1
|
Saw PE, Song E. The 'inflammazone' in chronic inflammatory diseases: psoriasis and sarcoidosis. Trends Immunol 2025; 46:121-137. [PMID: 39875239 DOI: 10.1016/j.it.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
Chronic inflammatory diseases show significant heterogeneity in their phenotypes, with diverse immune cells and mediators interacting in response to various stimuli. This review proposes the concept of the 'inflammazone' framework - which maps the distribution of immune components driving disease pathogenesis - using sarcoidosis and psoriasis as examples. Sarcoidosis features granulomatous inflammation with macrophages and CD4+ T cells, which can spread to lymph nodes and other organs. Psoriasis, affecting primarily the skin, involves Th1, Th17, and Th22 pathways with CD8+ T cells and dendritic cells. Human sarcoidosis exhibits geographic and racial variability, while psoriasis shows varying morphologies and disease courses. Sarcoidosis has more extensive distal immune signaling, whereas psoriasis remains more localized. Understanding the inflammazone is crucial for advancing personalized treatments for inflammatory diseases.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Nanhai Clinical Translational Center, Sun Yat-sen Memorial Hospital, Foshan, China; Department of General Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Nanhai Clinical Translational Center, Sun Yat-sen Memorial Hospital, Foshan, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Zenith Institute of Medical Sciences, Guangzhou 510120, China.
| |
Collapse
|
2
|
Wang J, Li J, Zhou L, Hou H, Zhang K. Regulation of epidermal barrier function and pathogenesis of psoriasis by serine protease inhibitors. Front Immunol 2024; 15:1498067. [PMID: 39737188 PMCID: PMC11683130 DOI: 10.3389/fimmu.2024.1498067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Serine protease inhibitors (Serpins) are a protein superfamily of protease inhibitors that are thought to play a role in the regulation of inflammation, immunity, tumorigenesis, coagulation, blood pressure and cancer metastasis. Serpins is enriched in the skin and play a vital role in modulating the epidermal barrier and maintaining skin homeostasis. Psoriasis is a chronic inflammatory immune-mediated skin disease. At present, most serpins focus on the pathogenesis of psoriasis vulgaris. Only a small number, such as the mutation of SerpinA1/A3/B3, are involved in the pathogenesis of GPP. SerpinA12 and SerpinG1 are significantly elevated in the serum of patients with psoriatic arthritis, but their specific mechanism of action in psoriatic arthritis has not been reported. Some Serpins, including SerpinA12, SerpinB2/B3/B7, play multiple roles in skin barrier function and pathogenesis of psoriasis. The decrease in the expression of SerpinA12, SerpinB7 deficiency and increase in expression of SerpinB3/4 in the skin can promote inflammation and poor differentiation of keratinocyte, with damaged skin barrier. Pso p27, derived from SerpinB3/B4, is an autoantigen that can enhance immune response in psoriasis. SerpinB2 plays a role in maintaining epidermal barrier integrity and inhibiting keratinocyte proliferation. Here we briefly introduce the structure, functional characteristics, expression and distribution of serpins in skin and focus on the regulation of serpins in the epidermal barrier function and the pathogenic role of serpins in psoriasis.
Collapse
Affiliation(s)
- Juanjuan Wang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
| | - Ling Zhou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
| | - Hui Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
| |
Collapse
|
3
|
Leotsakos G, Katafigiotis I, Leotsakos I, Kousta F, Molympakis A, Perimeni A, Koutsilieris M. Proteomics in Psoriasis: Recent Advances. In Vivo 2024; 38:1000-1008. [PMID: 38688625 PMCID: PMC11059918 DOI: 10.21873/invivo.13533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 05/02/2024]
Abstract
Psoriasis continues to affect a large percentage of patients worldwide and strongly appears to be a systematic disease. Efforts are being made to understand its etiology, which have led to research extended to genomic analysis with a focus on the role of pro-inflammatory cytokines, which play a major role in the pathogenesis of the disease. Plasma proteomic analysis in various diseases has provided promising results for choosing the right treatment for psoriasis, suggesting that it could play a key role in the prevention, prognosis, and treatment of the disease by individualizing treatment choices based on the proteomic profile of each patient. In this review, we focus on existing data in the bibliography on proteomic analysis in psoriasis and relevant approaches to future targeted therapies.
Collapse
Affiliation(s)
- Georgios Leotsakos
- 1 Department of Dermatology and Venereology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | | | | | - Fiori Kousta
- Andreas Syngros Venerea I and Skin Diseases Hospital, Athens, Greece
| | | | | | | |
Collapse
|
4
|
Radulska A, Pelikant-Małecka I, Jendernalik K, Dobrucki IT, Kalinowski L. Proteomic and Metabolomic Changes in Psoriasis Preclinical and Clinical Aspects. Int J Mol Sci 2023; 24:ijms24119507. [PMID: 37298466 DOI: 10.3390/ijms24119507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Skin diseases such as psoriasis (Ps) and psoriatic arthritis (PsA) are immune-mediated inflammatory diseases. Overlap of autoinflammatory and autoimmune conditions hinders diagnoses and identifying personalized patient treatments due to different psoriasis subtypes and the lack of verified biomarkers. Recently, proteomics and metabolomics have been intensively investigated in a broad range of skin diseases with the main purpose of identifying proteins and small molecules involved in the pathogenesis and development of the disease. This review discusses proteomics and metabolomics strategies and their utility in research and clinical practice in psoriasis and psoriasis arthritis. We summarize the studies, from in vivo models conducted on animals through academic research to clinical trials, and highlight their contribution to the discovery of biomarkers and targets for biological drugs.
Collapse
Affiliation(s)
- Adrianna Radulska
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 7 Debinki Street, 80-211 Gdansk, Poland
| | - Iwona Pelikant-Małecka
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 7 Debinki Street, 80-211 Gdansk, Poland
| | - Kamila Jendernalik
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 7 Debinki Street, 80-211 Gdansk, Poland
| | - Iwona T Dobrucki
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405N Mathews Ave., MC-251, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 7 Debinki Street, 80-211 Gdansk, Poland
- BioTechMed Centre/Department of Mechanics of Materials and Structures, Gdansk University of Technology, 11/12 Narutowicza Street, 80-233 Gdansk, Poland
| |
Collapse
|
5
|
Clayton K, Holbrook DJ, Vallejo A, Porter G, Sirvent S, Davies J, Pople J, Lim FL, Christodoulides M, Polak ME, Ardern-Jones MR. Skin programming of inflammatory responses to Staphylococcus aureus is compartmentalized according to epidermal keratinocyte differentiation status. Br J Dermatol 2023; 188:396-406. [PMID: 36637891 DOI: 10.1093/bjd/ljac088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 10/20/2022] [Accepted: 11/05/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND Acute cutaneous inflammation causes microbiome alterations as well as ultrastructural changes in epidermis stratification. However, the interactions between keratinocyte proliferation and differentiation status and the skin microbiome have not been fully explored. OBJECTIVES Hypothesizing that the skin microbiome contributes to regulation of keratinocyte differentiation and can modify antimicrobial responses, we examined the effect of exposure to commensal (Staphylococcus epidermidis, SE) or pathogenic (Staphylococcus aureus, SA) challenge on epidermal models. METHODS Explant biopsies were taken to investigate species-specific antimicrobial effects of host factors. Further investigations were performed in reconstituted epidermal models by bulk transcriptomic analysis alongside secreted protein profiling. Single-cell RNA sequencing analysis was performed to explore the keratinocyte populations responsible for SA inflammation. A dataset of 6391 keratinocytes from control (2044 cells), SE challenge (2028 cells) and SA challenge (2319 cells) was generated from reconstituted epidermal models. RESULTS Bacterial lawns of SA, not SE, were inhibited by human skin explant samples, and microarray analysis of three-dimensional epidermis models showed that host antimicrobial peptide expression was induced by SE but not SA. Protein analysis of bacterial cocultured models showed that SA exposure induced inflammatory mediator expression, indicating keratinocyte activation of other epidermal immune populations. Single-cell DropSeq analysis of unchallenged naive, SE-challenged and SA-challenged epidermis models was undertaken to distinguish cells from basal, spinous and granular layers, and to interrogate them in relation to model exposure. In contrast to SE, SA specifically induced a subpopulation of spinous cells that highly expressed transcripts related to epidermal inflammation and antimicrobial response. Furthermore, SA, but not SE, specifically induced a basal population that highly expressed interleukin-1 alarmins. CONCLUSIONS These findings suggest that SA-associated remodelling of the epidermis is compartmentalized to different keratinocyte populations. Elucidating the mechanisms regulating bacterial sensing-triggered inflammatory responses within tissues will enable further understanding of microbiome dysbiosis and inflammatory skin diseases, such as atopic eczema.
Collapse
Affiliation(s)
- Kalum Clayton
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Daniel J Holbrook
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Andres Vallejo
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Gemma Porter
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Sofia Sirvent
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, UK
| | - James Davies
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jenny Pople
- Unilever, Colworth Science Park, Sharnbrook, Bedford, UK
| | - Fei Ling Lim
- Unilever, Colworth Science Park, Sharnbrook, Bedford, UK
| | - Myron Christodoulides
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Marta E Polak
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Michael R Ardern-Jones
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, UK.,Department of Dermatology, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
6
|
Yu J, Zhao Q, Wang X, Zhou H, Hu J, Gu L, Hu Y, Zeng F, Zhao F, Yue C, Zhou P, Li G, Li Y, Wu W, Zhou Y, Li J. Pathogenesis, multi-omics research, and clinical treatment of psoriasis. J Autoimmun 2022; 133:102916. [PMID: 36209691 DOI: 10.1016/j.jaut.2022.102916] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/07/2022]
Abstract
Psoriasis is a common inflammatory skin disease involving interactions between keratinocytes and immune cells that significantly affects the quality of life. It is characterized by hyperproliferation and abnormal differentiation of keratinocytes and excessive infiltration of immune cells in the dermis and epidermis. The immune mechanism underlying this disease has been elucidated in the past few years. Research shows that psoriasis is regulated by the complex interactions among immune cells, such as keratinocytes, dendritic cells, T lymphocytes, neutrophils, macrophages, natural killer cells, mast cells, and other immune cells. An increasing number of signaling pathways have been found to be involved in the pathogenesis of psoriasis, which has prompted the search for new treatment targets. In the past decades, studies on the pathogenesis of psoriasis have focused on the development of targeted and highly effective therapies. In this review, we have discussed the relationship between various types of immune cells and psoriasis and summarized the major signaling pathways involved in the pathogenesis of psoriasis, including the PI3K/AKT/mTOR, JAK-STAT, JNK, and WNT pathways. In addition, we have discussed the results of the latest omics research on psoriasis and the epigenetics of the disease, which provide insights regarding its pathogenesis and therapeutic prospects; we have also summarized its treatment strategies and observations of clinical trials. In this paper, the various aspects of psoriasis are described in detail, and the limitations of the current treatment methods are emphasized. It is necessary to improve and innovate treatment methods from the molecular level of pathogenesis, and further provide new ideas for the treatment and research of psoriasis.
