1
|
Brown EM, Nguyen PNU, Xavier RJ. Emerging biochemical, microbial and immunological evidence in the search for why HLA-B ∗27 confers risk for spondyloarthritis. Cell Chem Biol 2025; 32:12-24. [PMID: 39168118 PMCID: PMC11741937 DOI: 10.1016/j.chembiol.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/25/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
The strong association of the human leukocyte antigen B∗27 alleles (HLA-B∗27) with spondyloarthritis and related rheumatic conditions has long fascinated researchers, yet the precise mechanisms underlying its pathogenicity remain elusive. Here, we review how interplay between the microbiome, the immune system, and the enigmatic HLA-B∗27 could trigger spondyloarthritis, with a focus on whether HLA-B∗27 presents an arthritogenic peptide. We propose mechanisms by which the unique biochemical characteristics of the HLA-B∗27 protein structure, particularly its peptide binding groove, could dictate its propensity to induce pathological T cell responses. We further provide new insights into how TRBV9+ CD8+ T cells are implicated in the disease process, as well as how the immunometabolism of T cells modulates tissue-specific inflammatory responses in spondyloarthritis. Finally, we present testable models and suggest approaches to this problem in future studies given recent advances in computational biology, chemical biology, structural biology, and small-molecule therapeutics.
Collapse
Affiliation(s)
- Eric M Brown
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
2
|
Tedeschi V, Paldino G, Alba J, Molteni E, Paladini F, Scrivo R, Congia M, Cauli A, Caccavale R, Paroli M, Di Franco M, Tuosto L, Sorrentino R, D’Abramo M, Fiorillo MT. ERAP1 and ERAP2 Haplotypes Influence Suboptimal HLA-B*27:05-Restricted Anti-Viral CD8+ T Cell Responses Cross-Reactive to Self-Epitopes. Int J Mol Sci 2023; 24:13335. [PMID: 37686141 PMCID: PMC10488187 DOI: 10.3390/ijms241713335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The human leukocyte antigen (HLA)-B*27 family of alleles is strongly associated with ankylosing spondylitis (AS), a chronic inflammatory disorder affecting the axial and peripheral joints, yet some HLA-B*27 variants not associated with AS have been shown. Since no major differences in the ligandome of associated compared to not-associated alleles have emerged, a plausible hypothesis is that the quantity rather than the quality of the presented epitopes makes the difference. In addition, the Endoplasmic Reticulum AminoPeptidases (ERAPs) 1 and 2, playing a crucial role in shaping the HLA class I epitopes, act as strong AS susceptibility factors, suggesting that an altered peptidome might be responsible for the activation of pathogenic CD8+ T cells. In this context, we have previously singled out a B*27:05-restricted CD8+ T cell response against pEBNA3A (RPPIFIRRL), an EBV peptide lacking the B*27 classic binding motif. Here, we show that a specific ERAP1/2 haplotype negatively correlates with such response in B*27:05 subjects. Moreover, we prove that the B*27:05 allele successfully presents peptides with the same suboptimal N-terminal RP motif, including the self-peptide, pDYNEIN (RPPIFGDFL). Overall, this study underscores the cooperation between the HLA-B*27 and ERAP1/2 allelic variants in defining CD8+ T cell reactivity to suboptimal viral and self-B*27 peptides and prompts further investigation of the B*27:05 peptidome composition.
Collapse
Affiliation(s)
- Valentina Tedeschi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (L.T.); (R.S.); (M.T.F.)
| | - Giorgia Paldino
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (L.T.); (R.S.); (M.T.F.)
| | - Josephine Alba
- Department of Biology, University of Fribourg, Chemin du Musée, 1700 Fribourg, Switzerland;
| | - Emanuele Molteni
- Rheumatology Unit, Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (E.M.); (R.S.); (M.D.F.)
| | - Fabiana Paladini
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (L.T.); (R.S.); (M.T.F.)
| | - Rossana Scrivo
- Rheumatology Unit, Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (E.M.); (R.S.); (M.D.F.)
| | - Mattia Congia
- Rheumatology Unit, AOU and University of Cagliari, 09042 Monserrato, Italy; (M.C.); (A.C.)
| | - Alberto Cauli
- Rheumatology Unit, AOU and University of Cagliari, 09042 Monserrato, Italy; (M.C.); (A.C.)
| | - Rosalba Caccavale
- Department of Biotechnology and Medical Surgical Sciences, Division of Clinical Immunology and Rheumatology, Sapienza University of Rome c/o Polo Pontino, 04100 Latina, Italy; (R.C.); (M.P.)
| | - Marino Paroli
- Department of Biotechnology and Medical Surgical Sciences, Division of Clinical Immunology and Rheumatology, Sapienza University of Rome c/o Polo Pontino, 04100 Latina, Italy; (R.C.); (M.P.)
| | - Manuela Di Franco
- Rheumatology Unit, Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (E.M.); (R.S.); (M.D.F.)
| | - Loretta Tuosto
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (L.T.); (R.S.); (M.T.F.)
| | - Rosa Sorrentino
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (L.T.); (R.S.); (M.T.F.)
| | - Marco D’Abramo
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (L.T.); (R.S.); (M.T.F.)
| |
Collapse
|
3
|
Yang X, Garner LI, Zvyagin IV, Paley MA, Komech EA, Jude KM, Zhao X, Fernandes RA, Hassman LM, Paley GL, Savvides CS, Brackenridge S, Quastel MN, Chudakov DM, Bowness P, Yokoyama WM, McMichael AJ, Gillespie GM, Garcia KC. Autoimmunity-associated T cell receptors recognize HLA-B*27-bound peptides. Nature 2022; 612:771-777. [PMID: 36477533 PMCID: PMC10511244 DOI: 10.1038/s41586-022-05501-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Human leucocyte antigen B*27 (HLA-B*27) is strongly associated with inflammatory diseases of the spine and pelvis (for example, ankylosing spondylitis (AS)) and the eye (that is, acute anterior uveitis (AAU))1. How HLA-B*27 facilitates disease remains unknown, but one possible mechanism could involve presentation of pathogenic peptides to CD8+ T cells. Here we isolated orphan T cell receptors (TCRs) expressing a disease-associated public β-chain variable region-complementary-determining region 3β (BV9-CDR3β) motif2-4 from blood and synovial fluid T cells from individuals with AS and from the eye in individuals with AAU. These TCRs showed consistent α-chain variable region (AV21) chain pairing and were clonally expanded in the joint and eye. We used HLA-B*27:05 yeast display peptide libraries to identify shared self-peptides and microbial peptides that activated the AS- and AAU-derived TCRs. Structural analysis revealed that TCR cross-reactivity for peptide-MHC was rooted in a shared binding motif present in both self-antigens and microbial antigens that engages the BV9-CDR3β TCRs. These findings support the hypothesis that microbial antigens and self-antigens could play a pathogenic role in HLA-B*27-associated disease.
Collapse
Affiliation(s)
- Xinbo Yang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lee I Garner
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ivan V Zvyagin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - Michael A Paley
- Rheumatology Division, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Ekaterina A Komech
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - Kevin M Jude
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiang Zhao
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ricardo A Fernandes
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lynn M Hassman
- Department of Ophthalmology, Washington University School of Medicine, St Louis, MO, USA
| | - Grace L Paley
- Department of Ophthalmology, Washington University School of Medicine, St Louis, MO, USA
| | - Christina S Savvides
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Simon Brackenridge
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Max N Quastel
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dmitriy M Chudakov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - Paul Bowness
- Nuffield Department of Orthopaedics Rheumatology and Muscuoskeletal Science (NDORMS), Botnar Research Center, University of Oxford, Oxford, UK
| | - Wayne M Yokoyama
- Rheumatology Division, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA.
| | - Andrew J McMichael
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Geraldine M Gillespie
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Deschler K, Rademacher J, Lacher SM, Huth A, Utzt M, Krebs S, Blum H, Haibel H, Proft F, Protopopov M, Rodriguez VR, Beltrán E, Poddubnyy D, Dornmair K. Antigen-specific immune reactions by expanded CD8 + T cell clones from HLA-B*27-positive patients with spondyloarthritis. J Autoimmun 2022; 133:102901. [PMID: 36115212 DOI: 10.1016/j.jaut.2022.102901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 12/13/2022]
Abstract
Spondyloarthritis (SpA) is a chronic inflammatory disease that is tightly linked to HLA-B*27 but the pathophysiological basis of this link is still unknown. It is discussed whether either the instability of HLA-B*27 molecules triggers predominantly innate immune reactions or yet unknown antigenic peptides presented by HLA-B*27 induce adaptive autoimmune reactions by CD8+ T cells. To analyze the pathogenesis of SpA, we here investigated the T cell receptor (TCR) usage and whole transcriptomes of CD8+ single cells from synovial fluid of HLA-B*27-positive SpA patients and HLA-B*27-negative controls. In HLA-B*27-positive patients, we confirmed preferential expression of several TCR β-chain families, found even more restricted usage of particular TCR α-chains, assigned matching TCR αβ-chain pairs with homologous CDR3-sequences, and detected identical TCR-chains in different patients. Gene expression analyses by single cell mRNAseq revealed that genes specific for the tissue resident memory phenotype, exhaustion, and apoptosis were particularly highly expressed in expanded clonotypes from HLA-B*27-positive SpA patients. Together, several independent lines of evidence argue in favor of an (auto)antigenic peptide related pathogenesis.
