1
|
Parashar S, Kaushik A, Ambasta RK, Kumar P. E2 conjugating enzymes: A silent but crucial player in ubiquitin biology. Ageing Res Rev 2025; 108:102740. [PMID: 40194666 DOI: 10.1016/j.arr.2025.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/09/2025]
Abstract
E2 conjugating enzymes serve as the linchpin of the Ubiquitin-Proteasome System (UPS), facilitating ubiquitin (Ub) transfer to substrate proteins and regulating diverse processes critical to cellular homeostasis. The interaction of E2s with E1 activating enzymes and E3 ligases singularly positions them as middlemen of the ubiquitin machinery that guides protein turnover. Structural determinants of E2 enzymes play a pivotal role in these interactions, enabling precise ubiquitin transfer and substrate specificity. Regulation of E2 enzymes is tightly controlled through mechanisms such as post-translational modifications (PTMs), allosteric control, and gene expression modulation. Specific residues that undergo PTMs highlight their impact on E2 function and their role in ubiquitin dynamics. E2 enzymes also cooperate with deubiquitinases (DUBs) to maintain proteostasis. Design of small molecule inhibitors to modulate E2 activity is emerging as promising avenue to restrict ubiquitination as a potential therapeutic intervention. Additionally, E2 enzymes have been implicated in the pathogenesis and progression of neurodegenerative disorders (NDDs), where their dysfunction contributes to disease mechanisms. In summary, examining E2 enzymes from structural and functional perspectives offers potential to advance our understanding of cellular processes and assist in discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Somya Parashar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Aastha Kaushik
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
2
|
Sun M, Qiao Z, Wei S, Liang Z, Zhang L, Jiang B, Zhang AY. Global Methylation Profiling by Selective Release of Methylated Sites from Immobilized Tryptic Peptides. Anal Chem 2025; 97:9620-9626. [PMID: 40309950 DOI: 10.1021/acs.analchem.5c01643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Methylation of lysine and arginine (K and R) has emerged as a prevalent post-translational modification with critical roles in numerous biological processes. The current identification approaches suffer from suboptimal enrichment efficiency, particularly for lysine methylation, hindering comprehensive KR methylome profiling. Herein, we presented an antibody-free strategy termed Selective Release of Methylated Sites from Immobilized Tryptic Peptides (SRMs-ITP), which achieves high enrichment efficiency while enabling the simultaneous analysis of all five methylation states of KR. This strategy exploits the unique ability of LysargiNase to cleave methylated KR residues, which are absent in trypsin-based digestion. Totally, our approach identified 5516 methylation sites across 2866 proteins from HeLa cell lysate, including 2405 arginine methylation sites and 3111 lysine methylation sites. SRMs-ITP achieved an enrichment efficiency exceeding 48.2%, significantly outperforming current antibody-based and antibody-free strategies. Notably, 56.4% of the detected methylation sites were on lysine residues, surpassing the existing antibody-free approaches. These findings establish SRMs-ITP as a robust, unbiased, and highly efficient methodology for KR methylome analysis. The approach offers a powerful tool for deciphering the intricate regulatory mechanisms of protein methylation and its cross-talk with other post-translational modifications under various physiological and pathological conditions.
Collapse
Affiliation(s)
- Mingwei Sun
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Zichun Qiao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuxian Wei
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhen Liang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lihua Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bo Jiang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - And Yukui Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
3
|
Hamey JJ, Shah M, Wade JD, Bartolec TK, Wettenhall REH, Quinlan KGR, Williamson NA, Wilkins MR. SMYD5 is a ribosomal methyltransferase that trimethylates RPL40 lysine 22 through recognition of a KXY motif. Cell Rep 2025; 44:115518. [PMID: 40184250 DOI: 10.1016/j.celrep.2025.115518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/03/2025] [Accepted: 03/14/2025] [Indexed: 04/06/2025] Open
Abstract
The eukaryotic ribosome is highly modified by protein methylation, yet many of the responsible methyltransferases remain unknown. Here, we identify SET and MYND domain-containing protein 5 (SMYD5) as a ribosomal protein methyltransferase that catalyzes trimethylation of RPL40/eL40 at lysine 22. Through a systematic mass spectrometry-based approach, we identify 12 primary sites of protein methylation in ribosomes from K562 cells, including at RPL40 K22. Through in vitro methylation of synthetic RPL40 using fractionated lysate, we then identify SMYD5 as a candidate RPL40 K22 methyltransferase. We show that recombinant SMYD5 has robust activity toward RPL40 K22 in vitro and that active site mutations ablate this activity. Knockouts of SMYD5 in K562 cells show a complete loss of RPL40 K22 methylation and decreased polysome levels. We show that SMYD5 does not methylate histones in vitro, and by systematic analysis of its recognition motif, we find that SMYD5 requires a KXY motif for methylation, explaining its lack of activity toward histones.
Collapse
Affiliation(s)
- Joshua J Hamey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Manan Shah
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - John D Wade
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Tara K Bartolec
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Richard E H Wettenhall
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nicholas A Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Sun M, Wei S, Li Y, Qiao Z, Liang Z, Shan Y, Zhang Y, Bo J, Zhang L. Utilizing a Negative Enrichment Strategy to Profile Protein Methylation, Leveraging the Orthogonality of LysargiNase and Trypsin. Mol Cell Proteomics 2025:100970. [PMID: 40220995 DOI: 10.1016/j.mcpro.2025.100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025] Open
Abstract
Protein methylation, a prevalent post-translational modification, plays crucial roles in chromatin remodeling and gene transcription. A deeper understanding protein methylation in these biological processes requires comprehensive characterization of the methylation sites. However, methylation induces minimal changes in the size and electrostatic status of lysine/arginine residues, especially in the case of mono-methylation and dimethylation. This significantly increases the difficulty of distinguishing methylation sites from non-methylation sites. In this study, we developed a strategy to enrich protein methylation, termed the Negative Enrichment Strategy for Profiling Protein Methylation, to comprehensively analyze lysine/arginine methylation. Initially, proteins were digested using LysargNase to generate peptides containing methylated or non-methylated lysine/arginine at the N-terminus. Subsequently, the N-terminal free α-amines of the LysargiNase-generated peptides were selectively blocked using formaldehyde in an acidic solution. Since trypsin cleaved after non-methylated lysine/arginine residues, only non-methylated peptides were digested by trypsin, exposing neo-N-terminal free amines. Finally, the non-methylated peptides with neo-N-terminal free amines were selectively removed by reacting with hyperbranched polyglycerol-aldehyde polymers, resulting in the negative enrichment of methylated peptides. Through our approach, we identified 2419 methylation forms in 2384 sites from 1440 protein. This method provided a powerful approach for the comprehensive profiling of protein lysine and arginine methylations simultaneously, enabling a deeper understanding of protein methylation in diverse cellular conditions and human diseases.
Collapse
Affiliation(s)
- Mingwei Sun
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Shuxian Wei
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yang Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zichun Qiao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhen Liang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yichu Shan
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yukui Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiang Bo
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Lihua Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
5
|
Berryhill C, Evans TN, Doud EH, Smith-Kinnaman WR, Hanquier JN, Mosley AL, Cornett EM. Quantitative Analysis of Nonhistone Lysine Methylation Sites and Lysine Demethylases in Breast Cancer Cell Lines. J Proteome Res 2025; 24:550-561. [PMID: 39778878 PMCID: PMC11812601 DOI: 10.1021/acs.jproteome.4c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/04/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Growing evidence shows that lysine methylation is a widespread protein post-translational modification (PTM) that regulates protein function on histone and nonhistone proteins. Numerous studies have demonstrated that the dysregulation of lysine methylation mediators contributes to cancer growth and chemotherapeutic resistance. While changes in histone methylation are well-documented with extensive analytical techniques available, there is a lack of high-throughput methods to reproducibly quantify changes in the abundances of the mediators of lysine methylation and nonhistone lysine methylation (Kme) simultaneously across multiple samples. Recent studies by our group and others have demonstrated that antibody enrichment is not required to detect lysine methylation, prompting us to investigate the use of tandem mass tag (TMT) labeling for global Kme quantification without antibody enrichment in four different breast cancer cell lines (MCF-7, MDA-MB-231, HCC1806, and MCF10A). To improve the quantification of KDMs, we incorporated a lysine demethylase (KDM) isobaric trigger channel, which enabled 96% of all KDMs to be quantified while simultaneously quantifying 326 Kme sites. Overall, 142 differentially abundant Kme sites and eight differentially abundant KDMs were identified among the four cell lines, revealing cell line-specific patterning.
Collapse
Affiliation(s)
- Christine
A. Berryhill
- Biochemistry
and Molecular BiologyCenter for Proteome AnalysisCenter for Computational Biology
and BioinformaticsIndiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science
Building, Indianapolis, Indiana 46202-5122, United
States
| | - Taylor N. Evans
- Biochemistry
and Molecular BiologyCenter for Proteome AnalysisCenter for Computational Biology
and BioinformaticsIndiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science
Building, Indianapolis, Indiana 46202-5122, United
States
| | - Emma H. Doud
- Biochemistry
and Molecular BiologyCenter for Proteome AnalysisCenter for Computational Biology
and BioinformaticsIndiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science
Building, Indianapolis, Indiana 46202-5122, United
States
| | - Whitney R. Smith-Kinnaman
- Biochemistry
and Molecular BiologyCenter for Proteome AnalysisCenter for Computational Biology
and BioinformaticsIndiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science
Building, Indianapolis, Indiana 46202-5122, United
States
| | - Jocelyne N. Hanquier
- Biochemistry
and Molecular BiologyCenter for Proteome AnalysisCenter for Computational Biology
and BioinformaticsIndiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science
Building, Indianapolis, Indiana 46202-5122, United
States
| | - Amber L. Mosley
- Biochemistry
and Molecular BiologyCenter for Proteome AnalysisCenter for Computational Biology
and BioinformaticsIndiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science
Building, Indianapolis, Indiana 46202-5122, United
States
| | - Evan M. Cornett
- Biochemistry
and Molecular BiologyCenter for Proteome AnalysisCenter for Computational Biology
and BioinformaticsIndiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science
Building, Indianapolis, Indiana 46202-5122, United
States
| |
Collapse
|
6
|
Meng Y, Huang R. Decoding the protein methylome: Identification, validation, and functional insights. Bioorg Med Chem 2025; 118:118056. [PMID: 39754853 PMCID: PMC11735303 DOI: 10.1016/j.bmc.2024.118056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Protein methylation regulates diverse cellular processes including gene expression and DNA repair. This review discusses the methods of identifying and validating substrates for protein methyltransferases (MTases), as well as the biological roles of methylation. Meanwhile, we outline continued efforts necessary to fully map MTase-substrate pairs and uncover the complex regulatory roles of protein methylation in cellular function.