Collapse
Affiliation(s)
- Jiadong Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Qixiang Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Xiaoyan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Hong Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Jing Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Linna Gu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Yawen Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Fanlian Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Fulei Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Chengcheng Yue
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Pei Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Guolin Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Ya Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Wenling Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Yifan Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
7
|
Deng J, Schieler C, Borghans JAM, Lu C, Pandit A. Finding Gene Regulatory Networks in Psoriasis: Application of a Tree-Based Machine Learning Approach. Front Immunol 2022; 13:921408. [PMID: 35874668 PMCID: PMC9301015 DOI: 10.3389/fimmu.2022.921408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disorder. Although it has been studied extensively, the molecular mechanisms driving the disease remain unclear. In this study, we utilized a tree-based machine learning approach to explore the gene regulatory networks underlying psoriasis. We then validated the regulators and their networks in an independent cohort. We identified some key regulators of psoriasis, which are candidates to serve as potential drug targets and disease severity biomarkers. According to the gene regulatory network that we identified, we suggest that interferon signaling represents a key pathway of psoriatic inflammation.
Collapse
Affiliation(s)
- Jingwen Deng
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Carlotta Schieler
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - José A. M. Borghans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Chuanjian Lu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Chuanjian Lu, ; Aridaman Pandit,
| | - Aridaman Pandit
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- *Correspondence: Chuanjian Lu, ; Aridaman Pandit,
| |
Collapse
|
8
|
Mok BR, Kim AR, Baek SH, Ahn JH, Seok SH, Shin JU, Kim DH. Profilin-1 prevents psoriasis pathogenesis through IκBζ regulation. J Invest Dermatol 2022; 142:2455-2463.e9. [PMID: 35148999 DOI: 10.1016/j.jid.2022.01.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/14/2022]
Abstract
Profilin-1 (PFN-1) is an actin-binding protein that regulates actin polymerization, cell proliferation, apoptosis, angiogenesis, and carcinogenesis. Its dysregulation has been reported in diverse pathologic diseases; however, the role of PFN-1 in psoriasis has not yet been elucidated. In this study, we demonstrate that PFN-1 expression is increased in both skin and serum of patients with psoriasis. PFN-1 was markedly expressed in the epidermis of psoriatic lesions and its expression positively correlated with psoriasis severity. IL-17A treatment of keratinocytes increased the PFN-1 expression, whereas TNF-α induced the PFN-1 expression and secretion. In addition, knockdown of PFN-1 with shRNA resulted in an altered expression of psoriasis-associated inflammatory markers, HBD-2, S100A7, S100A9, and Ki67, and recombinant PFN-1 suppressed the IL-17A-induced inflammatory response in keratinocytes. Interestingly, recombinant PFN-1 also suppressed IL-17A-induced IκBζ, an important player in immune response in psoriasis. Collectively, our results show that PFN-1 acts as a negative regulator of psoriatic inflammation through suppression of IκBζ, and the balanced level of PFN-1 is important for the IκBζ regulation. Thus, the expression of PFN-1 can be used as a biomarker for psoriasis severity, and it can be considered as a possible target for the treatment of psoriasis.
Collapse
Affiliation(s)
- Bo Ram Mok
- Department of Biomedical Science, School of Medicine, CHA University, Seongnam, Korea
| | - A-Ram Kim
- Department of Biomedical Science, School of Medicine, CHA University, Seongnam, Korea
| | - Seung Hwa Baek
- Department of Biomedical Science, School of Medicine, CHA University, Seongnam, Korea
| | - Ji Hae Ahn
- Department of Dermatology, Bundang Medical Center, School of Medicine, CHA University, Seongnam, Korea
| | - Seung Hui Seok
- Department of Dermatology, Bundang Medical Center, School of Medicine, CHA University, Seongnam, Korea
| | - Jung U Shin
- Department of Dermatology, Bundang Medical Center, School of Medicine, CHA University, Seongnam, Korea
| | - Dong Hyun Kim
- Department of Dermatology, Bundang Medical Center, School of Medicine, CHA University, Seongnam, Korea.
| |
Collapse
|
9
|
Łuczaj W, Gęgotek A, Skrzydlewska E. Analytical approaches to assess metabolic changes in psoriasis. J Pharm Biomed Anal 2021; 205:114359. [PMID: 34509137 DOI: 10.1016/j.jpba.2021.114359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022]
Abstract
Psoriasis is one of the most common human skin diseases, although its development is not limited to one tissue, but is associated with autoimmune reactions throughout the body. Overproduction of pro-inflammatory cytokines and growth factors systemically stimulates the proliferation of skin cells, which manifests as excessive exfoliation of the epidermis, and/or arthritis, as well as other comorbidities such as insulin resistance, metabolic syndrome, hypertension, and depression. Thus, there is a great need for a thorough analysis of the pathophysiology of psoriatic patients, including classical methods, such as spectrophotometry, chromatography, or Western blot, and also novel omics approaches such as lipidomics and proteomics. Moreover, the extensive pathophysiology forces increased research examining biological changes in both skin cells, and systemically. A wide range of techniques involved in lipidomic research based on a combination of mass spectrometry and different types of chromatography (RP-LC-QTOF-MS/MS, HILIC-QTOF-MS/MS or RP-LC-QTRAP-MS/MS), have allowed comprehensive assessment of lipid modification in psoriatic skin and provided new insight into the role of lipids and their mechanism of action in psoriasis. Moreover, proteomic analysis using gel-nanoLC-OrbiTrap-MS/MS, as well as MALDI-TOF/TOF techniques facilitates the description of panels of enzymes involved in lipidome modifications, and the response of the endocannabinoid system to metabolic changes. Psoriasis is known to alter the expression of proteins that are involved in the inflammatory and antioxidant response, as well as protein biosynthesis, degradation, as well as cell proliferation and apoptosis. Knowledge of changes in the lipidomic and proteomic profile will not only allow the understanding of psoriasis pathophysiology, but also facilitate proper and early diagnosis and effective pharmacotherapy.
Collapse
Affiliation(s)
- Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222, Bialystok, Poland
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222, Bialystok, Poland.
| |
Collapse
|
10
|
Wu X, Zhu J, Chen S, Xu Y, Hua C, Lai L, Cheng H, Song Y, Chen X. Integrated Metabolomics and Transcriptomics Analyses Reveal Histidine Metabolism Plays an Important Role in Imiquimod-Induced Psoriasis-like Skin Inflammation. DNA Cell Biol 2021; 40:1325-1337. [PMID: 34582699 DOI: 10.1089/dna.2021.0465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by massive keratinocyte proliferation and immune cell infiltration into the epidermis. However, the specific mechanisms underlying the development of psoriasis remain unclear. Untargeted metabolomics and transcriptomics have been used separately to profile biomarkers and risk genes in the serum of psoriasis patients. However, the integration of metabolomics and transcriptomics to identify dysregulated metabolites and genes in the psoriatic skin is lacking. In this study, we performed an untargeted metabolomics analysis of imiquimod (IMQ)-induced psoriasis-like mice and healthy controls, and found that levels of a total of 4,188 metabolites differed in IMQ-induced psoriasis-like mice compared with those in control mice. Metabolomic data analysis using MetaboAnalyst showed that the metabolic pathways of primary metabolites, such as folate biosynthesis and galactose metabolism, were significantly altered in the skin of mice after treatment with IMQ. Furthermore, IMQ treatment also significantly altered metabolic pathways of secondary metabolites, including histidine metabolism, in mouse skin tissues. The metabolomic results were verified by transcriptomics analysis. RNA-seq results showed that histamine decarboxylase (HDC) mRNA levels were significantly upregulated after IMQ treatment. Targeted inhibition of histamine biosynthesis process using HDC-specific inhibitor, pinocembrin (PINO), significantly alleviated epidermal thickness, downregulated the expression of interleukin (IL)-17A and IL-23, and inhibited the infiltration of immune cells during IMQ-induced psoriasis-like skin inflammation. In conclusion, our study offers a validated and comprehensive understanding of metabolism during the development of psoriasis and demonstrated that PINO could protect against IMQ-induced psoriasis-like skin inflammation.
Collapse
Affiliation(s)
- Xia Wu
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiang Zhu
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siji Chen
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaohan Xu
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunting Hua
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lihua Lai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Cheng
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yinjing Song
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianzhen Chen
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Yuan T, Cai ML, Sheng YM, Ding X, Shen TT, Li WR, Huang H, Liang B, Zhang XJ, Zhu QX. Differentially expressed proteins identified by TMT proteomics analysis in children with verrucous epidermal naevi. J Eur Acad Dermatol Venereol 2021; 35:1393-1406. [PMID: 33428294 DOI: 10.1111/jdv.17112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Verrucous epidermal naevi (VEN) are benign skin tumours, considered keratinocytic epidermal naevi, that appear at birth or early childhood. VEN may display a range of appearances, depending on patient age. Although the number of studies regarding VEN is increasing, the exact mechanism of VEN is still unknown. OBJECTIVES The aim of this study was to analyse the changes in the expression of protein factors in lesions of VEN children by TMT labelling-based quantitative proteomics. METHODS A total of 8 children with VEN (5 for experiment and 3 for validation) and 8 healthy children (5 for experiment and 3 for validation) presented to the Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Boao Super Hospital, between January 2019 and November 2019. The lesions and lesion-adjacent tissues from children with VEN and naevus-adjacent normal skin tissues from children with pigmented naevi were defined as the VEN group, VENC group and C group, respectively. We performed a proteomics analysis to screen for differentially expressed proteins in the lesions of these individuals. We further performed Western blotting to validate the relative expression levels of nine targeted proteins in the validation group. RESULTS According to the proteomics results, a total of 4970 proteins were identified, and 4770 proteins were quantified. Among these proteins, 586 proteins were up- or downregulated at least 1.3-fold with a P-value < 0.05 (upregulated: 399, downregulated: 187) in lesions between the VEN group and the C group. These proteins played important roles in multiple biological functions, such as cornification, epidermal cell differentiation and neutrophil activation, and formed a complicated protein-protein interaction network. Of the 586 up- or downregulated proteins, nine were selected for further validation. According to Western blotting analysis results, the relative expression levels of Involucrin, NDUFA4, Loricrin, Keratin type II cytoskeletal 6A (Cytokeratin 6A), BRAF, Filaggrin, S100A7 and Desmocollin-3 were significantly upregulated in VEN children and may be associated with skin barrier dysfunction, epidermal cell overgrowth and differentiation, inflammation and immune and oxidative phosphorylation, which are involved in the pathogenesis of VEN. CONCLUSIONS According to TMT-based proteomics and Western blotting results, we identified eight noteworthy proteins, Involucrin, NDUFA4, Loricrin, Keratin type II cytoskeletal 6A, BRAF, Filaggrin, S100A7 and Desmocollin-3, that were upregulated in the lesions of VEN children and may be associated with the pathogenesis of VEN. Our findings provide new starting points for identifying precise pathogenic mechanisms or therapeutic targets for VEN.
