1
|
Xiong X, Chen W, Chen C, Wu Q, He C. Analysis of the function and therapeutic strategy of connexin 43 from its subcellular localization. Biochimie 2024; 218:1-7. [PMID: 37611889 DOI: 10.1016/j.biochi.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Connexins (Cxs) are a family of transmembrane proteins located in the plasma membrane of human cells, among which connexin 43 (Cx43) is abundantly expressed in various types of human cells. Cx43, encoded by the gap junction protein alpha 1 (GJA1) gene, assembles into a hexameric structure in the Golgi apparatus and translocates to the plasma membrane to form hemichannels (Hcs), which pair with those of the cells in contact with each other and form gap junction intercellular communication (GJIC). The role of Cx43 as a connexin localized at the plasma membrane to perform channel functions is well recognized in previous studies, but recent studies have found that it can also be localized in the nucleus, mitochondria, or present in extracellular vesicles (EVs) and tunneling nanotubes (TNTs). Cx43 in the nucleus is involved in gene transcription regulation, cytoskeleton formation, cell migration and adhesion. Cx43 in mitochondria is involved in mitochondrial respiration-related functions, and Cx43 in extracellular vesicles and tunneling nanotubes is involved in distant cellular information exchange. It is because of the diverse distribution of subcellular localization of Cx43 that it is possible to explore the corresponding functions by analyzing its localization. In this review, we summarize the important roles of Cx43 in disease development from the perspective of subcellular localization, and provide new ideas for Cx43 as a therapeutic target and the search for related pathological mechanisms.
Collapse
Affiliation(s)
- Xinhai Xiong
- The Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410003, China
| | - Wenjie Chen
- The Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410003, China
| | - Cheng Chen
- The Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410003, China; 926 Hospital of the People's Liberation Army, Kaiyuan, Yunnan, 661600, China.
| | - Qi Wu
- The Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410003, China
| | - Chaopeng He
- The Second Xiangya Hospital, Changsha, Hunan, 410011, China
| |
Collapse
|
2
|
Kwek MSY, Thangaveloo M, Madden LE, Phillips ARJ, Becker DL. Targeting Cx43 to Reduce the Severity of Pressure Ulcer Progression. Cells 2023; 12:2856. [PMID: 38132176 PMCID: PMC10741864 DOI: 10.3390/cells12242856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
In the skin, repeated incidents of ischemia followed by reperfusion can result in the breakdown of the skin and the formation of a pressure ulcer. Here we gently applied paired magnets to the backs of mice to cause ischemia for 1.5 h and then removed them to allow reperfusion. The sterile inflammatory response generated within 4 h causes a stage 1 pressure ulcer with an elevation of the gap junction protein Cx43 in the epidermis. If this process is repeated the insult will result in a more severe stage 2 pressure ulcer with a breakdown of the epidermis 2-3 days later. After a single pinch, the elevation of Cx43 in the epidermis is associated with the inflammatory response with an increased number of neutrophils, HMGB1 (marker of necrosis) and RIP3 (responsible for necroptosis). Delivering Cx43 specific antisense oligonucleotides sub-dermally after a single insult, was able to significantly reduce the elevation of epidermal Cx43 protein expression and reduce the number of neutrophils and prevent the elevation of HMGB1 and RIP3. In a double pinch model, the Cx43 antisense treatment was able to reduce the level of inflammation, necroptosis, and the extent of tissue damage and progression to an open wound. This approach may be useful in reducing the progression of stage 1 pressure ulcers to stage 2.
Collapse
Affiliation(s)
- Milton Sheng Yi Kwek
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11, Mandalay Road, Singapore 308232, Singapore (M.T.); (L.E.M.)
- Skin Research Institute Singapore, Clinical Sciences Building, 11, Mandalay Road, Singapore 308232, Singapore
| | - Moogaambikai Thangaveloo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11, Mandalay Road, Singapore 308232, Singapore (M.T.); (L.E.M.)
- Skin Research Institute Singapore, Clinical Sciences Building, 11, Mandalay Road, Singapore 308232, Singapore
| | - Leigh E. Madden
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11, Mandalay Road, Singapore 308232, Singapore (M.T.); (L.E.M.)
- Skin Research Institute Singapore, Clinical Sciences Building, 11, Mandalay Road, Singapore 308232, Singapore
| | | | - David L. Becker
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11, Mandalay Road, Singapore 308232, Singapore (M.T.); (L.E.M.)
- Skin Research Institute Singapore, Clinical Sciences Building, 11, Mandalay Road, Singapore 308232, Singapore
| |
Collapse
|
3
|
Martins-Marques T, Witschas K, Ribeiro I, Zuzarte M, Catarino S, Ribeiro-Rodrigues T, Caramelo F, Aasen T, Carreira IM, Goncalves L, Leybaert L, Girao H. Cx43 can form functional channels at the nuclear envelope and modulate gene expression in cardiac cells. Open Biol 2023; 13:230258. [PMID: 37907090 PMCID: PMC10645070 DOI: 10.1098/rsob.230258] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/12/2023] [Indexed: 11/02/2023] Open
Abstract
Classically associated with gap junction-mediated intercellular communication, connexin43 (Cx43) is increasingly recognized to possess non-canonical biological functions, including gene expression regulation. However, the mechanisms governing the localization and role played by Cx43 in the nucleus, namely in transcription modulation, remain unknown. Using comprehensive and complementary approaches encompassing biochemical assays, super-resolution and immunogold transmission electron microscopy, we demonstrate that Cx43 localizes to the nuclear envelope of different cell types and in cardiac tissue. We show that translocation of Cx43 to the nucleus relies on Importin-β, and that Cx43 significantly impacts the cellular transcriptome, likely by interacting with transcriptional regulators. In vitro patch-clamp recordings from HEK293 and adult primary cardiomyocytes demonstrate that Cx43 forms active channels at the nuclear envelope, providing evidence that Cx43 can participate in nucleocytoplasmic shuttling of small molecules. The accumulation of nuclear Cx43 during myogenic differentiation of cardiomyoblasts is suggested to modulate expression of genes implicated in this process. Altogether, our study provides new evidence for further defining the biological roles of nuclear Cx43, namely in cardiac pathophysiology.
Collapse
Affiliation(s)
- Tania Martins-Marques
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Katja Witschas
- Department of Basic Medical Sciences – Physiology group, Ghent University, 9000 Ghent, Belgium
| | - Ilda Ribeiro
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Univ Coimbra, Cytogenetics and Genomics Laboratory (CIMAGO), Faculty of Medicine, 3004-531 Coimbra, Portugal
| | - Mónica Zuzarte
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Steve Catarino
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Teresa Ribeiro-Rodrigues
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Francisco Caramelo
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Univ Coimbra, Laboratory of Biostatistics and Medical Informatics, Faculty of Medicine, 3004-531 Coimbra, Portugal
| | - Trond Aasen
- Patologia Molecular Translacional, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
- CIBER de Cáncer (CIBERONC), Instituto de Salud Carlos III, Avenida de Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Isabel Marques Carreira
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Univ Coimbra, Cytogenetics and Genomics Laboratory (CIMAGO), Faculty of Medicine, 3004-531 Coimbra, Portugal
| | - Lino Goncalves
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Luc Leybaert
- Department of Basic Medical Sciences – Physiology group, Ghent University, 9000 Ghent, Belgium
| | - Henrique Girao
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| |
Collapse
|
4
|
Cetin-Ferra S, Francis SC, Cooper AT, Neikirk K, Marshall AG, Hinton A, Murray SA. Mitochondrial Connexins and Mitochondrial Contact Sites with Gap Junction Structure. Int J Mol Sci 2023; 24:ijms24109036. [PMID: 37240383 DOI: 10.3390/ijms24109036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondria contain connexins, a family of proteins that is known to form gap junction channels. Connexins are synthesized in the endoplasmic reticulum and oligomerized in the Golgi to form hemichannels. Hemichannels from adjacent cells dock with one another to form gap junction channels that aggregate into plaques and allow cell-cell communication. Cell-cell communication was once thought to be the only function of connexins and their gap junction channels. In the mitochondria, however, connexins have been identified as monomers and assembled into hemichannels, thus questioning their role solely as cell-cell communication channels. Accordingly, mitochondrial connexins have been suggested to play critical roles in the regulation of mitochondrial functions, including potassium fluxes and respiration. However, while much is known about plasma membrane gap junction channel connexins, the presence and function of mitochondrial connexins remain poorly understood. In this review, the presence and role of mitochondrial connexins and mitochondrial/connexin-containing structure contact sites will be discussed. An understanding of the significance of mitochondrial connexins and their connexin contact sites is essential to our knowledge of connexins' functions in normal and pathological conditions, and this information may aid in the development of therapeutic interventions in diseases linked to mitochondria.
