1
|
Koppin A, Chase L. Lysine 473 Regulates the Progression of SLC7A11, the Cystine/Glutamate Exchanger, through the Secretory Pathway. Int J Mol Sci 2024; 25:10271. [PMID: 39408599 PMCID: PMC11476549 DOI: 10.3390/ijms251910271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
System xc-, the cystine/glutamate exchanger, is a membrane transporter that plays a critical role in the antioxidant response of cells. Recent work has shown that System xc- localizes to the plasma membrane during oxidative stress, allowing for increased activity to support the production of glutathione. In this study, we used site-directed mutagenesis to examine the role of C-terminal lysine residues (K422, K472, and K473) of xCT (SLC7A11) in regulating System xc-. We observed that K473R exhibits loss of transporter activity and membrane localization and is 7.5 kD lower in molecular weight, suggesting that K473 regulates System xc- trafficking and is modified under basal conditions. After ruling out ubiquitination and neddylation, we demonstrated that unlike WT xCT, K473R lacks N- and O-glycosylation and is sequestered in the endoplasmic reticulum. Next, we demonstrated that K473Q, a constitutively acetylated lysine mimic, also exhibits loss of transporter activity, decreased membrane expression, and a 4 kD decrease in molecular weight; however, it is N- and O-glycosylated and localized to the endoplasmic reticulum and Golgi. These results suggest that acetylation and deacetylation of K473 in the endoplasmic reticulum and Golgi, respectively, serve to regulate the progression of the transporter through the biosynthetic pathway.
Collapse
Affiliation(s)
- Anna Koppin
- Departments of Biology and Chemistry, Hope College, Holland, MI 49423, USA;
| | - Leah Chase
- Neuroscience Program, Departments of Biology and Chemistry, Hope College, Holland, MI 49423, USA
| |
Collapse
|
2
|
Hamilton HL, Kinscherf NA, Balmer G, Bresque M, Salamat SM, Vargas MR, Pehar M. FABP7 drives an inflammatory response in human astrocytes and is upregulated in Alzheimer's disease. GeroScience 2024; 46:1607-1625. [PMID: 37688656 PMCID: PMC10828232 DOI: 10.1007/s11357-023-00916-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/15/2023] [Indexed: 09/11/2023] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia in the elderly, is characterized by the accumulation of intracellular neurofibrillary tangles, extracellular amyloid plaques, and neuroinflammation. In partnership with microglial cells, astrocytes are key players in the regulation of neuroinflammation. Fatty acid binding protein 7 (FABP7) belongs to a family of conserved proteins that regulate lipid metabolism, energy homeostasis, and inflammation. FABP7 expression is largely restricted to astrocytes and radial glia-like cells in the adult central nervous system. We observed that treatment of primary hippocampal astrocyte cultures with amyloid β fragment 25-35 (Aβ25-35) induces FABP7 upregulation. In addition, FABP7 expression is upregulated in the brain of APP/PS1 mice, a widely used AD mouse model. Co-immunostaining with specific astrocyte markers revealed increased FABP7 expression in astrocytes. Moreover, astrocytes surrounding amyloid plaques displayed increased FABP7 staining when compared to non-plaque-associated astrocytes. A similar result was obtained in the brain of AD patients. Whole transcriptome RNA sequencing analysis of human astrocytes differentiated from induced pluripotent stem cells (i-astrocytes) overexpressing FABP7 identified 500 transcripts with at least a 2-fold change in expression. Gene Ontology enrichment analysis identified (i) positive regulation of cytokine production and (ii) inflammatory response as the top two statistically significant overrepresented biological processes. We confirmed that wild-type FABP7 overexpression induces an NF-κB-driven inflammatory response in human i-astrocytes. On the other hand, the expression of a ligand-binding impaired mutant FABP7 did not induce NF-κB activation. Together, our results suggest that the upregulation of FABP7 in astrocytes could contribute to the neuroinflammation observed in AD.