Collapse
Affiliation(s)
- Katharina Deschler
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Judith Rademacher
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Gastroenterology, Infectiology and Rheumatologie (including Nutrition Medicine), Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany
| | - Sonja M Lacher
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Alina Huth
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Markus Utzt
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the LMU Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the LMU Munich, Germany
| | - Hildrun Haibel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Gastroenterology, Infectiology and Rheumatologie (including Nutrition Medicine), Germany
| | - Fabian Proft
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Gastroenterology, Infectiology and Rheumatologie (including Nutrition Medicine), Germany
| | - Mikhail Protopopov
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Gastroenterology, Infectiology and Rheumatologie (including Nutrition Medicine), Germany
| | - Valeria Rios Rodriguez
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Gastroenterology, Infectiology and Rheumatologie (including Nutrition Medicine), Germany
| | - Eduardo Beltrán
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Denis Poddubnyy
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Gastroenterology, Infectiology and Rheumatologie (including Nutrition Medicine), Germany; Epidemiology unit, German Rheumatism Research Centre, Berlin, Germany.
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany.
| |
Collapse
|
5
|
Xiong Y, Cai M, Xu Y, Dong P, Chen H, He W, Zhang J. Joint together: The etiology and pathogenesis of ankylosing spondylitis. Front Immunol 2022; 13:996103. [PMID: 36325352 PMCID: PMC9619093 DOI: 10.3389/fimmu.2022.996103] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/28/2022] [Indexed: 08/16/2023] Open
Abstract
Spondyloarthritis (SpA) refers to a group of diseases with inflammation in joints and spines. In this family, ankylosing spondylitis (AS) is a rare but classic form that mainly involves the spine and sacroiliac joint, leading to the loss of flexibility and fusion of the spine. Compared to other diseases in SpA, AS has a very distinct hereditary disposition and pattern of involvement, and several hypotheses about its etiopathogenesis have been proposed. In spite of significant advances made in Th17 dynamics and AS treatment, the underlying mechanism remains concealed. To this end, we covered several topics, including the nature of the immune response, the microenvironment in the articulation that is behind the disease's progression, and the split between the hypotheses and the evidence on how the intestine affects arthritis. In this review, we describe the current findings of AS and SpA, with the aim of providing an integrated view of the initiation of inflammation and the development of the disease.
Collapse
Affiliation(s)
- Yuehan Xiong
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Menghua Cai
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yi Xu
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Peng Dong
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Hui Chen
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Wei He
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Jianmin Zhang
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| |
Collapse
|
6
|
Rezaiemanesh A, Mahmoudi M, Amirzargar AA, Vojdanian M, Babaie F, Mahdavi J, Rajabinejad M, Jamshidi AR, Nicknam MH. Upregulation of Unfolded Protein Response and ER Stress-Related IL-23 Production in M1 Macrophages from Ankylosing Spondylitis Patients. Inflammation 2022; 45:665-676. [PMID: 35112266 DOI: 10.1007/s10753-021-01575-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022]
Abstract
The inflammatory interleukin (IL)-23/IL-17 axis plays an important role in the pathogenesis of ankylosing spondylitis (AS), but with an unknown regulatory mechanism. This study aimed to investigate the role of endoplasmic reticulum (ER) stress and autophagy pathway in the expression of IL-23 in peripheral blood-derived macrophages in AS patients. Peripheral blood samples were obtained from 15 AS and 15 healthy control subjects. MACS was used to isolate monocytes from PBMCs. Then, M-CSF was used to differentiate monocytes to M2 macrophages. IFN-γ and/or LPS were used to activate macrophages and M2 polarization towards M1 macrophages. Thapsigargin was used to induce ER stress and 3-MA to inhibit autophagy. The purity of extracted monocytes and macrophage markers was evaluated by flow cytometry. mRNA expression of HLA-B and-B27, ER stress-related genes, autophagy-related genes, and IL-23p19 was performed using RT-qPCR. Soluble levels of IL-23p19 were measured using ELISA. Significant increase in mRNA expression of HLA-B, HLA-B27, BiP, XBP1, CHOP, and PERK mRNAs was observed in macrophages of AS patients before and after stimulation with IFN-γ and LPS. No significant change in autophagy gene expression was detected. mRNA and soluble levels of IL-23p19 demonstrated a significant increase in macrophages of AS patients compared to healthy subjects. ER stress induction led to a significant increase in IL-23p19 in macrophages. Inhibition of autophagy did not affect IL-23 expression. ER stress, unlike autophagy, is associated with increased IL-23 levels in macrophages of AS patients.Key Messages ER stress in macrophages from AS patients plays a role in the increased production of IL-23. The autophagy pathway is not involved in the modulation of IL-23 production by AS macrophages.
Collapse
Affiliation(s)
- Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Amirzargar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Vojdanian
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Babaie
- Department of Immunology and Genetic, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Jila Mahdavi
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Misagh Rajabinejad
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Reza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Nicknam
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Nakamura A, Boroojeni SF, Haroon N. Aberrant antigen processing and presentation: Key pathogenic factors leading to immune activation in Ankylosing spondylitis. Semin Immunopathol 2021; 43:245-253. [PMID: 33532928 DOI: 10.1007/s00281-020-00833-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022]
Abstract
The strong association of HLA-B*27 with ankylosing spondylitis (AS) was first reported nearly 50 years ago. However, the mechanistic link between HLA-B*27 and AS has remained an enigma. While 85-90% of AS patients possess HLA-B*27, majority of HLA-B*27 healthy individuals do not develop AS. This suggests that additional genes and genetic regions interplay with HLA-B*27 to cause AS. Previous genome-wide association studies (GWAS) identified key genes that are distinctively expressed in AS, including the Endoplasmic Reticulum Aminopeptidase (ERAP) 1 and ERAP2. As these gene-encoding molecules are primarily implicated in the process of peptide processing and presentation, potential pathological interaction of these molecules with HLA-B*27 may operate to cause AS by activating downstream immune responses. The aberrant peptide processing also gives rise to the accumulation of unstable protein complex in endoplasmic reticulum (ER), which drives endoplasmic reticulum-associated protein degradation (ERAD) and unfolded protein response (UPR) and activates autophagy. In this review, we describe the current hypotheses of AS pathogenesis, focusing on antigen processing and presentation operated by HLA-B*27 and associated molecules that may contribute to the disease initiation and progression of AS.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Spondylitis Program, University Health Network, Toronto, Ontario, Canada.,Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario, M5T 2S8, Canada.,Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Department of Medicine, University of Toronto, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada
| | - Shaghayegh Foroozan Boroojeni
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Spondylitis Program, University Health Network, Toronto, Ontario, Canada.,Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario, M5T 2S8, Canada.,Institute of Medical Science, Department of Medicine, University of Toronto, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada
| | - Nigil Haroon
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada. .,Spondylitis Program, University Health Network, Toronto, Ontario, Canada. .,Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario, M5T 2S8, Canada. .,Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada. .,Institute of Medical Science, Department of Medicine, University of Toronto, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada.
| |
Collapse
|
8
|
Tedeschi V, Paldino G, Paladini F, Mattorre B, Tuosto L, Sorrentino R, Fiorillo MT. The Impact of the 'Mis-Peptidome' on HLA Class I-Mediated Diseases: Contribution of ERAP1 and ERAP2 and Effects on the Immune Response. Int J Mol Sci 2020; 21:ijms21249608. [PMID: 33348540 PMCID: PMC7765998 DOI: 10.3390/ijms21249608] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 01/08/2023] Open
Abstract
The strong association with the Major Histocompatibility Complex (MHC) class I genes represents a shared trait for a group of autoimmune/autoinflammatory disorders having in common immunopathogenetic basis as well as clinical features. Accordingly, the main risk factors for Ankylosing Spondylitis (AS), prototype of the Spondyloarthropathies (SpA), the Behçet's disease (BD), the Psoriasis (Ps) and the Birdshot Chorioretinopathy (BSCR) are HLA-B*27, HLA-B*51, HLA-C*06:02 and HLA-A*29:02, respectively. Despite the strength of the association, the HLA pathogenetic role in these diseases is far from being thoroughly understood. Furthermore, Genome-Wide Association Studies (GWAS) have highlighted other important susceptibility factors such as Endoplasmic Reticulum Aminopeptidase (ERAP) 1 and, less frequently, ERAP2 that refine the peptidome presented by HLA class I molecules to CD8+ T cells. Mass spectrometry analysis provided considerable knowledge of HLA-B*27, HLA-B*51, HLA-C*06:02 and HLA-A*29:02 immunopeptidome. However, the combined effect of several ERAP1 and ERAP2 allelic variants could generate an altered pool of peptides accounting for the "mis-immunopeptidome" that ranges from suboptimal to pathogenetic/harmful peptides able to induce non-canonical or autoreactive CD8+ T responses, activation of NK cells and/or garbling the classical functions of the HLA class I molecules. This review will focus on this class of epitopes as possible elicitors of atypical/harmful immune responses which can contribute to the pathogenesis of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Valentina Tedeschi
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
- Correspondence:
| | - Giorgia Paldino
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
| | - Fabiana Paladini
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
| | - Benedetta Mattorre
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
| | - Loretta Tuosto
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
| | - Rosa Sorrentino
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
| |
Collapse
|
9
|
Jah N, Jobart-Malfait A, Ermoza K, Noteuil A, Chiocchia G, Breban M, André C. HLA-B27 Subtypes Predisposing to Ankylosing Spondylitis Accumulate in an Endoplasmic Reticulum-Derived Compartment Apart From the Peptide-Loading Complex. Arthritis Rheumatol 2020; 72:1534-1546. [PMID: 32270915 DOI: 10.1002/art.41281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 03/31/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE It was previously shown that HLA-B27 subtypes predisposing to spondyloarthritis (SpA), i.e., B*27:02, B*27:05, and B*27:07, displayed an increased propensity to form intracellular oligomers and to accumulate at a high density in cytoplasmic vesicles, as compared to the non-SpA-associated HLA-B*07:02 and HLA-B*27:06. This study was undertaken to characterize the nature and content of HLA-B-containing vesicles and to further examine their relevance to SpA predisposition. METHODS Vesicles containing HLA-B proteins were detected in transfected HeLa cells and in cells from SpA patients or HLA-B27/human β2 -microglobulin (hβ2 m)-transgenic rats, by microscopy. The nature and content of HLA-B-containing vesicles were characterized in colocalization experiments with appropriate markers. RESULTS The SpA-associated HLA-B*27:04 subtype accumulated at higher levels (P < 10-5 ) in cytoplasmic vesicles compared to HLA-B*27:06, from which it differs only by 2 substitutions, reinforcing the correlation between vesicle formation and SpA predisposition. Colocalization studies showed that those vesicles contained misfolded HLA-B heavy chain along with β2 m and endoplasmic reticulum (ER) chaperones (calnexin, calreticulin, BiP, glucose-regulated protein 94-kd) and belonged to the ER but were distinct from the peptide-loading complex (PLC). Similar vesicles were observed in immune cells from HLA-B27+ SpA patients, in greater abundance than in healthy controls (P < 0.01), and in dendritic cells from HLA-B27/hβ2 m transgenic rats, correlating with SpA susceptibility. CONCLUSION Accumulation of misfolded HLA-B heavy chain along with β2 m and ER chaperones into ER-derived vesicles distinct from the PLC is a characteristic feature of HLA-B27 subtypes predisposing to SpA. This phenomenon could contribute to HLA-B27 pathogenicity, via a noncanonical mechanism.
