1
|
Engelgeh T, Wamp S, Rothe P, Herrmann J, Fischer MA, Müller R, Halbedel S. ClpP2 proteasomes and SpxA1 determine Listeria monocytogenes tartrolon B hyper-resistance. PLoS Genet 2025; 21:e1011621. [PMID: 40184427 PMCID: PMC11970672 DOI: 10.1371/journal.pgen.1011621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/13/2025] [Indexed: 04/06/2025] Open
Abstract
The foodborne bacterium Listeria monocytogenes is transmitted to humans from various environmental sources through consumption of contaminated plant and animal-based food. L. monocytogenes uses ATP-binding cassette (ABC)-type drug transporters to resist antimicrobial compounds produced by competitors co-residing in its environmental reservoirs. We have shown previously that the TimAB transporter confers resistance of L. monocytogenes to tartrolon B, a boron containing macrodiolide produced by myxo- and proteobacterial species. Tartrolon B acts as a potassium ionophore and is sensed by TimR, the transcriptional repressor of timABR operon. We here have isolated tartrolon B resistant suppressor mutations outside the timABR locus. These mutations inactivated the clpP2 gene, which encodes the main proteolytic component of house-keeping Clp proteases. Deletion of clpP2 impaired growth and virulence but caused tartrolon B hyper-resistance. This phenotype was timAB-dependent, but neither production nor degradation of TimAB was affected upon clpP2 inactivation. Combinatorial deletions of the genes encoding the three Clp ATPases showed that ClpCP2 and ClpXP2 proteasomes jointly promote tartrolon B hyper-resistance. Genetic follow-up experiments identified the ClpP2 substrate and transcription factor SpxA1 and its protease adaptor YjbH as further tartrolon B resistance determinants. SpxA1 activates transcription of the cydABCD operon encoding cytochrome oxidase and in accordance with this transposon mutants with impaired cytochrome oxidase function were depleted from a transposon mutant library during tartrolon B exposure. Our work demonstrates novel roles of Clp proteasomes, SpxA1 and cytochrome oxidase CydAB in the resistance against compounds dissipating transmembrane ion gradients and helps to better understand the genetic and chemical basis of the manifold ecological interactions of an important human pathogen in its natural ecologic niches.
Collapse
Affiliation(s)
- Tim Engelgeh
- FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Sabrina Wamp
- FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Patricia Rothe
- FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Jennifer Herrmann
- Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) and Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Martin A. Fischer
- FG13 Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) and Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Sven Halbedel
- FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
- Institute for Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
2
|
Ma T, Li X, Montalbán-López M, Wu X, Zheng Z, Mu D. Effect of the Membrane Insertase YidC on the Capacity of Lactococcus lactis to Secret Recombinant Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23320-23332. [PMID: 39382634 DOI: 10.1021/acs.jafc.4c04665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Lactococcus lactis is a crucial food-grade cell factory for secreting valuable peptides and proteins primarily via the Sec-dependent pathway. YidC, a membrane insertase, facilitates protein insertion into the lipid membrane for the translocation. However, the mechanistic details of how YidC affects protein secretion in L. lactis remain elusive. This study investigates the effects of deleting yidC1/yidC2 on L. lactis phenotypes and protein secretion. Compared to the original strain, deleting yidC2 significantly decreased the relative biomass, electroporation efficiency, and F-ATP activity by 25%, 47%, and 33%, respectively, and weakened growth and stress resistance, whereas deleting yidC1 had a minimal impact. The absence of either yidC1 or yidC2 reduced target proteins secretion. Meanwhile, there is a considerable alteration in the transcription levels of genes involved in the secretion pathway, with secY transcription increasing over 135-fold. Our results provide a theoretical foundation for further improving target protein secretion and investigating the YidC function.
Collapse
Affiliation(s)
- Tiange Ma
- School of Food and Biological Engineering, Anhui Fermented Food Engineering Research Center, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Xingjiang Li
- School of Food and Biological Engineering, Anhui Fermented Food Engineering Research Center, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
- Gongda Biotech (Huangshan) Limited Company, Huangshan 245400, China
| | - Manuel Montalbán-López
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Xuefeng Wu
- School of Food and Biological Engineering, Anhui Fermented Food Engineering Research Center, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Zhi Zheng
- School of Food and Biological Engineering, Anhui Fermented Food Engineering Research Center, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Dongdong Mu
- School of Food and Biological Engineering, Anhui Fermented Food Engineering Research Center, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
- Gongda Biotech (Huangshan) Limited Company, Huangshan 245400, China
| |
Collapse
|
3
|
Halbedel S, Wamp S, Lachmann R, Holzer A, Pietzka A, Ruppitsch W, Wilking H, Flieger A. High density genomic surveillance and risk profiling of clinical Listeria monocytogenes subtypes in Germany. Genome Med 2024; 16:115. [PMID: 39375806 PMCID: PMC11457394 DOI: 10.1186/s13073-024-01389-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Foodborne infections such as listeriosis caused by the bacterium Listeria monocytogenes represent a significant public health concern, particularly when outbreaks affect many individuals over prolonged time. Systematic collection of pathogen isolates from infected patients, whole genome sequencing (WGS) and phylogenetic analyses allow recognition and termination of outbreaks after source identification and risk profiling of abundant lineages. METHODS We here present a multi-dimensional analysis of > 1800 genome sequences from clinical L. monocytogenes isolates collected in Germany between 2018 and 2021. Different WGS-based subtyping methods were used to determine the population structure with its main phylogenetic sublineages as well as for identification of disease clusters. Clinical frequencies of materno-foetal and brain infections and in vitro infection experiments were used for risk profiling of the most abundant sublineages. These sublineages and large disease clusters were further characterised in terms of their genetic and epidemiological properties. RESULTS The collected isolates covered 62% of all notified cases and belonged to 188 infection clusters. Forty-two percent of these clusters were active for > 12 months, 60% generated cases cross-regionally, including 11 multinational clusters. Thirty-seven percent of the clusters were caused by sequence type (ST) ST6, ST8 and ST1 clones. ST1 was identified as hyper- and ST8, ST14, ST29 as well as ST155 as hypovirulent, while ST6 had average virulence potential. Inactivating mutations were found in several virulence and house-keeping genes, particularly in hypovirulent STs. CONCLUSIONS Our work presents an in-depth analysis of the genomic characteristics of L. monocytogenes isolates that cause disease in Germany. It supports prioritisation of disease clusters for epidemiological investigations and reinforces the need to analyse the mechanisms underlying hyper- and hypovirulence.
Collapse
Affiliation(s)
- Sven Halbedel
- FG11 Division of Enteropathogenic Bacteria and Legionella, Consultant Laboratory for Listeria, Robert Koch Institute, Burgstrasse 37, Wernigerode, D-38855, Germany.