Collapse
Affiliation(s)
- Selma Cetin-Ferra
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Sharon C Francis
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Anthonya T Cooper
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Department of Biology, University of Hawaii, Hilo, HI 96720, USA
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Sandra A Murray
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
5
|
Nizamieva AA, Kalita IY, Slotvitsky MM, Berezhnoy AK, Shubina NS, Frolova SR, Tsvelaya VA, Agladze KI. Conduction of excitation waves and reentry drift on cardiac tissue with simulated photocontrol-varied excitability. CHAOS (WOODBURY, N.Y.) 2023; 33:023112. [PMID: 36859193 DOI: 10.1063/5.0122273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The development of new approaches to suppressing cardiac arrhythmias requires a deep understanding of spiral wave dynamics. The study of spiral waves is possible in model systems, for example, in a monolayer of cardiomyocytes. A promising way to control cardiac excitability in vitro is the noninvasive photocontrol of cell excitability mediated by light-sensitive azobenzene derivatives, such as azobenzene trimethylammonium bromide (AzoTAB). The trans-isomer of AzoTAB suppresses spontaneous activity and excitation propagation speed, whereas the cis isomer has no detectable effect on the electrical properties of cardiomyocyte monolayers; cis isomerization occurs under the action of near ultraviolet (UV) light, and reverse isomerization occurs when exposed to blue light. Thus, AzoTAB makes it possible to create patterns of excitability in conductive tissue. Here, we investigate the effect of a simulated excitability gradient in cardiac cell culture on the behavior and termination of reentry waves. Experimental data indicate a displacement of the reentry wave, predominantly in the direction of lower excitability. However, both shifts in the direction of higher excitability and shift absence were also observed. To explain this effect, we reproduced these experiments in a computer model. Computer simulations showed that the explanation of the mechanism of observed drift to a lower excitability area requires not only a change in excitability coefficients (ion currents) but also a change in the diffusion coefficient; this may be the effect of the substance on intercellular connections. In addition, it was found that the drift direction depended on the observation time due to the meandering of the spiral wave. Thus, we experimentally proved the possibility of noninvasive photocontrol and termination of spiral waves with a mechanistic explanation in computer models.
Collapse
Affiliation(s)
- A A Nizamieva
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - I Y Kalita
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - M M Slotvitsky
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - A K Berezhnoy
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - N S Shubina
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - S R Frolova
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - V A Tsvelaya
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - K I Agladze
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| |
Collapse
|
6
|
Martins‐Marques T, Costa MC, Catarino S, Simoes I, Aasen T, Enguita FJ, Girao H. Cx43-mediated sorting of miRNAs into extracellular vesicles. EMBO Rep 2022; 23:e54312. [PMID: 35593040 PMCID: PMC9253745 DOI: 10.15252/embr.202154312] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/12/2022] [Accepted: 04/26/2022] [Indexed: 09/23/2023] Open
Abstract
Through the exchange of lipids, proteins, and nucleic acids, extracellular vesicles (EV) allow for cell-cell communication across distant cells and tissues to regulate a wide range of physiological and pathological processes. Although some molecular mediators have been discovered, the mechanisms underlying the selective sorting of miRNAs into EV remain elusive. Previous studies demonstrated that connexin43 (Cx43) forms functional channels at the EV surface, mediating the communication with recipient cells. Here, we show that Cx43 participates in the selective sorting of miRNAs into EV through a process that can also involve RNA-binding proteins. We provide evidence that Cx43 can directly bind to specific miRNAs, namely those containing stable secondary structure elements, including miR-133b. Furthermore, Cx43 facilitates the delivery of EV-miRNAs into recipient cells. Phenotypically, we show that Cx43-mediated EV-miRNAs sorting modulates autophagy. Overall, our study ascribes another biological role to Cx43, that is, the selective incorporation of miRNAs into EV, which potentially modulates multiple biological processes in target cells and may have implications for human health and disease.
Collapse
Affiliation(s)
- Tania Martins‐Marques
- Faculty of MedicineCoimbra Institute for Clinical and Biomedical Research (iCBR)University of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Clinical Academic Centre of Coimbra (CACC)CoimbraPortugal
| | - Marina C Costa
- Faculdade de MedicinaInstituto de Medicina Molecular João Lobo AntunesUniversidade de LisboaLisboaPortugal
| | - Steve Catarino
- Faculty of MedicineCoimbra Institute for Clinical and Biomedical Research (iCBR)University of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Clinical Academic Centre of Coimbra (CACC)CoimbraPortugal
| | - Isaura Simoes
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- CNC‐Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- IIIUC‐Institute of Interdisciplinary ResearchUniversity of CoimbraCoimbraPortugal
| | - Trond Aasen
- Patologia Molecular Translacional, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital UniversitariVall d'Hebron Barcelona Hospital Campus, Passeig Vall d'HebronBarcelonaSpain
- CIBER de Cáncer (CIBERONC)Instituto de Salud Carlos IIIMadridSpain
| | - Francisco J Enguita
- Faculdade de MedicinaInstituto de Medicina Molecular João Lobo AntunesUniversidade de LisboaLisboaPortugal
| | - Henrique Girao
- Faculty of MedicineCoimbra Institute for Clinical and Biomedical Research (iCBR)University of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Clinical Academic Centre of Coimbra (CACC)CoimbraPortugal
| |
Collapse
|
7
|
Haefliger JA, Meda P, Alonso F. Endothelial Connexins in Developmental and Pathological Angiogenesis. Cold Spring Harb Perspect Med 2022; 12:a041158. [PMID: 35074793 PMCID: PMC9159259 DOI: 10.1101/cshperspect.a041158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Connexins (Cxs) constitute a large family of transmembrane proteins that form gap junction channels, which enable the direct transfer of small signaling molecules from cell to cell. In blood vessels, Cx channels allow the endothelial cells (ECs) to respond to external and internal cues as a whole and, thus, contribute to the maintenance of vascular homeostasis. While the role of Cxs has been extensively studied in large arteries, a growing body of evidence suggests that they also play a role in the formation of microvascular networks. Since the formation of new blood vessels requires the coordinated response of ECs to external stimuli, endothelial Cxs may play an important role there. Recent studies in developmental and pathologic models reveal that EC Cxs regulate physiological and pathological angiogenesis through canonical and noncanonical functions, making these proteins potential therapeutic targets for the development of new strategies aimed at a better control of angiogenesis.