Collapse
Affiliation(s)
- T Yuan
- Department of Dermatology and Venereology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, China, Hefei, Anhui, China
| | - M-L Cai
- Department of Dermatology and Venereology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, China, Hefei, Anhui, China
| | - Y-M Sheng
- Department of Dermatology and Venereology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, China, Hefei, Anhui, China
| | - X Ding
- Department of Dermatology and Venereology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, China, Hefei, Anhui, China
| | - T-T Shen
- Department of Dermatology and Venereology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, China, Hefei, Anhui, China
| | - W-R Li
- Department of Dermatology and Venereology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, China, Hefei, Anhui, China
| | - H Huang
- Department of Dermatology and Venereology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, China, Hefei, Anhui, China
| | - B Liang
- Department of Dermatology and Venereology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, China, Hefei, Anhui, China
| | - X-J Zhang
- Department of Dermatology and Venereology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, China, Hefei, Anhui, China.,Department of Dermatology and Venereology, Boao Super Hospital, Qionghai, Hainan, China
| | - Q-X Zhu
- Department of Dermatology and Venereology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, China, Hefei, Anhui, China
| |
Collapse
|
12
|
Couto N, Newton JRA, Russo C, Karunakaran E, Achour B, Al-Majdoub ZM, Sidaway J, Rostami-Hodjegan A, Clench MR, Barber J. Label-Free Quantitative Proteomics and Substrate-Based Mass Spectrometry Imaging of Xenobiotic Metabolizing Enzymes in Ex Vivo Human Skin and a Human Living Skin Equivalent Model. Drug Metab Dispos 2021; 49:39-52. [PMID: 33139459 DOI: 10.1124/dmd.120.000168] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/08/2020] [Indexed: 01/15/2023] Open
Abstract
We report for the first time label-free quantification of xenobiotic metabolizing enzymes (XME), transporters, redox enzymes, proteases, and nucleases in six human skin explants and a three-dimensional living skin equivalent model from LabSkin. We aimed to evaluate the suitability of LabSkin as an alternative to animal testing for the development of topical formulations. More than 2000 proteins were identified and quantified from total cellular protein. Alcohol dehydrogenase 1C, the most abundant phase I XME in human skin, and glutathione S-transferase pi 1, the most abundant phase II XME in human skin, were present in similar abundance in LabSkin. Several esterases were quantified and esterase activity was confirmed in LabSkin using substrate-based mass spectrometry imaging. No cytochrome P450 (P450) activity was observed for the substrates tested, in agreement with the proteomics data, where the cognate P450s were absent in both human skin and LabSkin. Label-free protein quantification allowed insights into other related processes such as redox homeostasis and proteolysis. For example, the most abundant antioxidant enzymes were thioredoxin and peroxiredoxin-1. This systematic determination of functional equivalence between human skin and LabSkin is a key step toward the construction of a representative human in vitro skin model, which can be used as an alternative to current animal-based tests for chemical safety and for predicting dosage of topically administered drugs. SIGNIFICANCE STATEMENT: The use of label-free quantitative mass spectrometry to elucidate the abundance of xenobiotic metabolizing enzymes, transporters, redox enzymes, proteases, and nucleases in human skin enhance our understanding of the skin physiology and biotransformation of topical drugs and cosmetics. This will help to develop mathematical models to predict drug metabolism in human skin and to develop more robust in vitro engineered human skin tissue as alternatives to animal testing.
Collapse
Affiliation(s)
- Narciso Couto
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Jillian R A Newton
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Cristina Russo
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Esther Karunakaran
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Brahim Achour
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Zubida M Al-Majdoub
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - James Sidaway
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Amin Rostami-Hodjegan
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Malcolm R Clench
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Jill Barber
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| |
Collapse
|
13
|
Yoshida A, Yamamoto K, Ishida T, Omura T, Itoh T, Nishigori C, Sakane T, Yano I. Sunitinib decreases the expression of KRT6A and SERPINB1 in 3D human epidermal models. Exp Dermatol 2020; 30:337-346. [PMID: 33135264 DOI: 10.1111/exd.14230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/07/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022]
Abstract
Hand-foot skin reaction (HFSR) is a common side effect caused by several tyrosine kinase inhibitors, including sunitinib. However, the nature of the cornifying factors related to the molecular biological mechanisms underlying HFSR remains poorly understood. We used human keratinocyte models to investigate the key cornifying factors for dermatological and biological abnormalities induced by sunitinib. On the basis of the results of microarray analysis using the three-dimensional (3D) human epidermal model, keratin (KRT)6A, serine protease inhibitor (SERPIN)B1, KRT5, and SERPIN Kazal-type 6 were selected as candidate genes related to HFSR. Sunitinib treatment significantly decreased the expression of SERPINB1 and KRT6A in the immunohistochemical staining of the 3D epidermal model. In PSVK1 cells, but not in normal human epidermal keratinocyte cells, both of which are human normal keratinocyte cell lines, sunitinib decreased the expression of KRT6A with a concomitant decrease in levels of phosphorylated extracellular signal-regulated kinases (ERK)1/2 and phosphorylated p38 mitogen-activated protein kinase (MAPK). Inhibitors of the ERK and p38 MAPK signal pathways also significantly decreased KRT6A expression. Sunitinib-induced decrease in KRT6A expression was suppressed by the inhibition of glycogen synthase kinase-3β by enhancing ERK1/2 and p38 MAPK phosphorylation. Thus, sunitinib reduces the expression of KRT6A and SERPINB1 by inhibiting the ERK1/2 and p38 MAPK signalling pathways in the skin model. These changes in expression contribute to the pathology of HFSR.
Collapse
Affiliation(s)
- Ayaka Yoshida
- Department of Pharmacy, Kobe University Hospital, Kobe, Japan.,Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | - Tomohiro Omura
- Department of Pharmacy, Kobe University Hospital, Kobe, Japan
| | - Tomoo Itoh
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Chikako Nishigori
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshiyasu Sakane
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Kobe, Japan
| | - Ikuko Yano
- Department of Pharmacy, Kobe University Hospital, Kobe, Japan
| |
Collapse
|
14
|
Eckersley A, Ozols M, O'Cualain R, Keevill EJ, Foster A, Pilkington S, Knight D, Griffiths CEM, Watson REB, Sherratt MJ. Proteomic fingerprints of damage in extracellular matrix assemblies. Matrix Biol Plus 2020; 5:100027. [PMID: 33543016 PMCID: PMC7852314 DOI: 10.1016/j.mbplus.2020.100027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
In contrast to the dynamic intracellular environment, structural extracellular matrix (ECM) proteins with half-lives measured in decades, are susceptible to accumulating damage. Whilst conventional approaches such as histology, immunohistochemistry and mass spectrometry are able to identify age- and disease-related changes in protein abundance or distribution, these techniques are poorly suited to characterising molecular damage. We have previously shown that mass spectrometry can detect tissue-specific differences in the proteolytic susceptibility of protein regions within fibrillin-1 and collagen VI alpha-3. Here, we present a novel proteomic approach to detect damage-induced “peptide fingerprints” within complex multi-component ECM assemblies (fibrillin and collagen VI microfibrils) following their exposure to ultraviolet radiation (UVR) by broadband UVB or solar simulated radiation (SSR). These assemblies were chosen because, in chronically photoaged skin, fibrillin and collagen VI microfibril architectures are differentially susceptible to UVR. In this study, atomic force microscopy revealed that fibrillin microfibril ultrastructure was significantly altered by UVR exposure whereas the ultrastructure of collagen VI microfibrils was resistant. UVR-induced molecular damage was further characterised by proteolytic peptide generation with elastase followed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Peptide mapping revealed that UVR exposure increased regional proteolytic susceptibility within the protein structures of fibrillin-1 and collagen VI alpha-3. This allowed the identification of UVR-induced molecular changes within these two key ECM assemblies. Additionally, similar changes were observed within protein regions of co-purifying, microfibril-associated receptors integrins αv and β1. This study demonstrates that LC-MS/MS mapping of peptides enables the characterisation of molecular post-translational damage (via direct irradiation and radiation-induced oxidative mechanisms) within a complex in vitro model system. This peptide fingerprinting approach reliably allows both the identification of UVR-induced molecular damage in and between proteins and the identification of specific protein domains with increased proteolytic susceptibility as a result of photo-denaturation. This has the potential to serve as a sensitive method of identifying accumulated molecular damage in vivo using conventional mass spectrometry data-sets. Mass spectrometry “peptide fingerprinting” can detect post-translational damage within extracellular matrix proteins. UVR-induced FBN1 and COL6A3 peptide fingerprints are reproducibly identified from purified microfibrils. Peptide mapping reveals increased regional susceptibilities to proteolysis in FBN1 and COL6A3 proteins. Regional changes are also observed in protein structures of microfibril-associated receptor integrins αv and β1. This “peptide fingerprinting” approach is applicable to conventional LC-MS/MS datasets.
Collapse
Key Words
- AFM, atomic force microscopy
- COL6A3, collagen VI alpha 3 chain
- Collagen VI microfibril
- ECM, extracellular matrix
- EGF, epidermal growth factor domain
- Fibrillin microfibril
- HDF, human dermal fibroblast
- LC-MS/MS, liquid chromatography tandem mass spectrometry
- Mass spectrometry
- PSM, peptide spectrum match
- Photodamage
- ROS, reactive oxygen species
- SSR, solar simulated radiation
- TGFβ, transforming growth factor beta
- UVR, ultraviolet radiation
- Ultraviolet radiation
- vWA, von Willebrand factor type A domain
Collapse
Affiliation(s)
- Alexander Eckersley
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Matiss Ozols
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Ronan O'Cualain
- Biological Mass Spectrometry Core Research Facility, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Emma-Jayne Keevill
- Biological Mass Spectrometry Core Research Facility, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - April Foster
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Suzanne Pilkington
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - David Knight
- Biological Mass Spectrometry Core Research Facility, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Christopher E M Griffiths
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Rachel E B Watson
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Michael J Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
15
|
Bernard Q, Grillon A, Lenormand C, Ehret-Sabatier L, Boulanger N. Skin Interface, a Key Player for Borrelia Multiplication and Persistence in Lyme Borreliosis. Trends Parasitol 2020; 36:304-314. [PMID: 32007396 DOI: 10.1016/j.pt.2019.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/27/2019] [Accepted: 12/25/2019] [Indexed: 01/01/2023]
Abstract
The skin plays a key role in vector-borne diseases because it is the site where the arthropod coinoculates pathogens and its saliva. Lyme borreliosis, particularly well investigated in this context, is a multisystemic infectious disease caused by Borrelia burgdorferi sensu lato and transmitted by the hard tick Ixodes. Numerous in vitro studies were conducted to better understand the role of specific skin cells and tick saliva in host defense, vector feeding, and pathogen transmission. The skin was also evidenced in various animal models as the site of bacterial multiplication and persistence. We present the achievements in this field as well as the gaps that impede comprehensive knowledge of the disease pathophysiology and the development of efficient diagnostic tools and vaccines in humans.