- Institute for Medical Microbiology and Hospital Hygiene, Otto Von Guericke University Magdeburg, Leipziger Strasse 44, Magdeburg, 39120, Germany.
| | - Sabrina Wamp
- FG11 Division of Enteropathogenic Bacteria and Legionella, Consultant Laboratory for Listeria, Robert Koch Institute, Burgstrasse 37, Wernigerode, D-38855, Germany
| | - Raskit Lachmann
- FG35 - Division for Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Seestrasse 10, Berlin, 13353, Germany
| | - Alexandra Holzer
- FG35 - Division for Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Seestrasse 10, Berlin, 13353, Germany
| | - Ariane Pietzka
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Beethovenstraße 6, Graz, 8010, Austria
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Währingerstrasse 25a, Vienna, 1090, Austria
| | - Hendrik Wilking
- FG35 - Division for Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Seestrasse 10, Berlin, 13353, Germany
| | - Antje Flieger
- FG11 Division of Enteropathogenic Bacteria and Legionella, Consultant Laboratory for Listeria, Robert Koch Institute, Burgstrasse 37, Wernigerode, D-38855, Germany.
| |
Collapse
|
4
|
Liu D, Bhunia AK. Anchorless Bacterial Moonlighting Metabolic Enzymes Modulate the Immune System and Contribute to Pathogenesis. ACS Infect Dis 2024; 10:2551-2566. [PMID: 39066728 DOI: 10.1021/acsinfecdis.4c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Moonlighting proteins (MPs), characterized by their ability to perform multiple physiologically unrelated functions without alterations to their primary structures, represent a fascinating class of biomolecules with significant implications for host-pathogen interactions. This Review highlights the emerging importance of metabolic moonlighting proteins (MetMPs) in bacterial pathogenesis, focusing on their non-canonical secretion and unconventional surface anchoring mechanisms. Despite lacking typical signal peptides and anchoring motifs, MetMPs such as acetaldehyde alcohol dehydrogenase (AdhE) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) are secreted and localized to the bacterial surface under stress conditions, facilitating host colonization and immune evasion. The secretion of MetMPs, often observed during conditions such as resource scarcity or infection, suggests a complex regulation akin to the overexpression of heat shock proteins in response to environmental stresses. This Review proposes two potential pathways for MetMP secretion: membrane damage-induced permeability and co-transportation with traditionally secreted proteins, highlighting a remarkable bacterial adaptability. Biophysically, surface anchoring of MetMPs is driven by electrostatic interactions, bypassing the need for conventional anchoring sequences. This mechanism is exemplified by the interaction between the bifunctional enzyme AdhE (known as Listeria adhesion protein, LAP) and the internalin B (InlB) in Listeria monocytogenes, which is mediated by charged residues facilitating adhesion to host tissues. Furthermore, MetMPs play critical roles in iron homeostasis, immune modulation, and evasion, underscoring their multifaceted roles in bacterial pathogenicity. The intricate dynamics of MetMP secretion and anchoring underline the need for further research to unravel the molecular mechanisms underpinning these processes, offering potential new targets for therapeutic intervention against bacterial infections.
Collapse
Affiliation(s)
- Dongqi Liu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Manqele A, Adesiyun A, Mafuna T, Pierneef R, Moerane R, Gcebe N. Virulence Potential and Antimicrobial Resistance of Listeria monocytogenes Isolates Obtained from Beef and Beef-Based Products Deciphered Using Whole-Genome Sequencing. Microorganisms 2024; 12:1166. [PMID: 38930548 PMCID: PMC11205329 DOI: 10.3390/microorganisms12061166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Listeria monocytogenes is a ubiquitous bacterial pathogen that threatens the food chain and human health. In this study, whole-genome sequencing (WGS) was used for the genomic characterization of L. monocytogenes (n = 24) from beef and beef-based products. Multilocus Sequence Type (MLST) analysis revealed that ST204 of CC204 was the most common sequence type (ST). Other sequence types detected included ST1 and ST876 of CC1, ST5 of CC5, ST9 of CC9, ST88 of CC88, ST2 and ST1430 of CC2, and ST321 of CC321. Genes encoding for virulence factors included complete LIPI-1 (pfrA-hly-plcA-plcB-mpl-actA) from 54% (13/24) of the isolates of ST204, ST321, ST1430, and ST9 and internalin genes inlABC that were present in all the STs. All the L. monocytogenes STs carried four intrinsic/natural resistance genes, fosX, lin, norB, and mprF, conferring resistance to fosfomycin, lincosamide, quinolones, and cationic peptides, respectively. Plasmids pLGUG1 and J1776 were the most detected (54% each), followed by pLI100 (13%) and pLM5578 (7%). The prophage profile, vB_LmoS_188, was overrepresented amongst the isolates, followed by LP_101, LmoS_293_028989, LP_030_2_021539, A006, and LP_HM00113468. Listeria genomic island 2 (LGI-2) was found to be present in all the isolates, while Listeria genomic island 3 (LGI-3) was present in a subset of isolates (25%). The type VII secretion system was found in 42% of the isolates, and sortase A was present in all L. monocytogenes genomes. Mobile genetic elements and genomic islands did not harbor any virulence, resistance, or environmental adaptation genes that may benefit L. monocytogenes. All the STs did not carry genes that confer resistance to first-line antibiotics used for the treatment of listeriosis. The characterization of L. monocytogenes in our study highlighted the environmental resistance and virulence potential of L. monocytogenes and the risk posed to the public, as this bacterium is frequently found in food and food processing environments.