Collapse
Affiliation(s)
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva, Medical Center, 1211 Geneva, Switzerland
| | - Florian Alonso
- Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, 33076 Bordeaux, France
| |
Collapse
|
8
|
Guan L, Yang Y, Liang JJ, Miao Y, Shang AY, Wang B, Wang YC, Ding M. ERGIC2 and ERGIC3 regulate the ER-to-Golgi transport of gap junction proteins in metazoans. Traffic 2022; 23:140-157. [PMID: 34994051 DOI: 10.1111/tra.12830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/16/2021] [Accepted: 01/04/2022] [Indexed: 11/26/2022]
Abstract
The extremely dynamic life cycle of gap junction connections requires highly efficient intracellular trafficking system especially designed for gap junction proteins, but the underlying mechanisms are largely unknown. Here, we identified that the COPII-associated proteins ERGIC2 (ER-Golgi intermediate compartment) and ERGIC3 are specifically required for the efficient intracellular transport of gap junction proteins in both C. elegans and mice. In the absence of Ergic2 or Ergic3, gap junction proteins accumulate in the ER and Golgi apparatus and the size of endogenous gap junction plaques is reduced. Knocking out the Ergic2 or Ergic3 in mice results in heart enlargement and cardiac malfunction accompanied by reduced number and size of connexin 43 (Cx43) gap junctions. Invertebrates' gap junction protein innexins share no sequence similarity with vertebrates' connexins. However, ERGIC2 and ERGIC3 could bind to gap junction proteins in both worms and mice. Characterization of the highly specialized roles of ERGIC2 and ERGIC3 in metazoans reveals how the early secretory pathway could be adapted to facilitate the efficient transport for gap junction proteins in vivo. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Liying Guan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yongzhi Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing Jing Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yue Miao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ang Yang Shang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Baolei Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying Chun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Sergienko NM, Donner DG, Delbridge LMD, McMullen JR, Weeks KL. Protein phosphatase 2A in the healthy and failing heart: New insights and therapeutic opportunities. Cell Signal 2021; 91:110213. [PMID: 34902541 DOI: 10.1016/j.cellsig.2021.110213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
Abstract
Protein phosphatases have emerged as critical regulators of phosphoprotein homeostasis in settings of health and disease. Protein phosphatase 2A (PP2A) encompasses a large subfamily of enzymes that remove phosphate groups from serine/threonine residues within phosphoproteins. The heterogeneity in PP2A structure, which arises from the grouping of different catalytic, scaffolding and regulatory subunit isoforms, creates distinct populations of catalytically active enzymes (i.e. holoenzymes) that localise to different parts of the cell. This structural complexity, combined with other regulatory mechanisms, such as interaction of PP2A heterotrimers with accessory proteins and post-translational modification of the catalytic and/or regulatory subunits, enables PP2A holoenzymes to target phosphoprotein substrates in a highly specific manner. In this review, we summarise the roles of PP2A in cardiac physiology and disease. PP2A modulates numerous processes that are vital for heart function including calcium handling, contractility, β-adrenergic signalling, metabolism and transcription. Dysregulation of PP2A has been observed in human cardiac disease settings, including heart failure and atrial fibrillation. Efforts are underway, particularly in the cancer field, to develop therapeutics targeting PP2A activity. The development of small molecule activators of PP2A (SMAPs) and other compounds that selectively target specific PP2A holoenzymes (e.g. PP2A/B56α and PP2A/B56ε) will improve understanding of the function of different PP2A species in the heart, and may lead to the development of therapeutics for normalising aberrant protein phosphorylation in settings of cardiac remodelling and dysfunction.
Collapse
Affiliation(s)
- Nicola M Sergienko
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Central Clinical School, Monash University, Clayton VIC 3800, Australia
| | - Daniel G Donner
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia
| | - Lea M D Delbridge
- Department of Anatomy and Physiology, The University of Melbourne, Parkville VIC 3010, Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia; Department of Physiology and Department of Medicine Alfred Hospital, Monash University, Clayton VIC 3800, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora VIC 3086, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton VIC 3800, Australia.
| | - Kate L Weeks
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Department of Anatomy and Physiology, The University of Melbourne, Parkville VIC 3010, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton VIC 3800, Australia.
| |
Collapse
|
10
|
Hirashima S, Ohta K, Togo A, Nakamura KI. 3D Mesoscopic Architecture of a Heterogeneous Cellular Network in the Cementum-Periodontal Ligament-Alveolar Bone Complex. Microscopy (Oxf) 2021; 71:22-33. [PMID: 34850074 DOI: 10.1093/jmicro/dfab051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/14/2022] Open
Abstract
Cell-to-cell communication orchestrates various cell and tissue functions. This communication enables cells to form cellular networks with each other through direct contact via intercellular junctions. Because these cellular networks are closely related to tissue and organ functions, elucidating the morphological characteristics of cellular networks could lead to the development of novel therapeutic approaches. The tooth, periodontal ligament (PDL), and alveolar bone form a complex via collagen fibres. Teeth depend on the co-ordinated activity of this complex to maintain their function, with cellular networks in each of its three components. Imaging methods for three-dimensional (3D) mesoscopic architectural analysis include focused ion beam/scanning electron microscopy (FIB/SEM), which is characterised by its ability to select observation points and acquire data from complex tissue after extensive block-face imaging, without the need to prepare numerous ultrathin sections. Previously, we employed FIB/SEM to analyse the 3D mesoscopic architecture of hard tissue including the PDL, which exists between the bone and tooth root. The imaging results showed that the cementum, PDL, and alveolar bone networks are in contact and form a heterogeneous cellular network. This cellular network may orchestrate mechanical loading-induced remodelling of the cementum-PDL-alveolar bone complex as the remodelling of each complex component is coordinated, as exemplified by tooth movement due to orthodontic treatment and tooth dislocation due to occlusal loss. In this review, we summarise and discuss the 3D mesoscopic architecture of cellular networks in the cementum, PDL, and alveolar bone as observed in our recent mesoscopic and morphological studies.
Collapse
Affiliation(s)
- Shingo Hirashima
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, 830-0011, Japan.,Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Keisuke Ohta
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, 830-0011, Japan.,Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Akinobu Togo
- Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Kei-Ichiro Nakamura
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, 830-0011, Japan.,Cognitive and Molecular Research Institute of Brain Diseases, Kurume University School of Medicine, Kurume, 830-0011, Japan
| |
Collapse
|
11
|
Jindal S, Chockalingam S, Ghosh SS, Packirisamy G. Connexin and gap junctions: perspectives from biology to nanotechnology based therapeutics. Transl Res 2021; 235:144-167. [PMID: 33582245 DOI: 10.1016/j.trsl.2021.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/10/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
The concept of gap junctions and their role in intercellular communication has been known for around 50 years. Considerable progress has been made in understanding the fundamental biology of connexins in mediating gap junction intercellular communication (GJIC) and their role in various cellular processes including pathological conditions. However, this understanding has not led to development of advanced therapeutics utilizing GJIC. Inadequacies in strategies that target specific connexin protein in the affected tissue, with minimal or no collateral damage, are the primary reason for the lack of development of efficient therapeutic models. Herein, nanotechnology has a role to play, giving plenty of scope to circumvent these problems and develop more efficient connexin based therapeutics. AsODN, antisense oligodeoxynucleotides; BMPs, bone morphogenetic proteins; BMSCs, bone marrow stem cells; BG, bioglass; Cx, Connexin; CxRE, connexin-responsive elements; CoCr NPs, cobalt-chromium nanoparticles; cGAMP, cyclic guanosine monophosphate-adenosine monophosphate; cAMP, cyclic adenosine monophosphate; ERK1/2, extracellular signal-regulated kinase 1/2; EMT, epithelial-mesenchymal transition; EPA, eicosapentaenoic acids; FGFR1, fibroblast growth factor receptor 1; FRAP, fluorescence recovery after photobleaching; 5-FU, 5-fluorouracil; GJ, gap junction; GJIC, gap junctional intercellular communication; HGPRTase, hypoxanthine phosphoribosyltransferase; HSV-TK, herpes virus thymidine kinase; HSA, human serum albumin; HA, hyaluronic acid; HDAC, histone deacetylase; IRI, ischemia reperfusion injury; IL-6, interleukin-6; IL-8, interleukin-8; IONPs, iron-oxide nanoparticles; JNK, c-Jun N-terminal kinase; LAMP, local activation of molecular fluorescent probe; MSCs, mesenchymal stem cells; MMP, matrix metalloproteinase; MI, myocardial infarction; MAPK, mitogen-activated protein kinase; NF-κB, nuclear factor kappa B; NO, nitric oxide; PKC, protein kinase C; QDs, quantum dots; ROI, region of interest; RGO, reduced graphene oxide; siRNA, small interfering RNA; TGF-β1, transforming growth factor-β1; TNF-α, tumor necrosis factor-α; UCN, upconversion nanoparticles; VEGF, vascular endothelial growth factor. In this review, we discuss briefly the role of connexins and gap junctions in various physiological and pathological processes, with special emphasis on cancer. We further discuss the application of nanotechnology and tissue engineering in developing treatments for various connexin based disorders.