Collapse
Affiliation(s)
- Quentin Bernard
- Fédération de Médecine Translationnelle de Strasbourg, Institut de Bactériologie, Université de Strasbourg, VBP EA7290, F-67000 Strasbourg, France
| | - Antoine Grillon
- Fédération de Médecine Translationnelle de Strasbourg, Institut de Bactériologie, Université de Strasbourg, VBP EA7290, F-67000 Strasbourg, France
| | - Cédric Lenormand
- Fédération de Médecine Translationnelle de Strasbourg, Institut de Bactériologie, Université de Strasbourg, VBP EA7290, F-67000 Strasbourg, France; Clinique Dermatologique, Hôpital Universitaire de Strasbourg, Strasbourg, France
| | - Laurence Ehret-Sabatier
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Nathalie Boulanger
- Fédération de Médecine Translationnelle de Strasbourg, Institut de Bactériologie, Université de Strasbourg, VBP EA7290, F-67000 Strasbourg, France; French National Reference Center on Lyme Borreliosis, CHRU, F-67000 Strasbourg, France.
| |
Collapse
|
16
|
Comprehensive Proteomic Analysis Reveals Intermediate Stage of Non-Lesional Psoriatic Skin and Points out the Importance of Proteins Outside this Trend. Sci Rep 2019; 9:11382. [PMID: 31388062 PMCID: PMC6684579 DOI: 10.1038/s41598-019-47774-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/28/2019] [Indexed: 11/15/2022] Open
Abstract
To better understand the pathomechanism of psoriasis, a comparative proteomic analysis was performed with non-lesional and lesional skin from psoriasis patients and skin from healthy individuals. Strikingly, 79.9% of the proteins that were differentially expressed in lesional and healthy skin exhibited expression levels in non-lesional skin that were within twofold of the levels observed in healthy and lesional skin, suggesting that non-lesional skin represents an intermediate stage. Proteins outside this trend were categorized into three groups: I. proteins in non-lesional skin exhibiting expression similar to lesional skin, which might be predisposing factors (i.e., CSE1L, GART, MYO18A and UGDH); II. proteins that were differentially expressed in non-lesional and lesional skin but not in healthy and lesional skin, which might be non-lesional characteristic alteration (i.e., CHCHD6, CHMP5, FLOT2, ITGA7, LEMD2, NOP56, PLVAP and RRAS); and III. proteins with contrasting differential expression in non-lesional and lesional skin compared to healthy skin, which might contribute to maintaining the non-lesional state (i.e., ITGA7, ITGA8, PLVAP, PSAPL1, SMARCA5 and XP32). Finally, proteins differentially expressed in lesions may indicate increased sensitivity to stimuli, peripheral nervous system alterations, furthermore MYBBP1A and PRKDC were identified as potential regulators of key pathomechanisms, including stress and immune response, proliferation and differentiation.
Collapse
|
17
|
Zingkou E, Pampalakis G, Charla E, Nauroy P, Kiritsi D, Sotiropoulou G. A proinflammatory role of KLK6 protease in Netherton syndrome. J Dermatol Sci 2019; 95:28-35. [PMID: 31255470 DOI: 10.1016/j.jdermsci.2019.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND Netherton syndrome (NS) is a rare but severe type of ichthyosis characterized by atopy, allergies, and potentially lethal skin overdesquamation associated with highly elevated proteolytic activities in LEKTI-deficient epidermis. NS symptoms are recapitulated in Spink5-/- mouse where the gene encoding Lekti has been invalidated. Spink5-/- mice die within 5h from birth due to their severe skin barrier defect leading to dehydration. Spink5-/- mice also serve as a model for atopic dermatitis. The KLK6 protease is expressed by epidermal keratinocytes and shown in vitro to cleave desmosomal components. OBJECTIVE To investigate in vivo whether KLK6 is implicated in epidermal overdesquamation and/or inflammation associated with NS. METHODS The role of KLK6 was evaluated by generating Spink5-/-Klk6-/- double knockout mice. The phenotype was assessed by macroscopic observation, immunohistochemistry for differentiation markers, in situ zymography for proteolysis, and quantification of proinflammatory cytokines. RESULTS Elimination of Klk6 in Spink5-/- remarkably suppresses the expression of Tslp, a major itching-inducing factor and driver of allergic reactions. Tnfα and the Th17 promoting cytokine Il-23 were also suppressed. Spink5-/-Klk6-/- mice display normalized keratinocyte differentiation, nevertheless, epidermal proteolytic activities and the associated overdesquamation were not ameliorated, and Spink5-/-Klk6-/- still died from a severe epidermal barrier defect as the Spink5-/-. CONCLUSIONS Ablation of Klk6 largely suppresses epidermal inflammation but cannot rescue overdesquamation leading to the lethal NS phenotype. Nonetheless, our findings demonstrate for the first time that KLK6 is implicated in skin inflammation and may represent a novel druggable target for NS and other inflammatory conditions e.g. atopic dermatitis.
Collapse
Affiliation(s)
- Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Georgios Pampalakis
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Eleni Charla
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Pauline Nauroy
- Department of Dermatology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Dimitra Kiritsi
- Department of Dermatology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece.
| |
Collapse
|
18
|
Proteomics in Psoriasis. Int J Mol Sci 2019; 20:ijms20051141. [PMID: 30845706 PMCID: PMC6429319 DOI: 10.3390/ijms20051141] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/21/2019] [Accepted: 03/02/2019] [Indexed: 12/14/2022] Open
Abstract
Psoriasis has been thought to be driven primarily by innate and adaptive immune systems that can be modified by genetic and environmental factors. Complex interplay between inflammatory cytokines and T-cells, especially Th1 and Th17 cells, leads to abnormal cell proliferation and psoriatic skin lesions. Nevertheless, such mechanisms do not entirely represent the pathogenesis of psoriasis. Moreover, earlier and better biomarkers in diagnostics, prognostics, and monitoring therapeutic outcomes of psoriasis are still needed. During the last two decades, proteomics (a systematic analysis of proteins for their identities, quantities, and functions) has been widely employed to psoriatic research. This review summarizes and discusses all of the previous studies that applied various modalities of proteomics technologies to psoriatic skin disease. The data obtained from such studies have led to (i) novel mechanisms and new hypotheses of the disease pathogenesis; (ii) biomarker discovery for diagnostics and prognostics; and (iii) proteome profiling for monitoring treatment efficacy and drug-induced toxicities.
Collapse
|
19
|
Cole LM, Clench MR, Francese S. Sample Treatment for Tissue Proteomics in Cancer, Toxicology, and Forensics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1073:77-123. [PMID: 31236840 DOI: 10.1007/978-3-030-12298-0_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Since the birth of proteomics science in the 1990, the number of applications and of sample preparation methods has grown exponentially, making a huge contribution to the knowledge in life science disciplines. Continuous improvements in the sample treatment strategies unlock and reveal the fine details of disease mechanisms, drug potency, and toxicity as well as enable new disciplines to be investigated such as forensic science.This chapter will cover the most recent developments in sample preparation strategies for tissue proteomics in three areas, namely, cancer, toxicology, and forensics, thus also demonstrating breath of application within the domain of health and well-being, pharmaceuticals, and secure societies.In particular, in the area of cancer (human tumor biomarkers), the most efficient and multi-informative proteomic strategies will be covered in relation to the subsequent application of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and liquid extraction surface analysis (LESA), due to their ability to provide molecular localization of tumor biomarkers albeit with different spatial resolution.With respect to toxicology, methodologies applied in toxicoproteomics will be illustrated with examples from its use in two important areas: the study of drug-induced liver injury (DILI) and studies of effects of chemical and environmental insults on skin, i.e., the effects of irritants, sensitizers, and ionizing radiation. Within this chapter, mainly tissue proteomics sample preparation methods for LC-MS/MS analysis will be discussed as (i) the use of LC-MS/MS is majorly represented in the research efforts of the bioanalytical community in this area and (ii) LC-MS/MS still is the gold standard for quantification studies.Finally, the use of proteomics will also be discussed in forensic science with respect to the information that can be recovered from blood and fingerprint evidence which are commonly encountered at the scene of the crime. The application of proteomic strategies for the analysis of blood and fingerprints is novel and proteomic preparation methods will be reported in relation to the subsequent use of mass spectrometry without any hyphenation. While generally yielding more information, hyphenated methods are often more laborious and time-consuming; since forensic investigations need quick turnaround, without compromising validity of the information, the prospect to develop methods for the application of quick forensic mass spectrometry techniques such as MALDI-MS (in imaging or profiling mode) is of great interest.
Collapse
Affiliation(s)
- L M Cole
- Biomolecular Science Research Centre, Centre for Mass Spectrometry Imaging, Sheffield Hallam University, Sheffield, UK
| | - M R Clench
- Biomolecular Science Research Centre, Centre for Mass Spectrometry Imaging, Sheffield Hallam University, Sheffield, UK
| | - S Francese
- Biomolecular Science Research Centre, Centre for Mass Spectrometry Imaging, Sheffield Hallam University, Sheffield, UK.
| |
Collapse
|
20
|
Bai J, Gao Y, Chen L, Yin Q, Lou F, Wang Z, Xu Z, Zhou H, Li Q, Cai W, Sun Y, Niu L, Wang H, Wei Z, Lu S, Zhou A, Zhang J, Wang H. Identification of a natural inhibitor of methionine adenosyltransferase 2A regulating one-carbon metabolism in keratinocytes. EBioMedicine 2018; 39:575-590. [PMID: 30591370 PMCID: PMC6355826 DOI: 10.1016/j.ebiom.2018.12.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 12/30/2022] Open
Abstract
Background Psoriasis is a common chronic inflammatory skin disease which lacks effective strategies for the treatment. Natural compounds with biological activities are good tools to identify new targets with therapeutic potentials. Acetyl-11-keto-β-boswellic acid (AKBA) is the most bioactive ingredient of boswellic acids, a group of compounds with anti-inflammatory and anti-cancer properties. Target identification of AKBA and metabolomics analysis of psoriasis helped to elucidate the molecular mechanism underlying its effect, and provide new target(s) to treat the disease. Methods To explore the targets and molecular mechanism of AKBA, we performed affinity purification, metabolomics analysis of HaCaT cells treated with AKBA, and epidermis of imiquimod (IMQ) induced mouse model of psoriasis and psoriasis patients. Findings AKBA directly interacts with methionine adenosyltransferase 2A (MAT2A), inhibited its enzyme activity, decreased level of S-adenosylmethionine (SAM) and SAM/SAH ratio, and reprogrammed one‑carbon metabolism in HaCaT cells. Untargeted metabolomics of epidermis showed one‑carbon metabolism was activated in psoriasis patients. Topical use of AKBA improved inflammatory phenotype of IMQ induced psoriasis-like mouse model. Molecular docking and site-directed mutagenesis revealed AKBA bound to an allosteric site at the interface of MAT2A dimer. Interpretation Our study extends the molecular mechanism of AKBA by revealing a new interacting protein MAT2A. And this leads us to find out the dysregulated one‑carbon metabolism in psoriasis, which indicates the therapeutic potential of AKBA in psoriasis. Fund The National Natural Science Foundation, the National Program on Key Basic Research Project, the Shanghai Municipal Commission, the Leading Academic Discipline Project of the Shanghai Municipal Education Commission.