Collapse
Affiliation(s)
- Haylee L Hamilton
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, 600 Highland Avenue, CSC K6/447, Madison, WI, 53792, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Noah A Kinscherf
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, 600 Highland Avenue, CSC K6/447, Madison, WI, 53792, USA
| | - Garrett Balmer
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - Mariana Bresque
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - Shahriar M Salamat
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin Madison, Madison, WI, USA
| | - Marcelo R Vargas
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - Mariana Pehar
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, 600 Highland Avenue, CSC K6/447, Madison, WI, 53792, USA.
- Geriatric Research Education Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
3
|
Meng X, Wang X, Zhu X, Zhang R, Zhang Z, Sun Y. Quantitative analysis of acetylation in peste des petits ruminants virus-infected Vero cells. Virol J 2023; 20:227. [PMID: 37817180 PMCID: PMC10563215 DOI: 10.1186/s12985-023-02200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/04/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Peste des petits ruminants virus (PPRV) is a highly contagious pathogen that strongly influences the productivity of small ruminants worldwide. Acetylation is an important post-translational modification involved in regulation of multiple biological functions. However, the extent and function of acetylation in host cells during PPRV infection remains unknown. METHODS Dimethylation-labeling-based quantitative proteomic analysis of the acetylome of PPRV-infected Vero cells was performed. RESULTS In total, 1068 proteins with 2641 modification sites were detected in response to PPRV infection, of which 304 differentially acetylated proteins (DAcPs) with 410 acetylated sites were identified (fold change < 0.83 or > 1.2 and P < 0.05), including 109 up-regulated and 195 down-regulated proteins. Gene Ontology (GO) classification indicated that DAcPs were mostly located in the cytoplasm (43%) and participated in cellular and metabolic processes related to binding and catalytic activity. Functional enrichment indicated that the DAcPs were involved in the minichromosome maintenance complex, unfolded protein binding, helicase activity. Only protein processing in endoplasmic reticulum pathway was enriched. A protein-protein interaction (PPI) network of the identified proteins further indicated that a various chaperone and ribosome processes were modulated by acetylation. CONCLUSIONS To the best of our knowledge, this is the first study on acetylome in PPRV-infected host cell. Our findings establish an important baseline for future study on the roles of acetylation in the host response to PPRV replication and provide novel insights for understanding the molecular pathological mechanism of PPRV infection.
Collapse
Affiliation(s)
- Xuelian Meng
- State Key Laboratory for Animal Disease Control and Preventiony, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou, 730046, China.
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Preventiony, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou, 730046, China
| | - Xueliang Zhu
- State Key Laboratory for Animal Disease Control and Preventiony, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou, 730046, China
| | - Rui Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| | - Zhidong Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China.
| | - Yuefeng Sun
- State Key Laboratory for Animal Disease Control and Preventiony, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou, 730046, China
| |
Collapse
|
4
|
Feng J, Zhang X, Li R, Zhao P, Han X, Wu Q, Tian Q, Tang G, Song J, Bi H. Widespread Involvement of Acetylation in the Retinal Metabolism of Form-Deprivation Myopia in Guinea Pigs. ACS OMEGA 2023; 8:23825-23839. [PMID: 37426266 PMCID: PMC10324097 DOI: 10.1021/acsomega.3c02219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023]
Abstract
Myopia has become the major cause of visual impairment worldwide. Although the pathogenesis of myopia remains controversial, proteomic studies suggest that dysregulation of retinal metabolism is potentially involved in the pathology of myopia. Lysine acetylation of proteins plays a key role in regulating cellular metabolism, but little is known about its role in the form-deprived myopic retina. Hence, a comprehensive analysis of proteomic and acetylomic changes in the retinas of guinea pigs with form-deprivation myopia was performed. In total, 85 significantly differential proteins and 314 significantly differentially acetylated proteins were identified. Notably, the differentially acetylated proteins were markedly enriched in metabolic pathways such as glycolysis/gluconeogenesis, the pentose phosphate pathway, retinol metabolism, and the HIF-1 signaling pathway. HK2, HKDC1, PKM, LDH, GAPDH, and ENO1 were the key enzymes in these metabolic pathways with decreased acetylation levels in the form-deprivation myopia group. Altered lysine acetylation of key enzymes in the form-deprived myopic retina might affect the dynamic balance of metabolism in the retinal microenvironment by altering their activity. In conclusion, as the first report on the myopic retinal acetylome, this study provides a reliable basis for further studies on myopic retinal acetylation.