Collapse
Affiliation(s)
- Nadège Jah
- Université Paris-Saclay, Universite' de Versailles St.-Quentin-en-Yvelines, INSERM (UMR 1173), Montigny-Le-Bretonneux, France, and Laboratoire d'Excellence INFLAMEX, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Aude Jobart-Malfait
- Université Paris-Saclay, Universite' de Versailles St.-Quentin-en-Yvelines, INSERM (UMR 1173), Montigny-Le-Bretonneux, France, and Laboratoire d'Excellence INFLAMEX, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Ketia Ermoza
- Université Paris-Saclay, Universite' de Versailles St.-Quentin-en-Yvelines, INSERM (UMR 1173), Montigny-Le-Bretonneux, France, and Laboratoire d'Excellence INFLAMEX, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Aurélie Noteuil
- Université Paris-Saclay, Universite' de Versailles St.-Quentin-en-Yvelines, INSERM (UMR 1173), Montigny-Le-Bretonneux, France, and Laboratoire d'Excellence INFLAMEX, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Maxime Breban
- Université Paris-Saclay, Universite' de Versailles St.-Quentin-en-Yvelines, INSERM (UMR 1173), Montigny-Le-Bretonneux, France, Laboratoire d'Excellence INFLAMEX, Université Paris Diderot, Sorbonne Paris Cité, Paris, France, and Hôpital Ambroise Paré, AP-HP, Boulogne-Billancourt, France
| | - Claudine André
- Université Paris-Saclay, Universite' de Versailles St.-Quentin-en-Yvelines, INSERM (UMR 1173), Montigny-Le-Bretonneux, France, and Laboratoire d'Excellence INFLAMEX, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
10
|
Ruyssen-Witrand A, Luxembourger C, Cantagrel A, Nigon D, Claudepierre P, Degboe Y, Constantin A. Association between IL23R and ERAP1 polymorphisms and sacroiliac or spinal MRI inflammation in spondyloarthritis: DESIR cohort data. Arthritis Res Ther 2019; 21:22. [PMID: 30646942 PMCID: PMC6332609 DOI: 10.1186/s13075-018-1807-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/28/2018] [Indexed: 01/22/2023] Open
Abstract
Background To investigate the association between 12 single nucleotide polymorphisms (SNPs) located on ERAP1 and IL23R with the presence of inflammation on the sacroiliac joint (SIJ) or spinal magnetic resonance imagery (MRI) in an early onset spondyloarthritis (SpA) cohort. Methods All the patients included in the DESIR cohort with an axial SpA and available DNA at baseline were enrolled in this study (n = 645 patients) and underwent a clinical examination, CRP assay, SIJ and spinal MRI scans. Six SNPs located on ERAP1 (rs30187, rs27044, rs27434, rs17482078, rs10050860, rs2287987) and six SNPs located on IL23R (rs1004819, rs10489629, rs1343151, rs2201841, rs10889677, rs11209032) were genotyped. Univariable analyses were performed to test the association between the genotypes and SIJ and spinal MRI inflammation, as well as disease activity based on Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Ankylosing Spondylitis Disease Activity Score-C-Reactive Protein (ASDAS-CRP) and CRP. Results One SNP located on ERAP1 (rs27434) and haplotype CCT of ERAP1 were associated with SIJ inflammation detected by MRI, but these associations were below the Bonferroni corrected threshold of significance. However, one SNP (rs1004819) located on IL23R was associated with SIJ MRI inflammation (rs1004819: TT 42.3%, CT 40.5%, CC 26.5%, p = 0.0005). This locus was also significantly associated with Spondyloarthritis Research Consortium of Canada scores while no association with another inflammatory parameter such as BASDAI, ASDAS-CRP, CRP or Berlin MRI score was identified in this population. Conclusion One locus of the IL23R gene was associated with SIJ MRI inflammation and might be a marker of more active disease in recent onset SpA. Trial registration clinicaltrials.gov, NCTO 164 8907
Collapse
Affiliation(s)
- Adeline Ruyssen-Witrand
- Centre de rhumatologie, CHU de Toulouse, UMR 1027, Inserm, Université Paul Sabatier Toulouse III, Toulouse, France.
| | - Cécile Luxembourger
- Centre de rhumatologie, CHU de Toulouse, UMR 1027, Inserm, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Alain Cantagrel
- Centre de rhumatologie, CHU de Toulouse, UMR 1043, CPTP, Inserm, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Delphine Nigon
- Centre de rhumatologie, CHU de Toulouse, Toulouse, France
| | - Pascal Claudepierre
- Departement de Rhumatologie, Henri Mondor Hospital, APHP, Université Paris Est Créteil, EA 7379 - EpidermE, F-94010, Créteil, France
| | - Yannick Degboe
- Centre de rhumatologie, CHU de Toulouse, UMR 1043, CPTP, Inserm, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Arnaud Constantin
- Centre de rhumatologie, CHU de Toulouse, UMR 1043, CPTP, Inserm, Université Paul Sabatier Toulouse III, Toulouse, France
| |
Collapse
|
11
|
de Castro JAL, Stratikos E. Intracellular antigen processing by ERAP2: Molecular mechanism and roles in health and disease. Hum Immunol 2018; 80:310-317. [PMID: 30414458 DOI: 10.1016/j.humimm.2018.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/19/2018] [Accepted: 11/05/2018] [Indexed: 02/05/2023]
Abstract
Endoplasmic Reticulum Aminopeptidase 2 (ERAP2) is an intracellular enzyme localized in the ER that has been shown to play roles in the generation of peptides that serve as ligands for MHC class I (MHC-1) molecules. Although ERAP2 has been primarily described as an accessory and complementary enzyme to the homologous ERAP1, several lines of evidence during the last few years suggest that it can play distinct and important roles in processing antigenic peptides and influencing cellular cytotoxic immune responses. Such emerging evidence has been shaping ERAP2 as a potentially tractable target for regulating select autoimmune and anti-cancer responses for therapeutic purposes. Here, we review the state-of-the-art knowledge on the role of ERAP2 in antigen processing, its structure and molecular mechanism, influence on shaping MHC-I-bound immunopeptidomes and its involvement in disease pathogenesis.
Collapse
Affiliation(s)
- José A López de Castro
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma), Madrid, Spain.
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos, Agia Paraskevi, Athens, Greece.
| |
Collapse
|
12
|
Association analysis of ERAP1 gene single nucleotide polymorphism in susceptibility to ankylosing spondylitis in Iranian population. Immunol Lett 2018; 201:52-58. [PMID: 30412714 DOI: 10.1016/j.imlet.2018.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/26/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022]
Abstract
Background Ankylosing spondylitis (AS) is a debilitating spondyloarthropathy that has been associated with variation in several genes. Human leukocyte antigen (HLA)-B27 constructs an impaired structure, culminating in recognition and activation of immune system. Impaired function of Endoplasmic reticulum aminopeptidase (ERAP) 1, which primes peptides to be loaded in HLA molecules, has strongly been associated with AS proneness. Here, we intended to investigate the possible association of ERAP1 gene single nucleotide polymorphisms (SNPs) with AS susceptibility in Iranian patients. Methods Two-hundred and twenty AS patients and 220 healthy controls were enrolled in this study. DNA was extracted from blood samples and then was genotyped for rs27044, rs17482078, and rs10050860 polymorphism by SSP-PCR approach. Results It was seen that G allele and GG genotype of rs27044 SNP significantly increased the risk of AS that was even stronger in HLA-B27 positive patients. Moreover, the T allele and TT genotype of rs10050860 polymorphism were associated with increased risk of the disease in both all and HLA-B27 positive AS group. Two haplotypes were associated with the risk of AS and there was linkage disequilibrium between SNPs. Two SNPs were associated with clinicopathological manifestations of AS subjects. Conclusions This association study replicated the role ofERAP1 gene polymorphisms with the risk of AS in an Iranian population.