Collapse
Affiliation(s)
- Jing Bai
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Yuanyuan Gao
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Linjiao Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qianqian Yin
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Fangzhou Lou
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Zhikai Wang
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Zhenyao Xu
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Hong Zhou
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Qun Li
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Cai
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Yang Sun
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Liman Niu
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Hong Wang
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Zhenquan Wei
- Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aiwu Zhou
- Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Honglin Wang
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China.
| |
Collapse
|
21
|
Cao Y, Xu S, Kong W, Cai H, Xu Y. Identification and validation of differentially expressed proteins in serum of CSU patients with different duration of wheals using an iTRAQ labeling, 2D-LC-MS/MS. Exp Ther Med 2018; 16:4527-4536. [PMID: 30542401 PMCID: PMC6257644 DOI: 10.3892/etm.2018.6818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/14/2018] [Indexed: 11/28/2022] Open
Abstract
Chronic spontaneous urticaria (CSU) is one of the most common types of chronic urticaria (CU), with symptoms that recur easily, migrate and are refractory. It is unclear whether association between the differentiation of protein expression levels in the serum of CSU patients and the different duration of wheals exists. In the present study the samples were divided according to the duration of the wheals into group A (wheal duration <2 h) and group B (wheal duration 12–24 h). Differentially expressed proteins in sera of CSU patients with different durations of wheals were identified and validated with isobaric tags for relative and absolute quantitation (iTRAQ) in combination with two-dimensional liquid chromatography/tandem mass spectrometry (2D-LC-MS/MS). Three hundred and seventy CSU serum-related proteins were initially identified. Among these proteins, ~30 had significant differences between the groups. According to the classification of biological functions and upregulated/downregulated values, serum amyloid A (SAA), CFL1, TPM4 and monocyte differentiation antigen (CD14) were chosen and validated by enzyme-linked immunosorbent assay (ELISA). The expression levels of CD14 in sera were not significantly different among the groups. SAA, CFL1 and TPM4 were associated with the wheal duration in CSU patients and therefore could be considered as new potential inflammatory biomarkers associated with CSU.
Collapse
Affiliation(s)
- Yanyun Cao
- Department of Dermatology, Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| | - Shunming Xu
- Department of Dermatology, Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| | - Wei Kong
- Department of Dermatology, Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| | - Haibin Cai
- Department of Dermatology, Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| | - Yang Xu
- Department of Dermatology, Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| |
Collapse
|
22
|
Surcel M, Huică RI, Munteanu AN, Isvoranu G, Pîrvu IR, Ciotaru D, Constantin C, Bratu O, Căruntu C, Neagu M, Ursaciuc C. Phenotypic changes of lymphocyte populations in psoriasiform dermatitis animal model. Exp Ther Med 2018; 17:1030-1038. [PMID: 30679970 PMCID: PMC6327675 DOI: 10.3892/etm.2018.6978] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/24/2018] [Indexed: 12/19/2022] Open
Abstract
Psoriasis is a T cell mediated, chronic inflammatory autoimmune skin disease that affects up to 2-3% of the global population and leads to a decrease in quality of life. Experimental data accumulated in recent years highlighted the important role played by the immune system in the pathogenesis of this disease. Non-human psoriasis models are an important research tool that attempts to reproduce the clinical features of the disease in order to explain the pathogenesis of psoriasis and to identify possible therapeutic targets. Imiquimod-based murine model of psoriatic dermatitis is an alternative to traditional models of experimental psoriasis in mice and the induced dermatitis closely mimics the pathologic changes in human psoriasis. In order to emphasize changes in immune cell populations involved in lesion pathogenesis, we performed a murine model of psoriasiform dermatitis model by topical IMQ application. The progress and the severity of IMQ-induced skin inflammation were clinically (PASI score) and histopathologically evaluated. The immunological changes induced by IMQ treatment in lymphocyte populations from peripheral blood and spleen were evaluated by flow cytometry. The main changes observed in peripheral blood were the significantly increased T-CD8a+ lymphocyte and NK1.1+ cell percentages and the decreased T-CD4+ and B lymphocyte percentages in IMQ-treated mice. In spleen samples, lymphocytes showed the same tendency of variation as in peripheral blood, but without statistical significance. A significant decrease of B cells percentages was observed in spleen suspensions. Data obtained in skin samples may suggest the involvement of CD3ε+, CD4+ and CD8a+ cells in the lesional process. This murine model was analyzed by performing a basic cellular profile at three levels: peripheral blood, spleen and skin. The evaluation aimed to establish the immune framework of this experimental model that could further be used for etipathogenic mechanism identification and/or for studies regarding targeted therapies.
Collapse
Affiliation(s)
- Mihaela Surcel
- Immunobiology Laboratory, 'Victor Babeș' National Institute of Pathology, 050096 Bucharest, Romania.,Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Radu-Ionuț Huică
- Immunobiology Laboratory, 'Victor Babeș' National Institute of Pathology, 050096 Bucharest, Romania.,Department of Urology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Adriana Narcisa Munteanu
- Immunobiology Laboratory, 'Victor Babeș' National Institute of Pathology, 050096 Bucharest, Romania
| | - Gheorghița Isvoranu
- Immunobiology Laboratory, 'Victor Babeș' National Institute of Pathology, 050096 Bucharest, Romania
| | - Ioana Ruxandra Pîrvu
- Immunobiology Laboratory, 'Victor Babeș' National Institute of Pathology, 050096 Bucharest, Romania
| | - Dan Ciotaru
- Immunobiology Laboratory, 'Victor Babeș' National Institute of Pathology, 050096 Bucharest, Romania
| | - Carolina Constantin
- Immunobiology Laboratory, 'Victor Babeș' National Institute of Pathology, 050096 Bucharest, Romania.,Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Ovidiu Bratu
- Department of Urology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Constantin Căruntu
- Department of Urology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Monica Neagu
- Immunobiology Laboratory, 'Victor Babeș' National Institute of Pathology, 050096 Bucharest, Romania.,Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania.,Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Cornel Ursaciuc
- Immunobiology Laboratory, 'Victor Babeș' National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
23
|
Khoury N, Zingkou E, Pampalakis G, Sofopoulos M, Zoumpourlis V, Sotiropoulou G. KLK6 protease accelerates skin tumor formation and progression. Carcinogenesis 2018; 39:1529-1536. [DOI: 10.1093/carcin/bgy110] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 08/21/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Nikolas Khoury
- Department of Pharmacy, School of Health Sciences, University of Patras, Rio Patras, Greece
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rio Patras, Greece
| | - Georgios Pampalakis
- Department of Pharmacy, School of Health Sciences, University of Patras, Rio Patras, Greece
| | | | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rio Patras, Greece
| |
Collapse
|
24
|
Aggarwal D, Arumalla N, Jethwa H, Abraham S. The use of biomarkers as a tool for novel psoriatic disease drug discovery. Expert Opin Drug Discov 2018; 13:875-887. [PMID: 30124339 DOI: 10.1080/17460441.2018.1508206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Psoriatic disease is a relatively new term which encompasses psoriatic arthritis, psoriasis, and associated comorbidities. In this heterogeneous condition, the study of biomarkers is necessary to direct best therapy. Resulting in significant disability and socioeconomic burden, recent recommendations stress the need for tight control in psoriatic disease. Areas covered: The authors outline recent advances in the understanding of psoriatic disease pathogenesis which has highlighted multiple biomarkers that have been pursued as drug targets with varying degrees of success. Current drugs targeting biomarkers and therapies in development are evaluated. The methods of biomarker discovery through genomics, transcriptomics, proteomics, metabolomics, and study of the microbiome are also discussed. Expert opinion: Targeting biomarkers for therapeutic benefit appears to a promising field with multiple success stories, notably those associated with signaling through T-helper-17 cells. The use of genomics, transcriptomics, proteomics, and more recently metabolomics will help individualize targeted biomarker therapies, assist in monitoring therapeutic success, and ultimately yield novel therapeutic targets. Advances in the development of novel biologic molecules targeting more than one cytokine may offer additional gains in therapeutic response.
Collapse
Affiliation(s)
- Dinesh Aggarwal
- a Department of Infectious Diseases , Chelsea and Westminster Hospital , London , UK
| | | | - Hannah Jethwa
- c Department of Rheumatology , Ealing Hospital , Southall , UK
| | - Sonya Abraham
- d Department of Rheumatology , Hammersmith Hospital , London , UK.,e Department of Rheumatology , Imperial College Healthcare NHS Trust , London , UK
| |
Collapse
|
25
|
Valero-Rubio D, Jiménez KM, Fonseca DJ, Payán-Gómez C, Laissue P. Transcriptomic analysis of FUCA1
knock-down in keratinocytes reveals new insights into the pathogenesis of fucosidosis skin lesions. Exp Dermatol 2018. [DOI: 10.1111/exd.13532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Danyela Valero-Rubio
- Center For Research in Genetics and Genomics-CIGGUR; GENIUROS Research Group; School of Medicine and Health Sciences; Universidad del Rosario; Bogotá Colombia
| | - Karen Marcela Jiménez
- Center For Research in Genetics and Genomics-CIGGUR; GENIUROS Research Group; School of Medicine and Health Sciences; Universidad del Rosario; Bogotá Colombia
| | - Dora Janeth Fonseca
- Center For Research in Genetics and Genomics-CIGGUR; GENIUROS Research Group; School of Medicine and Health Sciences; Universidad del Rosario; Bogotá Colombia
| | - César Payán-Gómez
- Facultad de Ciencias Naturales y Matemáticas; Universidad del Rosario; Bogotá Colombia
| | - Paul Laissue
- Center For Research in Genetics and Genomics-CIGGUR; GENIUROS Research Group; School of Medicine and Health Sciences; Universidad del Rosario; Bogotá Colombia
| |
Collapse
|
26
|
Okur E, Yerlikaya A. A novel and effective inhibitor combination involving bortezomib and OTSSP167 for breast cancer cells in light of label-free proteomic analysis. Cell Biol Toxicol 2018; 35:33-47. [PMID: 29948483 DOI: 10.1007/s10565-018-9435-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/06/2018] [Indexed: 01/23/2023]
Abstract
PURPOSE The 26S proteasome plays important roles in many intracellular processes and is therefore a critical intracellular cellular target for anticancer treatments. The primary aim of the current study was to identify critical proteins that may play roles in opposing the antisurvival effect of the proteasome inhibitor bortezomib together with the calcium-chelator BAPTA-AM in cancer cells using label-free LC-MS/MS. In addition, based on the results of the proteomic technique, a novel and more effective inhibitor combination involving bortezomib as well as OTSSP167 was developed for breast cancer cells. METHODS AND RESULTS Using label-free LC-MS/MS, it was found that expressions of 1266 proteins were significantly changed between the experimental groups. Among these proteins were cell division cycle 5-like (Cdc5L) and drebrin-like (DBNL). We then hypothesized that inhibition of the activities of these two proteins may lead to more effective anticancer inhibitor combinations in the presence of proteasomal inhibition. In fact, as presented in the current study, Cdc5L phosphorylation inhibitor CVT-313 and DBNL phosphorylation inhibitor OTSSP167 were highly cytotoxic in 4T1 breast cancer cells and their IC50 values were 20.1 and 43 nM, respectively. Under the same experimental conditions, the IC50 value of BAPTA-AM was found 19.9 μM. Using WST 1 cytotoxicity assay, it was determined that 10 nM bortezomib + 10 nM CVT-313 was more effective than the control, the single treatments, or than 5 nM bortezomib + 5 nM CVT-313. Similarly, 10 nM bortezomib + 10 nM OTSSP167 was more cytotoxic than the control, the monotherapies, 5 nM bortezomib + 5 nM OTSSP167, or than 5 nM bortezomib + 10 nM OTSSP167, indicating that bortezomib + OTSSP167 was also more effective than bortezomib + CVT-313 in a dose-dependent manner. Furthermore, the 3D spheroid model proved that bortezomib + OTSSP167 was more effective than the monotherapies as well as bortezomib + CVT-313 and bortezomib + BAPTA-AM combinations. Finally, the effect of bortezomib + OTSSP167 combination was tested on MDA-MB-231 breast cancer cells, and it similarly determined that 20 nM bortezomib +40 nM OTSSP167 combination completely blocked the formation of 3D spheroids. CONCLUSIONS Altogether, the results presented here indicate that bortezomib + OTSSP167 is a novel and effective combination and may be tested further for cancer treatment in vivo and in clinical settings.