Collapse
Affiliation(s)
- Jiaojiao Feng
- Shandong
University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Xiuyan Zhang
- Affiliated
Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, Shandong, China
- Shandong
Provincial Key Laboratory of Integrated Traditional Chinese and Western
Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Jinan 250002, Shandong, China
| | - Runkuan Li
- Shandong
University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Ping Zhao
- Affiliated
Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, Shandong, China
- Shandong
Provincial Key Laboratory of Integrated Traditional Chinese and Western
Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Jinan 250002, Shandong, China
| | - Xudong Han
- School
of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Qiuxin Wu
- Affiliated
Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, Shandong, China
- Shandong
Provincial Key Laboratory of Integrated Traditional Chinese and Western
Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Jinan 250002, Shandong, China
| | - Qingmei Tian
- Affiliated
Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, Shandong, China
- Shandong
Provincial Key Laboratory of Integrated Traditional Chinese and Western
Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Jinan 250002, Shandong, China
| | - Guodong Tang
- Affiliated
Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, Shandong, China
- Shandong
Provincial Key Laboratory of Integrated Traditional Chinese and Western
Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Jinan 250002, Shandong, China
| | - Jike Song
- Shandong
University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
- Affiliated
Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, Shandong, China
| | - Hongsheng Bi
- Affiliated
Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, Shandong, China
- Shandong
Provincial Key Laboratory of Integrated Traditional Chinese and Western
Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Jinan 250002, Shandong, China
| |
Collapse
|
5
|
Yuan P, Qin HY, Wei JY, Chen G, Li X. Proteomics reveals the potential mechanism of Tanshinone IIA in promoting the Ex Vivo expansion of human bone marrow mesenchymal stem cells. Regen Ther 2022; 21:560-573. [DOI: 10.1016/j.reth.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
|
6
|
Edgar JA, Molyneux RJ, Colegate SM. 1,2-Dehydropyrrolizidine Alkaloids: Their Potential as a Dietary Cause of Sporadic Motor Neuron Diseases. Chem Res Toxicol 2022; 35:340-354. [PMID: 35238548 DOI: 10.1021/acs.chemrestox.1c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sporadic motor neuron diseases (MNDs), such as amyotrophic lateral sclerosis (ALS), can be caused by spontaneous genetic mutations. However, many sporadic cases of ALS and other debilitating neurodegenerative diseases (NDDs) are believed to be caused by environmental factors, subject to considerable debate and requiring intensive research. A common pathology associated with MND development involves progressive mitochondrial dysfunction and oxidative stress in motor neurons and glial cells of the central nervous system (CNS), leading to apoptosis. Consequent degeneration of skeletal and respiratory muscle cells can lead to death from respiratory failure. A significant number of MND cases present with cancers and liver and lung pathology. This Perspective explores the possibility that MNDs could be caused by intermittent, low-level dietary exposure to 1,2-dehydropyrrolizidine alkaloids (1,2-dehydroPAs) that are increasingly recognized as contaminants of many foods consumed throughout the world. Nontoxic, per se, 1,2-dehydroPAs are metabolized, by particular cytochrome P450 (CYP450) isoforms, to 6,7-dihydropyrrolizines that react with nucleophilic groups (-NH, -SH, -OH) on DNA, proteins, and other vital biochemicals, such as glutathione. Many factors, including aging, gender, smoking, and alcohol consumption, influence CYP450 isoform activity in a range of tissues, including glial cells and neurons of the CNS. Activation of 1,2-dehydroPAs in CNS cells can be expected to cause gene mutations and oxidative stress, potentially leading to the development of MNDs and other NDDs. While relatively high dietary exposure to 1,2-dehydroPAs causes hepatic sinusoidal obstruction syndrome, pulmonary venoocclusive disease, neurotoxicity, and diverse cancers, this Perspective suggests that, at current intermittent, low levels of dietary exposure, neurotoxicity could become the primary pathology that develops over time in susceptible individuals, along with a tendency for some of them to also display liver and lung pathology and diverse cancers co-occurring with some MND/NDD cases. Targeted research is recommended to investigate this proposal.