Collapse
Affiliation(s)
- Ying Meng
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Rong Huang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
7
|
Yan L, Zheng M, Fan M, Yao R, Zou K, Feng S, Wu M. A Chemoselective Enrichment Strategy for In-Depth Coverage of the Methyllysine Proteome. Angew Chem Int Ed Engl 2024; 63:e202408564. [PMID: 39011605 DOI: 10.1002/anie.202408564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
Proteomics is a powerful method to comprehensively understand cellular posttranslational modifications (PTMs). Owing to low abundance, tryptic peptides with PTMs are usually enriched for enhanced coverage by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Affinity chromatography for phosphoproteomes by metal-oxide and pan-specific antibodies for lysine acetylome allow identification of tens of thousands of modification sites. Lysine methylation is a significant PTM; however, only hundreds of methylation sites were identified by available approaches. Herein we report an aryl diazonium based chemoselective strategy that enables enrichment of monomethyllysine (Kme1) peptides through covalent bonds with extraordinary sensitivity. We identified more than 10000 Kme1 peptides from diverse cell lines and mouse tissues, which implied a wide lysine methylation impact on cellular processes. Furthermore, we found a significant amount of methyl marks that were not S-adenosyl methionine (SAM)-dependent by isotope labeling experiments.
Collapse
Affiliation(s)
- Lufeng Yan
- Department of Chemistry, School of Science, Westlake University, Hangzhou, 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang Province, China
| | - Manqian Zheng
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Mingzhu Fan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang Province, China
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, 310024, Zhejiang Province, China
| | - Rui Yao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang Province, China
| | - Kun Zou
- Department of Chemistry, School of Science, Westlake University, Hangzhou, 310030, Zhejiang Province, China
| | - Shan Feng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang Province, China
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, 310024, Zhejiang Province, China
| | - Mingxuan Wu
- Department of Chemistry, School of Science, Westlake University, Hangzhou, 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
8
|
Berryhill CA, Evans TN, Doud EH, Smith-Kinnaman WR, Hanquier JN, Mosley AL, Cornett EM. Quantitative analysis of non-histone lysine methylation sites and lysine demethylases in breast cancer cell lines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613658. [PMID: 39345446 PMCID: PMC11429713 DOI: 10.1101/2024.09.18.613658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Growing evidence shows that lysine methylation is a widespread protein post-translational modification that regulates protein function on histone and non-histone proteins. Numerous studies have demonstrated that dysregulation of lysine methylation mediators contributes to cancer growth and chemotherapeutic resistance. While changes in histone methylation are well documented with extensive analytical techniques available, there is a lack of high-throughput methods to reproducibly quantify changes in the abundances of the mediators of lysine methylation and non-histone lysine methylation (Kme) simultaneously across multiple samples. Recent studies by our group and others have demonstrated that antibody enrichment is not required to detect lysine methylation, prompting us to investigate the use of Tandem Mass Tag (TMT) labeling for global Kme quantification sans antibody enrichment in four different breast cancer cell lines (MCF-7, MDA-MB-231, HCC1806, and MCF10A). To improve the quantification of KDMs, we incorporated a lysine demethylase (KDM) isobaric trigger channel, which enabled 96% of all KDMs to be quantified while simultaneously quantifying 326 Kme sites. Overall, 142 differentially abundant Kme sites and eight differentially abundant KDMs were identified between the four cell lines, revealing cell line-specific patterning.
Collapse
Affiliation(s)
- Christine A Berryhill
- Biochemistry and Molecular Biology, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science Building, Indianapolis, IN 46202-5122, U.S.A
| | - Taylor N Evans
- Biochemistry and Molecular Biology, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science Building, Indianapolis, IN 46202-5122, U.S.A
| | - Emma H Doud
- Biochemistry and Molecular Biology, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science Building, Indianapolis, IN 46202-5122, U.S.A
- Center for Proteome Analysis, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science Building, Indianapolis, IN 46202-5122, U.S.A
| | - Whitney R Smith-Kinnaman
- Biochemistry and Molecular Biology, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science Building, Indianapolis, IN 46202-5122, U.S.A
- Center for Proteome Analysis, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science Building, Indianapolis, IN 46202-5122, U.S.A
| | - Jocelyne N Hanquier
- Biochemistry and Molecular Biology, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science Building, Indianapolis, IN 46202-5122, U.S.A
| | - Amber L Mosley
- Biochemistry and Molecular Biology, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science Building, Indianapolis, IN 46202-5122, U.S.A
- Center for Proteome Analysis, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science Building, Indianapolis, IN 46202-5122, U.S.A
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science Building, Indianapolis, IN 46202-5122, U.S.A
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science Building, Indianapolis, IN 46202-5122, U.S.A
| | - Evan M Cornett
- Biochemistry and Molecular Biology, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science Building, Indianapolis, IN 46202-5122, U.S.A
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science Building, Indianapolis, IN 46202-5122, U.S.A
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science Building, Indianapolis, IN 46202-5122, U.S.A
| |
Collapse
|
9
|
Berryhill CA, Doud EH, Hanquier JN, Smith-Kinnaman WR, McCourry DL, Mosley AL, Cornett EM. Protein Thermal Stability Changes Induced by the Global Methylation Inhibitor 3-Deazaneplanocin A (DZNep). Biomolecules 2024; 14:817. [PMID: 39062531 PMCID: PMC11274605 DOI: 10.3390/biom14070817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
DZNep (3-deazaneplanocin A) is commonly used to reduce lysine methylation. DZNep inhibits S-adenosyl-l-homocysteine hydrolase (AHCY), preventing the conversion of S-adenosyl-l-homocysteine (SAH) into L-homocysteine. As a result, the SAM-to-SAH ratio decreases, an indicator of the methylation potential within a cell. Many studies have characterized the impact of DZNep on histone lysine methylation or in specific cell or disease contexts, but there has yet to be a study looking at the potential downstream impact of DZNep treatment on proteins other than histones. Recently, protein thermal stability has provided a new dimension for studying the mechanism of action of small-molecule inhibitors. In addition to ligand binding, post-translational modifications and protein-protein interactions impact thermal stability. Here, we sought to characterize the protein thermal stability changes induced by DZNep treatment in HEK293T cells using the Protein Integral Solubility Alteration (PISA) assay. DZNep treatment altered the thermal stability of 135 proteins, with over half previously reported to be methylated at lysine residues. In addition to thermal stability, we identify changes in transcript and protein abundance after DZNep treatment to distinguish between direct and indirect impacts on thermal stability. Nearly one-third of the proteins with altered thermal stability had no changes at the transcript or protein level. Of these thermally altered proteins, CDK6 had a stabilized methylated peptide, while its unmethylated counterpart was unaltered. Multiple methyltransferases were among the proteins with thermal stability alteration, including DNMT1, potentially due to changes in the SAM/SAH levels. This study systematically evaluates DZNep's impact on the transcriptome, the proteome, and the thermal stability of proteins.
Collapse
Affiliation(s)
- Christine A. Berryhill
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA (E.H.D.); (J.N.H.)
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA (E.H.D.); (J.N.H.)
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jocelyne N. Hanquier
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA (E.H.D.); (J.N.H.)
| | - Whitney R. Smith-Kinnaman
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA (E.H.D.); (J.N.H.)
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Devon L. McCourry
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA (E.H.D.); (J.N.H.)
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA (E.H.D.); (J.N.H.)
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Evan M. Cornett
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA (E.H.D.); (J.N.H.)
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
10
|
Chamrád I, Simerský R, Lenobel R, Novák O. Exploring affinity chromatography in proteomics: A comprehensive review. Anal Chim Acta 2024; 1306:342513. [PMID: 38692783 DOI: 10.1016/j.aca.2024.342513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 05/03/2024]
Abstract
Over the past decades, the proteomics field has undergone rapid growth. Progress in mass spectrometry and bioinformatics, together with separation methods, has brought many innovative approaches to the study of the molecular biology of the cell. The potential of affinity chromatography was recognized immediately after its first application in proteomics, and since that time, it has become one of the cornerstones of many proteomic protocols. Indeed, this chromatographic technique exploiting the specific binding between two molecules has been employed for numerous purposes, from selective removal of interfering (over)abundant proteins or enrichment of scarce biomarkers in complex biological samples to mapping the post-translational modifications and protein interactions with other proteins, nucleic acids or biologically active small molecules. This review presents a comprehensive survey of this versatile analytical tool in current proteomics. To navigate the reader, the haphazard space of affinity separations is classified according to the experiment's aims and the separated molecule's nature. Different types of available ligands and experimental strategies are discussed in further detail for each of the mentioned procedures.