Collapse
|
13
|
López de Castro JA. How ERAP1 and ERAP2 Shape the Peptidomes of Disease-Associated MHC-I Proteins. Front Immunol 2018; 9:2463. [PMID: 30425713 PMCID: PMC6219399 DOI: 10.3389/fimmu.2018.02463] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/04/2018] [Indexed: 12/28/2022] Open
Abstract
Four inflammatory diseases are strongly associated with Major Histocompatibility Complex class I (MHC-I) molecules: birdshot chorioretinopathy (HLA-A*29:02), ankylosing spondylitis (HLA-B*27), Behçet's disease (HLA-B*51), and psoriasis (HLA-C*06:02). The endoplasmic reticulum aminopeptidases (ERAP) 1 and 2 are also risk factors for these diseases. Since both enzymes are involved in the final processing steps of MHC-I ligands it is reasonable to assume that MHC-I-bound peptides play a significant pathogenetic role. This review will mainly focus on recent studies concerning the effects of ERAP1 and ERAP2 polymorphism and expression on shaping the peptidome of disease-associated MHC-I molecules in live cells. These studies will be discussed in the context of the distinct mechanisms and substrate preferences of both enzymes, their different patterns of genetic association with various diseases, the role of polymorphisms determining changes in enzymatic activity or expression levels, and the distinct peptidomes of disease-associated MHC-I allotypes. ERAP1 and ERAP2 polymorphism and expression induce significant changes in multiple MHC-I-bound peptidomes. These changes are MHC allotype-specific and, without excluding a degree of functional inter-dependence between both enzymes, reflect largely separate roles in their processing of MHC-I ligands. The studies reviewed here provide a molecular basis for the distinct patterns of genetic association of ERAP1 and ERAP2 with disease and for the pathogenetic role of peptides. The allotype-dependent alterations induced on distinct peptidomes may explain that the joint association of both enzymes and unrelated MHC-I alleles influence different pathological outcomes.
Collapse
|
14
|
Paladini F, Fiorillo MT, Vitulano C, Tedeschi V, Piga M, Cauli A, Mathieu A, Sorrentino R. An allelic variant in the intergenic region between ERAP1 and ERAP2 correlates with an inverse expression of the two genes. Sci Rep 2018; 8:10398. [PMID: 29991817 PMCID: PMC6039459 DOI: 10.1038/s41598-018-28799-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/19/2018] [Indexed: 01/12/2023] Open
Abstract
The Endoplasmatic Reticulum Aminopeptidases ERAP1 and ERAP2 are implicated in a variety of immune and non-immune functions. Most studies however have focused on their role in shaping the HLA class I peptidome by trimming peptides to the optimal size. Genome Wide Association Studies highlighted non-synonymous polymorphisms in their coding regions as associated with several immune mediated diseases. The two genes lie contiguous and oppositely oriented on the 5q15 chromosomal region. Very little is known about the transcriptional regulation and the quantitative variations of these enzymes. Here, we correlated the level of transcripts and proteins of the two aminopeptidases in B-lymphoblastoid cell lines from 44 donors harbouring allelic variants in the intergenic region between ERAP1 and ERAP2. We found that the presence of a G instead of an A at SNP rs75862629 in the ERAP2 gene promoter strongly influences the expression of the two ERAPs with a down-modulation of ERAP2 coupled with a significant higher expression of ERAP1. We therefore show here for the first time a coordinated quantitative regulation of the two ERAP genes, which can be relevant for the setting of specific therapeutic approaches.
Collapse
Affiliation(s)
- Fabiana Paladini
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy.
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - Carolina Vitulano
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - Valentina Tedeschi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - Matteo Piga
- Rheumatology Unit, University Clinic and AOU of Cagliari, Cagliari, Italy
| | - Alberto Cauli
- Rheumatology Unit, University Clinic and AOU of Cagliari, Cagliari, Italy
| | - Alessandro Mathieu
- Rheumatology Unit, University Clinic and AOU of Cagliari, Cagliari, Italy
| | - Rosa Sorrentino
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy.
| |
Collapse
|
15
|
Sanz-Bravo A, Martín-Esteban A, Kuiper JJW, García-Peydró M, Barnea E, Admon A, López de Castro JA. Allele-specific Alterations in the Peptidome Underlie the Joint Association of HLA-A*29:02 and Endoplasmic Reticulum Aminopeptidase 2 (ERAP2) with Birdshot Chorioretinopathy. Mol Cell Proteomics 2018; 17:1564-1577. [PMID: 29769354 DOI: 10.1074/mcp.ra118.000778] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Indexed: 11/06/2022] Open
Abstract
Virtually all patients of the rare inflammatory eye disease birdshot chorioretinopathy (BSCR) carry the HLA-A*29:02 allele. BSCR is also associated with endoplasmic reticulum aminopeptidase 2 (ERAP2), an enzyme involved in processing HLA class I ligands, thus implicating the A*29:02 peptidome in this disease. To investigate the relationship between both risk factors we employed label-free quantitative mass spectrometry to characterize the effects of ERAP2 on the A*29:02-bound peptidome. An ERAP2-negative cell line was transduced with lentiviral constructs containing GFP-ERAP2 or GFP alone, and the A*29:02 peptidomes from both transduced cells were compared. A similar analysis was performed with two additional A*29:02-positive, ERAP1-concordant, cell lines expressing or not ERAP2. In both comparisons the presence of ERAP2 affected the following features of the A*29:02 peptidome: 1) Length, with increased amounts of peptides >9-mers, and 2) N-terminal residues, with less ERAP2-susceptible and more hydrophobic ones. The paradoxical effects on peptide length suggest that unproductive binding to ERAP2 might protect some peptides from ERAP1 over-trimming. The influence on N-terminal residues can be explained by a direct effect of ERAP2 on trimming, without ruling out and improved processing in concert with ERAP1. The alterations in the A*29:02 peptidome suggest that the association of ERAP2 with BSCR is through its effects on peptide processing. These differ from those on the ankylosing spondylitis-associated HLA-B*27. Thus, ERAP2 alters the peptidome of distinct HLA molecules as a function of their specific binding preferences, influencing different pathological outcomes in an allele-dependent way.
Collapse
Affiliation(s)
- Alejandro Sanz-Bravo
- From the ‡Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | | | - Jonas J W Kuiper
- §Department of Ophthalmology, University Medical Center Utrecht, The Netherlands
| | - Marina García-Peydró
- From the ‡Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | - Eilon Barnea
- ¶Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Arie Admon
- ¶Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
16
|
Yair-Sabag S, Tedeschi V, Vitulano C, Barnea E, Glaser F, Melamed Kadosh D, Taurog JD, Fiorillo MT, Sorrentino R, Admon A. The Peptide Repertoire of HLA-B27 may include Ligands with Lysine at P2 Anchor Position. Proteomics 2018; 18:e1700249. [DOI: 10.1002/pmic.201700249] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/21/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Shira Yair-Sabag
- Department of Biology; Technion-Israel Institute of Technology; Haifa Israel
| | - Valentina Tedeschi
- Department of Biology and Biotechnology “C. Darwin”; Sapienza University of Rome; Rome Italy
| | - Carolina Vitulano
- Department of Biology and Biotechnology “C. Darwin”; Sapienza University of Rome; Rome Italy
| | - Eilon Barnea
- Department of Biology; Technion-Israel Institute of Technology; Haifa Israel
| | - Fabian Glaser
- Bioinformatics Knowledge Unit; The Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering; Technion-Israel Institute of Technology; Haifa Israel
| | | | - Joel D. Taurog
- Department of Internal Medicine; University of Texas Southwestern Medical Center; Dallas USA
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology “C. Darwin”; Sapienza University of Rome; Rome Italy
| | - Rosa Sorrentino
- Department of Biology and Biotechnology “C. Darwin”; Sapienza University of Rome; Rome Italy
| | - Arie Admon
- Department of Biology; Technion-Israel Institute of Technology; Haifa Israel
| |
Collapse
|
17
|
Smith JA. Regulation of Cytokine Production by the Unfolded Protein Response; Implications for Infection and Autoimmunity. Front Immunol 2018; 9:422. [PMID: 29556237 PMCID: PMC5844972 DOI: 10.3389/fimmu.2018.00422] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/16/2018] [Indexed: 12/14/2022] Open
Abstract
Protein folding in the endoplasmic reticulum (ER) is an essential cell function. To safeguard this process in the face of environmental threats and internal stressors, cells mount an evolutionarily conserved response known as the unfolded protein response (UPR). Invading pathogens induce cellular stress that impacts protein folding, thus the UPR is well situated to sense danger and contribute to immune responses. Cytokines (inflammatory cytokines and interferons) critically mediate host defense against pathogens, but when aberrantly produced, may also drive pathologic inflammation. The UPR influences cytokine production on multiple levels, from stimulation of pattern recognition receptors, to modulation of inflammatory signaling pathways, and the regulation of cytokine transcription factors. This review will focus on the mechanisms underlying cytokine regulation by the UPR, and the repercussions of this relationship for infection and autoimmune/autoinflammatory diseases. Interrogation of viral and bacterial infections has revealed increasing numbers of examples where pathogens induce or modulate the UPR and implicated UPR-modulated cytokines in host response. The flip side of this coin, the UPR/ER stress responses have been increasingly recognized in a variety of autoimmune and inflammatory diseases. Examples include monogenic disorders of ER function, diseases linked to misfolding protein (HLA-B27 and spondyloarthritis), diseases directly implicating UPR and autophagy genes (inflammatory bowel disease), and autoimmune diseases targeting highly secretory cells (e.g., diabetes). Given the burgeoning interest in pharmacologically targeting the UPR, greater discernment is needed regarding how the UPR regulates cytokine production during specific infections and autoimmune processes, and the relative place of this interaction in pathogenesis.