Collapse
Affiliation(s)
- John A Edgar
- CSIRO Agriculture and Food, 11 Julius Avenue, North Ryde, New South Wales 2113, Australia
| | - Russell J Molyneux
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, United States
| | - Steven M Colegate
- Poisonous Plant Research Laboratory, ARS/USDA, 1150 East 1400 North, Logan, Utah 84341, United States
| |
Collapse
|
7
|
Morales-Tarré O, Alonso-Bastida R, Arcos-Encarnación B, Pérez-Martínez L, Encarnación-Guevara S. Protein lysine acetylation and its role in different human pathologies: a proteomic approach. Expert Rev Proteomics 2021; 18:949-975. [PMID: 34791964 DOI: 10.1080/14789450.2021.2007766] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Lysine acetylation is a reversible post-translational modification (PTM) regulated through the action of specific types of enzymes: lysine acetyltransferases (KATs) and lysine deacetylases (HDACs), in addition to bromodomains, which are a group of conserved domains which identify acetylated lysine residues, several of the players in the process of protein acetylation, including enzymes and bromodomain-containing proteins, have been related to the progression of several diseases. The combination of high-resolution mass spectrometry-based proteomics, and immunoprecipitation to enrich acetylated peptides has contributed in recent years to expand the knowledge about this PTM described initially in histones and nuclear proteins, and is currently reported in more than 5000 human proteins, that are regulated by this PTM. AREAS COVERED This review presents an overview of the main participant elements, the scenario in the development of protein lysine acetylation, and its role in different human pathologies. EXPERT OPINION Acetylation targets are practically all cellular processes in eukaryotes and prokaryotes organisms. Consequently, this modification has been linked to many pathologies like cancer, viral infection, obesity, diabetes, cardiovascular, and nervous system-associated diseases, to mention a few relevant examples. Accordingly, some intermediate mediators in the acetylation process have been projected as therapeutic targets.
Collapse
Affiliation(s)
- Orlando Morales-Tarré
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ramiro Alonso-Bastida
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Bolivar Arcos-Encarnación
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular Y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular Y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Sergio Encarnación-Guevara
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
8
|
Liu L, Killoy KM, Vargas MR, Yamamoto Y, Pehar M. Effects of RAGE inhibition on the progression of the disease in hSOD1 G93A ALS mice. Pharmacol Res Perspect 2020; 8:e00636. [PMID: 32776498 PMCID: PMC7415959 DOI: 10.1002/prp2.636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Astrocytes play a key role in the progression of amyotrophic lateral sclerosis (ALS) by actively inducing the degeneration of motor neurons. Motor neurons isolated from receptor for advanced glycation end products (RAGE)-knockout mice are resistant to the neurotoxic signal derived from ALS-astrocytes. Here, we confirmed that in a co-culture model, the neuronal death induced by astrocytes over-expressing the ALS-linked mutant hSOD1G93A is prevented by the addition of the RAGE inhibitors FPS-ZM1 or RAP. These inhibitors also prevented the motor neuron death induced by spinal cord extracts from symptomatic hSOD1G93A mice. To evaluate the relevance of this neurotoxic mechanism in ALS pathology, we assessed the therapeutic potential of FPS-ZM1 in hSOD1G93A mice. FPS-ZM1 treatment significantly improved hind-limb grip strength in hSOD1G93A mice during the progression of the disease, reduced the expression of atrophy markers in the gastrocnemius muscle, improved the survival of large motor neurons, and reduced gliosis in the ventral horn of the spinal cord. However, we did not observe a statistically significant effect of the drug in symptoms onset nor in the survival of hSOD1G93A mice. Maintenance of hind-limb grip strength was also observed in hSOD1G93A mice with RAGE haploinsufficiency [hSOD1G93A ;RAGE(+/-)], further supporting the beneficial effect of RAGE inhibition on muscle function. However, no benefits were observed after complete RAGE ablation. Moreover, genetic RAGE ablation significantly shortened the median survival of hSOD1G93A mice. These results indicate that the advance of new therapies targeting RAGE in ALS demands a better understanding of its physiological role in a cell type/tissue-specific context.