Collapse
Affiliation(s)
- Ayanda Manqele
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
- Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria 0110, South Africa
| | - Abiodun Adesiyun
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
- Department of Basic Veterinary Sciences, University of the West Indies, St. Augustine 999183, Trinidad and Tobago
| | - Thendo Mafuna
- Department of Biochemistry, University of Johannesburg, Johannesburg 20062028, South Africa
| | - Rian Pierneef
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0001, South Africa
- Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria 0001, South Africa
- SARChI Chair: Marine Microbiomics, microbiome@UP, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0001, South Africa
| | - Rebone Moerane
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
| | - Nomakorinte Gcebe
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
- Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria 0110, South Africa
| |
Collapse
|
6
|
Halbedel S, Sperle I, Lachmann R, Kleta S, Fischer MA, Wamp S, Holzer A, Lüth S, Murr L, Freitag C, Espenhain L, Stephan R, Pietzka A, Schjørring S, Bloemberg G, Wenning M, Al Dahouk S, Wilking H, Flieger A. Large Multicountry Outbreak of Invasive Listeriosis by a Listeria monocytogenes ST394 Clone Linked to Smoked Rainbow Trout, 2020 to 2021. Microbiol Spectr 2023; 11:e0352022. [PMID: 37036341 PMCID: PMC10269727 DOI: 10.1128/spectrum.03520-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/17/2023] [Indexed: 04/11/2023] Open
Abstract
Whole-genome sequencing (WGS) has revolutionized surveillance of infectious diseases. Disease outbreaks can now be detected with high precision, and correct attribution of infection sources has been improved. Listeriosis, caused by the bacterium Listeria monocytogenes, is a foodborne disease with a high case fatality rate and a large proportion of outbreak-related cases. Timely recognition of listeriosis outbreaks and precise allocation of food sources are important to prevent further infections and to promote public health. We report the WGS-based identification of a large multinational listeriosis outbreak with 55 cases that affected Germany, Austria, Denmark, and Switzerland during 2020 and 2021. Clinical isolates formed a highly clonal cluster (called Ny9) based on core genome multilocus sequence typing (cgMLST). Routine and ad hoc investigations of food samples identified L. monocytogenes isolates from smoked rainbow trout filets from a Danish producer grouping with the Ny9 cluster. Patient interviews confirmed consumption of rainbow trout as the most likely infection source. The Ny9 cluster was caused by a MLST sequence type (ST) ST394 clone belonging to molecular serogroup IIa, forming a distinct clade within molecular serogroup IIa strains. Analysis of the Ny9 genome revealed clpY, dgcB, and recQ inactivating mutations, but phenotypic characterization of several virulence-associated traits of a representative Ny9 isolate showed that the outbreak strain had the same pathogenic potential as other serogroup IIa strains. Our report demonstrates that international food trade can cause multicountry outbreaks that necessitate cross-border outbreak collaboration. It also corroborates the relevance of ready-to-eat smoked fish products as causes for listeriosis. IMPORTANCE Listeriosis is a severe infectious disease in humans and characterized by an exceptionally high case fatality rate. The disease is transmitted through consumption of food contaminated by the bacterium Listeria monocytogenes. Outbreaks of listeriosis often occur but can be recognized and stopped through implementation of whole-genome sequencing-based pathogen surveillance systems. We here describe the detection and management of a large listeriosis outbreak in Germany and three neighboring countries. This outbreak was caused by rainbow trout filet, which was contaminated by a L. monocytogenes clone belonging to sequence type ST394. This work further expands our knowledge on the genetic diversity and transmission routes of an important foodborne pathogen.
Collapse
Affiliation(s)
- Sven Halbedel
- FG11–Division of Enteropathogenic bacteria and Legionella, Consultant Laboratory for Listeria, Robert Koch Institute, Wernigerode, Germany
- Institute for Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Ida Sperle
- FG35–Division for Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Berlin, Germany
- Postgraduate Training for Applied Epidemiology (PAE), Robert Koch Institute, Berlin, Germany
- ECDC Fellowship Program, Field Epidemiology path (EPIET), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Raskit Lachmann
- FG35–Division for Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Berlin, Germany
| | - Sylvia Kleta
- National Reference Laboratory for Listeria monocytogenes, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Martin A. Fischer
- FG11–Division of Enteropathogenic bacteria and Legionella, Consultant Laboratory for Listeria, Robert Koch Institute, Wernigerode, Germany
| | - Sabrina Wamp
- FG11–Division of Enteropathogenic bacteria and Legionella, Consultant Laboratory for Listeria, Robert Koch Institute, Wernigerode, Germany
| | - Alexandra Holzer
- FG35–Division for Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Berlin, Germany
| | - Stefanie Lüth
- National Reference Laboratory for Listeria monocytogenes, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Larissa Murr
- State Institute for Food, Food Hygiene and Cosmetics, Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Christin Freitag
- Institute for Food of Animal Origin, Rhineland–Palatinate State Investigation Office, Koblenz, Germany
| | - Laura Espenhain
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Ariane Pietzka
- Austrian Agency for Health and Food Safety, Graz, Austria
| | - Susanne Schjørring
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Guido Bloemberg
- Swiss National Center for Enteropathogenic Bacteria and Listeria, Institute for Food Safety and Hygiene, University of Zurich, Switzerland
| | - Mareike Wenning
- State Institute for Food, Food Hygiene and Cosmetics, Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Sascha Al Dahouk
- National Reference Laboratory for Listeria monocytogenes, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Hendrik Wilking
- FG35–Division for Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Berlin, Germany
| | - Antje Flieger
- FG11–Division of Enteropathogenic bacteria and Legionella, Consultant Laboratory for Listeria, Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|
7
|
SecA2 Associates with Translating Ribosomes and Contributes to the Secretion of Potent IFN-β Inducing RNAs. Int J Mol Sci 2022; 23:ijms232315021. [PMID: 36499346 PMCID: PMC9736482 DOI: 10.3390/ijms232315021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Protein secretion plays a central role in modulating interactions of the human pathogen Listeria monocytogenes with its environment. Recently, secretion of RNA has emerged as an important strategy used by the pathogen to manipulate the host cell response to its advantage. In general, the Sec-dependent translocation pathway is a major route for protein secretion in L. monocytogenes, but mechanistic insights into the secretion of RNA by these pathways are lacking. Apart from the classical SecA1 secretion pathway, L. monocytogenes also encodes for a SecA paralogue (SecA2) which targets the export of a specific subset of proteins, some of which are involved in virulence. Here, we demonstrated that SecA2 co-sediments with translating ribosomes and provided evidence that it associates with a subset of secreted small non-coding RNAs (sRNAs) that induce high levels of IFN-β response in host cells. We found that enolase, which is translocated by a SecA2-dependent mechanism, binds to several sRNAs, suggesting a pathway by which sRNAs are targeted to the supernatant of L. monocytogenes.
Collapse
|
8
|
Fischer MA, Engelgeh T, Rothe P, Fuchs S, Thürmer A, Halbedel S. Listeria monocytogenes genes supporting growth under standard laboratory cultivation conditions and during macrophage infection. Genome Res 2022; 32:1711-1726. [PMID: 36114002 PMCID: PMC9528990 DOI: 10.1101/gr.276747.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022]
Abstract
The Gram-positive bacterium Listeria monocytogenes occurs widespread in the environment and infects humans when ingested along with contaminated food. Such infections are particularly dangerous for risk group patients, for whom they represent a life-threatening disease. To invent novel strategies to control contamination and disease, it is important to identify those cellular processes that maintain pathogen growth inside and outside the host. Here, we have applied transposon insertion sequencing (Tn-Seq) to L. monocytogenes for the identification of such processes on a genome-wide scale. Our approach identified 394 open reading frames that are required for growth under standard laboratory conditions and 42 further genes, which become necessary during intracellular growth in macrophages. Most of these genes encode components of the translation machinery and act in chromosome-related processes, cell division, and biosynthesis of the cellular envelope. Several cofactor biosynthesis pathways and 29 genes with unknown functions are also required for growth, suggesting novel options for the development of antilisterial drugs. Among the genes specifically required during intracellular growth are known virulence factors, genes compensating intracellular auxotrophies, and several cell division genes. Our experiments also highlight the importance of PASTA kinase signaling for general viability and of glycine metabolism and chromosome segregation for efficient intracellular growth of L. monocytogenes.