Collapse
Affiliation(s)
- Judith A Smith
- Department of Pediatrics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States.,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
18
|
Hanson AL, Cuddihy T, Haynes K, Loo D, Morton CJ, Oppermann U, Leo P, Thomas GP, Lê Cao KA, Kenna TJ, Brown MA. Genetic Variants in ERAP1 and ERAP2 Associated With Immune-Mediated Diseases Influence Protein Expression and the Isoform Profile. Arthritis Rheumatol 2017; 70:255-265. [PMID: 29108111 DOI: 10.1002/art.40369] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/26/2017] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Endoplasmic reticulum aminopeptidase 1 (ERAP-1) and ERAP-2, encoded on chromosome 5q15, trim endogenous peptides for HLA-mediated presentation to the immune system. Polymorphisms in ERAP1 and/or ERAP2 are strongly associated with several immune-mediated diseases with specific HLA backgrounds, implicating altered peptide handling and presentation as prerequisites for autoreactivity against an arthritogenic peptide. Given the thorough characterization of disease risk-associated polymorphisms that alter ERAP activity, this study aimed instead to interrogate the expression effect of chromosome 5q15 polymorphisms to determine their effect on ERAP isoform and protein expression. METHODS RNA sequencing and genotyping across chromosome 5q15 were performed to detect genetic variants in ERAP1 and ERAP2 associated with altered total gene and isoform-specific expression. The functional implication of a putative messenger RNA splice-altering variant on ERAP-1 protein levels was validated using mass spectrometry. RESULTS Polymorphisms associated with ankylosing spondylitis (AS) significantly influenced the transcript and protein expression of ERAP-1 and ERAP-2. Disease risk-associated polymorphisms in and around both genes were also associated with increased gene expression. Furthermore, key risk-associated ERAP1 variants were associated with altered transcript splicing, leading to allele-dependent alternate expression of 2 distinct isoforms and significant differences in the type of ERAP-1 protein produced. CONCLUSION In accordance with studies demonstrating that polymorphisms that increase aminopeptidase activity predispose to immune disease, the increased risk also attributed to increased expression of ERAP1 and ERAP2 supports the notion of using aminopeptidase inhibition to treat AS and other ERAP-associated conditions.
Collapse
Affiliation(s)
- Aimee L Hanson
- University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Thomas Cuddihy
- University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Katelin Haynes
- University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Dorothy Loo
- University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Craig J Morton
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | | | - Paul Leo
- Queensland University of Technology and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Gethin P Thomas
- University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Kim-Anh Lê Cao
- University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Tony J Kenna
- Queensland University of Technology and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Matthew A Brown
- Queensland University of Technology and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
19
|
Vitulano C, Tedeschi V, Paladini F, Sorrentino R, Fiorillo MT. The interplay between HLA-B27 and ERAP1/ERAP2 aminopeptidases: from anti-viral protection to spondyloarthritis. Clin Exp Immunol 2017; 190:281-290. [PMID: 28759104 DOI: 10.1111/cei.13020] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2017] [Indexed: 01/06/2023] Open
Abstract
The human leukocyte antigen class I gene HLA-B27 is the strongest risk factor for ankylosing spondylitis (AS), a chronic inflammatory arthritic disorder. More recently, the Endoplasmic Reticulum Aminopeptidase (ERAP) 1 and 2 genes have been identified by genome wide association studies (GWAS) as additional susceptibility factors. In the ER, these aminopeptidases trim the peptides to a length suitable to fit into the groove of the major histocompatibility complex (MHC) class I molecules. It is noteworthy that an epistatic interaction between HLA-B27 and ERAP1, but not between HLA-B27 and ERAP2, has been highlighted. However, these observations suggest a paramount centrality for the HLA-B27 peptide repertoire that determines the natural B27 immunological function, i.e. the T cell antigen presentation and, as a by-product, elicits HLA-B27 aberrant behaviours: (i) the misfolding leading to ER stress responses and autophagy and (ii) the surface expression of homodimers acting as ligands for innate immune receptors. In this context, it has been observed that the HLA-B27 carriers, besides being prone to autoimmunity, display a far better surveillance to some viral infections. This review focuses on the ambivalent role of HLA-B27 in autoimmunity and viral protection correlating its functions to the quantitative and qualitative effects of ERAP1 and ERAP2 polymorphisms on their enzymatic activity.
Collapse
Affiliation(s)
- C Vitulano
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - V Tedeschi
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - F Paladini
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - R Sorrentino
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - M T Fiorillo
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| |
Collapse
|
20
|
Wang W, Meng X, Liu Y, Ma X, Zhang Q, Li C, Li C, Ren L. Association Between Protein Tyrosine Phosphatase Non-Receptor Type 22 (PTPN22) Polymorphisms and Risk of Ankylosing Spondylitis: A Meta-analysis. Med Sci Monit 2017; 23:2619-2624. [PMID: 28555069 PMCID: PMC5461884 DOI: 10.12659/msm.901083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Ankylosing spondylitis (AS) is a chronic autoimmune disease that involves the imbalance of peripheral tolerance possibly caused by the negative signal of activated T cells. The polymorphisms in the human protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene have been pointed out to be related to the pathogenesis of AS, but conclusions over this issue remain contradictory. We attempted to give a more precise conclusion about the effects of PTPN22 polymorphisms on AS risk by means of a meta-analysis. Material/Methods PubMed, Embase, Wanfang, and Chinese National Knowledge Infrastructure (CNKI) were searched for relevant studies published in the English or Chinese language. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated with a fixed- or random-effects model to evaluate the correlation between PTPN22 rs2488457, rs1217414, and rs2476601 polymorphisms and AS susceptibility. Sensitivity analysis was also carried out to detect the stability of the results. Results The present meta-analysis showed a positive correlation of both PTPN22 rs2488457 and rs1217414 polymorphisms with AS risk under CC vs. GG, CC + GC vs. GG, CC vs. GC + GG, allele C vs. allele G (OR=1.39, 95% CI=1.04–1.85, P=0.646; OR=1.29, 95% CI=1.03–1.62, P=0.426; OR=1.26, 95% CI=1.02–1.56, P=0.971; OR=1.20, 95% CI=1.05–1.38, P=0.571), and TT vs. CC and TT vs. CT + CC models (OR=3.83, 95% CI=1.11–13.24, P=0.196; OR=3.83, 95% CI=1.09–13.42, P=0.244), respectively. Conclusions PTPN22 rs2488457 and rs1217414 polymorphisms may be risk factors for AS occurrence.
Collapse
Affiliation(s)
- Weiming Wang
- Department of Sports Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China (mainland)
| | - Xiantao Meng
- Department of Sports Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China (mainland)
| | - Yupeng Liu
- Department of Sports Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China (mainland)
| | - Xiaojun Ma
- Department of Sports Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China (mainland)
| | - Qian Zhang
- Department of Sports Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China (mainland)
| | - Chunhui Li
- Department of Sports Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China (mainland)
| | - Chenye Li
- Department of Sports Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China (mainland)
| | - Liubao Ren
- Department of Sports Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China (mainland)
| |
Collapse
|
21
|
Abstract
Over the past 5 years, advances in high-throughput techniques and studies involving large cohorts of patients have led to considerable advances in the identification of novel genetic associations and immune pathways involved in ankylosing spondylitis (AS). These discoveries include genes encoding cytokine receptors, transcription factors, signalling molecules and transport proteins. Although progress has been made in understanding the functions and potential pathogenic roles of some of these molecules, much work remains to be done to comprehend their complex interactions and therapeutic potential in AS. In this Review, we outline the current knowledge of AS pathogenesis, including genetic risk associations, HLA-B27-mediated pathology, perturbations in antigen-presentation pathways and the contribution of the type 3 immune response.