Collapse
Affiliation(s)
- Liping Liu
- Biomedical Sciences Training ProgramDepartment of Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonSCUSA
| | - Kelby M. Killoy
- Biomedical Sciences Training ProgramDepartment of Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonSCUSA
| | | | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular BiologyKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Mariana Pehar
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- Geriatric Research Education Clinical CenterVeterans Affairs Medical CenterMadisonWIUSA
| |
Collapse
|
9
|
What if? Mouse proteomics after gene inactivation. J Proteomics 2019; 199:102-122. [DOI: 10.1016/j.jprot.2019.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 12/17/2022]
|
10
|
Harlan BA, Pehar M, Killoy KM, Vargas MR. Enhanced SIRT6 activity abrogates the neurotoxic phenotype of astrocytes expressing ALS-linked mutant SOD1. FASEB J 2019; 33:7084-7091. [PMID: 30841754 DOI: 10.1096/fj.201802752r] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Sirtuins (SIRTs) are NAD+-dependent deacylases that play a key role in transcription, DNA repair, metabolism, and oxidative stress resistance. Increasing NAD+ availability regulates endogenous SIRT activity, leading to increased resistance to oxidative stress and decreased mitochondrial reactive oxygen production in multiple cell types and disease models. This protection, at least in part, depends on the activation of antioxidant mitochondrial proteins. We now show that increasing total NAD+ content in astrocytes leads to the activation of the transcription factor nuclear factor, erythroid-derived 2, like 2 (Nfe2l2 or Nrf2) and up-regulation of the antioxidant proteins heme oxygenase 1 (HO-1) and sulfiredoxin 1 (SRXN1). Nrf2 activation also occurs as a result of SIRT6 overexpression. Mutations in Cu-Zn superoxide dismutase 1 (SOD1) cause familial forms of amyotrophic lateral sclerosis (ALS). Astrocytes isolated from mutant human SOD1-overexpressing mice induce motor neuron death in coculture. Treatment with nicotinamide mononucleotide or nicotinamide riboside increases total NAD+ content in ALS astrocytes and abrogates their toxicity toward cocultured motor neurons. The observed neuroprotection depends on SIRT6 expression in astrocytes. Moreover, overexpression of SIRT6 in astrocytes by itself abrogates the neurotoxic phenotype of ALS astrocytes. Our results identify SIRT6 as a potential therapeutic target to prevent astrocyte-mediated motor neuron death in ALS.-Harlan, B. A., Pehar, M., Killoy, K. M., Vargas, M. R. Enhanced SIRT6 activity abrogates the neurotoxic phenotype of astrocytes expressing ALS-linked mutant SOD1.