Collapse
Affiliation(s)
- Martin A Fischer
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| | - Tim Engelgeh
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| | - Patricia Rothe
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| | - Stephan Fuchs
- MF1 Bioinformatic Support, Robert Koch Institute, 13353 Berlin, Germany
| | - Andrea Thürmer
- MF2 Genome Sequencing, Robert Koch Institute, 13353 Berlin, Germany
| | - Sven Halbedel
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| |
Collapse
|
9
|
Wamp S, Rothe P, Stern D, Holland G, Döhling J, Halbedel S. MurA escape mutations uncouple peptidoglycan biosynthesis from PrkA signaling. PLoS Pathog 2022; 18:e1010406. [PMID: 35294506 PMCID: PMC8959180 DOI: 10.1371/journal.ppat.1010406] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/28/2022] [Accepted: 02/28/2022] [Indexed: 01/23/2023] Open
Abstract
Gram-positive bacteria are protected by a thick mesh of peptidoglycan (PG) completely engulfing their cells. This PG network is the main component of the bacterial cell wall, it provides rigidity and acts as foundation for the attachment of other surface molecules. Biosynthesis of PG consumes a high amount of cellular resources and therefore requires careful adjustments to environmental conditions. An important switch in the control of PG biosynthesis of Listeria monocytogenes, a Gram-positive pathogen with a high infection fatality rate, is the serine/threonine protein kinase PrkA. A key substrate of this kinase is the small cytosolic protein ReoM. We have shown previously that ReoM phosphorylation regulates PG formation through control of MurA stability. MurA catalyzes the first step in PG biosynthesis and the current model suggests that phosphorylated ReoM prevents MurA degradation by the ClpCP protease. In contrast, conditions leading to ReoM dephosphorylation stimulate MurA degradation. How ReoM controls degradation of MurA and potential other substrates is not understood. Also, the individual contribution of the ~20 other known PrkA targets to PG biosynthesis regulation is unknown. We here present murA mutants which escape proteolytic degradation. The release of MurA from ClpCP-dependent proteolysis was able to activate PG biosynthesis and further enhanced the intrinsic cephalosporin resistance of L. monocytogenes. This latter effect required the RodA3/PBP B3 transglycosylase/transpeptidase pair. One murA escape mutation not only fully rescued an otherwise non-viable prkA mutant during growth in batch culture and inside macrophages but also overcompensated cephalosporin hypersensitivity. Our data collectively indicate that the main purpose of PrkA-mediated signaling in L. monocytogenes is control of MurA stability during standard laboratory growth conditions and intracellular growth in macrophages. These findings have important implications for the understanding of PG biosynthesis regulation and β-lactam resistance of L. monocytogenes and related Gram-positive bacteria. Peptidoglycan (PG) is the main component of the bacterial cell wall and many of the PG synthesizing enzymes are antibiotic targets. We previously have discovered a new signaling route controlling PG production in the human pathogen Listeria monocytogenes. This route also determines the intrinsic resistance of L. monocytogenes against cephalosporins, a group of β-lactam antibiotics. Signaling involves PrkA, a membrane-embedded protein kinase, that is activated during cell wall stress to phosphorylate its target ReoM. Depending on its phosphorylation, ReoM activates or inactivates PG production by controlling the proteolytic stability of MurA, which catalyzes the first step in PG biosynthesis. MurA degradation depends on the ClpCP protease and we here have isolated murA mutations that escape this degradation. Using these mutants, we could show that regulation of PG biosynthesis through control of MurA stability is an important purpose of PrkA-mediated signaling in L. monocytogenes. Further experiments identified the transglycosylase RodA and the transpeptidase PBP B3 as additional downstream factors. Our results suggest that both proteins act together to translate the signals received by PrkA into adjustment of PG biosynthesis. These findings shed new light on the regulation of PG biosynthesis in Gram-positive bacteria with intrinsic β-lactam resistance.
Collapse
Affiliation(s)
- Sabrina Wamp
- FG11 - Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Patricia Rothe
- FG11 - Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Daniel Stern
- ZBS3 - Biological Toxins, Robert Koch Institute, Berlin, Germany
| | - Gudrun Holland
- ZBS4 - Advanced Light and Electron Microscopy, Robert Koch Institute, Berlin, Germany
| | - Janina Döhling
- FG11 - Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Sven Halbedel
- FG11 - Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
- * E-mail:
| |
Collapse
|
10
|
Chafsey I, Ostrowski R, Guilbaud M, Teixeira P, Herry JM, Caccia N, Chambon C, Hébraud M, Azeredo J, Bellon-Fontaine MN, Popowska M, Desvaux M. Deep impact of the inactivation of the SecA2-only protein export pathway on the proteosurfaceome of Listeria monocytogenes. J Proteomics 2022; 250:104388. [PMID: 34601155 DOI: 10.1016/j.jprot.2021.104388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 01/23/2023]
Abstract
Listeria monocytogenes presents a dimorphism associated to the SecA2 activity with cells having a normal rod shape or a dysmorphic elongated filamentous form. Besides variation of the cell and colony morphotype, this cell differentiation has profound ecophysiological and physiopathological implications with collateral effects on virulence and pathogenicity, biotope colonisation, bacterial adhesion and biofilm formation. This suggests the SecA2-only protein export could influence the listerial cell surface, which was investigated first by characterising its properties in L. monocytogenes wt and ΔsecA2. The degree of hydrophilicity and Lewis acid-base properties appeared significantly affected upon SecA2 inactivation. As modification of electrostatic properties would owe to modification in the composition of cell-surface proteins, the proteosurfaceome was further investigated by shotgun label-free proteomic analysis with a comparative relative quantitative approach. Following secretomic analysis, the protein secretion routes of the identified proteins were mapped considering the cognate transport and post-translocational maturation systems, as well as protein categories and subcellular localisation. Differential protein abundance profiles coupled to network analysis revealed the SecA2 dependence of 48 proteins, including some related to cell envelope biogenesis, translation and protein export, which could account for modifications of adhesion and surface properties of L. monocytogenes upon SecA2 inactivation. This investigation unravelled the profound influence of SecA2 activity on the cell surface properties and proteosurfaceome of L. monocytogenes, which provides advanced insights about its ecophysiopathology. SIGNIFICANCE: L. monocytogenes is a foodborne zoonotic pathogen and etiological agent of human listeriosis. This species presents a cellular dimorphism associated to the SecA2 activity that has profound physiopathological and ecophysiological implications with collateral effects on bacterial virulence and colonisation. To explore the influence of the SecA2-only protein export on the listerial cell, the surface properties of L. monocytogenes expressing or depleted of SecA2 was characterised by microelectrophoresis, microbial affinity to solvents and contact angles analyses. As modifications of hydrophilicity and Lewis acid-base electrostatic properties would owe to modification in the composition of cell-surface proteins, the proteinaceous subset of the surfaceome, i.e. the proteosurfaceome, was investigated further by shotgun label-free proteomic analysis. This subproteome appeared quite impacted upon SecA2 inactivation with the identification of proteins accounting for modifications in the cell surface properties. The profound influence of SecA2 activity on the cell surface of L. monocytogenes was unravelled, which provides advanced insights about its ecophysiopathology.