Collapse
Affiliation(s)
- Ivo Chamrád
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic.
| | - Radim Simerský
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| | - René Lenobel
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| |
Collapse
|
11
|
Hao B, Chen K, Zhai L, Liu M, Liu B, Tan M. Substrate and Functional Diversity of Protein Lysine Post-translational Modifications. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae019. [PMID: 38862432 PMCID: PMC12016574 DOI: 10.1093/gpbjnl/qzae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 11/11/2023] [Accepted: 01/08/2024] [Indexed: 06/13/2024]
Abstract
Lysine post-translational modifications (PTMs) are widespread and versatile protein PTMs that are involved in diverse biological processes by regulating the fundamental functions of histone and non-histone proteins. Dysregulation of lysine PTMs is implicated in many diseases, and targeting lysine PTM regulatory factors, including writers, erasers, and readers, has become an effective strategy for disease therapy. The continuing development of mass spectrometry (MS) technologies coupled with antibody-based affinity enrichment technologies greatly promotes the discovery and decoding of PTMs. The global characterization of lysine PTMs is crucial for deciphering the regulatory networks, molecular functions, and mechanisms of action of lysine PTMs. In this review, we focus on lysine PTMs, and provide a summary of the regulatory enzymes of diverse lysine PTMs and the proteomics advances in lysine PTMs by MS technologies. We also discuss the types and biological functions of lysine PTM crosstalks on histone and non-histone proteins and current druggable targets of lysine PTM regulatory factors for disease therapy.
Collapse
Affiliation(s)
- Bingbing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kaifeng Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linhui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Muyin Liu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| |
Collapse
|
12
|
Liu Z, Fang Z, Wang K, Ye M. Hydrophobic Derivatization Strategy Facilitates Comprehensive Profiling of Protein Methylation. J Proteome Res 2023; 22:3275-3281. [PMID: 37738134 DOI: 10.1021/acs.jproteome.3c00318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Protein methylation is receiving more and more attention due to its essential role in diverse biological processes. Large-scale analysis of protein methylation requires the efficient identification of methylated peptides at the proteome level; unfortunately, a significant number of methylated peptides are highly hydrophilic and hardly retained during reversed-phase chromatography, making it difficult to be identified by conventional approaches. Herein, we report the development of a novel strategy by combining hydrophobic derivatization and high pH strong cation exchange enrichment, which significantly expands the identification coverage of the methylproteome. Noteworthily, the total number of identified methylated short peptides was improved by more than 2-fold. By this strategy, we identified 492 methylation sites from NCI-H460 cells compared to only 356 sites identified in native forms. The identification of methylation sites before and after derivatization was highly complementary. Approximately 2-fold the methylation sites were obtained by combining the results identified in both approaches (native and derivatized) as compared with the only analysis in native forms. Therefore, this novel chemical derivatization strategy is a promising approach for the comprehensive identification of protein methylation by improving the identification of methylated short peptides.
Collapse
Affiliation(s)
- Zhen Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Fang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keyun Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Bowser BL, Robinson RAS. Enhanced Multiplexing Technology for Proteomics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:379-400. [PMID: 36854207 DOI: 10.1146/annurev-anchem-091622-092353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The identification of thousands of proteins and their relative levels of expression has furthered understanding of biological processes and disease and stimulated new systems biology hypotheses. Quantitative proteomics workflows that rely on analytical assays such as mass spectrometry have facilitated high-throughput measurements of proteins partially due to multiplexing. Multiplexing allows proteome differences across multiple samples to be measured simultaneously, resulting in more accurate quantitation, increased statistical robustness, reduced analysis times, and lower experimental costs. The number of samples that can be multiplexed has evolved from as few as two to more than 50, with studies involving more than 10 samples being denoted as enhanced multiplexing or hyperplexing. In this review, we give an update on emerging multiplexing proteomics techniques and highlight advantages and limitations for enhanced multiplexing strategies.
Collapse
Affiliation(s)
- Bailey L Bowser
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA;
| | - Renã A S Robinson
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA;
- Department of Neurology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Memory and Alzheimer's Center, Nashville, Tennessee, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Brain Institute, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
14
|
Li Z, Wang Q, Wang K, Zhang W, Ye M. An antibody-free enrichment approach enabled by reductive glutaraldehydation for monomethyllysine proteome analysis. Proteomics 2023; 23:e2100378. [PMID: 35532377 DOI: 10.1002/pmic.202100378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/14/2022] [Accepted: 05/03/2022] [Indexed: 11/06/2022]
Abstract
Protein lysine monomethylation is an important post-translational modification participated in regulating many biological processes. There is growing interest in identifying these methylation events. However, the introduction of one methyl group on lysine residues has negligible effect on changing the physical and chemical properties of proteins or peptides, making enriching and identifying monomethylated lysine (Kme1) proteins or peptides extraordinarily challenging. In this study, we proposed an antibody-free chemical proteomics approach to capture Kme1 peptides from complex protein digest. By exploiting reductive glutaraldehydation, 5-aldehyde-pentanyl modified Kme1 residues and piperidine modified primary amines were generated at the same time. The peptides with aldehyde modified Kme1 residues were then enriched by solid-phase hydrazide chemistry. This chemical proteomics approach was validated by using several synthetic peptides. It was demonstrated that it can enrich and detect Kme1 peptide from peptide mixture containing 5000-fold more bovine serum albumin tryptic digest. Besides, we extended our approach to profile Kme1 using heavy methyl stable isotope labeling by amino acids in cell culture (hmSILAC) labeled Jurkat T cells and Hela cells. Totally, 29 Kme1 sites on 25 proteins were identified with high confidence and 11 Kme1 sites were identified in both two types cells. This is the first antibody-free chemical proteomics approach to enrich Kme1 peptides from complex protein digest, and it provides a potential avenue for the analysis of methylome.
Collapse
Affiliation(s)
- Zhouxian Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Department of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.,Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
| | - Qi Wang
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
| | - Keyun Wang
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, Department of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Mingliang Ye
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
| |
Collapse
|
15
|
Berryhill CA, Hanquier JN, Doud EH, Cordeiro-Spinetti E, Dickson BM, Rothbart SB, Mosley AL, Cornett EM. Global lysine methylome profiling using systematically characterized affinity reagents. Sci Rep 2023; 13:377. [PMID: 36611042 PMCID: PMC9825382 DOI: 10.1038/s41598-022-27175-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/27/2022] [Indexed: 01/08/2023] Open
Abstract
Lysine methylation modulates the function of histone and non-histone proteins, and the enzymes that add or remove lysine methylation-lysine methyltransferases (KMTs) and lysine demethylases (KDMs), respectively-are frequently mutated and dysregulated in human diseases. Identification of lysine methylation sites proteome-wide has been a critical barrier to identifying the non-histone substrates of KMTs and KDMs and for studying functions of non-histone lysine methylation. Detection of lysine methylation by mass spectrometry (MS) typically relies on the enrichment of methylated peptides by pan-methyllysine antibodies. In this study, we use peptide microarrays to show that pan-methyllysine antibodies have sequence bias, and we evaluate how the differential selectivity of these reagents impacts the detection of methylated peptides in MS-based workflows. We discovered that most commercially available pan-Kme antibodies have an in vitro sequence bias, and multiple enrichment approaches provide the most comprehensive coverage of the lysine methylome. Overall, global lysine methylation proteomics with multiple characterized pan-methyllysine antibodies resulted in the detection of 5089 lysine methylation sites on 2751 proteins from two human cell lines, nearly doubling the number of reported lysine methylation sites in the human proteome.
Collapse
Affiliation(s)
- Christine A Berryhill
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jocelyne N Hanquier
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Emma H Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Bradley M Dickson
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Evan M Cornett
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
16
|
Brandi J, Noberini R, Bonaldi T, Cecconi D. Advances in enrichment methods for mass spectrometry-based proteomics analysis of post-translational modifications. J Chromatogr A 2022; 1678:463352. [PMID: 35896048 DOI: 10.1016/j.chroma.2022.463352] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/08/2022] [Accepted: 07/17/2022] [Indexed: 10/17/2022]
Abstract
Post-translational modifications (PTMs) occur during or after protein biosynthesis and increase the functional diversity of proteome. They comprise phosphorylation, acetylation, methylation, glycosylation, ubiquitination, sumoylation (among many other modifications), and influence all aspects of cell biology. Mass-spectrometry (MS)-based proteomics is the most powerful approach for PTM analysis. Despite this, it is challenging due to low abundance and labile nature of many PTMs. Hence, enrichment of modified peptides is required for MS analysis. This review provides an overview of most common PTMs and a discussion of current enrichment methods for MS-based proteomics analysis. The traditional affinity strategies, including immunoenrichment, chromatography and protein pull-down, are outlined together with their strengths and shortcomings. Moreover, a special attention is paid to chemical enrichment strategies, such as capture by chemoselective probes, metabolic and chemoenzymatic labelling, which are discussed with an emphasis on their recent progress. Finally, the challenges and future trends in the field are discussed.
Collapse
Affiliation(s)
- Jessica Brandi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy.
| | - Roberta Noberini
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Via Adamello 16, 20139 Milano, Italy.
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Via Adamello 16, 20139 Milano, Italy; Department of Oncology and Haemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy.
| | - Daniela Cecconi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy.
| |
Collapse
|
17
|
Alam M, Shima H, Matsuo Y, Long NC, Matsumoto M, Ishii Y, Sato N, Sugiyama T, Nobuta R, Hashimoto S, Liu L, Kaneko MK, Kato Y, Inada T, Igarashi K. mTORC1-independent translation control in mammalian cells by methionine adenosyltransferase 2A and S-adenosylmethionine. J Biol Chem 2022; 298:102084. [PMID: 35636512 PMCID: PMC9243181 DOI: 10.1016/j.jbc.2022.102084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022] Open
Abstract
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine (SAM). As the sole methyl-donor for methylation of DNA, RNA, and proteins, SAM levels affect gene expression by changing methylation patterns. Expression of MAT2A, the catalytic subunit of isozyme MAT2, is positively correlated with proliferation of cancer cells; however, how MAT2A promotes cell proliferation is largely unknown. Given that the protein synthesis is induced in proliferating cells and that RNA and protein components of translation machinery are methylated, we tested here whether MAT2 and SAM are coupled with protein synthesis. By measuring ongoing protein translation via puromycin labeling, we revealed that MAT2A depletion or chemical inhibition reduced protein synthesis in HeLa and Hepa1 cells. Furthermore, overexpression of MAT2A enhanced protein synthesis, indicating that SAM is limiting under normal culture conditions. In addition, MAT2 inhibition did not accompany reduction in mechanistic target of rapamycin complex 1 activity but nevertheless reduced polysome formation. Polysome-bound RNA sequencing revealed that MAT2 inhibition decreased translation efficiency of some fraction of mRNAs. MAT2A was also found to interact with the proteins involved in rRNA processing and ribosome biogenesis; depletion or inhibition of MAT2 reduced 18S rRNA processing. Finally, quantitative mass spectrometry revealed that some translation factors were dynamically methylated in response to the activity of MAT2A. These observations suggest that cells possess an mTOR-independent regulatory mechanism that tunes translation in response to the levels of SAM. Such a system may acclimate cells for survival when SAM synthesis is reduced, whereas it may support proliferation when SAM is sufficient.