Collapse
Affiliation(s)
- Benjamin A Harlan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Mariana Pehar
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kelby M Killoy
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Marcelo R Vargas
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
11
|
Murray LA, Sheng X, Cristea IM. Orchestration of protein acetylation as a toggle for cellular defense and virus replication. Nat Commun 2018; 9:4967. [PMID: 30470744 PMCID: PMC6251895 DOI: 10.1038/s41467-018-07179-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/18/2018] [Indexed: 12/20/2022] Open
Abstract
Emerging evidence highlights protein acetylation, a prevalent lysine posttranslational modification, as a regulatory mechanism and promising therapeutic target in human viral infections. However, how infections dynamically alter global cellular acetylation or whether viral proteins are acetylated remains virtually unexplored. Here, we establish acetylation as a highly-regulated molecular toggle of protein function integral to the herpesvirus human cytomegalovirus (HCMV) replication. We offer temporal resolution of cellular and viral acetylations. By interrogating dynamic protein acetylation with both protein abundance and subcellular localization, we discover finely tuned spatial acetylations across infection time. We determine that lamin acetylation at the nuclear periphery protects against virus production by inhibiting capsid nuclear egress. Further studies within infectious viral particles identify numerous acetylations, including on the viral transcriptional activator pUL26, which we show represses virus production. Altogether, this study provides specific insights into functions of cellular and viral protein acetylations and a valuable resource of dynamic acetylation events. The dynamics of protein acetylation during infection remains unexplored. Here, Murray et al. characterize spatio-temporal acetylations of both cellular and viral proteins during HCMV infection, providing new functional insights into the host-virus acetylome that might help identify new antiviral targets.
Collapse
Affiliation(s)
- L A Murray
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | - X Sheng
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | - I M Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA.
| |
Collapse
|
12
|
Pehar M, Harlan BA, Killoy KM, Vargas MR. Nicotinamide Adenine Dinucleotide Metabolism and Neurodegeneration. Antioxid Redox Signal 2018; 28:1652-1668. [PMID: 28548540 PMCID: PMC5962335 DOI: 10.1089/ars.2017.7145] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/25/2017] [Accepted: 05/25/2017] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Nicotinamide adenine dinucleotide (NAD+) participates in redox reactions and NAD+-dependent signaling processes, which involve the cleavage of NAD+ coupled to posttranslational modifications of proteins or the production of second messengers. Either as a primary cause or as a secondary component of the pathogenic process, mitochondrial dysfunction and oxidative stress are prominent features of several neurodegenerative diseases. Activation of NAD+-dependent signaling pathways has a major effect in the capacity of the cell to modulate mitochondrial function and counteract the deleterious effects of increased oxidative stress. Recent Advances: Progress in the understanding of the biological functions and compartmentalization of NAD+-synthesizing and NAD+-consuming enzymes have led to the emergence of NAD+ metabolism as a major therapeutic target for age-related diseases. CRITICAL ISSUES Three distinct families of enzymes consume NAD+ as substrate: poly(ADP-ribose) polymerases (PARPs), ADP-ribosyl cyclases (CD38/CD157) and sirtuins. Two main strategies to increase NAD+ availability have arisen. These strategies are based on the utilization of NAD+ intermediates/precursors or the inhibition of the NAD+-consuming enzymes, PARPs and CD38. An increase in endogenous sirtuin activity seems to mediate the protective effect that enhancing NAD+ availability confers in several models of neurodegeneration and age-related diseases. FUTURE DIRECTIONS A growing body of evidence suggests the beneficial role of enhancing NAD+ availability in models of neurodegeneration. The challenge ahead is to establish the value and safety of the long-term use of these strategies for the treatment of neurodegenerative diseases. Antioxid. Redox Signal. 28, 1652-1668.