Collapse
|
22
|
Barnea E, Melamed Kadosh D, Haimovich Y, Satumtira N, Dorris ML, Nguyen MT, Hammer RE, Tran TM, Colbert RA, Taurog JD, Admon A. The Human Leukocyte Antigen (HLA)-B27 Peptidome in Vivo, in Spondyloarthritis-susceptible HLA-B27 Transgenic Rats and the Effect of Erap1 Deletion. Mol Cell Proteomics 2017; 16:642-662. [PMID: 28188227 DOI: 10.1074/mcp.m116.066241] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/05/2017] [Indexed: 01/20/2023] Open
Abstract
HLA-B27 is a class I major histocompatibility (MHC-I) allele that confers susceptibility to the rheumatic disease ankylosing spondylitis (AS) by an unknown mechanism. ERAP1 is an aminopeptidase that trims peptides in the endoplasmic reticulum for binding to MHC-I molecules. ERAP1 shows genetic epistasis with HLA-B27 in conferring susceptibility to AS. Male HLA-B27 transgenic rats develop arthritis and serve as an animal model of AS, whereas female B27 transgenic rats remain healthy. We used large scale quantitative mass spectrometry to identify over 15,000 unique HLA-B27 peptide ligands, isolated after immunoaffinity purification of the B27 molecules from the spleens of HLA-B27 transgenic rats. Heterozygous deletion of Erap1, which reduced the Erap1 level to less than half, had no qualitative or quantitative effects on the B27 peptidome. Homozygous deletion of Erap1 affected approximately one-third of the B27 peptidome but left most of the B27 peptidome unchanged, suggesting the possibility that some of the HLA-B27 immunopeptidome is not processed in the presence of Erap1. Deletion of Erap1 was permissive for the AS-like phenotype, increased mean peptide length and increased the frequency of C-terminal hydrophobic residues and of N-terminal Ala, Ser, or Lys. The presence of Erap1 increased the frequency of C-terminal Lys and Arg, of Glu and Asp at intermediate residues, and of N-terminal Gly. Several peptides of potential interest in AS pathogenesis, previously identified in human cell lines, were isolated. However, rats susceptible to arthritis had B27 peptidomes similar to those of non-susceptible rats, and no peptides were found to be uniquely associated with arthritis. Whether specific B27-bound peptides are required for AS pathogenesis remains to be determined. Data are available via ProteomeXchange with identifier PXD005502.
Collapse
Affiliation(s)
- Eilon Barnea
- From the ‡Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Dganit Melamed Kadosh
- From the ‡Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Yael Haimovich
- From the ‡Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Nimman Satumtira
- §Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8884
| | - Martha L Dorris
- §Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8884
| | - Mylinh T Nguyen
- ¶Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8816
| | - Robert E Hammer
- ¶Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8816
| | - Tri M Tran
- ‖NIAMS, National Institutes of Health, Bethesda, Maryland 20892-1560
| | - Robert A Colbert
- ‖NIAMS, National Institutes of Health, Bethesda, Maryland 20892-1560
| | - Joel D Taurog
- §Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8884;
| | - Arie Admon
- From the ‡Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel;
| |
Collapse
|
23
|
Sayah S, Ebrahimi M, Piroozmand P. Frequency of HLA-B27 in Patients With Conductive System Disturbance and Implanted Permanent Pacemaker in Iran. INTERNATIONAL JOURNAL OF CARDIOVASCULAR PRACTICE 2017. [DOI: 10.21859/ijcp-020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
24
|
Differences in conformational stability of the two alpha domains of the disease-associated and non-disease-associated subtypes of HLA-B27. Int J Biol Macromol 2016; 94:233-245. [PMID: 27693341 DOI: 10.1016/j.ijbiomac.2016.08.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/04/2016] [Accepted: 08/23/2016] [Indexed: 01/07/2023]
Abstract
The MHC Class I molecule, HLA-B27, is strongly linked with development of the inflammatory arthritic disease, ankylosing spondylitis (AS); whereas the B*2705 subtype shows strong association, B*2709 is not associated with disease, even though the two subtypes differ in only a single residue at position 116. Currently, attention is focused on the misfolding propensities of these two subtypes, including studies of disulfide-linked dimers and non-covalently formed high molecular weight (HMW) aggregates. Using mutants retaining only a single cysteine at positions C67 or C164, and using a cysteine-reactive, environment-sensitive, fluorescence probe (acrylodan), we find that within the same overall population of identical single-cysteine HLA-B27 molecules, there exist sub-populations which (a) possess free cysteines which react with acrylodan, (b) form disulfide-linked dimers, and (c) form HMW aggregates. Further, using acrylodan fluorescence, we find (d) that the α1 and α2 domains unfold independently of each other in HMW aggregates, (e) that these two domains of B*2709 are less stable to chemical and thermal denaturation than the corresponding domains of B*2705, suggesting easier clearance of misfolded molecules in the former, and (f) C67 is much more exposed in B*2705 than in B*2709, which could potentially explain how B*2705 more easily forms C67-mediated disulfide-bonded dimers.
Collapse
|
25
|
Molecular and pathogenic effects of endoplasmic reticulum aminopeptidases ERAP1 and ERAP2 in MHC-I-associated inflammatory disorders: Towards a unifying view. Mol Immunol 2016; 77:193-204. [DOI: 10.1016/j.molimm.2016.08.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/04/2016] [Accepted: 08/04/2016] [Indexed: 12/22/2022]
|
26
|
Guasp P, Alvarez-Navarro C, Gomez-Molina P, Martín-Esteban A, Marcilla M, Barnea E, Admon A, López de Castro JA. The Peptidome of Behçet's Disease-Associated HLA-B*51:01 Includes Two Subpeptidomes Differentially Shaped by Endoplasmic Reticulum Aminopeptidase 1. Arthritis Rheumatol 2016; 68:505-15. [PMID: 26360328 DOI: 10.1002/art.39430] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/03/2015] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To characterize the peptidome of the Behçet's disease-associated HLA-B*51:01 allotype as well as the differential features of major peptide subsets and their distinct endoplasmic reticulum aminopeptidase 1 (ERAP-1)-mediated processing. METHODS The endogenous B*51:01-bound peptidome was characterized from 721.221 transfectant cells, after affinity chromatography and acid extraction, by tandem mass spectrometry. Recombinant ERAP-1 variants were used to digest synthetic B*51:01 ligands. HLA and transporter associated with antigen processing (TAP) binding affinities of peptide ligands were calculated with well-established algorithms. ERAP-1 and ERAP-2 from 721.221 cells were characterized by genomic sequencing and Western blotting. RESULTS The B*51:01 peptidome consisted of 29.5% octamers, 61.7% nonamers, 4.8% decamers, and 4.0% longer peptides. The major peptide motif consisted of Pro and Ala at position 2, aliphatic/aromatic position 3 residues, and Val and Ile at the C-terminal position. The ligands with Pro or Ala at position 2 constituted 2 distinct subpeptidomes. Peptides with Pro at position 2 showed higher affinity for B*51:01 and lower affinity for TAP than those with Ala at position 2. Most important, both peptide subsets differed drastically in the susceptibility of their position 1 residues to ERAP-1, revealing a distinct influence of this enzyme on both subpeptidomes, which may alter their balance, affecting the global affinity of B*51:01-peptide complexes. CONCLUSION ERAP-1 has a significant influence on the B*51:01 peptidome and its affinity. This influence is based on very distinct effects on the 2 subpeptidomes, whereby only peptides in the subpeptidome with Ala at position 2 are extensively destroyed, except when their position 1 residues are ERAP-1 resistant. This pattern provides a mechanism for the epistatic association of ERAP-1 and B*51:01 in Behçet's disease.
Collapse
Affiliation(s)
- Pablo Guasp
- CSIC, Centro de Biología Molecular Severo Ochoa, Madrid, Spain
| | | | | | | | | | - Eilon Barnea
- Technion-Israel Institute of Technology, Haifa, Israel
| | - Arie Admon
- Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
27
|
Schittenhelm RB, Sivaneswaran S, Lim Kam Sian TCC, Croft NP, Purcell AW. Human Leukocyte Antigen (HLA) B27 Allotype-Specific Binding and Candidate Arthritogenic Peptides Revealed through Heuristic Clustering of Data-independent Acquisition Mass Spectrometry (DIA-MS) Data. Mol Cell Proteomics 2016; 15:1867-76. [PMID: 26929215 DOI: 10.1074/mcp.m115.056358] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 01/07/2023] Open
Abstract
Expression of HLA-B27 is strongly associated with ankylosing spondylitis (AS) and other spondyloarthropathies. While this is true for the majority of HLA-B27 allotypes, HLA-B*27:06 and HLA-B*27:09 are not associated with AS. These two subtypes contain polymorphisms that are ideally positioned to influence the bound peptide repertoire. The existence of disease-inducing peptides (so-called arthritogenic peptides) has therefore been proposed that are exclusively presented by disease-associated HLA-B27 allotypes. However, we have recently demonstrated that this segregation of allotype-bound peptides is not the case and that many peptides that display sequence features predicted to favor binding to disease-associated subtypes are also capable of being presented naturally by protective alleles. To further probe more subtle quantitative changes in peptide presentation, we have used a combination of data-independent acquisition (DIA) and multiple reaction monitoring (MRM) mass spectrometry to quantify the abundance of 1646 HLA-B27 restricted peptides across the eight most frequent HLA-B27 allotypes (HLA-B*27:02-HLA-B*27:09). We utilized K means cluster analysis to group peptides with similar allelic binding preferences across the eight HLA-B27 allotypes, which enabled us to identify the most-stringent binding characteristics for each HLA-B27 allotype and further refined their existing consensus-binding motifs. Moreover, a thorough analysis of this quantitative dataset led to the identification of 26 peptides, which are presented in lower abundance by HLA-B*27:06 and HLA-B*27:09 compared with disease-associated HLA-B27 subtypes. Although these differences were observed to be very subtle, these 26 peptides might encompass the sought-after arthritogenic peptide(s).