Collapse
Affiliation(s)
- Mahabub Alam
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Animal Science and Nutrition, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshitaka Matsuo
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Nguyen Chi Long
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusho Ishii
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nichika Sato
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takato Sugiyama
- Laboratory of Gene Regulation, Department of Molecular Biopharmacy and Genetics, Tohoku University Graduate School of Pharmaceutical Science, Sendai, Japan
| | - Risa Nobuta
- Laboratory of Gene Regulation, Department of Molecular Biopharmacy and Genetics, Tohoku University Graduate School of Pharmaceutical Science, Sendai, Japan
| | - Satoshi Hashimoto
- Laboratory of Gene Regulation, Department of Molecular Biopharmacy and Genetics, Tohoku University Graduate School of Pharmaceutical Science, Sendai, Japan
| | - Liang Liu
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshifumi Inada
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
18
|
Małecki JM, Davydova E, Falnes PØ. Protein methylation in mitochondria. J Biol Chem 2022; 298:101791. [PMID: 35247388 PMCID: PMC9006661 DOI: 10.1016/j.jbc.2022.101791] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Many proteins are modified by posttranslational methylation, introduced by a number of methyltransferases (MTases). Protein methylation plays important roles in modulating protein function and thus in optimizing and regulating cellular and physiological processes. Research has mainly focused on nuclear and cytosolic protein methylation, but it has been known for many years that also mitochondrial proteins are methylated. During the last decade, significant progress has been made on identifying the MTases responsible for mitochondrial protein methylation and addressing its functional significance. In particular, several novel human MTases have been uncovered that methylate lysine, arginine, histidine, and glutamine residues in various mitochondrial substrates. Several of these substrates are key components of the bioenergetics machinery, e.g., respiratory Complex I, citrate synthase, and the ATP synthase. In the present review, we report the status of the field of mitochondrial protein methylation, with a particular emphasis on recently discovered human MTases. We also discuss evolutionary aspects and functional significance of mitochondrial protein methylation and present an outlook for this emergent research field.
Collapse
Affiliation(s)
- Jędrzej M Małecki
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway.
| | - Erna Davydova
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Pål Ø Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
19
|
Wang Z, Zhang L, Yuan W, Zhang Y, Lu H. SAPT, a Fast and Efficient Approach for Simultaneous Profiling of Protein N- and C-Terminome. Anal Chem 2021; 93:10553-10560. [PMID: 34297549 DOI: 10.1021/acs.analchem.1c01598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein termini play pivotal roles in various biological processes. Although several terminomic strategies have been proposed for the analysis of protein N-termini or protein C-termini separately, few can analyze both ends of proteins at the same time. Herein, we developed a workflow, termed Simultaneous Analysis of Protein N- and C-Terminome (SAPT) based on strong cation exchange chromatography (SCX) fractionation. Taking advantage of terminal peptides' reduced charge states in low pH SCX for their selective separation, we identified 3724 canonical human protein N-termini and 3129 canonical human protein C-termini, as well as 1463 neo-N-termini from the HeLa cell line, representing the largest human protein C-termini data set and the second largest human protein N-termini data set so far. The whole fractionation procedure was simple and rapid with considerable selectivity by utilizing a commercially available SCX-SPE column. In addition, we report for the first time the comprehensive screening of protein N-terminal and C-terminal modifications, leading to an identification of 8 kinds of protein N-terminal PTMs other than acetylation and 1 kind of protein C-terminal PTM other than amidation. Our results demonstrate the excellent performance and great potential of SAPT in terminomic studies. Data are available via ProteomeXchange with identifier PXD024573.
Collapse
Affiliation(s)
- Zhongjie Wang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Lei Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Wenjuan Yuan
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Ying Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China.,Department of Chemistry and Key Laboratory of Glycoconjugates Research Ministry of Public Health, Fudan University, Shanghai 200433, P. R. China
| | - Haojie Lu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China.,Department of Chemistry and Key Laboratory of Glycoconjugates Research Ministry of Public Health, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
20
|
Chen J, Horton J, Sagum C, Zhou J, Cheng X, Bedford MT. Histone H3 N-terminal mimicry drives a novel network of methyl-effector interactions. Biochem J 2021; 478:1943-1958. [PMID: 33969871 PMCID: PMC8166343 DOI: 10.1042/bcj20210203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
The reader ability of PHD fingers is largely limited to the recognition of the histone H3 N-terminal tail. Distinct subsets of PHDs bind either H3K4me3 (a transcriptional activator mark) or H3K4me0 (a transcriptional repressor state). Structural studies have identified common features among the different H3K4me3 effector PHDs, including (1) removal of the initiator methionine residue of H3 to prevent steric interference, (2) a groove where arginine-2 binds, and (3) an aromatic cage that engages methylated lysine-4. We hypothesize that some PHDs might have the ability to engage with non-histone ligands, as long as they adhere to these three rules. A search of the human proteome revealed an enrichment of chromatin-binding proteins that met these criteria, which we termed H3 N-terminal mimicry proteins (H3TMs). Seven H3TMs were selected, and used to screen a protein domain microarray for potential effector domains, and they all had the ability to bind H3K4me3-interacting effector domains. Furthermore, the binding affinity between the VRK1 peptide and the PHD domain of PHF2 is ∼3-fold stronger than that of PHF2 and H3K4me3 interaction. The crystal structure of PHF2 PHD finger bound with VRK1 K4me3 peptide provides a molecular basis for stronger binding of VRK1 peptide. In addition, a number of the H3TMs peptides, in their unmethylated form, interact with NuRD transcriptional repressor complex. Our findings provide in vitro evidence that methylation of H3TMs can promote interactions with PHD and Tudor domain-containing proteins and potentially block interactions with the NuRD complex. We propose that these interactions can occur in vivo as well.
Collapse
Affiliation(s)
- Jianji Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, U.S.A
- Graduate Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, U.S.A
| | - John Horton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, U.S.A
| | - Cari Sagum
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, U.S.A
| | - Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, U.S.A
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, U.S.A
| | - Mark T. Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, U.S.A
| |
Collapse
|
21
|
Wang Q, Li Z, Zhou J, Wang Y, Wang K, Qin H, Ye M. Chemical Depletion of Histidine-Containing Peptides Allows Identification of More Low-Abundance Methylation Sites from Proteome Samples. J Proteome Res 2021; 20:2497-2505. [PMID: 33682419 DOI: 10.1021/acs.jproteome.0c00976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Protein methylation, especially that occurs on arginine and lysine residues, is one of the most important post-translational modifications involved in various cellular processes including RNA splicing, DNA repair, and so forth. Systematic analysis of protein methylation would facilitate the understanding of its regulatory mechanisms. Strong cation chromatography has been used to globally analyze arginine/lysine methylation at the proteome scale with good performance. However, the co-enriched histidine-containing peptides severely interfere with the detection of low-abundance methylpeptides. Here, we developed a novel chemical strategy which enabled almost complete depletion of histidine-containing peptides in the protein digest, thereby resulting in the identification of more low-abundance arginine/lysine methylpeptides. Totally, 333 arginine and lysine methylation forms from 207 proteins were identified in this study. Overall, the number of methylation identifications increased about 50% by using our new method. Data are available via ProteomeXchange with the identifier PXD023845.
Collapse
Affiliation(s)
- Qi Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhouxian Li
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Shanghai Key Laboratory of Functional Materials Chemistry, Department of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiahua Zhou
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keyun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Musiani D, Massignani E, Cuomo A, Yadav A, Bonaldi T. Biochemical and Computational Approaches for the Large-Scale Analysis of Protein Arginine Methylation by Mass Spectrometry. Curr Protein Pept Sci 2021; 21:725-739. [PMID: 32338214 DOI: 10.2174/1389203721666200426232531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 12/27/2022]
Abstract
The absence of efficient mass spectrometry-based approaches for the large-scale analysis of protein arginine methylation has hindered the understanding of its biological role, beyond the transcriptional regulation occurring through histone modification. In the last decade, however, several technological advances of both the biochemical methods for methylated polypeptide enrichment and the computational pipelines for MS data analysis have considerably boosted this research field, generating novel insights about the extent and role of this post-translational modification. Here, we offer an overview of state-of-the-art approaches for the high-confidence identification and accurate quantification of protein arginine methylation by high-resolution mass spectrometry methods, which comprise the development of both biochemical and bioinformatics methods. The further optimization and systematic application of these analytical solutions will lead to ground-breaking discoveries on the role of protein methylation in biological processes.