Collapse
Affiliation(s)
- Emrah Okur
- Art and Science Faculty, Department of Biology, Kütahya Dumlupınar University, Kütahya, Turkey
| | - Azmi Yerlikaya
- Faculty of Medicine, Department of Medical Biology, Kütahya Health Sciences University, Kütahya, Turkey.
| |
Collapse
|
27
|
Erin N, Ogan N, Yerlikaya A. Secretomes reveal several novel proteins as well as TGF-β1 as the top upstream regulator of metastatic process in breast cancer. Breast Cancer Res Treat 2018; 170:235-250. [PMID: 29557524 DOI: 10.1007/s10549-018-4752-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/13/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Metastatic breast cancer is resistant to many conventional treatments and novel therapeutic targets are needed. We previously isolated subsets of 4T1 murine breast cancer cells which metastasized to liver (4TLM), brain (4TBM), and heart (4THM). Among these cells, 4TLM is the most aggressive one, demonstrating mesenchymal phenotype. Here we compared secreted proteins from 4TLM, 4TBM, and 4THM cells and compared with that of hardly metastatic 67NR cells to detect differentially secreted factors involved in organ-specific metastasis. METHOD AND RESULTS Label-free LC-MS/MS proteomic technique was used to detect the differentially secreted proteins. Eighty-five of over 500 secreted proteins were significantly altered in metastatic breast cancer cells. Differential expression of several proteins such as fibulin-4, Bone Morphogenetic Protein 1, TGF-β1 MMP-3, MMP-9, and Thymic Stromal Lymphopoietin were further verified using ELISA or Western blotting. Many of these identified proteins were also present in human metastatic breast carcinomas. Annexin A1 and A5, laminin beta 1, Neutral alpha-glucosidase AB were commonly found at least in three out of six studies examined here. Ingenuity Pathway Analysis showed that proteins differentially secreted from metastatic cells are involved primarily in carcinogenesis and TGF-β1 is the top upstream regulator in all metastatic cells. CONCLUSIONS Cells metastasized to different organs displayed significant differences in several of secreted proteins. Proteins differentially altered were fibronectin, insulin-like growth factor-binding protein 7, and Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1. On the other hand, many exosomal proteins were also common to all metastatic cells, demonstrating involvement of key universal factors in distant metastatic process.
Collapse
Affiliation(s)
- Nuray Erin
- Department of Medical Pharmacology, School of Medicine, Akdeniz University, B-blok kat 1, SBAUM/Immunoloji Lab, Antalya, Turkey.
| | - Nur Ogan
- Department of Medical Pharmacology, School of Medicine, Akdeniz University, B-blok kat 1, SBAUM/Immunoloji Lab, Antalya, Turkey
| | - Azmi Yerlikaya
- Department of Medical Biology, School of Medicine, Dumlupınar University, Kütahya, Turkey
| |
Collapse
|
28
|
Zaafouri S, Pichery M, Huchenq A, Valentin F, Oji V, Mazereeuw-Hautier J, Serre G, Jonca N. Transcriptomic Analysis of Two Cdsn-Deficient Mice Shows Gene Signatures Biologically Relevant for Peeling Skin Disease. J Invest Dermatol 2017; 138:1431-1435. [PMID: 29277537 DOI: 10.1016/j.jid.2017.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/20/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Sarra Zaafouri
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde, UMR 1056 Inserm-Université de Toulouse, Place du Dr Baylac, Hôpital Purpan, Toulouse, France
| | - Mélanie Pichery
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde, UMR 1056 Inserm-Université de Toulouse, Place du Dr Baylac, Hôpital Purpan, Toulouse, France
| | - Anne Huchenq
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde, UMR 1056 Inserm-Université de Toulouse, Place du Dr Baylac, Hôpital Purpan, Toulouse, France
| | - Frederic Valentin
- Department of Dermatology, Muenster University Hospital, Muenster, Germany
| | - Vinzenz Oji
- Department of Dermatology, Muenster University Hospital, Muenster, Germany
| | - Juliette Mazereeuw-Hautier
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde, UMR 1056 Inserm-Université de Toulouse, Place du Dr Baylac, Hôpital Purpan, Toulouse, France; Department of Dermatology, Reference Centre for Rare Skin Disease, Toulouse University Hospital, Toulouse, France
| | - Guy Serre
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde, UMR 1056 Inserm-Université de Toulouse, Place du Dr Baylac, Hôpital Purpan, Toulouse, France
| | - Nathalie Jonca
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde, UMR 1056 Inserm-Université de Toulouse, Place du Dr Baylac, Hôpital Purpan, Toulouse, France.
| |
Collapse
|
29
|
Naveau A, Zhang B, Meng B, Sutherland MT, Prochazkova M, Wen T, Marangoni P, Jones KB, Cox TC, Ganss B, Jheon AH, Klein OD. Isl1 Controls Patterning and Mineralization of Enamel in the Continuously Renewing Mouse Incisor. J Bone Miner Res 2017; 32:2219-2231. [PMID: 28650075 PMCID: PMC5685895 DOI: 10.1002/jbmr.3202] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 06/09/2017] [Accepted: 06/21/2017] [Indexed: 01/15/2023]
Abstract
Rodents are characterized by continuously renewing incisors whose growth is fueled by epithelial and mesenchymal stem cells housed in the proximal compartments of the tooth. The epithelial stem cells reside in structures known as the labial (toward the lip) and lingual (toward the tongue) cervical loops (laCL and liCL, respectively). An important feature of the rodent incisor is that enamel, the outer, highly mineralized layer, is asymmetrically distributed, because it is normally generated by the laCL but not the liCL. Here, we show that epithelial-specific deletion of the transcription factor Islet1 (Isl1) is sufficient to drive formation of ectopic enamel by the liCL stem cells, and also that it leads to production of altered enamel on the labial surface. Molecular analyses of developing and adult incisors revealed that epithelial deletion of Isl1 affected multiple, major pathways: Bmp (bone morphogenetic protein), Hh (hedgehog), Fgf (fibroblast growth factor), and Notch signaling were upregulated and associated with liCL-generated ectopic enamel; on the labial side, upregulation of Bmp and Fgf signaling, and downregulation of Shh were associated with premature enamel formation. Transcriptome profiling studies identified a suite of differentially regulated genes in developing Isl1 mutant incisors. Our studies demonstrate that ISL1 plays a central role in proper patterning of stem cell-derived enamel in the incisor and indicate that this factor is an important upstream regulator of signaling pathways during tooth development and renewal. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Adrien Naveau
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
- Université Paris Descartes, Sorbonne Paris Cite, UMR S872, France
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, UMR S872, Paris, France
- INSERM U872, Paris, France
| | - Bin Zhang
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Bo Meng
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - McGarrett T. Sutherland
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Michaela Prochazkova
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the ASCR, v.v.i., Prague 4 14220, Czech Republic
| | - Timothy Wen
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Pauline Marangoni
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kyle B. Jones
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Timothy C. Cox
- Department of Pediatrics (Craniofacial Medicine), University of Washington & Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Bernhard Ganss
- Faculty of Dentistry, University of Toronto, Toronto, ON Canada
| | - Andrew H. Jheon
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ophir D. Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
30
|
Voegeli R, Monneuse JM, Schoop R, Summers B, Rawlings AV. The effect of photodamage on the female Caucasian facial stratum corneum corneome using mass spectrometry-based proteomics. Int J Cosmet Sci 2017; 39:637-652. [PMID: 28865110 DOI: 10.1111/ics.12426] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/29/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND The effect of photodamage on facial stratum corneum (SC) is still poorly understood. OBJECTIVE To describe the SC proteome from tape strippings of Caucasian SC from photoexposed cheek and photoprotected post-auricular (PA) site, a global analysis of photodamage on the skin will be developed leading to a better understanding of keratinocyte signalling pathways and identification of new molecular targets for the treatment of photoaged skin. METHODS Female Caucasian subjects had nine consecutive tape strippings taken from their cheeks and PA site. Proteins were extracted and the trypsin-digested peptides were analysed by nanochromatography coupled to a high-resolution mass spectrometer. Data-dependent acquisition allowed protein identification that was processed by Paragon algorithm of Protein Pilot software. RESULTS Changes in the levels of epidermal differentiation proteins were apparent indicating poor epidermal differentiation and SC maturation (keratins, cornified envelope (CE) proteins) on photoexposed cheeks. Differences in protease-anti-protease balance were observed for corneodesmolysis (favouring desquamation) and filaggrinolysis (favouring reduced filaggrin processing). 12R-LOX, a CE maturation enzyme, was reduced in photodamaged skin but not transglutaminases. Changes in signal keratinocyte transduction pathway markers were demonstrated especially by reduced levels of downstream signalling markers such as calreticulin (unfolded protein response; UPR) and increased level of stratifin (target of rapamycin; mTOR). Evidence for impaired proteostasis was apparent by reduced levels of a key proteasomal subunit (subunit beta type-6). Finally, key antioxidant proteins were upregulated except catalase. CONCLUSION Clear examples of poor keratinocyte differentiation and associated metabolic and signalling pathways together with reduced SC maturation were identified in photodamaged facial SC. Corneocyte immaturity was evident with changes in CE proteins. Particularly, the reduction in 12R-LOX is a novel finding in photodamaged skin and supports the lack of SC maturation. Moreover, filaggrinolysis was reduced, whereas corneodesmolysis was enhanced. From our results, we propose that there is a poor cross-talk between the keratinocyte endoplasmic reticulum UPR, proteasome network and autophagy machinery that possibly leads to impaired keratinocyte proteostasis. Superimposed on these aberrations is an apparently enhanced mTOR pathway that also contributes to reduced SC formation and maturation. Our results clearly indicate a corneocyte scaffold disorder in photodamaged cheek SC.