Collapse
Affiliation(s)
- Ralf B Schittenhelm
- From the ‡Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Saranjah Sivaneswaran
- From the ‡Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Terry C C Lim Kam Sian
- From the ‡Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Nathan P Croft
- From the ‡Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Anthony W Purcell
- From the ‡Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
28
|
Marcilla M, Alvarez I, Ramos-Fernández A, Lombardía M, Paradela A, Albar JP. Comparative Analysis of the Endogenous Peptidomes Displayed by HLA-B*27 and Mamu-B*08: Two MHC Class I Alleles Associated with Elite Control of HIV/SIV Infection. J Proteome Res 2016; 15:1059-69. [PMID: 26811146 DOI: 10.1021/acs.jproteome.5b01146] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Indian rhesus macaques are arguably the most reliable animal models in AIDS research. In this species the MHC class I allele Mamu-B*08, among others, is associated with elite control of SIV replication. A similar scenario is observed in humans where the expression of HLA-B*27 or HLA-B*57 has been linked to slow or no progression to AIDS after HIV infection. Despite having large differences in their primary structure, it has been reported that HLA-B*27 and Mamu-B*08 display peptides with sequence similarity. To fine-map the Mamu-B*08 binding motif and assess its similarities with that of HLA-B*27, we affinity purified the peptidomes bound to these MHC class I molecules and analyzed them by LC-MS, identifying several thousands of endogenous ligands. Sequence analysis of both sets of peptides revealed a degree of similarity in their binding motifs, especially at peptide position 2 (P2), where arginine was present in the vast majority of ligands of both allotypes. In addition, several differences emerged from this analysis: (i) ligands displayed by Mamu-B*08 tended to be shorter and to have lower molecular weight, (ii) Mamu-B*08 showed a higher preference for glutamine at P2 as a suboptimal binding motif, and (iii) the second major anchor position, found at PΩ, was much more restrictive in Mamu-B*08. In this regard, HLA-B*27 bound efficiently peptides with aliphatic, aromatic (including tyrosine), and basic C-terminal residues while Mamu-B*08 preferred peptides with leucine and phenylalanine in this position. Finally, in silico estimations of binding efficiency and competitive binding assays to Mamu-B*08 of several selected peptides revealed a good correlation between the characterized anchor motif and binding affinity. These results deepen our understanding of the molecular basis of the presentation of peptides by Mamu-B*08 and can contribute to the detection of novel SIV epitopes restricted by this allotype.
Collapse
Affiliation(s)
- Miguel Marcilla
- Proteomics Unit, Spanish National Biotechnology Centre (CSIC), Darwin 3, 28049 Madrid, Spain
| | - Iñaki Alvarez
- Immunology Unit, Department of Cell Biology, Physiology and Immunology and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona , 08193 Bellaterra, Spain
| | - Antonio Ramos-Fernández
- Proteobotics SL, Spanish National Biotechnology Centre (CSIC), Darwin 3, 28049 Madrid, Spain
| | - Manuel Lombardía
- Proteomics Unit, Spanish National Biotechnology Centre (CSIC), Darwin 3, 28049 Madrid, Spain
| | - Alberto Paradela
- Proteomics Unit, Spanish National Biotechnology Centre (CSIC), Darwin 3, 28049 Madrid, Spain
| | - Juan Pablo Albar
- Proteomics Unit, Spanish National Biotechnology Centre (CSIC), Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
29
|
Mpakali A, Giastas P, Mathioudakis N, Mavridis IM, Saridakis E, Stratikos E. Structural Basis for Antigenic Peptide Recognition and Processing by Endoplasmic Reticulum (ER) Aminopeptidase 2. J Biol Chem 2015; 290:26021-32. [PMID: 26381406 DOI: 10.1074/jbc.m115.685909] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Indexed: 01/26/2023] Open
Abstract
Endoplasmic reticulum (ER) aminopeptidases process antigenic peptide precursors to generate epitopes for presentation by MHC class I molecules and help shape the antigenic peptide repertoire and cytotoxic T-cell responses. To perform this function, ER aminopeptidases have to recognize and process a vast variety of peptide sequences. To understand how these enzymes recognize substrates, we determined crystal structures of ER aminopeptidase 2 (ERAP2) in complex with a substrate analogue and a peptidic product to 2.5 and 2.7 Å, respectively, and compared them to the apo-form structure determined to 3.0 Å. The peptides were found within the internal cavity of the enzyme with no direct access to the outside solvent. The substrate analogue extends away from the catalytic center toward the distal end of the internal cavity, making interactions with several shallow pockets along the path. A similar configuration was evident for the peptidic product, although decreasing electron density toward its C terminus indicated progressive disorder. Enzymatic analysis confirmed that visualized interactions can either positively or negatively impact in vitro trimming rates. Opportunistic side-chain interactions and lack of deep specificity pockets support a limited-selectivity model for antigenic peptide processing by ERAP2. In contrast to proposed models for the homologous ERAP1, no specific recognition of the peptide C terminus by ERAP2 was evident, consistent with functional differences in length selection and self-activation between these two enzymes. Our results suggest that ERAP2 selects substrates by sequestering them in its internal cavity and allowing opportunistic interactions to determine trimming rates, thus combining substrate permissiveness with sequence bias.
Collapse
Affiliation(s)
- Anastasia Mpakali
- From the National Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15310, Greece
| | - Petros Giastas
- From the National Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15310, Greece
| | - Nikolas Mathioudakis
- From the National Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15310, Greece
| | - Irene M Mavridis
- From the National Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15310, Greece
| | - Emmanuel Saridakis
- From the National Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15310, Greece
| | - Efstratios Stratikos
- From the National Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15310, Greece
| |
Collapse
|
30
|
Costantino F, Talpin A, Evnouchidou I, Kadi A, Leboime A, Said-Nahal R, Bonilla N, Letourneur F, Leturcq T, Ka Z, van Endert P, Garchon HJ, Chiocchia G, Breban M. ERAP1 Gene Expression Is Influenced by Nonsynonymous Polymorphisms Associated With Predisposition to Spondyloarthritis. Arthritis Rheumatol 2015; 67:1525-34. [PMID: 25740711 DOI: 10.1002/art.39072] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/10/2015] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Several polymorphisms in ERAP1 are strongly associated with susceptibility to spondyloarthritis (SpA). The combination of rs17482078, rs10050860, and rs30187 results in the construction of 3 major haplotypes that are associated with SpA (the "protective" haplotype T/T/C, the "neutral" haplotype C/C/C, and the "susceptibility" haplotype C/C/T). The aim of the present study was to determine whether such haplotypes might affect endoplasmic reticulum aminopeptidase 1 (ERAP-1) messenger RNA (mRNA) expression, protein level, and/or enzymatic activity in antigen-presenting cells, a type of cell that is potentially relevant to disease pathogenesis. METHODS Monocyte-derived dendritic cells (DCs) were generated in 2 cohorts (a discovery cohort and a replication cohort) comprising a total of 23 SpA patients and 44 healthy controls. Lymphoblastoid B cell lines were established from individuals who were homozygous for the risk, the neutral, or the protective ERAP1 haplotype, respectively. In those samples, we investigated the relationship between ERAP1 haplotypes and mRNA expression level. We also used Western blot analysis to measure the relative protein expression of ERAP-1 and a fluorogenic assay to measure its enzymatic activity. RESULTS In monocyte-derived DCs, there was a strong association between ERAP1 haplotypes and the ERAP-1 mRNA expression level, with higher levels in subjects harboring the susceptibility haplotype (P = 0.001 and P = 5.6 × 10(-7) in the discovery and replication cohorts, respectively). In lymphoblastoid B cell lines, we observed a significant correlation between haplotype risk score and ERAP1 transcript or protein level (P = 0.003, ρ = 0.92 for both). Enzymatic activity followed a similar trend both in monocyte-derived DCs and in lymphoblastoid B cell lines. CONCLUSION These data provide strong evidence that SpA-associated ERAP1 polymorphisms affect the level of gene expression in antigen-presenting cells. How increased production/activity of ERAP-1 may influence susceptibility to SpA remains to be determined.