Collapse
Affiliation(s)
- Shlok Jindal
- Nanobiotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - S Chockalingam
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| |
Collapse
|
12
|
Sinha G, Ferrer AI, Ayer S, El-Far MH, Pamarthi SH, Naaldijk Y, Barak P, Sandiford OA, Bibber BM, Yehia G, Greco SJ, Jiang JG, Bryan M, Kumar R, Ponzio NM, Etchegaray JP, Rameshwar P. Specific N-cadherin-dependent pathways drive human breast cancer dormancy in bone marrow. Life Sci Alliance 2021; 4:4/7/e202000969. [PMID: 34078741 PMCID: PMC8200294 DOI: 10.26508/lsa.202000969] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/19/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
The challenge for treating breast cancer (BC) is partly due to long-term dormancy driven by cancer stem cells (CSCs) capable of evading immune response and resist chemotherapy. BC cells show preference for the BM, resulting in poor prognosis. CSCs use connexin 43 (Cx43) to form gap junctional intercellular communication with BM niche cells, fibroblasts, and mesenchymal stem cells (MSCs). However, Cx43 is an unlikely target to reverse BC dormancy because of its role as a hematopoietic regulator. We found N-cadherin (CDH2) and its associated pathways as potential drug targets. CDH2, highly expressed in CSCs, interacts intracellularly with Cx43, colocalizes with Cx43 in BC cells within BM biopsies of patients, and is required for Cx43-mediated gap junctional intercellular communication with BM niche cells. Notably, CDH2 and anti-apoptotic pathways maintained BC dormancy. We thereby propose these pathways as potential pharmacological targets to prevent dormancy and chemosensitize resistant CSCs.
Collapse
Affiliation(s)
- Garima Sinha
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA.,Department of Medicine, Hematology/Oncology, Rutgers New Jersey Medicine School, Newark, NJ, USA
| | - Alejandra I Ferrer
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA.,Department of Medicine, Hematology/Oncology, Rutgers New Jersey Medicine School, Newark, NJ, USA
| | - Seda Ayer
- Department of Medicine, Hematology/Oncology, Rutgers New Jersey Medicine School, Newark, NJ, USA
| | - Markos H El-Far
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA.,Department of Medicine, Hematology/Oncology, Rutgers New Jersey Medicine School, Newark, NJ, USA
| | - Sri Harika Pamarthi
- Department of Medicine, Hematology/Oncology, Rutgers New Jersey Medicine School, Newark, NJ, USA
| | - Yahaira Naaldijk
- Department of Medicine, Hematology/Oncology, Rutgers New Jersey Medicine School, Newark, NJ, USA
| | - Pradeep Barak
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA.,ONI, Linacre House, Oxford, UK
| | - Oleta A Sandiford
- Department of Medicine, Hematology/Oncology, Rutgers New Jersey Medicine School, Newark, NJ, USA
| | - Bernadette M Bibber
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA.,Department of Medicine, Hematology/Oncology, Rutgers New Jersey Medicine School, Newark, NJ, USA
| | - Ghassan Yehia
- Genome Editing Shared Resource, Office of Research and Economic Development, Rutgers University, New Brunswick, NJ, USA
| | - Steven J Greco
- Department of Medicine, Hematology/Oncology, Rutgers New Jersey Medicine School, Newark, NJ, USA
| | - Jie-Gen Jiang
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA.,ONI, Linacre House, Oxford, UK
| | - Margarette Bryan
- Department of Medicine, Hematology/Oncology, Rutgers New Jersey Medicine School, Newark, NJ, USA
| | - Rakesh Kumar
- Department of Biotechnology, Rajiv Gandhi Centre for Biotechnology, Kerala, India
| | - Nicholas M Ponzio
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA.,ONI, Linacre House, Oxford, UK
| | | | - Pranela Rameshwar
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA .,Department of Medicine, Hematology/Oncology, Rutgers New Jersey Medicine School, Newark, NJ, USA
| |
Collapse
|
13
|
Davis J, Chouman A, Creech J, Monteiro da Rocha A, Ponce-Balbuena D, Jimenez Vazquez EN, Nichols R, Lozhkin A, Madamanchi NR, Campbell KF, Herron TJ. In vitro model of ischemic heart failure using human induced pluripotent stem cell-derived cardiomyocytes. JCI Insight 2021; 6:134368. [PMID: 33878037 PMCID: PMC8262347 DOI: 10.1172/jci.insight.134368] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/15/2021] [Indexed: 11/17/2022] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been used extensively to model inherited heart diseases, but hiPSC-CM models of ischemic heart disease are lacking. Here, our objective was to generate an hiPSC-CM model of ischemic heart disease. To this end, hiPSCs were differentiated into functional hiPSC-CMs and then purified using either a simulated ischemia media or by using magnetic antibody-based purification targeting the nonmyocyte population for depletion from the cell population. Flow cytometry analysis confirmed that each purification approach generated hiPSC-CM cultures that had more than 94% cTnT+ cells. After purification, hiPSC-CMs were replated as confluent syncytial monolayers for electrophysiological phenotype analysis and protein expression by Western blotting. The phenotype of metabolic stress-selected hiPSC-CM monolayers recapitulated many of the functional and structural hallmarks of ischemic CMs, including elevated diastolic calcium, diminished calcium transient amplitude, prolonged action potential duration, depolarized resting membrane potential, hypersensitivity to chemotherapy-induced cardiotoxicity, depolarized mitochondrial membrane potential, depressed SERCA2a expression, reduced maximal oxygen consumption rate, and abnormal response to β1-adrenergic receptor stimulation. These findings indicate that metabolic selection of hiPSC-CMs generated cell populations with phenotype similar to what is well known to occur in the setting of ischemic heart failure and thus provide a opportunity for study of human ischemic heart disease.
Collapse
Affiliation(s)
- Justin Davis
- Frankel Cardiovascular Regeneration Core Laboratory, Department of Internal Medicine, Division of Cardiovascular Medicine
| | - Ahmad Chouman
- Frankel Cardiovascular Regeneration Core Laboratory, Department of Internal Medicine, Division of Cardiovascular Medicine
| | - Jeffery Creech
- Frankel Cardiovascular Regeneration Core Laboratory, Department of Internal Medicine, Division of Cardiovascular Medicine
| | - Andre Monteiro da Rocha
- Frankel Cardiovascular Regeneration Core Laboratory, Department of Internal Medicine, Division of Cardiovascular Medicine.,Center for Arrhythmia Research.,Department of Internal Medicine, Division of Cardiovascular Medicine
| | | | | | | | - Andrey Lozhkin
- Department of Internal Medicine, Division of Cardiovascular Medicine
| | | | - Katherine F Campbell
- Frankel Cardiovascular Regeneration Core Laboratory, Department of Internal Medicine, Division of Cardiovascular Medicine.,Center for Arrhythmia Research
| | - Todd J Herron
- Frankel Cardiovascular Regeneration Core Laboratory, Department of Internal Medicine, Division of Cardiovascular Medicine.,Center for Arrhythmia Research.,Department of Internal Medicine, Division of Cardiovascular Medicine.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Connexins in the Heart: Regulation, Function and Involvement in Cardiac Disease. Int J Mol Sci 2021; 22:ijms22094413. [PMID: 33922534 PMCID: PMC8122935 DOI: 10.3390/ijms22094413] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Connexins are a family of transmembrane proteins that play a key role in cardiac physiology. Gap junctional channels put into contact the cytoplasms of connected cardiomyocytes, allowing the existence of electrical coupling. However, in addition to this fundamental role, connexins are also involved in cardiomyocyte death and survival. Thus, chemical coupling through gap junctions plays a key role in the spreading of injury between connected cells. Moreover, in addition to their involvement in cell-to-cell communication, mounting evidence indicates that connexins have additional gap junction-independent functions. Opening of unopposed hemichannels, located at the lateral surface of cardiomyocytes, may compromise cell homeostasis and may be involved in ischemia/reperfusion injury. In addition, connexins located at non-canonical cell structures, including mitochondria and the nucleus, have been demonstrated to be involved in cardioprotection and in regulation of cell growth and differentiation. In this review, we will provide, first, an overview on connexin biology, including their synthesis and degradation, their regulation and their interactions. Then, we will conduct an in-depth examination of the role of connexins in cardiac pathophysiology, including new findings regarding their involvement in myocardial ischemia/reperfusion injury, cardiac fibrosis, gene transcription or signaling regulation.