Collapse
Affiliation(s)
- Ingrid Chafsey
- INRAE, Université Clermont Auvergne, UMR454 MEDiS, 63000 Clermont-Ferrand, France
| | - Rafal Ostrowski
- University of Warsaw, Faculty of Biology, Department of Bacterial Physiology, Applied Microbiology, Institute of Microbiology, Warsaw, Poland
| | - Morgan Guilbaud
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91300 Massy, France
| | - Pilar Teixeira
- University of Minho, Centre of Biological Engineering, Campus de Gualtar, Braga 4710-057, Portugal
| | - Jean-Marie Herry
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91300 Massy, France
| | - Nelly Caccia
- INRAE, Université Clermont Auvergne, UMR454 MEDiS, 63000 Clermont-Ferrand, France
| | - Christophe Chambon
- INRAE, Plateforme d'Exploration du Métabolisme, 63122 Saint-Genès Champanelle, France
| | - Michel Hébraud
- INRAE, Université Clermont Auvergne, UMR454 MEDiS, 63000 Clermont-Ferrand, France; INRAE, Plateforme d'Exploration du Métabolisme, 63122 Saint-Genès Champanelle, France
| | - Joana Azeredo
- University of Minho, Centre of Biological Engineering, Campus de Gualtar, Braga 4710-057, Portugal
| | | | - Magdalena Popowska
- University of Warsaw, Faculty of Biology, Department of Bacterial Physiology, Applied Microbiology, Institute of Microbiology, Warsaw, Poland.
| | - Mickaël Desvaux
- INRAE, Université Clermont Auvergne, UMR454 MEDiS, 63000 Clermont-Ferrand, France.
| |
Collapse
|
11
|
Vieira KCDO, Silva HRAD, Rocha IPM, Barboza E, Eller LKW. Foodborne pathogens in the omics era. Crit Rev Food Sci Nutr 2021; 62:6726-6741. [PMID: 33783282 DOI: 10.1080/10408398.2021.1905603] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Outbreaks and deaths related to Foodborne Diseases (FBD) occur constantly in the world, as a result of the consumption of contaminated foodstuffs with pathogens such as Listeria monocytogenes, Escherichia coli, Staphylococcus aureus, Salmonella spp, Clostridium spp. and Campylobacter spp. The purpose of this review is to discuss the main omic techniques applied in foodborne pathogen and to demonstrate their functionalities through the food chain and to guarantee the food safety. The main techniques presented are genomic, transcriptomic, secretomic, proteomic, and metabolomic, which together, in the field of food and nutrition, are known as "Foodomics." This review had highlighted the potential of omics to integrate variables that contribute to food safety and to enable us to understand their application on foodborne diseases. The appropriate use of these techniques had driven the definition of critical parameters to achieve successful results in the improvement of consumers health, costs and to obtain safe and high-quality products.
Collapse
Affiliation(s)
| | | | | | - Emmanuel Barboza
- Health Sciences Faculty, University of Western Sao Paulo, Presidente Prudente, Sao Paulo, Brazil
| | | |
Collapse
|
12
|
Abstract
In addition to SecA of the general Sec system, many Gram-positive bacteria, including mycobacteria, express SecA2, a second, transport-associated ATPase. SecA2s can be subdivided into two mechanistically distinct types: (i) SecA2s that are part of the accessory Sec (aSec) system, a specialized transporter mediating the export of a family of serine-rich repeat (SRR) glycoproteins that function as adhesins, and (ii) SecA2s that are part of multisubstrate systems, in which SecA2 interacts with components of the general Sec system, specifically the SecYEG channel, to export multiple types of substrates. Found mainly in streptococci and staphylococci, the aSec system also contains SecY2 and novel accessory Sec proteins (Asps) that are required for optimal export. Asp2 also acetylates glucosamine residues on the SRR domains of the substrate during transport. Targeting of the SRR substrate to SecA2 and the aSec translocon is mediated by a specialized signal peptide. Multisubstrate SecA2 systems are present in mycobacteria, corynebacteria, listeriae, clostridia, and some bacillus species. Although most substrates for this SecA2 have canonical signal peptides that are required for export, targeting to SecA2 appears to depend on structural features of the mature protein. The feature of the mature domains of these proteins that renders them dependent on SecA2 for export may be their potential to fold in the cytoplasm. The discovery of aSec and multisubstrate SecA2 systems expands our appreciation of the diversity of bacterial export pathways. Here we present our current understanding of the mechanisms of each of these SecA2 systems.
Collapse
|
13
|
Mishra S, Crowley PJ, Wright KR, Palmer SR, Walker AR, Datta S, Brady J. Membrane proteomic analysis reveals overlapping and independent functions of Streptococcus mutans Ffh, YidC1, and YidC2. Mol Oral Microbiol 2019; 34:131-152. [PMID: 31034136 PMCID: PMC6625898 DOI: 10.1111/omi.12261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 11/29/2022]
Abstract
A comparative proteomic analysis was utilized to evaluate similarities and differences in membrane samples derived from the cariogenic bacterium Streptococcus mutans, including the wild-type strain and four mutants devoid of protein translocation machinery components, specifically ∆ffh, ∆yidC1, ∆yidC2, or ∆ffh/yidC1. The purpose of this work was to determine the extent to which the encoded proteins operate individually or in concert with one another and to identify the potential substrates of the respective pathways. Ffh is the principal protein component of the signal recognition particle (SRP), while yidC1 and yidC2 are dual paralogs encoding members of the YidC/Oxa/Alb family of membrane-localized chaperone insertases. Our results suggest that the co-translational SRP pathway works in concert with either YidC1 or YidC2 specifically, or with no preference for paralog, in the insertion of most membrane-localized substrates. A few instances were identified in which the SRP pathway alone, or one of the YidCs alone, appeared to be most relevant. These data shed light on underlying reasons for differing phenotypic consequences of ffh, yidC1 or yidC2 deletion. Our data further suggest that many membrane proteins present in a ∆yidC2 background may be non-functional, that ∆yidC1 is better able to adapt physiologically to the loss of this paralog, that shared phenotypic properties of ∆ffh and ∆yidC2 mutants can stem from impacts on different proteins, and that independent binding to ribosomal proteins is not a primary functional activity of YidC2. Lastly, genomic mutations accumulate in a ∆yidC2 background coincident with phenotypic reversion, including an apparent W138R suppressor mutation within yidC1.