Collapse
Affiliation(s)
- R Voegeli
- DSM Nutritional Products Ltd., Wurmisweg 571, 4303, Kaiseraugst, Switzerland
| | - J-M Monneuse
- Phylogene S.A., 62, Route Nationale 113, 30620, Bernis, France
| | - R Schoop
- DSM Nutritional Products Ltd., Wurmisweg 571, 4303, Kaiseraugst, Switzerland
| | - B Summers
- Photobiology Laboratory, Sefako Makgatho Health Sciences University, Molotlegi St, Medunsa 0204, Pretoria, South Africa
| | - A V Rawlings
- AVR Consulting Ltd., 26 Shavington Way, Northwich, Cheshire CW9 8FH, UK
| |
Collapse
|
31
|
Zeng C, Wen B, Hou G, Lei L, Mei Z, Jia X, Chen X, Zhu W, Li J, Kuang Y, Zeng W, Su J, Liu S, Peng C, Chen X. Lipidomics profiling reveals the role of glycerophospholipid metabolism in psoriasis. Gigascience 2017; 6:1-11. [PMID: 29046044 PMCID: PMC5647792 DOI: 10.1093/gigascience/gix087] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/08/2017] [Accepted: 08/27/2017] [Indexed: 01/19/2023] Open
Abstract
Psoriasis is a common and chronic inflammatory skin disease that is complicated by gene-environment interactions. Although genomic, transcriptomic, and proteomic analyses have been performed to investigate the pathogenesis of psoriasis, the role of metabolites in psoriasis, particularly of lipids, remains unclear. Lipids not only comprise the bulk of the cellular membrane bilayers but also regulate a variety of biological processes such as cell proliferation, apoptosis, immunity, angiogenesis, and inflammation. In this study, an untargeted lipidomics approach was used to study the lipid profiles in psoriasis and to identify lipid metabolite signatures for psoriasis through ultra-performance liquid chromatography-tandem quadrupole mass spectrometry. Plasma samples from 90 participants (45 healthy and 45 psoriasis patients) were collected and analyzed. Statistical analysis was applied to find different metabolites between the disease and healthy groups. In addition, enzyme-linked immunosorbent assay was performed to validate differentially expressed lipids in psoriatic patient plasma. Finally, we identified differential expression of several lipids including lysophosphatidic acid (LPA), lysophosphatidylcholine (LysoPC), phosphatidylinositol (PI), phosphatidylcholine (PC), and phosphatidic acid (PA); among these metabolites, LPA, LysoPC, and PA were significantly increased, while PC and PI were down-regulated in psoriasis patients. We found that elements of glycerophospholipid metabolism such as LPA, LysoPC, PA, PI, and PC were significantly altered in the plasma of psoriatic patients; this study characterizes the circulating lipids in psoriatic patients and provides novel insight into the role of lipids in psoriasis.
Collapse
Affiliation(s)
- Chunwei Zeng
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China, 518083
- China National GeneBank-Shenzhen, Jinsha Road, Dapeng District, Shenzhen, China, 518083
| | - Bo Wen
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China, 518083
- China National GeneBank-Shenzhen, Jinsha Road, Dapeng District, Shenzhen, China, 518083
| | - Guixue Hou
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China, 518083
- China National GeneBank-Shenzhen, Jinsha Road, Dapeng District, Shenzhen, China, 518083
| | - Li Lei
- Department of Dermatology, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
| | - Zhanlong Mei
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China, 518083
- China National GeneBank-Shenzhen, Jinsha Road, Dapeng District, Shenzhen, China, 518083
| | - Xuekun Jia
- Department of Dermatology, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
| | - Xiaomin Chen
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China, 518083
- China National GeneBank-Shenzhen, Jinsha Road, Dapeng District, Shenzhen, China, 518083
| | - Wu Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
| | - Yehong Kuang
- Department of Dermatology, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
| | - Weiqi Zeng
- Department of Dermatology, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
| | - Siqi Liu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China, 518083
- China National GeneBank-Shenzhen, Jinsha Road, Dapeng District, Shenzhen, China, 518083
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
| |
Collapse
|
32
|
Evidence for biochemical barrier restoration: Topical solenopsin analogs improve inflammation and acanthosis in the KC-Tie2 mouse model of psoriasis. Sci Rep 2017; 7:11198. [PMID: 28894119 PMCID: PMC5593857 DOI: 10.1038/s41598-017-10580-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease affecting 2.5–6 million patients in the United States. The cause of psoriasis remains unknown. Previous human and animal studies suggest that patients with a susceptible genetic background and some stimulus, such as barrier disruption, leads to a coordinated signaling events involving cytokines between keratinocytes, endothelial cells, T cells, macrophages and dendritic cells. Ceramides are endogenous skin lipids essential for maintaining skin barrier function and loss of ceramides may underlie inflammatory and premalignant skin. Ceramides act as a double-edged sword, promoting normal skin homeostasis in the native state, but can be metabolized to sphingosine-1-phosphate (S1P), linked to inflammation and tumorigenesis. To overcome this difficulty, we synthesized solenopsin analogs which biochemically act as ceramides, but cannot be metabolized to S1P. We assess their in vivo bioactivity in a well-established mouse model of psoriasis, the KC-Tie2 mouse. Topical solenopsin derivatives normalized cutaneous hyperplasia in this model, decreased T cell infiltration, interleukin (IL)-22 transcription, and reversed the upregulation of calprotectin and Toll-like receptor (TLR) 4 in inflamed skin. Finally, they stimulated interleukin (IL)-12 production in skin dendritic cells. Thus suggesting barrier restoration has both a biochemical and physical component, and both are necessary for optimal barrier restoration.
Collapse
|
33
|
Sarkar MK, Kaplan N, Tsoi LC, Xing X, Liang Y, Swindell WR, Hoover P, Aravind M, Baida G, Clark M, Voorhees JJ, Nair RP, Elder JT, Budunova I, Getsios S, Gudjonsson JE. Endogenous Glucocorticoid Deficiency in Psoriasis Promotes Inflammation and Abnormal Differentiation. J Invest Dermatol 2017; 137:1474-1483. [PMID: 28259685 PMCID: PMC5545780 DOI: 10.1016/j.jid.2017.02.972] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/19/2017] [Accepted: 02/07/2017] [Indexed: 01/11/2023]
Abstract
The factors involved in maintaining a localized inflammatory state in psoriatic skin remain poorly understood. Here, we demonstrate through metabolomic and transcriptomic profiling marked suppression of glucocorticoid biosynthesis in the epidermis of psoriatic skin leading to localized deficiency of cortisol. Utilizing a 3D human epidermis model, we demonstrate that glucocorticoid biosynthesis is suppressed by proinflammatory cytokines and that glucocorticoid deficiency promotes inflammatory responses in keratinocytes. Finally, we show in vitro and in vivo that treatment with topical glucocorticoids leads to rapid restoration of glucocorticoid biosynthesis gene expression coincident with normalization of epidermal differentiation and suppression of inflammatory responses. Taken together, our data suggest that localized glucocorticoid deficiency in psoriatic skin interferes with epidermal differentiation and promotes a sustained and localized inflammatory response. This may shed new light on the mechanism of action of topical steroids, and demonstrates the critical role of endogenous steroid in maintaining both inflammatory and differentiation homeostasis in the epidermis.
Collapse
Affiliation(s)
- Mrinal K Sarkar
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nihal Kaplan
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA; Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Xianying Xing
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yun Liang
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - William R Swindell
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Paul Hoover
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Maya Aravind
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Gleb Baida
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Matthew Clark
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - John J Voorhees
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rajan P Nair
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - James T Elder
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Irina Budunova
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Spiro Getsios
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
34
|
Wang Y, Golden JB, Fritz Y, Zhang X, Diaconu D, Camhi MI, Gao H, Dawes SM, Xing X, Ganesh SK, Gudjonsson JE, Simon DI, McCormick TS, Ward NL. Interleukin 6 regulates psoriasiform inflammation-associated thrombosis. JCI Insight 2016; 1:e89384. [PMID: 27942589 DOI: 10.1172/jci.insight.89384] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Psoriasis patients are at increased risk of heart attack and stroke and have elevated MRP8/14 levels that predict heart attack. The KC-Tie2 psoriasiform mouse model exhibits elevated MRP8/14 and is prothrombotic. Mrp14-/- mice, in contrast, are protected from thrombosis, but, surprisingly, KC-Tie2xMrp14-/- mice remain prothrombotic. Treating KC-Tie2xMrp14-/- mice with anti-IL-23p19 antibodies reversed the skin inflammation, improved thrombosis, and decreased IL-6. In comparison, IL-6 deletion from KC-Tie2 animals improved thrombosis despite sustained skin inflammation, suggesting that thrombosis improvements following IL-23 inhibition occur secondary to IL-6 decreases. Psoriasis patient skin has elevated IL-6 and IL-6 receptor is present in human coronary atheroma, supporting a link between skin and distant vessel disease in patient tissue. Together, these results identify a critical role for skin-derived IL-6 linking skin inflammation with thrombosis, and shows that in the absence of IL-6 the connection between skin inflammation and thrombosis comorbidities is severed.