Collapse
|
15
|
Hirschhäuser C, Lissoni A, Görge PM, Lampe PD, Heger J, Schlüter KD, Leybaert L, Schulz R, Boengler K. Connexin 43 phosphorylation by casein kinase 1 is essential for the cardioprotection by ischemic preconditioning. Basic Res Cardiol 2021; 116:21. [PMID: 33751227 PMCID: PMC7985055 DOI: 10.1007/s00395-021-00861-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
Myocardial connexin 43 (Cx43) forms gap junctions and hemichannels, and is also present within subsarcolemmal mitochondria. The protein is phosphorylated by several kinases including mitogen-activated protein kinase (MAPK), protein kinase C (PKC), and casein kinase 1 (CK1). A reduction in Cx43 content abrogates myocardial infarct size reduction by ischemic preconditioning (IPC). The present study characterizes the contribution of Cx43 phosphorylation towards mitochondrial function, hemichannel activity, and the cardioprotection by IPC in wild-type (WT) mice and in mice in which Cx43-phosphorylation sites targeted by above kinases are mutated to non-phosphorylatable residues (Cx43MAPKmut, Cx43PKCmut, and Cx43CK1mut mice). The amount of Cx43 in the left ventricle and in mitochondria was reduced in all mutant strains compared to WT mice and Cx43 phosphorylation was altered at residues not directly targeted by the mutations. Whereas complex 1 respiration was reduced in all strains, complex 2 respiration was decreased in Cx43CK1mut mice only. In Cx43 epitope-mutated mice, formation of reactive oxygen species and opening of the mitochondrial permeability transition pore were not affected. The hemichannel open probability was reduced in Cx43PKCmut and Cx43CK1mut but not in Cx43MAPKmut cardiomyocytes. Infarct size in isolated saline-perfused hearts after ischemia/reperfusion (45 min/120 min) was comparable between genotypes and was significantly reduced by IPC (3 × 3 min ischemia/5 min reperfusion) in WT, Cx43MAPKmut, and Cx43PKCmut, but not in Cx43CK1mut mice, an effect independent from the amount of Cx43 and the probability of hemichannel opening. Taken together, our study shows that alterations of Cx43 phosphorylation affect specific cellular functions and highlights the importance of Cx43 phosphorylation by CK1 for IPC's cardioprotection.
Collapse
Affiliation(s)
- Christine Hirschhäuser
- Institut für Physiologie, Justus-Liebig Universität Gießen, Aulweg 129, 35392, Giessen, Germany
| | - Alessio Lissoni
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | | | - Paul D Lampe
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jacqueline Heger
- Institut für Physiologie, Justus-Liebig Universität Gießen, Aulweg 129, 35392, Giessen, Germany
| | - Klaus-Dieter Schlüter
- Institut für Physiologie, Justus-Liebig Universität Gießen, Aulweg 129, 35392, Giessen, Germany
| | - Luc Leybaert
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Rainer Schulz
- Institut für Physiologie, Justus-Liebig Universität Gießen, Aulweg 129, 35392, Giessen, Germany
| | - Kerstin Boengler
- Institut für Physiologie, Justus-Liebig Universität Gießen, Aulweg 129, 35392, Giessen, Germany.
| |
Collapse
|
16
|
Martins-Marques T, Ribeiro-Rodrigues T, de Jager SC, Zuzarte M, Ferreira C, Cruz P, Reis L, Baptista R, Gonçalves L, Sluijter JP, Girao H. Myocardial infarction affects Cx43 content of extracellular vesicles secreted by cardiomyocytes. Life Sci Alliance 2020; 3:e202000821. [PMID: 33097557 PMCID: PMC7652393 DOI: 10.26508/lsa.202000821] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemic heart disease has been associated with an impairment on intercellular communication mediated by both gap junctions and extracellular vesicles. We have previously shown that connexin 43 (Cx43), the main ventricular gap junction protein, assembles into channels at the extracellular vesicle surface, mediating the release of vesicle content into target cells. Here, using a comprehensive strategy that included cell-based approaches, animal models and human patients, we demonstrate that myocardial ischemia impairs the secretion of Cx43 into circulating, intracardiac and cardiomyocyte-derived vesicles. In addition, we show that ubiquitin signals Cx43 release in basal conditions but appears to be dispensable during ischemia, suggesting an interplay between ischemia-induced Cx43 degradation and secretion. Overall, this study constitutes a step forward for the characterization of the signals and molecular players underlying vesicle protein sorting, with strong implications on long-range intercellular communication, paving the way towards the development of innovative diagnostic and therapeutic strategies for cardiovascular disorders.
Collapse
Affiliation(s)
- Tania Martins-Marques
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Teresa Ribeiro-Rodrigues
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Saskia C de Jager
- Laboratory of Experimental Cardiology, University Medical Center Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Monica Zuzarte
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Cátia Ferreira
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Pedro Cruz
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Liliana Reis
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Rui Baptista
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Cardiology Department, Centro Hospitalar Entre Douro e Vouga, Santa Maria da Feira, Portugal
| | - Lino Gonçalves
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Joost Pg Sluijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Henrique Girao
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| |
Collapse
|
17
|
Au A, Shao Q, White KK, Lucaciu SA, Esseltine JL, Barr K, Laird DW. Comparative Analysis of Cx31 and Cx43 in Differentiation-Competent Rodent Keratinocytes. Biomolecules 2020; 10:biom10101443. [PMID: 33066499 PMCID: PMC7602205 DOI: 10.3390/biom10101443] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/30/2020] [Accepted: 10/08/2020] [Indexed: 12/25/2022] Open
Abstract
When considering connexin expression and regulation, the epidermis of the skin is one of the most complex tissues found in mammals even though it largely contains a single cell type, the keratinocyte. In the rodent epidermis, up to 9 connexin family members have been detected at the mRNA level. Many of these connexins are temporally and spatially regulated in coordination with keratinocyte progenitor cell differentiation and migration from the stratum basale to form the stratum spinosum and stratum granulosum layers before finally forming the stratum corneum. Cx43 is the principal connexin found in basal keratinocytes and to a lesser degree found in keratinocytes that have begun to differentiate where Cx26, Cx30 and Cx31 become prevalent. Here we show that the CRISPR-Cas9 ablation of Cx43 reduces overall gap junction coupling in monolayer cultures of rat epidermal keratinocytes (REKs) and dysregulates the differentiation of REKs when grown in organotypic cultures. Natively found in differentiated keratinocytes, Cx31 readily assembles into gap junctions when expressed in REKs where it can extensively co-assemble into the same gap junctions with co-expressed Cx30. Time-lapse imaging indicated that many Cx31 gap junctions are mobile within the plasma membrane undergoing both fusion and fission events. Finally, the persistence of pre-existing Cx31 gap junctions in the presence of the protein trafficking blocker, brefeldin A, is longer than that found for Cx43 gap junctions indicating that it has a distinctly different life expectancy in REKs. Collectively, this study highlights the importance of Cx43 in rodent keratinocyte differentiation and suggests that Cx31 acquires life-cycle properties that are distinct from Cx43.