Collapse
Affiliation(s)
- Surabhi Mishra
- Department of Oral Biology, University of Florida, P.O. Box 100424, Gainesville, Florida 32610
| | - Paula J. Crowley
- Department of Oral Biology, University of Florida, P.O. Box 100424, Gainesville, Florida 32610
| | - Katherine R. Wright
- Division of Biosciences College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Sara R. Palmer
- Division of Biosciences College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Alejandro R. Walker
- Department of Oral Biology, University of Florida, P.O. Box 100424, Gainesville, Florida 32610
| | - Susmita Datta
- Department of Biostatistics, College of Public Health & Health Professions College of Medicine, University of Florida, 2004 Mowry Rd, P.O. Box 117450, Gainesville, FL 32611
| | - Jeannine Brady
- Department of Oral Biology, University of Florida, P.O. Box 100424, Gainesville, Florida 32610
| |
Collapse
|
14
|
Hauf S, Möller L, Fuchs S, Halbedel S. PadR-type repressors controlling production of a non-canonical FtsW/RodA homologue and other trans-membrane proteins. Sci Rep 2019; 9:10023. [PMID: 31296881 PMCID: PMC6624303 DOI: 10.1038/s41598-019-46347-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 06/27/2019] [Indexed: 01/02/2023] Open
Abstract
The Gram-positive bacterium Listeria monocytogenes occurs ubiquitously in the environment and infects humans upon ingestion. It encodes four PadR-like repressors, out of which LftR has been characterized previously and was shown to control gene expression in response to the antibiotic aurantimycin produced by other environmental bacteria. To better understand the PadR regulons of L. monocytogenes, we performed RNA-sequencing with mutants of the other three repressors LadR, LstR and Lmo0599. We show that LadR is primarily responsible for the regulation of the mdrL gene, encoding an efflux pump, while LstR and Lmo0599 mainly regulate their own operons. The lstR operon contains the lmo0421 gene, encoding a homolog of the RodA/FtsW protein family. However, this protein does not possess such functionality, as we demonstrate here. The lmo0599 operon contains two additional genes coding for the hypothetical trans-membrane proteins lmo0600 and lmo0601. A striking phenotype of the lmo0599 mutant is its impaired growth at refrigeration temperature. In light of these and other results we suggest that Lmo0599 should be renamed and propose LltR (listerial low temperature regulator) as its new designation. Based on the nature of the PadR target genes we assume that these repressors collectively respond to compounds acting on the cellular envelope.
Collapse
Affiliation(s)
- Samuel Hauf
- FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Burgstrasse 37, 38855, Wernigerode, Germany
| | - Lars Möller
- ZBS 4 - Advanced Light and Electron Microscopy, Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany
| | - Stephan Fuchs
- FG13 Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Burgstrasse 37, 38855, Wernigerode, Germany
| | - Sven Halbedel
- FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Burgstrasse 37, 38855, Wernigerode, Germany.
| |
Collapse
|
15
|
Halbedel S, Prager R, Banerji S, Kleta S, Trost E, Nishanth G, Alles G, Hölzel C, Schlesiger F, Pietzka A, Schlüter D, Flieger A. A Listeria monocytogenes ST2 clone lacking chitinase ChiB from an outbreak of non-invasive gastroenteritis. Emerg Microbes Infect 2019; 8:17-28. [PMID: 30866756 PMCID: PMC6455121 DOI: 10.1080/22221751.2018.1558960] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 12/27/2022]
Abstract
An outbreak with a remarkable Listeria monocytogenes clone causing 163 cases of non-invasive listeriosis occurred in Germany in 2015. Core genome multi locus sequence typing grouped non-invasive outbreak isolates and isolates obtained from related food samples into a single cluster, but clearly separated genetically close isolates obtained from invasive listeriosis cases. A comparative genomic approach identified a premature stop codon in the chiB gene, encoding one of the two L. monocytogenes chitinases, which clustered with disease outcome. Correction of this premature stop codon in one representative gastroenteritis outbreak isolate restored chitinase production, but effects in infection experiments were not found. While the exact role of chitinases in virulence of L. monocytogenes is still not fully understood, our results now clearly show that ChiB-derived activity is not required to establish L. monocytogenes gastroenteritis in humans. This limits a possible role of ChiB in human listeriosis to later steps of the infection.
Collapse
Affiliation(s)
- Sven Halbedel
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Rita Prager
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Sangeeta Banerji
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Sylvia Kleta
- German Federal Institute for Risk AssessmentBerlin, Germany
| | - Eva Trost
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Gopala Nishanth
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Georg Alles
- Paderborn District, Health Office, Paderborn, Germany
| | - Christina Hölzel
- Faculty of Agricultural and Nutritional Sciences, CAU Kiel, Kiel, Germany
- Milk Hygiene, Faculty of Veterinary Medicine, LMU Munich, Oberschleißheim, Germany
| | - Friederike Schlesiger
- Chemical and Veterinary Analytical Institute Ostwestfalen-Lippe (CVUA-OWL), Detmold, Germany
| | - Ariane Pietzka
- German-Austrian Binational Consiliary Laboratory for Listeria, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- Organ-specific Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Antje Flieger
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|
16
|
Genetic Dissection of DivIVA Functions in Listeria monocytogenes. J Bacteriol 2017; 199:JB.00421-17. [PMID: 28972021 DOI: 10.1128/jb.00421-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/22/2017] [Indexed: 12/30/2022] Open
Abstract
DivIVA is a membrane binding protein that clusters at curved membrane regions, such as the cell poles and the membrane invaginations occurring during cell division. DivIVA proteins recruit many other proteins to these subcellular sites through direct protein-protein interactions. DivIVA-dependent functions are typically associated with cell growth and division, even though species-specific differences in the spectrum of DivIVA functions and their causative interaction partners exist. DivIVA from the Gram-positive human pathogen Listeria monocytogenes has at least three different functions. In this bacterium, DivIVA is required for precise positioning of the septum at midcell, it contributes to the secretion of autolysins required for the breakdown of peptidoglycan at the septum after the completion of cell division, and it is essential for flagellar motility. While the DivIVA interaction partners for control of division site selection are well established, the proteins connecting DivIVA with autolysin secretion or swarming motility are completely unknown. We set out to identify divIVA alleles in which these three DivIVA functions could be separated, since the question of the degree to which the three functions of L. monocytogenes DivIVA are interlinked could not be answered before. Here, we identify such alleles, and our results show that division site selection, autolysin secretion, and swarming represent three discrete pathways that are independently influenced by DivIVA. These findings provide the required basis for the identification of DivIVA interaction partners controlling autolysin secretion and swarming in the future.IMPORTANCE DivIVA of the pathogenic bacterium Listeria monocytogenes is a central scaffold protein that influences at least three different cellular processes, namely, cell division, protein secretion, and bacterial motility. How DivIVA coordinates these rather unrelated processes is not known. We here identify variants of L. monocytogenes DivIVA, in which these functions are separated from each other. These results have important implications for the models explaining how DivIVA interacts with other proteins.