Collapse
Affiliation(s)
- Daniele Musiani
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan 20139, Italy
| | - Enrico Massignani
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan 20139, Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan 20139, Italy
| | - Avinash Yadav
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan 20139, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan 20139, Italy
| |
Collapse
|
23
|
Zhu Z, Han Z, Halabelian L, Yang X, Ding J, Zhang N, Ngo L, Song J, Zeng H, He M, Zhao Y, Arrowsmith CH, Luo M, Bartlett MG, Zheng YG. Identification of lysine isobutyrylation as a new histone modification mark. Nucleic Acids Res 2021; 49:177-189. [PMID: 33313896 PMCID: PMC7797053 DOI: 10.1093/nar/gkaa1176] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/05/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
Short-chain acylations of lysine residues in eukaryotic proteins are recognized as essential posttranslational chemical modifications (PTMs) that regulate cellular processes from transcription, cell cycle, metabolism, to signal transduction. Lysine butyrylation was initially discovered as a normal straight chain butyrylation (Knbu). Here we report its structural isomer, branched chain butyrylation, i.e. lysine isobutyrylation (Kibu), existing as a new PTM on nuclear histones. Uniquely, isobutyryl-CoA is derived from valine catabolism and branched chain fatty acid oxidation which is distinct from the metabolism of n-butyryl-CoA. Several histone acetyltransferases were found to possess lysine isobutyryltransferase activity in vitro, especially p300 and HAT1. Transfection and western blot experiments showed that p300 regulated histone isobutyrylation levels in the cell. We resolved the X-ray crystal structures of HAT1 in complex with isobutyryl-CoA that gleaned an atomic level insight into HAT-catalyzed isobutyrylation. RNA-Seq profiling revealed that isobutyrate greatly affected the expression of genes associated with many pivotal biological pathways. Together, our findings identify Kibu as a novel chemical modification mark in histones and suggest its extensive role in regulating epigenetics and cellular physiology.
Collapse
Affiliation(s)
- Zhesi Zhu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Zhen Han
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Xiangkun Yang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Jun Ding
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Nawei Zhang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Liza Ngo
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Jiabao Song
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Maomao He
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Minkui Luo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Program of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 20021, USA
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
24
|
Lin X, Yang M, Liu X, Cheng Z, Ge F. Characterization of Lysine Monomethylome and Methyltransferase in Model Cyanobacterium Synechocystis sp. PCC 6803. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:289-304. [PMID: 33130100 PMCID: PMC7801250 DOI: 10.1016/j.gpb.2019.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 03/03/2019] [Accepted: 04/19/2019] [Indexed: 12/25/2022]
Abstract
Protein lysine methylation is a prevalent post-translational modification (PTM) and plays critical roles in all domains of life. However, its extent and function in photosynthetic organisms are still largely unknown. Cyanobacteria are a large group of prokaryotes that carry out oxygenic photosynthesis and are applied extensively in studies of photosynthetic mechanisms and environmental adaptation. Here we integrated propionylation of monomethylated proteins, enrichment of the modified peptides, and mass spectrometry (MS) analysis to identify monomethylated proteins in Synechocystis sp. PCC 6803 (Synechocystis). Overall, we identified 376 monomethylation sites in 270 proteins, with numerous monomethylated proteins participating in photosynthesis and carbon metabolism. We subsequently demonstrated that CpcM, a previously identified asparagine methyltransferase in Synechocystis, could catalyze lysine monomethylation of the potential aspartate aminotransferase Sll0480 both in vivo and in vitro and regulate the enzyme activity of Sll0480. The loss of CpcM led to decreases in the maximum quantum yield in primary photosystem II (PSII) and the efficiency of energy transfer during the photosynthetic reaction in Synechocystis. We report the first lysine monomethylome in a photosynthetic organism and present a critical database for functional analyses of monomethylation in cyanobacteria. The large number of monomethylated proteins and the identification of CpcM as the lysine methyltransferase in cyanobacteria suggest that reversible methylation may influence the metabolic process and photosynthesis in both cyanobacteria and plants.
Collapse
Affiliation(s)
- Xiaohuang Lin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xin Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhongyi Cheng
- Jingjie PTM BioLab (Hangzhou) Co. Ltd, Hangzhou 310018, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
25
|
MeCP2 and Chromatin Compartmentalization. Cells 2020; 9:cells9040878. [PMID: 32260176 PMCID: PMC7226738 DOI: 10.3390/cells9040878] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 12/24/2022] Open
Abstract
Methyl-CpG binding protein 2 (MeCP2) is a multifunctional epigenetic reader playing a role in transcriptional regulation and chromatin structure, which was linked to Rett syndrome in humans. Here, we focus on its isoforms and functional domains, interactions, modifications and mutations found in Rett patients. Finally, we address how these properties regulate and mediate the ability of MeCP2 to orchestrate chromatin compartmentalization and higher order genome architecture.
Collapse
|
26
|
Global characterization of proteome and lysine methylome features in EZH2 wild-type and mutant lymphoma cell lines. J Proteomics 2020; 213:103614. [DOI: 10.1016/j.jprot.2019.103614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/29/2019] [Accepted: 12/13/2019] [Indexed: 01/14/2023]
|
27
|
Cornett EM, Ferry L, Defossez PA, Rothbart SB. Lysine Methylation Regulators Moonlighting outside the Epigenome. Mol Cell 2020; 75:1092-1101. [PMID: 31539507 DOI: 10.1016/j.molcel.2019.08.026] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/14/2019] [Accepted: 08/27/2019] [Indexed: 01/21/2023]
Abstract
Landmark discoveries made nearly two decades ago identified known transcriptional regulators as histone lysine methyltransferases. Since then, the field of lysine methylation signaling has been dominated by studies of how this small chemical posttranslational modification regulates gene expression and other chromatin-based processes. However, recent advances in mass-spectrometry-based proteomics have revealed that histones are just a subset of the thousands of eukaryotic proteins marked by lysine methylation. As the writers, erasers, and readers of histone lysine methylation are emerging as a promising therapeutic target class for cancer and other diseases, a key challenge for the field is to define the full spectrum of activities for these proteins. Here we summarize recent discoveries implicating non-histone lysine methylation as a major regulator of diverse cellular processes. We further discuss recent technological innovations that are enabling the expanded study of lysine methylation signaling. Collectively, these findings are shaping our understanding of the fundamental mechanisms of non-histone protein regulation through this dynamic and multi-functional posttranslational modification.
Collapse
Affiliation(s)
- Evan M Cornett
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Laure Ferry
- Université de Paris, Epigenetics and Cell Fate, CNRS, 75013 Paris, France
| | | | - Scott B Rothbart
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
28
|
Lin H, Tang D, Xu Y, Zhang R, Ou M, Zheng F, Chen J, Zhang Y, Zou G, Xue W, Zou Y, Dai W, Sui W, Dai Y. Quantitative analysis of protein crotonylation identifies its association with immunoglobulin A nephropathy. Mol Med Rep 2020; 21:1242-1250. [PMID: 32016442 PMCID: PMC7002971 DOI: 10.3892/mmr.2020.10931] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 11/19/2019] [Indexed: 01/31/2023] Open
Abstract
Posttranslational modifications (PTMs) to histones such as lysine crotonylation are classified as epigenetic changes. Lysine crotonylation participates in various cellular processes and occurs in active promoters, directly accelerating transcription. The present study performed a proteomics analysis of crotonylation between healthy controls and patients with immunoglobulin A (IgA) nephropathy using tandem mass spectrometry and high-resolution liquid chromatography. The present results identified 353 crotonylated proteins and 770 modification sites, including 155 upregulated and 198 downregulated crotonylated proteins. In total, seven conserved motifs were identified in the present study. The present bioinformatics analysis results suggested a number of the crotonylated proteins exhibited various subcellular localization patterns, such as in the cytoplasm. Protein domains, including thioredoxin, moesin tail and myosin like IQ motif domains were markedly enriched in crotonylated proteins. Kyoto Encyclopedia of Genes and Genomes and functional enrichment analyses suggested significant enrichment of crotonylated proteins in complement and coagulation cascades, and antigen processing and presentation pathways displaying important relationships with IgA nephropathy. The present results suggested that crotonylation occurred in numerous proteins and may play key regulatory roles in IgA nephropathy.
Collapse
Affiliation(s)
- Hua Lin
- Nephrology Department of 924th Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin Key Laboratory of Kidney Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Donge Tang
- Clinical Medical Research Center of The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Yong Xu
- Clinical Medical Research Center of The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Ruohan Zhang
- Nephrology Department of 924th Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin Key Laboratory of Kidney Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Minglin Ou
- Nephrology Department of 924th Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin Key Laboratory of Kidney Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Fengping Zheng
- Clinical Medical Research Center of The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Jiejing Chen
- Nephrology Department of 924th Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin Key Laboratory of Kidney Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Yue Zhang
- Nephrology Department of 924th Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin Key Laboratory of Kidney Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Guimian Zou
- Nephrology Department of 924th Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin Key Laboratory of Kidney Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Wen Xue
- Nephrology Department of 924th Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin Key Laboratory of Kidney Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Yaoshuang Zou
- Nephrology Department of 924th Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin Key Laboratory of Kidney Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Weier Dai
- College of Natural Science, University of Texas at Austin, Austin, TX 78712, USA
| | - Weiguo Sui
- Nephrology Department of 924th Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin Key Laboratory of Kidney Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Yong Dai
- Nephrology Department of 924th Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin Key Laboratory of Kidney Diseases Research, Guilin, Guangxi 541002, P.R. China
| |
Collapse
|
29
|
Pieroni L, Iavarone F, Olianas A, Greco V, Desiderio C, Martelli C, Manconi B, Sanna MT, Messana I, Castagnola M, Cabras T. Enrichments of post-translational modifications in proteomic studies. J Sep Sci 2019; 43:313-336. [PMID: 31631532 DOI: 10.1002/jssc.201900804] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/23/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022]
Abstract
More than 300 different protein post-translational modifications are currently known, but only a few have been extensively investigated because modified proteoforms are commonly present in sub-stoichiometry amount. For this reason, improvement of specific enrichment techniques is particularly useful for the proteomic characterization of post-translationally modified proteins. Enrichment proteomic strategies could help the researcher in the challenging issue to decipher the complex molecular cross-talk existing between the different factors influencing the cellular pathways. In this review the state of art of the platforms applied for the enrichment of specific and most common post-translational modifications, such as glycosylation and glycation, phosphorylation, sulfation, redox modifications (i.e. sulfydration and nitrosylation), methylation, acetylation, and ubiquitinylation, are described. Enrichments strategies applied to characterize less studied post-translational modifications are also briefly discussed.
