA methylation in the context of allergy. A systematic review of the literature was undertaken to provide an unbiased and comprehensive update on the involvement of histone modifications in allergy and the mechanisms underlying this development. In addition to covering the growing interest in the contribution of histone modifications in regulating the development of allergic diseases, this review summarizes some of the evidence supporting this contribution. There are at least two levels at which the role of histone modifications is manifested. One is the regulation of cells that contribute to the allergic inflammation (T cells and macrophages) and those that participate in airway remodeling [(myo-) fibroblasts]. The other is the direct association between histone modifications and allergic phenotypes. Inhibitors of histone-modifying enzymes may potentially be used as anti-allergic drugs. Furthermore, epigenetic patterns may provide novel tools in the diagnosis of allergic disorders.
Collapse
Affiliation(s)
- Bilal Alaskhar Alhamwe
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
- inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), New York, NJ USA
| | - Razi Khalaila
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| | - Johanna Wolf
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| | - Verena von Bülow
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| | - Hani Harb
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
- inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), New York, NJ USA
- German Center for Lung Research (DZL), Gießen, Germany
- Present Address: Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Fahd Alhamdan
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| | - Charles S. Hii
- Department of Immunopathology, SA Pathology, Women and Children’s Hospital Campus, North Adelaide, SA Australia
- Robinson Research Institute, School of Medicine and School of Biological Science, University of Adelaide, Adelaide, SA Australia
| | - Susan L. Prescott
- inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), New York, NJ USA
- School of Paediatrics and Child Health, University of Western Australia, Perth, WA Australia
| | - Antonio Ferrante
- inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), New York, NJ USA
- Department of Immunopathology, SA Pathology, Women and Children’s Hospital Campus, North Adelaide, SA Australia
- Robinson Research Institute, School of Medicine and School of Biological Science, University of Adelaide, Adelaide, SA Australia
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
- inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), New York, NJ USA
- German Center for Lung Research (DZL), Gießen, Germany
| | - Holger Garn
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
- German Center for Lung Research (DZL), Gießen, Germany
| | - Daniel P. Potaczek
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
- inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), New York, NJ USA
- German Center for Lung Research (DZL), Gießen, Germany
- John Paul II Hospital, Krakow, Poland
| |
Collapse
|
49
|
Qi S, He L, Zhang Q, Dong Q, Wang Y, Yang Q, Tian C, He Q, Wang Y. Cross-pathway control gene CPC1/GCN4 coordinates with histone acetyltransferase GCN5 to regulate catalase-3 expression under oxidative stress in Neurospora crassa. Free Radic Biol Med 2018; 117:218-227. [PMID: 29421311 DOI: 10.1016/j.freeradbiomed.2018.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/04/2018] [Accepted: 02/02/2018] [Indexed: 12/16/2022]
Abstract
Catalase is an important enzyme found in nearly all aerobic organisms and plays an essential role in protecting cells from oxidative damage by catalyzing the degradation of hydrogen peroxide into water and oxygen. In filamentous fungus Neurospora crassa, the expression levels of catalases are rigorously regulated by morphogenetic transition during growth and development in cells. Our study revealed that catalase-3 transcription is positively regulated by histone acetyltransferase GCN5 and the cross-pathway control gene cpc-1, as the cat-3 expression level is significantly decreased in gcn5KO and cpc-1 (j-5) mutants. Moreover, gcn5KO and cpc-1 (j-5) mutants could not respond to H2O2 treatment due to the inadequate cat-3 transcription, while wild-type strains showed high expression levels of catalase upon H2O2 treatment. The global H3 acetylation and the acetylation of H3 at cat-3 locus dramatically decreased in gcn5KO under normal or oxidative stress conditions. Meanwhile, the expression of CAT-3 is reduced in gcn5E146Q, the catalytically dead mutant, suggesting that the catalytic activity of GCN5 functions in regulation of cat-3 transcription. In addition, GCN5 cannot acetylate histone H3 efficiently at cat-3 locus in cpc-1 (j-5) mutant strains under normal or oxidative stress conditions. Furthermore, ChIP assays data revealed that the CPC1/GCN4 can directly target the cat-3 promoter region, which may recruit GCN5 to modify the histone acetylation of this region. These results disclosed a distinctive function of CPC1/GCN4 in the regulatory pathway of cat-3 transcription, which is mediated by GCN5-dependent acetylation.
Collapse
Affiliation(s)
- Shaohua Qi
- State Key Laboratory of Agro-biotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lingaonan He
- State Key Laboratory of Agro-biotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qin Zhang
- State Key Laboratory of Agro-biotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qing Dong
- State Key Laboratory of Agro-biotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yajun Wang
- State Key Laboratory of Agro-biotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qiuying Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaoguang Tian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Qun He
- State Key Laboratory of Agro-biotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Wang
- State Key Laboratory of Agro-biotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
50
|
Ali I, Conrad RJ, Verdin E, Ott M. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Chem Rev 2018; 118:1216-1252. [PMID: 29405707 PMCID: PMC6609103 DOI: 10.1021/acs.chemrev.7b00181] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Post-translational acetylation of lysine residues has emerged as a key regulatory mechanism in all eukaryotic organisms. Originally discovered in 1963 as a unique modification of histones, acetylation marks are now found on thousands of nonhistone proteins located in virtually every cellular compartment. Here we summarize key findings in the field of protein acetylation over the past 20 years with a focus on recent discoveries in nuclear, cytoplasmic, and mitochondrial compartments. Collectively, these findings have elevated protein acetylation as a major post-translational modification, underscoring its physiological relevance in gene regulation, cell signaling, metabolism, and disease.
Collapse
Affiliation(s)
- Ibraheem Ali
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Ryan J. Conrad
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, California 94945, United States
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| |
Collapse
|