Collapse
|
17
|
Listeriomics: an Interactive Web Platform for Systems Biology of Listeria. mSystems 2017; 2:mSystems00186-16. [PMID: 28317029 PMCID: PMC5350546 DOI: 10.1128/msystems.00186-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/02/2017] [Indexed: 12/19/2022] Open
Abstract
In the last decades, Listeria has become a key model organism for the study of host-pathogen interactions, noncoding RNA regulation, and bacterial adaptation to stress. To study these mechanisms, several genomics, transcriptomics, and proteomics data sets have been produced. We have developed Listeriomics, an interactive web platform to browse and correlate these heterogeneous sources of information. Our website will allow listeriologists and microbiologists to decipher key regulation mechanism by using a systems biology approach. As for many model organisms, the amount of Listeria omics data produced has recently increased exponentially. There are now >80 published complete Listeria genomes, around 350 different transcriptomic data sets, and 25 proteomic data sets available. The analysis of these data sets through a systems biology approach and the generation of tools for biologists to browse these various data are a challenge for bioinformaticians. We have developed a web-based platform, named Listeriomics, that integrates different tools for omics data analyses, i.e., (i) an interactive genome viewer to display gene expression arrays, tiling arrays, and sequencing data sets along with proteomics and genomics data sets; (ii) an expression and protein atlas that connects every gene, small RNA, antisense RNA, or protein with the most relevant omics data; (iii) a specific tool for exploring protein conservation through the Listeria phylogenomic tree; and (iv) a coexpression network tool for the discovery of potential new regulations. Our platform integrates all the complete Listeria species genomes, transcriptomes, and proteomes published to date. This website allows navigation among all these data sets with enriched metadata in a user-friendly format and can be used as a central database for systems biology analysis. IMPORTANCE In the last decades, Listeria has become a key model organism for the study of host-pathogen interactions, noncoding RNA regulation, and bacterial adaptation to stress. To study these mechanisms, several genomics, transcriptomics, and proteomics data sets have been produced. We have developed Listeriomics, an interactive web platform to browse and correlate these heterogeneous sources of information. Our website will allow listeriologists and microbiologists to decipher key regulation mechanism by using a systems biology approach.
Collapse
|
18
|
Abstract
Twin-arginine protein translocation systems (Tat) translocate fully folded and co-factor-containing proteins across biological membranes. In this review, we focus on the Tat pathway of Gram-positive bacteria. The minimal Tat pathway is composed of two components, namely a TatA and TatC pair, which are often complemented with additional TatA-like proteins. We provide overviews of our current understanding of Tat pathway composition and mechanistic aspects related to Tat-dependent cargo protein translocation. This includes Tat pathway flexibility, requirements for the correct folding and incorporation of co-factors in cargo proteins and the functions of known cargo proteins. Tat pathways of several Gram-positive bacteria are discussed in detail, with emphasis on the Tat pathway of Bacillus subtilis. We discuss both shared and unique features of the different Gram-positive bacterial Tat pathways. Lastly, we highlight topics for future research on Tat, including the development of this protein transport pathway for the biotechnological secretion of high-value proteins and its potential applicability as an antimicrobial drug target in pathogens.
Collapse
Affiliation(s)
- Vivianne J Goosens
- MRC Centre for Molecular Bacteriology and Infection, Section of Microbiology, Imperial College London, London, SW7 2AZ, UK
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700, RB, Groningen, The Netherlands.
| |
Collapse
|
19
|
Prabudiansyah I, Driessen AJM. The Canonical and Accessory Sec System of Gram-positive Bacteria. Curr Top Microbiol Immunol 2016; 404:45-67. [DOI: 10.1007/82_2016_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Rismondo J, Cleverley RM, Lane HV, Großhennig S, Steglich A, Möller L, Mannala GK, Hain T, Lewis RJ, Halbedel S. Structure of the bacterial cell division determinant GpsB and its interaction with penicillin-binding proteins. Mol Microbiol 2015; 99:978-98. [PMID: 26575090 DOI: 10.1111/mmi.13279] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2015] [Indexed: 01/05/2023]
Abstract
Each bacterium has to co-ordinate its growth with division to ensure genetic stability of the population. Consequently, cell division and growth are tightly regulated phenomena, albeit different bacteria utilise one of several alternative regulatory mechanisms to maintain control. Here we consider GpsB, which is linked to cell growth and division in Gram-positive bacteria. ΔgpsB mutants of the human pathogen Listeria monocytogenes show severe lysis, division and growth defects due to distortions of cell wall biosynthesis. Consistent with this premise, GpsB interacts both in vitro and in vivo with the major bi-functional penicillin-binding protein. We solved the crystal structure of GpsB and the interaction interfaces in both proteins are identified and validated. The inactivation of gpsB results in strongly attenuated virulence in animal experiments, comparable in degree to classical listerial virulence factor mutants. Therefore, GpsB is essential for in vitro and in vivo growth of a highly virulent food-borne pathogen, suggesting that GpsB could be a target for the future design of novel antibacterials.
Collapse
Affiliation(s)
- Jeanine Rismondo
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Robert M Cleverley
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, UK
| | - Harriet V Lane
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, UK
| | - Stephanie Großhennig
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany.,Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University, Göttingen, Germany
| | - Anne Steglich
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Lars Möller
- ZBS 4 - Advanced Light and Electron Microscopy, Robert Koch Institute, Berlin, Germany
| | | | - Torsten Hain
- Institute of Medical Microbiology, University of Gießen, Gießen, Germany
| | - Richard J Lewis
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, UK
| | - Sven Halbedel
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|
21
|
Kaval KG, Hahn B, Tusamda N, Albrecht D, Halbedel S. The PadR-like transcriptional regulator LftR ensures efficient invasion of Listeria monocytogenes into human host cells. Front Microbiol 2015; 6:772. [PMID: 26284051 PMCID: PMC4517056 DOI: 10.3389/fmicb.2015.00772] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/14/2015] [Indexed: 12/11/2022] Open
Abstract
Invasion of the bacterial pathogen Listeria monocytogenes into human host cells requires specialized surface molecules for attachment and induction of phagocytosis. However, efficient invasion is also dependent on factors with house-keeping functions, such as SecA2-dependent secretion of autolysins for post-divisional segregation of daughter cells. Mutations in this pathway prevent degradation of peptidoglycan cross-walls, so that long cell chains are formed that cannot be phagocytosed. The extreme chaining of such mutants manifests as rough colony phenotype. One rough clone was isolated from a transposon library with a transposon insertion in the uncharacterized lmo0720 gene (lftS) together with a spontaneous point mutation in the secA2 gene. We separated both mutations and demonstrated that this point mutation in the intramolecular regulator 2 domain of SecA2 was sufficient to inactivate the protein. In contrast, lftS deletion did not cause a ΔsecA2-like phenotype. lftS is located in an operon with lftR (lmo0719), encoding a PadR-like transcriptional regulator, and lftR deletion affected growth, invasion and day-light dependent coordination of swarming. Inactivation of lftS partially suppressed these phenotypes, suggesting a functional relationship between LftR and LftS. However, the invasion defect of the ΔlftR mutant was only marginally suppressed by lftS removal. LftR regulates expression of the lmo0979–0980 (lieAB) operon, encoding a putative multidrug resistance transporter and lieAB transcription was strongly upregulated in the absence of LftR. Deletion of lieAB in the ΔlftR background restores wild type-like invasion levels. Hence, we conclude that tight transcriptional repression of the lieAB operon is essential for efficient listerial host cell invasion.