Collapse
Affiliation(s)
- Luisa Pieroni
- Laboratorio di Proteomica e Metabolomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Federica Iavarone
- Istituto di Biochimica e Biochimica Clinica, Facoltà di Medicina, Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Alessandra Olianas
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| | - Viviana Greco
- Istituto di Biochimica e Biochimica Clinica, Facoltà di Medicina, Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Claudia Desiderio
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Claudia Martelli
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Barbara Manconi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| | - Maria Teresa Sanna
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| | - Irene Messana
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Massimo Castagnola
- Laboratorio di Proteomica e Metabolomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Tiziana Cabras
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| |
Collapse
|
30
|
Hartel NG, Chew B, Qin J, Xu J, Graham NA. Deep Protein Methylation Profiling by Combined Chemical and Immunoaffinity Approaches Reveals Novel PRMT1 Targets. Mol Cell Proteomics 2019; 18:2149-2164. [PMID: 31451547 PMCID: PMC6823857 DOI: 10.1074/mcp.ra119.001625] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Indexed: 01/02/2023] Open
Abstract
Protein methylation has been implicated in many important biological contexts including signaling, metabolism, and transcriptional control. Despite the importance of this post-translational modification, the global analysis of protein methylation by mass spectrometry-based proteomics has not been extensively studied because of the lack of robust, well-characterized techniques for methyl peptide enrichment. Here, to better investigate protein methylation, we compared two methods for methyl peptide enrichment: immunoaffinity purification (IAP) and high pH strong cation exchange (SCX). Using both methods, we identified 1720 methylation sites on 778 proteins. Comparison of these methods revealed that they are largely orthogonal, suggesting that the usage of both techniques is required to provide a global view of protein methylation. Using both IAP and SCX, we then investigated changes in protein methylation downstream of protein arginine methyltransferase 1 (PRMT1). PRMT1 knockdown resulted in significant changes to 127 arginine methylation sites on 78 proteins. In contrast, only a single lysine methylation site was significantly changed upon PRMT1 knockdown. In PRMT1 knockdown cells, we found 114 MMA sites that were either significantly downregulated or upregulated on proteins enriched for mRNA metabolic processes. PRMT1 knockdown also induced significant changes in both asymmetric dimethyl arginine (ADMA) and symmetric dimethyl arginine (SDMA). Using characteristic neutral loss fragmentation ions, we annotated dimethylarginines as either ADMA or SDMA. Through integrative analysis of methyl forms, we identified 18 high confidence PRMT1 substrates and 12 methylation sites that are scavenged by other non-PRMT1 arginine methyltransferases in the absence of PRMT1 activity. We also identified one methylation site, HNRNPA1 R206, which switched from ADMA to SDMA upon PRMT1 knockdown. Taken together, our results suggest that deep protein methylation profiling by mass spectrometry requires orthogonal enrichment techniques to identify novel PRMT1 methylation targets and highlight the dynamic interplay between methyltransferases in mammalian cells.
Collapse
Affiliation(s)
- Nicolas G Hartel
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089
| | - Brandon Chew
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089
| | - Jian Qin
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California 90089; Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California 90089; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089
| | - Jian Xu
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California 90089; Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California 90089; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089
| | - Nicholas A Graham
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089.
| |
Collapse
|
31
|
Lund PJ, Lehman SM, Garcia BA. Quantitative analysis of global protein lysine methylation by mass spectrometry. Methods Enzymol 2019; 626:475-498. [PMID: 31606088 PMCID: PMC8259617 DOI: 10.1016/bs.mie.2019.07.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Since protein activity is often regulated by posttranslational modifications, the qualitative and quantitative analysis of modification sites is critical for understanding the regulation of biological pathways that control cell function and phenotype. Methylation constitutes one of the many types of posttranslational modifications that target lysine residues. Although lysine methylation is perhaps most commonly associated with histone proteins and the epigenetic regulation of processes involving chromatin, methylation has also been observed as an important regulatory modification on other proteins, which has spurred the development of methods to profile lysine methylation sites more globally. As with many posttranslational modifications, tandem mass spectrometry represents an ideal platform for the high-throughput analysis of lysine methylation due to its high sensitivity and resolving power. The following protocol outlines a general method to assay lysine methylation across the proteome using SILAC and quantitative proteomics. First, cells are labeled by SILAC to allow for relative quantitation across different experimental conditions, such as cells with or without ectopic expression of a methyltransferase. Next, cells are lysed and proteins are digested into peptides. Methylated peptides are then enriched by immunoprecipitation with pan-specific antibodies against methylated lysine. Finally, the enriched peptides are analyzed by LC-MS/MS to identify methylated peptides and their modification sites and to compare the relative abundance of methylation events between different conditions. This approach should yield detection of a couple hundred lysine methylation sites, and those showing differential abundance may then be prioritized for further study.
Collapse
Affiliation(s)
- Peder J Lund
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Stephanie M Lehman
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Penn Epigenetics Institute, Smilow Center for Translational Research, University of Pennsylvania School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
32
|
Abstract
Although central to regulating the access to genetic information, most lysine methyltransferases remain poorly characterised relative to other family of enzymes. Herein, I report new substrates for the lysine methyltransferase SETD6. Based on the SETD6-catalysed site on the histone variant H2AZ, I identified similar sequences in the canonical histones H2A, H3, and H4 that are modified by SETD6 in vitro, and putative non-histone substrates. I herein expend the repertoire of substrates for methylation by SETD6.
Collapse
Affiliation(s)
- Olivier Binda
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, England
| |
Collapse
|
33
|
A new chromatographic approach to analyze methylproteome with enhanced lysine methylation identification performance. Anal Chim Acta 2019; 1068:111-119. [PMID: 31072472 DOI: 10.1016/j.aca.2019.03.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/11/2019] [Accepted: 03/17/2019] [Indexed: 11/22/2022]
Abstract
Arginine/lysine methylation is an important post-translational modification (PTM) involved in DNA repairing, transcriptional regulation, etc. Immunoaffinity enrichment is currently the most widely used methods for the methylproteome analysis. Large-scale analysis of arginine methylation has been realized by using pan-R-methyl antibodies. Unfortunately, pan specific antibodies targeting all three lysine methylation forms are not available. In this study, we presented a novel chromatography-based enrichment method for global methylproteome analysis. The offline multidimensional tandem chromatography combining strong cation exchange (SCX) chromatography, immobilized metal ion affinity chromatography (IMAC) and high-pH reversed-phase chromatography (high-pH RP) was applied in the large-scale analysis of methylproteome. Totally, 860 forms on 765 sites were identified from BEL cells, covering all five arginine/lysine methylation forms. Among them, 27.21% were lysine methylation forms. This technique allows the simultaneous analysis of both arginine and lysine methylation while it has improved performance for the identification of lysine methylation. Therefore, it is a promising strategy for the investigation of biological functions related to methylation.
Collapse
|
34
|
Affiliation(s)
- Albert B. Arul
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Renã A. S. Robinson
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Memory & Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, Tennessee 37212, United States
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37235, United States
| |
Collapse
|
35
|
Gruber T. Synthetic Receptors for the Recognition and Discrimination of Post-Translationally Methylated Lysines. Chembiochem 2018; 19:2324-2340. [DOI: 10.1002/cbic.201800398] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Tobias Gruber
- School of Pharmacy; University of Lincoln; Joseph Banks Laboratories; Green Lane Lincoln LN6 7DL UK
| |
Collapse
|
36
|
Serre NBC, Alban C, Bourguignon J, Ravanel S. An outlook on lysine methylation of non-histone proteins in plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4569-4581. [PMID: 29931361 DOI: 10.1093/jxb/ery231] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Protein methylation is a very diverse, widespread, and important post-translational modification affecting all aspects of cellular biology in eukaryotes. Methylation on the side-chain of lysine residues in histones has received considerable attention due to its major role in determining chromatin structure and the epigenetic regulation of gene expression. Over the last 20 years, lysine methylation of non-histone proteins has been recognized as a very common modification that contributes to the fine-tuned regulation of protein function. In plants, our knowledge in this field is much more fragmentary than in yeast and animal cells. In this review, we describe the plant enzymes involved in the methylation of non-histone substrates, and we consider historical and recent advances in the identification of non-histone lysine-methylated proteins in photosynthetic organisms. Finally, we discuss our current knowledge about the role of protein lysine methylation in regulating molecular and cellular functions in plants, and consider challenges for future research.
Collapse
Affiliation(s)
- Nelson B C Serre
- Univ. Grenoble Alpes, INRA, CEA, CNRS, BIG, PCV, Grenoble, France
| | - Claude Alban
- Univ. Grenoble Alpes, INRA, CEA, CNRS, BIG, PCV, Grenoble, France
| | | | - Stéphane Ravanel
- Univ. Grenoble Alpes, INRA, CEA, CNRS, BIG, PCV, Grenoble, France
| |
Collapse
|
37
|
Liu K, Yuan C, Li H, Chen K, Lu L, Shen C, Zheng X. A qualitative proteome-wide lysine crotonylation profiling of papaya (Carica papaya L.). Sci Rep 2018; 8:8230. [PMID: 29844531 PMCID: PMC5974297 DOI: 10.1038/s41598-018-26676-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/17/2018] [Indexed: 02/06/2023] Open
Abstract
Lysine crotonylation of histone proteins is a recently-identified post-translational modification with multiple cellular functions. However, no information about lysine crotonylation of non-histone proteins in fruit cells is available. Using high-resolution LC-MS/MS coupled with highly sensitive immune-affinity antibody analysis, a global crotonylation proteome analysis of papaya fruit (Carica papaya L.) was performed. In total, 2,120 proteins with 5,995 lysine crotonylation sites were discovered, among which eight conserved motifs were identified. Bioinformatic analysis linked crotonylated proteins to multiple metabolic pathways, including biosynthesis of antibiotics, carbon metabolism, biosynthesis of amino acids, and glycolysis. particularly, 40 crotonylated enzymes involved in various pathways of amino acid metabolism were identified, suggesting a potential conserved function for crotonylation in the regulation of amino acid metabolism. Numerous crotonylation sites were identified in proteins involved in the hormone signaling and cell wall-related pathways. Our comprehensive crotonylation proteome indicated diverse functions for lysine crotonylation in papaya.