Collapse
Affiliation(s)
- Akina Au
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON N6A 5C1, Canada; (A.A.); (S.A.L.)
| | - Qing Shao
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada; (Q.S.); (K.K.W.); (K.B.)
| | - Kyra K. White
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada; (Q.S.); (K.K.W.); (K.B.)
| | - Sergiu A. Lucaciu
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON N6A 5C1, Canada; (A.A.); (S.A.L.)
| | - Jessica L. Esseltine
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada;
| | - Kevin Barr
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada; (Q.S.); (K.K.W.); (K.B.)
| | - Dale W. Laird
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON N6A 5C1, Canada; (A.A.); (S.A.L.)
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada; (Q.S.); (K.K.W.); (K.B.)
- Correspondence: ; Tel.: +1-519-661-2111 (ext. 86827)
| |
Collapse
|
18
|
Hirashima S, Ohta K, Kanazawa T, Togo A, Tsuneyoshi R, Kusukawa J, Nakamura KI. Cellular network across cementum and periodontal ligament elucidated by FIB/SEM tomography. ACTA ACUST UNITED AC 2020; 69:53-58. [PMID: 32047915 DOI: 10.1093/jmicro/dfz117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/25/2019] [Accepted: 12/26/2019] [Indexed: 11/12/2022]
Abstract
Cementocytes in cementum form a lacuna-canalicular network. However, the 3D ultrastructure and range of the cementocyte network are unclear. Here, the 3D ultrastructure of the cementocyte network at the interface between cementum and periodontal ligament (PDL) was investigated on the mesoscale using FIB/SEM tomography. The results revealed a cellular network of cementocytes and PDL cells. A previous histomorphological study revealed the osteocyte-osteoblast-PDL cellular network. We extended this knowledge and revealed the cementum-PDL-bone cellular network, which may orchestrate the remodeling and modification of periodontal tissue, using a suitable method for imaging of complex tissue.
Collapse
Affiliation(s)
- Shingo Hirashima
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan.,Dental and Oral Medical Center, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Keisuke Ohta
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan.,Advanced Imaging Research Center, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Tomonoshin Kanazawa
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Akinobu Togo
- Advanced Imaging Research Center, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Risa Tsuneyoshi
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Jingo Kusukawa
- Dental and Oral Medical Center, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Kei-Ichiro Nakamura
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| |
Collapse
|
19
|
Rusiecka OM, Montgomery J, Morel S, Batista-Almeida D, Van Campenhout R, Vinken M, Girao H, Kwak BR. Canonical and Non-Canonical Roles of Connexin43 in Cardioprotection. Biomolecules 2020; 10:biom10091225. [PMID: 32842488 PMCID: PMC7563275 DOI: 10.3390/biom10091225] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022] Open
Abstract
Since the mid-20th century, ischemic heart disease has been the world’s leading cause of death. Developing effective clinical cardioprotection strategies would make a significant impact in improving both quality of life and longevity in the worldwide population. Both ex vivo and in vivo animal models of cardiac ischemia/reperfusion (I/R) injury are robustly used in research. Connexin43 (Cx43), the predominant gap junction channel-forming protein in cardiomyocytes, has emerged as a cardioprotective target. Cx43 posttranslational modifications as well as cellular distribution are altered during cardiac reperfusion injury, inducing phosphorylation states and localization detrimental to maintaining intercellular communication and cardiac conduction. Pre- (before ischemia) and post- (after ischemia but before reperfusion) conditioning can abrogate this injury process, preserving Cx43 and reducing cell death. Pre-/post-conditioning has been shown to largely rely on the presence of Cx43, including mitochondrial Cx43, which is implicated to play a major role in pre-conditioning. Posttranslational modifications of Cx43 after injury alter the protein interactome, inducing negative protein cascades and altering protein trafficking, which then causes further damage post-I/R injury. Recently, several peptides based on the Cx43 sequence have been found to successfully diminish cardiac injury in pre-clinical studies.
Collapse
Affiliation(s)
- Olga M. Rusiecka
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; (O.M.R.); (J.M.); (S.M.)
| | - Jade Montgomery
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; (O.M.R.); (J.M.); (S.M.)
| | - Sandrine Morel
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; (O.M.R.); (J.M.); (S.M.)
| | - Daniela Batista-Almeida
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal; (D.B.-A.); (H.G.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Raf Van Campenhout
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (R.V.C.); (M.V.)
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (R.V.C.); (M.V.)
| | - Henrique Girao
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal; (D.B.-A.); (H.G.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Brenda R. Kwak
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; (O.M.R.); (J.M.); (S.M.)
- Correspondence:
| |
Collapse
|
20
|
Abstract
Of the 21 members of the connexin family, 4 (Cx37, Cx40, Cx43, and Cx45) are expressed in the endothelium and/or smooth muscle of intact blood vessels to a variable and dynamically regulated degree. Full-length connexins oligomerize and form channel structures connecting the cytosol of adjacent cells (gap junctions) or the cytosol with the extracellular space (hemichannels). The different connexins vary mainly with regard to length and sequence of their cytosolic COOH-terminal tails. These COOH-terminal parts, which in the case of Cx43 are also translated as independent short isoforms, are involved in various cellular signaling cascades and regulate cell functions. This review focuses on channel-dependent and -independent effects of connexins in vascular cells. Channels play an essential role in coordinating and synchronizing endothelial and smooth muscle activity and in their interplay, in the control of vasomotor actions of blood vessels including endothelial cell reactivity to agonist stimulation, nitric oxide-dependent dilation, and endothelial-derived hyperpolarizing factor-type responses. Further channel-dependent and -independent roles of connexins in blood vessel function range from basic processes of vascular remodeling and angiogenesis to vascular permeability and interactions with leukocytes with the vessel wall. Together, these connexin functions constitute an often underestimated basis for the enormous plasticity of vascular morphology and function enabling the required dynamic adaptation of the vascular system to varying tissue demands.
Collapse
Affiliation(s)
- Ulrich Pohl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Planegg-Martinsried, Germany; Biomedical Centre, Cardiovascular Physiology, LMU Munich, Planegg-Martinsried, Germany; German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
21
|
Hausenloy DJ, Schulz R, Girao H, Kwak BR, De Stefani D, Rizzuto R, Bernardi P, Di Lisa F. Mitochondrial ion channels as targets for cardioprotection. J Cell Mol Med 2020; 24:7102-7114. [PMID: 32490600 PMCID: PMC7339171 DOI: 10.1111/jcmm.15341] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/31/2020] [Accepted: 04/12/2020] [Indexed: 12/14/2022] Open
Abstract
Acute myocardial infarction (AMI) and the heart failure (HF) that often result remain the leading causes of death and disability worldwide. As such, new therapeutic targets need to be discovered to protect the myocardium against acute ischaemia/reperfusion (I/R) injury in order to reduce myocardial infarct (MI) size, preserve left ventricular function and prevent the onset of HF. Mitochondrial dysfunction during acute I/R injury is a critical determinant of cell death following AMI, and therefore, ion channels in the inner mitochondrial membrane, which are known to influence cell death and survival, provide potential therapeutic targets for cardioprotection. In this article, we review the role of mitochondrial ion channels, which are known to modulate susceptibility to acute myocardial I/R injury, and we explore their potential roles as therapeutic targets for reducing MI size and preventing HF following AMI.