Collapse
Affiliation(s)
- Yunmei Wang
- Division of Cardiovascular Medicine, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, Ohio, USA
| | - Jackelyn B Golden
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yi Fritz
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xiufen Zhang
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Doina Diaconu
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Maya I Camhi
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Huiyun Gao
- Division of Cardiovascular Medicine, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, Ohio, USA
| | - Sean M Dawes
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Santhi K Ganesh
- Department of Internal Medicine, Division of Cardiovascular Medicine, and Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Daniel I Simon
- Division of Cardiovascular Medicine, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, Ohio, USA
| | - Thomas S McCormick
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nicole L Ward
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
35
|
Cavusoglu N, Delattre C, Donovan M, Bourassa S, Droit A, El Rawadi C, Jourdain R, Bernard D. iTRAQ-based quantitative proteomics of stratum corneum of dandruff scalp reveals new insights into its aetiology and similarities with atopic dermatitis. Arch Dermatol Res 2016; 308:631-642. [PMID: 27600510 DOI: 10.1007/s00403-016-1681-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 08/12/2016] [Accepted: 08/30/2016] [Indexed: 12/16/2022]
Abstract
The study aimed at detecting differentially expressed proteins in the stratum corneum of dandruff versus non-dandruff scalps to better understand dandruff aetiology. iTRAQ-based quantitative proteomic analysis revealed a total of 68 differentially expressed biomarkers. A detailed analysis of their known physiological functions provided new insights into the affected metabolic pathways of a dandruff scalp. Dandruff scalp showed (1) profound changes in the expression and maturation of structural and epidermal differentiation related proteins, that are responsible for the integrity of the skin, (2) altered relevant factors that regulate skin hydration, and (3) an imbalanced physiological protease-protease inhibitor ratio. Stratum corneum proteins with antimicrobial activity, mainly those derived from sweat and sebaceous glands were also found modified. Comparing our data with those reported for atopic dermatitis revealed that about 50 % of the differentially expressed proteins in the superficial layers of the stratum corneum from dandruff and atopic dermatitis are identical.
Collapse
Affiliation(s)
- Nükhet Cavusoglu
- L'Oreal Research and Innovation, 1 Avenue Eugène Schueller, 93600, Aulnay-Sous-Bois, France.
| | - Caroline Delattre
- L'Oreal Research and Innovation, 1 Avenue Eugène Schueller, 93600, Aulnay-Sous-Bois, France
| | - Mark Donovan
- L'Oreal Research and Innovation, 1 Avenue Eugène Schueller, 93600, Aulnay-Sous-Bois, France
| | - Sylvie Bourassa
- Centre de recherche du CHU de Québec, Plate-forme protéomique, 2705, Boulevard Laurier, QC, Canada
| | - Arnaud Droit
- Centre de recherche du CHU de Québec, Plate-forme protéomique, 2705, Boulevard Laurier, QC, Canada
| | - Charles El Rawadi
- L'Oreal Research and Innovation, 1 Avenue Eugène Schueller, 93600, Aulnay-Sous-Bois, France
| | - Roland Jourdain
- L'Oreal Research and Innovation, 1 Avenue Eugène Schueller, 93600, Aulnay-Sous-Bois, France
| | - Dominique Bernard
- L'Oreal Research and Innovation, 1 Avenue Eugène Schueller, 93600, Aulnay-Sous-Bois, France
| |
Collapse
|
36
|
Bliss E, Heywood WE, Benatti M, Sebire NJ, Mills K. An optimised method for the proteomic profiling of full thickness human skin. Biol Proced Online 2016; 18:15. [PMID: 27445641 PMCID: PMC4955162 DOI: 10.1186/s12575-016-0045-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/24/2016] [Indexed: 12/23/2022] Open
Abstract
Background The skin is the largest organ of the human body and is the first line barrier defence against trauma, microbial infiltration and radiation. Skin diseases can be a result of multi-systemic disease or an isolated condition. Due to its proteolysis resistant properties there are relatively few human skin proteomic datasets published compared with other human organs or body fluids. Skin is a challenging tissue to analyse using traditional proteomic techniques due to its high lipid content, insolubility and extensive cross-linking of proteins. This can complicate the isolation and digestion of proteins for analysis using mass spectrometry techniques. Results We have optimised a sample preparation procedure to improve solubilisation and mass spectral compatibility of full thickness skin samples. Using this technique, we were able to obtain data for the proteome profile of full thickness human skin using on-line two-dimensional liquid chromatography, followed by ultra-high definition label-free mass spectrometry analysis (UDMSE). We were able to identify in excess of 2000 proteins from a full thickness skin sample. Conclusions The adoption of on-line fractionation and optimised acquisition protocols utilising ion mobility separation (IMS) technology has significantly increased the scope for protein identifications ten-fold. Electronic supplementary material The online version of this article (doi:10.1186/s12575-016-0045-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily Bliss
- Centre for Translational Omics, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Wendy E Heywood
- Centre for Translational Omics, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Malika Benatti
- Histopathology Department, Great Ormond Street Hospital, London, WC1N 3JH UK
| | - Neil J Sebire
- Histopathology Department, Great Ormond Street Hospital, London, WC1N 3JH UK
| | - Kevin Mills
- Centre for Translational Omics, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| |
Collapse
|
37
|
Paek SY, Han L, Weiland M, Lu CJ, McKinnon K, Zhou L, Lim HW, Elder JT, Mi QS. Emerging biomarkers in psoriatic arthritis. IUBMB Life 2015; 67:923-927. [PMID: 26602058 DOI: 10.1002/iub.1453] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/21/2015] [Indexed: 12/29/2022]
Abstract
Psoriasis is an immune-mediated skin disease which affects 2-4% of the worldwide population. Approximately 20-30% of patients with psoriasis develop psoriatic arthritis (PsA), a frequently destructive and disabling condition. As skin manifestations precede joint symptoms in nearly all patients with PsA, identification of biomarkers for early prediction of joint damage is an important clinical need. Because not all patients with PsA respond to treatment in the same fashion, identification of biomarkers capable of predicting therapeutic response is also imperative. Here, we review existing literature and discuss current investigations to identify potential biomarkers for PsA disease activity, with particular emphasis on microRNAs as novel markers of interest. Serum (soluble) biomarkers, peripheral osteoclast precursor as cellular biomarkers, and genetic loci associated with skin and joint disease are also reviewed.
Collapse
Affiliation(s)
- So Yeon Paek
- Department of Dermatology, Henry Ford Health System, Detroit, MI, USA
| | - Ling Han
- Department of Dermatology, Henry Ford Health System, Detroit, MI, USA.,Department of Dermatology, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.,Immunology Program, Henry Ford Health System, Detroit, MI, USA
| | - Matthew Weiland
- Department of Dermatology, Henry Ford Health System, Detroit, MI, USA.,Immunology Program, Henry Ford Health System, Detroit, MI, USA
| | - Chuan-Jian Lu
- Department of Dermatology, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Kathleen McKinnon
- Division of Rheumatology, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Li Zhou
- Department of Dermatology, Henry Ford Health System, Detroit, MI, USA.,Immunology Program, Henry Ford Health System, Detroit, MI, USA.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Henry W Lim
- Department of Dermatology, Henry Ford Health System, Detroit, MI, USA.,Immunology Program, Henry Ford Health System, Detroit, MI, USA
| | - James T Elder
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Qing-Sheng Mi
- Department of Dermatology, Henry Ford Health System, Detroit, MI, USA.,Immunology Program, Henry Ford Health System, Detroit, MI, USA.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
38
|
Jiang S, Hinchliffe TE, Wu T. Biomarkers of An Autoimmune Skin Disease--Psoriasis. GENOMICS, PROTEOMICS & BIOINFORMATICS 2015; 13:224-33. [PMID: 26362816 PMCID: PMC4610974 DOI: 10.1016/j.gpb.2015.04.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/06/2015] [Accepted: 04/22/2015] [Indexed: 02/08/2023]
Abstract
Psoriasis is one of the most prevalent autoimmune skin diseases. However, its etiology and pathogenesis are still unclear. Over the last decade, omics-based technologies have been extensively utilized for biomarker discovery. As a result, some promising markers for psoriasis have been identified at the genome, transcriptome, proteome, and metabolome level. These discoveries have provided new insights into the underlying molecular mechanisms and signaling pathways in psoriasis pathogenesis. More importantly, some of these markers may prove useful in the diagnosis of psoriasis and in the prediction of disease progression once they have been validated. In this review, we summarize the most recent findings in psoriasis biomarker discovery. In addition, we will discuss several emerging technologies and their potential for novel biomarker discovery and diagnostics for psoriasis.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Taylor E Hinchliffe
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Tianfu Wu
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
39
|
Geng X, Wei H, Shang H, Zhou M, Chen B, Zhang F, Zang X, Li P, Sun J, Che J, Zhang Y, Xu C. Proteomic analysis of the skin of Chinese giant salamander (Andrias davidianus). J Proteomics 2015; 119:196-208. [DOI: 10.1016/j.jprot.2015.02.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/07/2015] [Accepted: 02/11/2015] [Indexed: 12/18/2022]
|
40
|
Bao K, Bostanci N, Selevsek N, Thurnheer T, Belibasakis GN. Quantitative proteomics reveal distinct protein regulations caused by Aggregatibacter actinomycetemcomitans within subgingival biofilms. PLoS One 2015; 10:e0119222. [PMID: 25756960 PMCID: PMC4355292 DOI: 10.1371/journal.pone.0119222] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/26/2015] [Indexed: 01/18/2023] Open
Abstract
Periodontitis is an infectious disease that causes the inflammatory destruction of the tooth-supporting (periodontal) tissues, caused by polymicrobial biofilm communities growing on the tooth surface. Aggressive periodontitis is strongly associated with the presence of Aggregatibacter actinomycetemcomitans in the subgingival biofilms. Nevertheless, whether and how A. actinomycetemcomitans orchestrates molecular changes within the biofilm is unclear. The aim of this work was to decipher the interactions between A. actinomycetemcomitans and other bacterial species in a multi-species biofilm using proteomic analysis. An in vitro 10-species "subgingival" biofilm model, or its derivative that included additionally A. actinomycetemcomitans, were anaerobically cultivated on hydroxyapatite discs for 64 h. When present, A. actinomycetemcomitans formed dense intra-species clumps within the biofilm mass, and did not affect the numbers of the other species in the biofilm. Liquid chromatography-tandem mass spectrometry was used to identify the proteomic content of the biofilm lysate. A total of 3225 and 3352 proteins were identified in the biofilm, in presence or absence of A. actinomycetemcomitans, respectively. Label-free quantitative proteomics revealed that 483 out of the 728 quantified bacterial proteins (excluding those of A. actinomycetemcomitans) were accordingly regulated. Interestingly, all quantified proteins from Prevotella intermedia were up-regulated, and most quantified proteins from Campylobacter rectus, Streptococcus anginosus, and Porphyromonas gingivalis were down-regulated in presence of A. actinomycetemcomitans. Enrichment of Gene Ontology pathway analysis showed that the regulated groups of proteins were responsible primarily for changes in the metabolic rate, the ferric iron-binding, and the 5S RNA binding capacities, on the universal biofilm level. While the presence of A. actinomycetemcomitans did not affect the numeric composition or absolute protein numbers of the other biofilm species, it caused qualitative changes in their overall protein expression profile. These molecular shifts within the biofilm warrant further investigation on their potential impact on its virulence properties, and association with periodontal pathogenesis.
Collapse
Affiliation(s)
- Kai Bao
- Oral Translational Research, Institute for Oral Biology, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Nagihan Bostanci
- Oral Translational Research, Institute for Oral Biology, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Nathalie Selevsek
- Functional Genomics Center Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas Thurnheer
- Oral Microbiology and Immunology, Institute for Oral Biology, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Georgios N. Belibasakis
- Oral Microbiology and Immunology, Institute for Oral Biology, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|