Collapse
Affiliation(s)
- Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China. .,College of Bioscience and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Changchun Yuan
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Haili Li
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Kunyan Chen
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Lishi Lu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xiaolin Zheng
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035, China.
| |
Collapse
|
38
|
Liu K, Yuan C, Li H, Chen K, Lu L, Shen C, Zheng X. A qualitative proteome-wide lysine crotonylation profiling of papaya (Carica papaya L.). Sci Rep 2018. [PMID: 29844531 DOI: 10.1038/s41598018-26676-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Lysine crotonylation of histone proteins is a recently-identified post-translational modification with multiple cellular functions. However, no information about lysine crotonylation of non-histone proteins in fruit cells is available. Using high-resolution LC-MS/MS coupled with highly sensitive immune-affinity antibody analysis, a global crotonylation proteome analysis of papaya fruit (Carica papaya L.) was performed. In total, 2,120 proteins with 5,995 lysine crotonylation sites were discovered, among which eight conserved motifs were identified. Bioinformatic analysis linked crotonylated proteins to multiple metabolic pathways, including biosynthesis of antibiotics, carbon metabolism, biosynthesis of amino acids, and glycolysis. particularly, 40 crotonylated enzymes involved in various pathways of amino acid metabolism were identified, suggesting a potential conserved function for crotonylation in the regulation of amino acid metabolism. Numerous crotonylation sites were identified in proteins involved in the hormone signaling and cell wall-related pathways. Our comprehensive crotonylation proteome indicated diverse functions for lysine crotonylation in papaya.
Collapse
Affiliation(s)
- Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China.
- College of Bioscience and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Changchun Yuan
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Haili Li
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Kunyan Chen
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Lishi Lu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xiaolin Zheng
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035, China.
| |
Collapse
|
39
|
Cuijpers SAG, Vertegaal ACO. Guiding Mitotic Progression by Crosstalk between Post-translational Modifications. Trends Biochem Sci 2018; 43:251-268. [PMID: 29486978 DOI: 10.1016/j.tibs.2018.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 12/12/2022]
Abstract
Cell division is tightly regulated to disentangle copied chromosomes in an orderly manner and prevent loss of genome integrity. During mitosis, transcriptional activity is limited and post-translational modifications (PTMs) are responsible for functional protein regulation. Essential mitotic regulators, including polo-like kinase 1 (PLK1) and cyclin-dependent kinases (CDK), as well as the anaphase-promoting complex/cyclosome (APC/C), are members of the enzymatic machinery responsible for protein modification. Interestingly, communication between PTMs ensures the essential tight and timely control during all consecutive phases of mitosis. Here, we present an overview of current concepts and understanding of crosstalk between PTMs regulating mitotic progression.
Collapse
Affiliation(s)
- Sabine A G Cuijpers
- Department of Molecular Cell Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Alfred C O Vertegaal
- Department of Molecular Cell Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
40
|
Wang K, Ye M. Enrichment of Methylated Peptides Using an Antibody-free Approach for Global Methylproteomics Analysis. ACTA ACUST UNITED AC 2018. [PMID: 29516485 DOI: 10.1002/cpps.49] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protein methylation is receiving increasing attention for its important role in regulating diverse biological processes, including epigenetic regulation of gene transcription, RNA processing, DNA damage repair, and signal transduction. Proteome level analysis of protein methylation requires the enrichment of various forms of methylated peptides. Unfortunately, immunoaffinity purification can only enrich a subset of them due to the lack of pan-specific antibodies. Chromatography-based methods, however, can enrich methylated peptides in a global manner. Here we present a chromatography-based approach for highly efficient enrichment of methylated peptides. Protocols for the of high pH SCXtip preparation and methyl-peptide purification are described in detail. Key points such as cell culture in hM-SILAC medium and protein digestion by multiple endopeptidases are also presented. This technique allows the simultaneous analysis of both lysine and arginine methylation and improved performance for methyl-arginine identification. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Keyun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Hamey JJ, Wilkins MR. Methylation of Elongation Factor 1A: Where, Who, and Why? Trends Biochem Sci 2018; 43:211-223. [PMID: 29398204 DOI: 10.1016/j.tibs.2018.01.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 11/17/2022]
Abstract
Eukaryotic elongation factor 1A (eEF1A) is an essential and highly conserved protein involved in diverse cellular processes, including translation, cytoskeleton organisation, nuclear export, and proteasomal degradation. Recently, nine novel and site-specific methyltransferases were discovered that target eEF1A, five in yeast and four in human, making it the eukaryotic protein with the highest number of independent methyltransferases. Some of these methyltransferases show striking evolutionary conservation. Yet, they come from diverse methyltransferase families, indicating they confer competitive advantage through independent origins. As might be expected, the first functional studies of specific methylation sites found them to have distinct effects, notably on eEF1A-related processes of translation and tRNA aminoacylation. Further functional studies of sites will likely reveal other unique roles for this interesting modification.
Collapse
Affiliation(s)
- Joshua J Hamey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia.
| |
Collapse
|
42
|
Zhang Y, Pan Y, Liu W, Zhou YJ, Wang K, Wang L, Sohail M, Ye M, Zou H, Zhao ZK. In vivo protein allylation to capture protein methylation candidates. Chem Commun (Camb) 2017; 52:6689-92. [PMID: 27115613 DOI: 10.1039/c6cc02386j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An approach combining in vivo protein allylation, chemical tagging and affinity enrichment was devised to capture protein methylation candidates in yeast S. cerevisiae. The study identified 167 hits, covering many proteins with known methylation events on different types of amino acid residues.
Collapse
Affiliation(s)
- Yixin Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 116023 Dalian, China.
| | - Yanbo Pan
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, CAS, 116023 Dalian, China.
| | - Wujun Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 116023 Dalian, China.
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 116023 Dalian, China.
| | - Keyun Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, CAS, 116023 Dalian, China.
| | - Lei Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 116023 Dalian, China.
| | - Muhammad Sohail
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 116023 Dalian, China.
| | - Mingliang Ye
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, CAS, 116023 Dalian, China.
| | - Hanfa Zou
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, CAS, 116023 Dalian, China.
| | - Zongbao K Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 116023 Dalian, China. and State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS, 116023 Dalian, China
| |
Collapse
|
43
|
Zhang M, Xu JY, Hu H, Ye BC, Tan M. Systematic Proteomic Analysis of Protein Methylation in Prokaryotes and Eukaryotes Revealed Distinct Substrate Specificity. Proteomics 2017; 18. [PMID: 29150981 DOI: 10.1002/pmic.201700300] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/25/2017] [Indexed: 11/07/2022]
Abstract
The studies of protein methylation mainly focus on lysine and arginine residues due to their diverse roles in essential cellular processes from gene expression to signal transduction. Nevertheless, atypical protein methylation occurring on amino acid residues, such as glutamine and glutamic acid, is largely neglected until recently. In addition, the systematic analysis for the distribution of methylation on different amino acids in various species is still lacking, which hinders our understanding of its functional roles. In this study, we deeply explored the methylated sites in three species Escherichia coli, Saccharomyces cerevisiae, and HeLa cells by employing MS-based proteomic approach coupled with heavy methyl SILAC method. We identify a total of 234 methylated sites on 187 proteins with high localization confidence, including 94 unreported methylated sites on nine different amino acid residues. KEGG and gene ontology analysis show the pathways enriched with methylated proteins are mainly involved in central metabolism for E. coli and S. cerevisiae, but related to spliceosome for HeLa cells. The analysis of methylation preference on different amino acids is conducted in three species. Protein N-terminal methylation is dominant in E. coli while methylated lysines and arginines are widely identified in S. cerevisiae and HeLa cells, respectively. To study whether some atypical protein methylation has biological relevance in the pathological process in mammalian cells, we focus on histone methylation in diet-induced obese (DIO) mouse. Two glutamate methylation sites showed statistical significance in DIO mice compared with chow-fed mice, suggesting their potential roles in diabetes and obesity. Together, these findings expanded the methylome database from microbes to mammals, which will benefit our further appreciation for the protein methylation as well as its possible functions on disease.