Collapse
Affiliation(s)
- Félicie Costantino
- INSERM U1173, Université de Versailles St. Quentin-en-Yvelines, and Laboratoire d'Excellence INFLAMEX, Paris, France and Hôpital Ambroise Paré, AP-HP, Boulogne-Billancourt, France
| | - Alice Talpin
- INSERM U1173, Université de Versailles St. Quentin-en-Yvelines, and Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Irini Evnouchidou
- INSERM U1151, CNRS (UMR 8253), Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Amir Kadi
- INSERM U1173, Université de Versailles St. Quentin-en-Yvelines, and Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Ariane Leboime
- Hôpital Ambroise Paré, AP-HP, Boulogne-Billancourt, France
| | | | - Nelly Bonilla
- INSERM U1173, Université de Versailles St. Quentin-en-Yvelines, and Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Franck Letourneur
- Institut Cochin, INSERM U1016, CNRS (UMR8104) and Université Paris Descartes, Paris, France
| | - Tifenn Leturcq
- INSERM U1173, Université de Versailles St. Quentin-en-Yvelines, and Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Zeyna Ka
- INSERM U1173, Université de Versailles St. Quentin-en-Yvelines, and Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Peter van Endert
- INSERM U1151, CNRS (UMR 8253), Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Henri-Jean Garchon
- INSERM U1173, Université de Versailles St. Quentin-en-Yvelines, and Laboratoire d'Excellence INFLAMEX, Paris, France and Hôpital Ambroise Paré, AP-HP, Boulogne-Billancourt, France
| | - Gilles Chiocchia
- INSERM U1173, Université de Versailles St. Quentin-en-Yvelines, and Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Maxime Breban
- INSERM U1173, Université de Versailles St. Quentin-en-Yvelines, and Laboratoire d'Excellence INFLAMEX, Paris, France and Hôpital Ambroise Paré, AP-HP, Boulogne-Billancourt, France
| |
Collapse
|
31
|
|
32
|
Sanz-Bravo A, Campos J, Mazariegos MS, López de Castro JA. Dominant role of the ERAP1 polymorphism R528K in shaping the HLA-B27 Peptidome through differential processing determined by multiple peptide residues. Arthritis Rheumatol 2015; 67:692-701. [PMID: 25469497 DOI: 10.1002/art.38980] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/25/2014] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To characterize the alterations, as well as their mechanisms, induced in the HLA-B27-bound peptidome expressed in live cells by the natural ERAP1 polymorphisms predisposing to ankylosing spondylitis (AS): R528K and N575D/Q725R. METHODS HLA-B*27:05-bound peptides were isolated from 3 human lymphoid cell lines expressing distinct ERAP1 variants differing at residues 528 and/or 575/725. The high-performance liquid chromatography-fractionated peptide pools were compared by mass spectrometry based on identity of molecular mass and chromatographic retention time. The relative amount of each shared peptide in any given cell line pair was estimated from the respective ion peak intensities. Peptide sequencing was also carried out by mass spectrometry. RESULTS HLA-B27-bound ligands predominant in the context of the ERAP1 variant with K528 collectively showed higher molecular mass, higher frequency of N-terminal residues resistant to ERAP1, and bulkier residues downstream of the N-terminus, relative to peptides predominant in the R528 context. None of these differences were observed with ERAP1 variants differing at positions 575/725, but not at residue 528. Neither R528K nor N575D/Q725R altered the mean length of B*27:05-bound ligands. CONCLUSION The R528K, but not the N575D/Q725R, polymorphism alters the expression levels of many HLA-B*27:05-bound peptides, depending on the susceptibility of their N-terminal residues to trimming and depending on the size of the amino acid side chains at multiple positions downstream of the N-terminus. The significant alterations in the B*27:05 peptidome and the structural features of the peptides that determine their differential expression in distinct ERAP1 contexts account for the association of the R528K polymorphism with AS.
Collapse
Affiliation(s)
- Alejandro Sanz-Bravo
- Centro de Biología Molecular Severo Ochoa, CSIC, and Universidad Autónoma, Madrid, Spain
| | | | | | | |
Collapse
|
33
|
Alvarez-Navarro C, Martín-Esteban A, Barnea E, Admon A, López de Castro JA. Endoplasmic Reticulum Aminopeptidase 1 (ERAP1) Polymorphism Relevant to Inflammatory Disease Shapes the Peptidome of the Birdshot Chorioretinopathy-Associated HLA-A*29:02 Antigen. Mol Cell Proteomics 2015; 14:1770-80. [PMID: 25892735 DOI: 10.1074/mcp.m115.048959] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 01/10/2023] Open
Abstract
Birdshot chorioretinopathy is a rare ocular inflammation whose genetic association with HLA-A*29:02 is the highest between a disease and a major histocompatibility complex (MHC) molecule. It belongs to a group of MHC-I-associated inflammatory disorders, also including ankylosing spondylitis, psoriasis, and Behçet's disease, for which endoplasmic reticulum aminopeptidases (ERAP) 1 and/or 2 have been identified as genetic risk factors. Since both enzymes are involved in the processing of MHC-I ligands, it seems reasonable that common peptide-mediated mechanisms may underlie the pathogenesis of these diseases. In this study, comparative immunopeptidomics was used to characterize >5000 A*29:02 ligands and quantify the effects of ERAP1 polymorphism and expression on the A*29:02 peptidome in human cells. The peptides predominant in an active ERAP1 context showed a higher frequency of nonamers and bulkier amino acid side chains at multiple positions, compared with the peptides predominant in a less active ERAP1 background. Thus, ERAP1 polymorphism has a large influence, shaping the A*29:02 peptidome through length-dependent and length-independent effects. These changes resulted in increased affinity and hydrophobicity of A*29:02 ligands in an active ERAP1 context. The results reveal the nature of the functional interaction between A*29:02 and ERAP1 and suggest that this enzyme may affect the susceptibility to birdshot chorioretinopathy by altering the A*29:02 peptidome. The complexity of these alterations is such that not only peptide presentation but also other potentially pathogenic features could be affected.
Collapse
Affiliation(s)
| | | | - Eilon Barnea
- §Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Arie Admon
- §Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
34
|
Meng Q, Zhang X, Liu X, Wang W, Yu P, Shan Q, Mao Z, Zhao T. Association of PTPN22 polymorphsims and ankylosing spondylitis susceptibility. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:933-937. [PMID: 25755798 PMCID: PMC4348882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/22/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND As a susceptibility gene for AS, the polymorphsims of PTPN22 associated with disease susceptibility. METHODS We selected two SNPs of rs1217406 and rs1217414 within PTPN22 with Haploview software and investigated the relationship between the SNPs of PTPN22 gene and AS susceptibility. 120 AS patients and 100 healthy people were enrolled from Qilu Hospital of Shandong University. And we genotyped the SNPs of PTPN22 with PCR-RFLP method. RESULTS The results showed that C allele (rs1217406) and T allele (rs1217414) both were risk factors for AS (OR: 3.12, 2.13). The persons with A-T, C-C or C-T haplotypes were more likely to suffer AS (OR: 3.17, 3.66, 4.011). CONCLUSIONS Due to the close relationship of PTPN22 and AS, the study may be helpful for the early diagnosis and differential diagnosis.
Collapse
Affiliation(s)
- Qingxi Meng
- Department of Spinal Cord Injury, Institute of Orthopedics and Traumatology of Chinese PLA, General Hospital of Jinan Military Area CommandJinan, Shandong, China
| | - Xiaojun Zhang
- Department of Spinal Cord Injury, Institute of Orthopedics and Traumatology of Chinese PLA, General Hospital of Jinan Military Area CommandJinan, Shandong, China
| | - Xin Liu
- Department of Spinal Cord Injury, Institute of Orthopedics and Traumatology of Chinese PLA, General Hospital of Jinan Military Area CommandJinan, Shandong, China
| | - Weiguo Wang
- Department of Spinal Cord Injury, Institute of Orthopedics and Traumatology of Chinese PLA, General Hospital of Jinan Military Area CommandJinan, Shandong, China
| | - Peng Yu
- The First Veteran Institute of Jinan Military RegionJinan, Shandong, China
| | - Qunqun Shan
- Department of Spinal Cord Injury, Institute of Orthopedics and Traumatology of Chinese PLA, General Hospital of Jinan Military Area CommandJinan, Shandong, China
| | - Zhaohu Mao
- Department of Spinal Cord Injury, Institute of Orthopedics and Traumatology of Chinese PLA, General Hospital of Jinan Military Area CommandJinan, Shandong, China
| | - Tingbao Zhao
- Department of Spinal Cord Injury, Institute of Orthopedics and Traumatology of Chinese PLA, General Hospital of Jinan Military Area CommandJinan, Shandong, China
| |
Collapse
|
35
|
Stratikos E, Stamogiannos A, Zervoudi E, Fruci D. A role for naturally occurring alleles of endoplasmic reticulum aminopeptidases in tumor immunity and cancer pre-disposition. Front Oncol 2014; 4:363. [PMID: 25566501 PMCID: PMC4271575 DOI: 10.3389/fonc.2014.00363] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/28/2014] [Indexed: 01/29/2023] Open
Abstract
Endoplasmic reticulum aminopeptidase 1 and 2 (ERAP1 and ERAP2) are key components on the pathway that generates antigenic epitopes for presentation to cytotoxic T-lymphocytes (CTLs). Coding single nucleotide polymorphisms (SNPs) in these enzymes have been associated with pre-disposition to several major human diseases including inflammatory diseases with autoimmune etiology, viral infections, and virally induced cancer. The function of these enzymes has been demonstrated to affect CTL and natural killer cell responses toward healthy and malignant cells as well as the production of inflammatory cytokines. Recent studies have demonstrated that SNPs in ERAP1 and ERAP2 can affect their ability to generate or destroy antigenic epitopes and define the immunopeptidome. In this review, we examine the potential role of these enzymes and their polymorphic states on the generation of cytotoxic responses toward malignantly transformed cells. Given the current state-of-the-art, it is possible that polymorphic variation in these enzymes may contribute to the individual’s pre-disposition to cancer through altered generation or destruction of tumor antigens that can facilitate tumor immune evasion.
Collapse
Affiliation(s)
| | | | - Efthalia Zervoudi
- National Center for Scientific Research Demokritos , Athens , Greece
| | - Doriana Fruci
- Department of Paediatric Haematology/Oncology, IRCCS, Ospedale Pediatrico Bambino Gesù , Rome , Italy
| |
Collapse
|