Collapse
Affiliation(s)
- Karan G Kaval
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute Wernigerode, Germany
| | - Birgitt Hahn
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute Wernigerode, Germany
| | - Nayana Tusamda
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute Wernigerode, Germany
| | - Dirk Albrecht
- Institute of Microbiology, University of Greifswald Greifswald, Germany
| | - Sven Halbedel
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute Wernigerode, Germany
| |
Collapse
|
22
|
In Vitro Interaction of the Housekeeping SecA1 with the Accessory SecA2 Protein of Mycobacterium tuberculosis. PLoS One 2015; 10:e0128788. [PMID: 26047312 PMCID: PMC4457860 DOI: 10.1371/journal.pone.0128788] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/30/2015] [Indexed: 12/22/2022] Open
Abstract
The majority of proteins that are secreted across the bacterial cytoplasmic membrane leave the cell via the Sec pathway, which in its minimal form consists of the dimeric ATP-driven motor protein SecA that associates with the protein-conducting membrane pore SecYEG. Some Gram-positive bacteria contain two homologues of SecA, termed SecA1 and SecA2. SecA1 is the essential housekeeping protein, whereas SecA2 is not essential but is involved in the translocation of a subset of proteins, including various virulence factors. Some SecA2 containing bacteria also harbor a homologous SecY2 protein that may form a separate translocase. Interestingly, mycobacteria contain only one SecY protein and thus both SecA1 and SecA2 are required to interact with SecYEG, either individually or together as a heterodimer. In order to address whether SecA1 and SecA2 cooperate during secretion of SecA2 dependent proteins, we examined the oligomeric state of SecA1 and SecA2 of Mycobacterium tuberculosis and their interactions with SecA2 and the cognate SecA1, respectively. We conclude that both SecA1 and SecA2 individually form homodimers in solution but when both proteins are present simultaneously, they form dissociable heterodimers.
Collapse
|
23
|
A prl mutation in SecY suppresses secretion and virulence defects of Listeria monocytogenes secA2 mutants. J Bacteriol 2014; 197:932-42. [PMID: 25535272 DOI: 10.1128/jb.02284-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bulk of bacterial protein secretion occurs through the conserved SecY translocation channel that is powered by SecA-dependent ATP hydrolysis. Many Gram-positive bacteria, including the human pathogen Listeria monocytogenes, possess an additional nonessential specialized ATPase, SecA2. SecA2-dependent secretion is required for normal cell morphology and virulence in L. monocytogenes; however, the mechanism of export via this pathway is poorly understood. L. monocytogenes secA2 mutants form rough colonies, have septation defects, are impaired for swarming motility, and form small plaques in tissue culture cells. In this study, 70 spontaneous mutants were isolated that restored swarming motility to L. monocytogenes secA2 mutants. Most of the mutants had smooth colony morphology and septated normally, but all were lysozyme sensitive. Five representative mutants were subjected to whole-genome sequencing. Four of the five had mutations in proteins encoded by the lmo2769 operon that conferred lysozyme sensitivity and increased swarming but did not rescue virulence defects. A point mutation in secY was identified that conferred smooth colony morphology to secA2 mutants, restored wild-type plaque formation, and increased virulence in mice. This secY mutation resembled a prl suppressor known to expand the repertoire of proteins secreted through the SecY translocation complex. Accordingly, the ΔsecA2prlA1 mutant showed wild-type secretion levels of P60, an established SecA2-dependent secreted autolysin. Although the prl mutation largely suppressed almost all of the measurable SecA2-dependent traits, the ΔsecA2prlA1 mutant was still less virulent in vivo than the wild-type strain, suggesting that SecA2 function was still required for pathogenesis.
Collapse
|
24
|
Rismondo J, Möller L, Aldridge C, Gray J, Vollmer W, Halbedel S. Discrete and overlapping functions of peptidoglycan synthases in growth, cell division and virulence of Listeria monocytogenes. Mol Microbiol 2014; 95:332-51. [PMID: 25424554 PMCID: PMC4320753 DOI: 10.1111/mmi.12873] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2014] [Indexed: 12/19/2022]
Abstract
Upon ingestion of contaminated food, Listeria monocytogenes can cause serious infections in humans that are normally treated with β-lactam antibiotics. These target Listeria's five high molecular weight penicillin-binding proteins (HMW PBPs), which are required for peptidoglycan biosynthesis. The two bi-functional class A HMW PBPs PBP A1 and PBP A2 have transglycosylase and transpeptidase domains catalyzing glycan chain polymerization and peptide cross-linking, respectively, whereas the three class B HMW PBPs B1, B2 and B3 are monofunctional transpeptidases. The precise roles of these PBPs in the cell cycle are unknown. Here we show that green fluorescent protein (GFP)-PBP fusions localized either at the septum, the lateral wall or both, suggesting distinct and overlapping functions. Genetic data confirmed this view: PBP A1 and PBP A2 could not be inactivated simultaneously, and a conditional double mutant strain is largely inducer dependent. PBP B1 is required for rod-shape and PBP B2 for cross-wall biosynthesis and viability, whereas PBP B3 is dispensable for growth and cell division. PBP B1 depletion dramatically increased β-lactam susceptibilities and stimulated spontaneous autolysis but had no effect on peptidoglycan cross-linkage. Our in vitro virulence assays indicated that the complete set of all HMW PBPs is required for maximal virulence.
Collapse
Affiliation(s)
- Jeanine Rismondo
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Burgstrasse 37, 38855, Wernigerode, Germany
| | | | | | | | | | | |
Collapse
|