Collapse
Affiliation(s)
- Min Zhang
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Yu Xu
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Hao Hu
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bang-Ce Ye
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Minjia Tan
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Ma M, Zhao X, Chen S, Zhao Y, yang L, Feng Y, Qin W, Li L, Jia C. Strategy Based on Deglycosylation, Multiprotease, and Hydrophilic Interaction Chromatography for Large-Scale Profiling of Protein Methylation. Anal Chem 2017; 89:12909-12917. [DOI: 10.1021/acs.analchem.7b03673] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Min Ma
- School
of Life Sciences, Tianjin University, Tianjin 300072, China
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xinyuan Zhao
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Shuo Chen
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yingyi Zhao
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Lu yang
- Department
of Blood Transfusion, Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Feng
- Beijing Hua LiShi Scientific Co. Ltd., Beijing 101300, China
| | - Weijie Qin
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Lingjun Li
- School
of Life Sciences, Tianjin University, Tianjin 300072, China
- School
of Pharmacy and Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53705, United States
| | - Chenxi Jia
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
45
|
Tay AP, Geoghegan V, Yagoub D, Wilkins MR, Hart-Smith G. MethylQuant: A Tool for Sensitive Validation of Enzyme-Mediated Protein Methylation Sites from Heavy-Methyl SILAC Data. J Proteome Res 2017; 17:359-373. [DOI: 10.1021/acs.jproteome.7b00601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aidan P. Tay
- NSW
Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Vincent Geoghegan
- Centre
for Immunology and Infection, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Daniel Yagoub
- NSW
Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Marc R. Wilkins
- NSW
Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Gene Hart-Smith
- NSW
Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
46
|
Chen M, Zhang M, Zhai L, Hu H, Liu P, Tan M. Tryptic Peptides Bearing C-Terminal Dimethyllysine Need to Be Considered during the Analysis of Lysine Dimethylation in Proteomic Study. J Proteome Res 2017; 16:3460-3469. [PMID: 28730820 DOI: 10.1021/acs.jproteome.7b00373] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lysine methylation plays important roles in structural and functional regulation of chromatin. Although trypsin is the most widely used protease in mass spectrometry-based proteomic analysis for lysine methylation substrates, the proteolytic activity of trypsin on dimethylated lysine residues remains an arguable issue. In this study, we tested the ability of trypsin to cleave dimethylated lysine residues in synthetic peptides, purified albumin, and whole cell lysate, and found that the C-terminal of dimethylated lysine residue could be cleaved in a protein sequence-dependent manner. Kinetic studies revealed that the optimal digestion time and enzyme-to-substrate ratio for the cleavage of dimethylated lysine by trypsin was around 16 h and 1:50, respectively. We further showed the tryptic C-terminal lysine-dimethylated (C-Kme2) peptides could contribute to a significant portion of substrate identification in the proteomic study, which utilizes the chemical dimethylation labeling approach. More than 120 tryptic C-Kme2 peptides (7% of total peptides identified) were identified in chemically lysine-dimethyl-labeled HeLa whole cell lysate by a single-shot nanoflow high performance liquid chromatography with tandem mass spectrometry (nano-HPLC-MS/MS) analysis. Moreover, in an assay for substrate identification of protease Glu-C using stable isotope dimethyl labeling approach, our data showed the tryptic C-Kme2 peptides accounted for more than 13% of total tryptic peptides. Additionally, our in vivo methylome profiling data revealed some C-Kme2 peptides, which is of importance to identification and quantification of biologically relevant protein and lysine-methylated site. Therefore, we reason that the tryptic peptides bearing C-terminal dimethylated lysine need to be considered in the mass spectrometric analysis of lysine dimethylation.
Collapse
Affiliation(s)
- Ming Chen
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, PR China.,University of Chinese Academy of Sciences , Beijing 100049, PR China
| | - Min Zhang
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, PR China.,University of Chinese Academy of Sciences , Beijing 100049, PR China
| | - Linhui Zhai
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, PR China
| | - Hao Hu
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, PR China
| | - Ping Liu
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, PR China
| | - Minjia Tan
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, PR China.,University of Chinese Academy of Sciences , Beijing 100049, PR China
| |
Collapse
|
47
|
Xu X, Liu T, Yang J, Chen L, Liu B, Wei C, Wang L, Jin Q. The first succinylome profile of Trichophyton rubrum reveals lysine succinylation on proteins involved in various key cellular processes. BMC Genomics 2017; 18:577. [PMID: 28778155 PMCID: PMC5545033 DOI: 10.1186/s12864-017-3977-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/31/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Dermatophytes, the most common cause of fungal infections, affect millions of individuals worldwide. They pose a major threat to public health because of the severity and longevity of infections caused by dermatophytes and their refractivity to therapy. Trichophyton rubrum (T. rubrum), the most common dermatophyte species, is a promising model organism for dermatophyte research. Post-translational modifications (PTMs) have been shown to be essential for many biological processes, particularly in the regulation of key cellular processes that contribute to pathogenicity. Although PTMs have important roles, little is known about their roles in T. rubrum and other dermatophytes. Succinylation is a new PTM that has recently been identified. In this study, we assessed the proteome-wide succinylation profile of T. rubrum. This study sought to systematically identify the succinylated sites and proteins in T. rubrum and to reveal the roles of succinylated proteins in various cellular processes as well as the differences in the succinylation profiles in different growth stages of the T. rubrum life cycle. RESULTS A total of 569 succinylated lysine sites were identified in 284 proteins. These succinylated proteins are involved in various cellular processes, such as metabolism, translation and epigenetic regulation. Additionally, 24 proteins related to pathogenicity were found to be succinylated. Comparison of the succinylome at the conidia and mycelia stages revealed that most of the succinylated proteins and sites were growth-stage specific. In addition, the succinylation modifications on histone and ribosomal proteins were significantly different between these two growth stages. Moreover, the sequence features surrounding the succinylated sites were different in the two stages, thus indicating the specific recognition of succinyltransferases in each growth phase. CONCLUSIONS In this study, we explored the first T. rubrum succinylome, which is also the first PTM analysis of dermatophytes reported to date. These results revealed the major roles of the succinylated proteins involved in T. rubrum and the differences in the succinylomes between the two major growth stages. These findings should improve understanding of the physiological and pathogenic properties of dermatophytes and facilitate future development of novel drugs and therapeutics for treating superficial fungal infections.
Collapse
Affiliation(s)
- Xingye Xu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 6, Rongjing East Street, BDA, Beijing, 100176, China
| | - Tao Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 6, Rongjing East Street, BDA, Beijing, 100176, China
| | - Jian Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 6, Rongjing East Street, BDA, Beijing, 100176, China
| | - Lihong Chen
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 6, Rongjing East Street, BDA, Beijing, 100176, China
| | - Bo Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 6, Rongjing East Street, BDA, Beijing, 100176, China
| | - Candong Wei
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 6, Rongjing East Street, BDA, Beijing, 100176, China
| | - Lingling Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 6, Rongjing East Street, BDA, Beijing, 100176, China
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 6, Rongjing East Street, BDA, Beijing, 100176, China.
| |
Collapse
|
48
|
Jin Y, Huo B, Fu X, Cheng Z, Zhu J, Zhang Y, Hao T, Hu X. LSD1 knockdown reveals novel histone lysine methylation in human breast cancer MCF-7 cells. Biomed Pharmacother 2017; 92:896-904. [DOI: 10.1016/j.biopha.2017.05.106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 02/03/2023] Open
|
49
|
Hamey JJ, Wienert B, Quinlan KGR, Wilkins MR. METTL21B Is a Novel Human Lysine Methyltransferase of Translation Elongation Factor 1A: Discovery by CRISPR/Cas9 Knockout. Mol Cell Proteomics 2017; 16:2229-2242. [PMID: 28663172 DOI: 10.1074/mcp.m116.066308] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 06/28/2017] [Indexed: 02/03/2023] Open
Abstract
Lysine methylation is widespread on human proteins, however the enzymes that catalyze its addition remain largely unknown. This limits our capacity to study the function and regulation of this modification. Here we used the CRISPR/Cas9 system to knockout putative protein methyltransferases METTL21B and METTL23 in K562 cells, to determine if they methylate elongation factor eEF1A. The known eEF1A methyltransferase EEF1AKMT1 was also knocked out as a control. Targeted mass spectrometry revealed the loss of lysine 165 methylation upon knockout of METTL21B, and the expected loss of lysine 79 methylation on knockout of EEF1AKMT1 No loss of eEF1A methylation was seen in the METTL23 knockout. Recombinant METTL21B was shown in vitro to catalyze methylation on lysine 165 in eEF1A1 and eEF1A2, confirming it as the methyltransferase responsible for this methylation site. Proteomic analysis by SILAC revealed specific upregulation of large ribosomal subunit proteins in the METTL21B knockout, and changes to further processes related to eEF1A function in knockouts of both METTL21B and EEF1AKMT1 This indicates that the methylation of lysine 165 in human eEF1A has a very specific role. METTL21B exists only in vertebrates, with its target lysine showing similar evolutionary conservation. We suggest METTL21B be renamed eEF1A-KMT3. This is the first study to specifically generate CRISPR/Cas9 knockouts of putative protein methyltransferase genes, for substrate discovery and site mapping. Our approach should prove useful for the discovery of further novel methyltransferases, and more generally for the discovery of sites for other protein-modifying enzymes.
Collapse
Affiliation(s)
- Joshua J Hamey
- From the ‡School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia
| | - Beeke Wienert
- From the ‡School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia
| | - Kate G R Quinlan
- From the ‡School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia
| | - Marc R Wilkins
- From the ‡School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia
| |
Collapse
|
50
|
Protein lysine methylation by seven-β-strand methyltransferases. Biochem J 2017; 473:1995-2009. [PMID: 27407169 DOI: 10.1042/bcj20160117] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/24/2016] [Indexed: 11/17/2022]
Abstract
Methylation of biomolecules is a frequent biochemical reaction within the cell, and a plethora of highly specific methyltransferases (MTases) catalyse the transfer of a methyl group from S-adenosylmethionine (AdoMet) to various substrates. The posttranslational methylation of lysine residues, catalysed by numerous lysine (K)-specific protein MTases (KMTs), is a very common and important protein modification, which recently has been subject to intense studies, particularly in the case of histone proteins. The majority of KMTs belong to a class of MTases that share a defining 'SET domain', and these enzymes mostly target lysines in the flexible tails of histones. However, the so-called seven-β-strand (7BS) MTases, characterized by a twisted beta-sheet structure and certain conserved sequence motifs, represent the largest MTase class, and these enzymes methylate a wide range of substrates, including small metabolites, lipids, nucleic acids and proteins. Until recently, the histone-specific Dot1/DOT1L was the only identified eukaryotic 7BS KMT. However, a number of novel 7BS KMTs have now been discovered, and, in particular, several recently characterized human and yeast members of MTase family 16 (MTF16) have been found to methylate lysines in non-histone proteins. Here, we review the status and recent progress on the 7BS KMTs, and discuss these enzymes at the levels of sequence/structure, catalytic mechanism, substrate recognition and biological significance.
Collapse
|