Collapse
Affiliation(s)
- Derek J. Hausenloy
- Cardiovascular & Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- National Heart Research Institute SingaporeNational Heart CentreSingaporeSingapore
- Yong Loo Lin School of MedicineNational University SingaporeSingaporeSingapore
- The Hatter Cardiovascular InstituteUniversity College LondonLondonUK
- Cardiovascular Research CenterCollege of Medical and Health SciencesAsia UniversityTaichung CityTaiwan
| | - Rainer Schulz
- Institute of PhysiologyJustus‐Liebig University GiessenGiessenGermany
| | - Henrique Girao
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of MedicineUniversity of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Clinical Academic Centre of CoimbraCACCCoimbraPortugal
| | - Brenda R. Kwak
- Department of Pathology and ImmunologyUniversity of GenevaGenevaSwitzerland
| | - Diego De Stefani
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Rosario Rizzuto
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Paolo Bernardi
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- CNR Neuroscience InstitutePadovaItaly
| | - Fabio Di Lisa
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- CNR Neuroscience InstitutePadovaItaly
| |
Collapse
|
22
|
Jung SE, Choi JW, Moon H, Oh S, Lim S, Lee S, Kim SW, Hwang KC. Small G protein signaling modulator 3 (SGSM3) knockdown attenuates apoptosis and cardiogenic differentiation in rat mesenchymal stem cells exposed to hypoxia. PLoS One 2020; 15:e0231272. [PMID: 32271805 PMCID: PMC7145021 DOI: 10.1371/journal.pone.0231272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022] Open
Abstract
Connexin 43 (Cx43) may be important in cell death and survival due to cell-to-cell communication-independent mechanisms. In our previous study, we found that small G protein signaling modulator 3 (SGSM3), a partner of Cx43, contributes to myocardial infarction (MI) in rat hearts. Based on these previous results, we hypothesized that SGSM3 could also play a role in bone marrow-derived rat mesenchymal stem cells (MSCs), which differentiate into cardiomyocytes and/or cells with comparable phenotypes under low oxygen conditions. Cx43 and Cx43-related factor expression profiles were compared between normoxic and hypoxic conditions according to exposure time, and Sgsm3 gene knockdown (KD) using siRNA transfection was performed to validate the interaction between SGSM3 and Cx43 and to determine the roles of SGSM3 in rat MSCs. We identified that SGSM3 interacts with Cx43 in MSCs under different oxygen conditions and that Sgsm3 knockdown inhibits apoptosis and cardiomyocyte differentiation under hypoxic stress. SGSM3/Sgsm3 probably has an effect on MSC survival and thus therapeutic potential in diseased hearts, but SGSM3 may worsen the development of MSC-based therapeutic approaches in regenerative medicine. This study was performed to help us better understand the mechanisms involved in the therapeutic efficacy of MSCs, as well as provide data that could be used pharmacologically.
Collapse
Affiliation(s)
- Seung Eun Jung
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea
| | - Jung-Won Choi
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea
| | - Hanbyeol Moon
- Department of Integrated Omics for Biomedical Sciences, Graduate School, Yonsei University, Seoul, Republic of Korea
| | - Sena Oh
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea
| | - Soyeon Lim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea
- International St. Mary’s Hospital, Catholic Kwandong University, Incheon Metropolitan City, Republic of Korea
| | - Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea
- International St. Mary’s Hospital, Catholic Kwandong University, Incheon Metropolitan City, Republic of Korea
| | - Sang Woo Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea
- International St. Mary’s Hospital, Catholic Kwandong University, Incheon Metropolitan City, Republic of Korea
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea
- International St. Mary’s Hospital, Catholic Kwandong University, Incheon Metropolitan City, Republic of Korea
| |
Collapse
|
23
|
Liu H, Bolonduro OA, Hu N, Ju J, Rao AA, Duffy BM, Huang Z, Black LD, Timko BP. Heart-on-a-Chip Model with Integrated Extra- and Intracellular Bioelectronics for Monitoring Cardiac Electrophysiology under Acute Hypoxia. NANO LETTERS 2020; 20:2585-2593. [PMID: 32092276 DOI: 10.1021/acs.nanolett.0c00076] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We demonstrated a bioelectronic heart-on-a-chip model for studying the effects of acute hypoxia on cardiac function. A microfluidic channel enabled rapid modulation of medium oxygenation, which mimicked the regimes induced by a temporary coronary occlusion and reversibly activated hypoxia-related transduction pathways in HL-1 cardiac model cells. Extracellular bioelectronics provided continuous readouts demonstrating that hypoxic cells experienced an initial period of tachycardia followed by a reduction in beat rate and eventually arrhythmia. Intracellular bioelectronics consisting of Pt nanopillars temporarily entered the cytosol following electroporation, yielding action potential (AP)-like readouts. We found that APs narrowed during hypoxia, consistent with proposed mechanisms by which oxygen deficits activate ATP-dependent K+ channels that promote membrane repolarization. Significantly, both extra- and intracellular devices could be multiplexed, enabling mapping capabilities unachievable by other electrophysiological tools. Our platform represents a significant advance toward understanding electrophysiological responses to hypoxia and could be applicable to disease modeling and drug development.
Collapse
Affiliation(s)
- Haitao Liu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
- School of Materials Science and Technology, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, China University of Geosciences, Beijing 100083, PR China
| | - Olurotimi A Bolonduro
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Ning Hu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jie Ju
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Akshita A Rao
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Breanna M Duffy
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Zhaohui Huang
- School of Materials Science and Technology, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, China University of Geosciences, Beijing 100083, PR China
| | - Lauren D Black
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Department of Cell, Molecular & Developmental Biology, School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts 02111, United States
| | - Brian P Timko
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
24
|
Loss of Cx43 in Murine Sertoli Cells Leads to Altered Prepubertal Sertoli Cell Maturation and Impairment of the Mitosis-Meiosis Switch. Cells 2020; 9:cells9030676. [PMID: 32164318 PMCID: PMC7140672 DOI: 10.3390/cells9030676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Male factor infertility is a problem in today’s society but many underlying causes are still unknown. The generation of a conditional Sertoli cell (SC)-specific connexin 43 (Cx43) knockout mouse line (SCCx43KO) has provided a translational model. Expression of the gap junction protein Cx43 between adjacent SCs as well as between SCs and germ cells (GCs) is known to be essential for the initiation and maintenance of spermatogenesis in different species and men. Adult SCCx43KO males show altered spermatogenesis and are infertile. Thus, the present study aims to identify molecular mechanisms leading to testicular alterations in prepubertal SCCx43KO mice. Transcriptome analysis of 8-, 10- and 12-day-old mice was performed by next-generation sequencing (NGS). Additionally, candidate genes were examined by qRT-PCR and immunohistochemistry. NGS revealed many significantly differentially expressed genes in the SCCx43KO mice. For example, GC-specific genes were mostly downregulated and found to be involved in meiosis and spermatogonial differentiation (e.g., Dmrtb1, Sohlh1). In contrast, SC-specific genes implicated in SC maturation and proliferation were mostly upregulated (e.g., Amh, Fshr). In conclusion, Cx43 in SCs appears to be required for normal progression of the first wave of spermatogenesis, especially for the mitosis-meiosis switch, and also for the regulation of prepubertal SC maturation.
Collapse
|
25
|
Martins-Marques T, Catarino S, Gonçalves A, Miranda-Silva D, Gonçalves L, Antunes P, Coutinho G, Leite Moreira A, Falcão Pires I, Girão H. EHD1 Modulates Cx43 Gap Junction Remodeling Associated With Cardiac Diseases. Circ Res 2020; 126:e97-e113. [PMID: 32138615 DOI: 10.1161/circresaha.119.316502] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
RATIONALE Efficient communication between heart cells is vital to ensure the anisotropic propagation of electrical impulses, a function mainly accomplished by gap junctions (GJ) composed of Cx43 (connexin 43). Although the molecular mechanisms remain unclear, altered distribution and function of gap junctions have been associated with acute myocardial infarction and heart failure. OBJECTIVE A recent proteomic study from our laboratory identified EHD1 (Eps15 [endocytic adaptor epidermal growth factor receptor substrate 15] homology domain-containing protein 1) as a novel interactor of Cx43 in the heart. METHODS AND RESULTS In the present work, we demonstrate that knockdown of EHD1 impaired the internalization of Cx43, preserving gap junction-intercellular coupling in cardiomyocytes. Interaction of Cx43 with EHD1 was mediated by Eps15 and promoted by phosphorylation and ubiquitination of Cx43. Overexpression of wild-type EHD1 accelerated internalization of Cx43 and exacerbated ischemia-induced lateralization of Cx43 in isolated adult cardiomyocytes. In addition, we show that EHDs associate with Cx43 in human and murine failing hearts. CONCLUSIONS Overall, we identified EHDs as novel regulators of endocytic trafficking of Cx43, participating in the pathological remodeling of gap junctions, paving the way to innovative therapeutic strategies aiming at preserving intercellular communication in the heart.