Collapse
Affiliation(s)
- Mariana Pehar
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina
| | - Benjamin A Harlan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina
| | - Kelby M Killoy
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina
| | - Marcelo R Vargas
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina
| |
Collapse
|
13
|
Killoy KM, Harlan BA, Pehar M, Helke KL, Johnson JA, Vargas MR. Decreased glutathione levels cause overt motor neuron degeneration in hSOD1 WT over-expressing mice. Exp Neurol 2018; 302:129-135. [PMID: 29307609 PMCID: PMC5849514 DOI: 10.1016/j.expneurol.2018.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/15/2017] [Accepted: 01/04/2018] [Indexed: 12/21/2022]
Abstract
Mutations in Cu/Zn-superoxide dismutase (SOD1) cause familial forms of amyotrophic lateral sclerosis (ALS), a fatal disorder characterized by the progressive loss of motor neurons. Several lines of evidence have shown that SOD1 mutations cause ALS through a gain of a toxic function that remains to be fully characterized. A significant share of our understanding of the mechanisms underlying the neurodegenerative process in ALS comes from the study of rodents over-expressing ALS-linked mutant hSOD1. These mutant hSOD1 models develop an ALS-like phenotype. On the other hand, hemizygous mice over-expressing wild-type hSOD1 at moderate levels (hSOD1WT, originally described as line N1029) do not develop paralysis or shortened life-span. To investigate if a decrease in antioxidant defenses could lead to the development of an ALS-like phenotype in hSOD1WT mice, we used knockout mice for the glutamate-cysteine ligase modifier subunit [GCLM(-/-)]. GCLM(-/-) mice are viable and fertile but display a 70-80% reduction in total glutathione levels. GCLM(-/-)/hSOD1WT mice developed overt motor symptoms (e.g. tremor, loss of extension reflex in hind-limbs, decreased grip strength and paralysis) characteristic of mice models over-expressing ALS-linked mutant hSOD1. In addition, GCLM(-/-)/hSOD1WT animals displayed shortened life span. An accelerated decrease in the number of large neurons in the ventral horn of the spinal cord and degeneration of spinal root axons was observed in symptomatic GCLM(-/-)/hSOD1WT mice when compared to age-matched GCLM(+/+)/hSOD1WT mice. Our results show that under conditions of chronic decrease in glutathione, moderate over-expression of wild-type SOD1 leads to overt motor neuron degeneration, which is similar to that induced by ALS-linked mutant hSOD1 over-expression.
Collapse
Affiliation(s)
- Kelby M Killoy
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Benjamin A Harlan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Mariana Pehar
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Jeffrey A Johnson
- Division of Pharmaceutical Sciences, Waisman Center, Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI, USA
| | - Marcelo R Vargas
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
14
|
Abstract
SIGNIFICANCE Peroxiredoxins (Prxs) are thiol peroxidases with multiple functions in the antioxidant defense and redox signaling network of the cell. Our progressing understanding assigns both local and global significance to plant Prxs, which are grouped in four Prx types. In plants they are localized to the cytosol, mitochondrion, plastid, and nucleus. Antioxidant defense is fundamentally connected to redox signaling, cellular communication, and acclimation. The thiol-disulfide network is central part of the stress sensing and processing response and integrates information input with redox regulation. Recent Advances: Prxs function both as redox sensory system within the network and redox-dependent interactors. The processes directly or indirectly targeted by Prxs include gene expression, post-transcriptional reactions, including translation, post-translational regulation, and switching or tuning of metabolic pathways, and other cell activities. The most advanced knowledge is available for the chloroplast 2-CysPrx wherein recently a solid interactome has been defined. An in silico analysis of protein structure and coexpression reinforces new insights into the 2-CysPrx functionality. CRITICAL ISSUES Up to now, Prxs often have been investigated for local properties of enzyme activity. In vitro and ex vivo work with mutants will reveal the ability of Prxs to interfere with multiple cellular components, including crosstalk with Ca2+-linked signaling pathways, hormone signaling, and protein homeostasis. FUTURE DIRECTIONS Complementation of the Prxs knockout lines with variants that mimic specific states, namely devoid of peroxidase activity, lacking the oligomerization ability, resembling the hyperoxidized decamer, or with truncated C-terminus, should allow dissecting the roles as thiol peroxidase, oxidant, interaction partner, and chaperone. Antioxid. Redox Signal. 28, 609-624.
Collapse
Affiliation(s)
- Michael Liebthal
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld , Bielefeld, Germany
| | - Daniel Maynard
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld , Bielefeld, Germany
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld , Bielefeld, Germany
| |
Collapse
|
15
|
Harlan BA, Pehar M, Sharma DR, Beeson G, Beeson CC, Vargas MR. Enhancing NAD+ Salvage Pathway Reverts the Toxicity of Primary Astrocytes Expressing Amyotrophic Lateral Sclerosis-linked Mutant Superoxide Dismutase 1 (SOD1). J Biol Chem 2016; 291:10836-46. [PMID: 27002158 DOI: 10.1074/jbc.m115.698779] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Indexed: 01/08/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD(+)) participates in redox reactions and NAD(+)-dependent signaling pathways. Although the redox reactions are critical for efficient mitochondrial metabolism, they are not accompanied by any net consumption of the nucleotide. On the contrary, NAD(+)-dependent signaling processes lead to its degradation. Three distinct families of enzymes consume NAD(+) as substrate: poly(ADP-ribose) polymerases, ADP-ribosyl cyclases (CD38 and CD157), and sirtuins (SIRT1-7). Because all of the above enzymes generate nicotinamide as a byproduct, mammalian cells have evolved an NAD(+) salvage pathway capable of resynthesizing NAD(+) from nicotinamide. Overexpression of the rate-limiting enzyme in this pathway, nicotinamide phosphoribosyltransferase, increases total and mitochondrial NAD(+) levels in astrocytes. Moreover, targeting nicotinamide phosphoribosyltransferase to the mitochondria also enhances NAD(+) salvage pathway in astrocytes. Supplementation with the NAD(+) precursors nicotinamide mononucleotide and nicotinamide riboside also increases NAD(+) levels in astrocytes. Amyotrophic lateral sclerosis (ALS) is caused by the progressive degeneration of motor neurons in the spinal cord, brain stem, and motor cortex. Superoxide dismutase 1 (SOD1) mutations account for up to 20% of familial ALS and 1-2% of apparently sporadic ALS cases. Primary astrocytes isolated from mutant human superoxide dismutase 1-overexpressing mice as well as human post-mortem ALS spinal cord-derived astrocytes induce motor neuron death in co-culture. Increasing total and mitochondrial NAD(+) content in ALS astrocytes increases oxidative stress resistance and reverts their toxicity toward co-cultured motor neurons. Taken together, our results suggest that enhancing the NAD(+) salvage pathway in astrocytes could be a potential therapeutic target to prevent astrocyte-mediated motor neuron death in ALS.
Collapse
Affiliation(s)
- Benjamin A Harlan
- From the Department of Cell and Molecular Pharmacology and Experimental Therapeutics and
| | - Mariana Pehar
- From the Department of Cell and Molecular Pharmacology and Experimental Therapeutics and
| | - Deep R Sharma
- From the Department of Cell and Molecular Pharmacology and Experimental Therapeutics and
| | - Gyda Beeson
- South Carolina College of Pharmacy Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Craig C Beeson
- South Carolina College of Pharmacy Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Marcelo R Vargas
- From the Department of Cell and Molecular Pharmacology and Experimental Therapeutics and
| |
Collapse
|
16
|
Twiss JL, Fainzilber M. Neuroproteomics: How Many Angels can be Identified in an Extract from the Head of a Pin? Mol Cell Proteomics 2016; 15:341-3. [PMID: 26729708 DOI: 10.1074/mcp.e116.057828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jeffery L Twiss
- From the ‡Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208;
| | - Mike Fainzilber
- §Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|