Collapse
Affiliation(s)
- Tania Martins-Marques
- From the Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine (T.M.-M., S.C., L.C., P.A., G.C., H.G.), University of Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (T.M.-M., S.C., H.G.), University of Coimbra, Portugal.,Clinical Academic Centre of Coimbra, CACC, Portugal (T.M-M., S.C., L.G., P.A., G.C., H.G.)
| | - Steve Catarino
- From the Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine (T.M.-M., S.C., L.C., P.A., G.C., H.G.), University of Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (T.M.-M., S.C., H.G.), University of Coimbra, Portugal.,Clinical Academic Centre of Coimbra, CACC, Portugal (T.M-M., S.C., L.G., P.A., G.C., H.G.)
| | - Alexandre Gonçalves
- Department of Surgery and Physiology & Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Portugal (A.G., D.M.S., A.L.M., I.F.P.)
| | - Daniela Miranda-Silva
- Department of Surgery and Physiology & Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Portugal (A.G., D.M.S., A.L.M., I.F.P.)
| | - Lino Gonçalves
- Clinical Academic Centre of Coimbra, CACC, Portugal (T.M-M., S.C., L.G., P.A., G.C., H.G.)
| | - Pedro Antunes
- From the Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine (T.M.-M., S.C., L.C., P.A., G.C., H.G.), University of Coimbra, Portugal.,Clinical Academic Centre of Coimbra, CACC, Portugal (T.M-M., S.C., L.G., P.A., G.C., H.G.).,Cardiothoracic Surgery (P.A., G.C.), Coimbra Hospital and University Centre, Portugal
| | - Gonçalo Coutinho
- From the Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine (T.M.-M., S.C., L.C., P.A., G.C., H.G.), University of Coimbra, Portugal.,Clinical Academic Centre of Coimbra, CACC, Portugal (T.M-M., S.C., L.G., P.A., G.C., H.G.).,Cardiothoracic Surgery (P.A., G.C.), Coimbra Hospital and University Centre, Portugal
| | - Adelino Leite Moreira
- Department of Surgery and Physiology & Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Portugal (A.G., D.M.S., A.L.M., I.F.P.)
| | - Inês Falcão Pires
- Department of Surgery and Physiology & Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Portugal (A.G., D.M.S., A.L.M., I.F.P.)
| | - Henrique Girão
- From the Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine (T.M.-M., S.C., L.C., P.A., G.C., H.G.), University of Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (T.M.-M., S.C., H.G.), University of Coimbra, Portugal.,Clinical Academic Centre of Coimbra, CACC, Portugal (T.M-M., S.C., L.G., P.A., G.C., H.G.)
| |
Collapse
|
26
|
Batista-Almeida D, Ribeiro-Rodrigues T, Martins-Marques T, Cortes L, Antunes MJ, Antunes PE, Gonçalves L, Brou C, Aasen T, Zurzolo C, Girão H. Ischaemia impacts TNT-mediated communication between cardiac cells. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.crcbio.2020.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Lissoni A, Hulpiau P, Martins-Marques T, Wang N, Bultynck G, Schulz R, Witschas K, Girao H, De Smet M, Leybaert L. RyR2 regulates Cx43 hemichannel intracellular Ca2+-dependent activation in cardiomyocytes. Cardiovasc Res 2019; 117:123-136. [PMID: 31841141 DOI: 10.1093/cvr/cvz340] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/14/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022] Open
Abstract
AIMS Connexin-based gap junctions are crucial for electrical communication in the heart; they are each composed of two docked hemichannels (HCs), supplied as unpaired channels via the sarcolemma. When open, an unpaired HC forms a large pore, high-conductance and Ca2+-permeable membrane shunt pathway that may disturb cardiomyocyte function. HCs composed of connexin 43 (Cx43), a major cardiac connexin, can be opened by electrical stimulation but only by very positive membrane potentials. Here, we investigated the activation of Cx43 HCs in murine ventricular cardiomyocytes voltage-clamped at -70 mV. METHODS AND RESULTS Using whole-cell patch-clamp, co-immunoprecipitation, western blot analysis, immunocytochemistry, proximity ligation assays, and protein docking studies, we found that stimulation of ryanodine receptors (RyRs) triggered unitary currents with a single-channel conductance of ∼220 pS, which were strongly reduced by Cx43 knockdown. Recordings under Ca2+-clamp conditions showed that both RyR activation and intracellular Ca2+ elevation were necessary for HC opening. Proximity ligation studies indicated close Cx43-RyR2 apposition (<40 nm), and both proteins co-immunoprecipitated indicating physical interaction. Molecular modelling suggested a strongly conserved RyR-mimicking peptide sequence (RyRHCIp), which inhibited RyR/Ca2+ HC activation but not voltage-triggered activation. The peptide also slowed down action potential repolarization. Interestingly, alterations in the concerned RyR sequence are known to be associated with primary familial hypertrophic cardiomyopathy. CONCLUSION Our results demonstrate that Cx43 HCs are intimately linked to RyRs, allowing them to open at negative diastolic membrane potential in response to RyR activation.
Collapse
Affiliation(s)
- Alessio Lissoni
- Department of Basic and Applied Medical Sciences-Physiology Group, Ghent University, Ghent 9000, Belgium
| | - Paco Hulpiau
- Department of Bio-Medical Sciences, HOWEST University of Applied Sciences (Hogeschool West-Vlaanderen), Bruges, Belgium
| | - Tânia Martins-Marques
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Nan Wang
- Department of Basic and Applied Medical Sciences-Physiology Group, Ghent University, Ghent 9000, Belgium
| | - Geert Bultynck
- Department of Molecular Cell Biology, Laboratory of Molecular and Cellular Signaling, KU Leuven, Leuven, Belgium
| | - Rainer Schulz
- Institut für Physiologie, JustusLiebig Universität Giessen, Giessen, Germany
| | - Katja Witschas
- Department of Basic and Applied Medical Sciences-Physiology Group, Ghent University, Ghent 9000, Belgium
| | - Henrique Girao
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Maarten De Smet
- Department of Basic and Applied Medical Sciences-Physiology Group, Ghent University, Ghent 9000, Belgium
| | - Luc Leybaert
- Department of Basic and Applied Medical Sciences-Physiology Group, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
28
|
Evidence of decreased gap junction coupling between astrocytes and oligodendrocytes in the anterior cingulate cortex of depressed suicides. Neuropsychopharmacology 2019; 44:2099-2111. [PMID: 31374562 PMCID: PMC6897926 DOI: 10.1038/s41386-019-0471-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022]
Abstract
Glial dysfunction is a major pathophysiological feature of mood disorders. While altered astrocyte (AS) and oligodendrocyte-lineage (OL) functions have been associated with depression, the crosstalk between these glial cell types has never been assessed in that context. AS are potent regulators of myelination, in part through gap junction (GJ) channels formed by the heterotypic coupling of AS-specific (Cx30 and Cx43) and OL-specific (Cx32 and Cx47) connexins. This study therefore aimed at addressing the integrity of AS/OL coupling in the anterior cingulate cortex (ACC) of depressed suicides. Using immunofluorescence and confocal imaging, we characterized the distribution of Cx30 and mapped its expression onto OL somas, myelinated axons, and brain vasculature in postmortem brain samples from depressed suicides (N = 48) and matched controls (N = 23). Differential gene expression of key components of the GJ nexus was also screened through RNA-sequencing previously generated by our group, and validated by quantitative real-time PCR. We show that Cx30 expression localized onto OL cells and myelinated fibers is decreased in deep cortical layers of the ACC in male-depressed suicides. This effect was associated with decreased expression of OL-specific connexins, as well as the downregulation of major connexin-interacting proteins essential for the scaffolding, trafficking, and function of GJs. These results provide a first evidence of impaired AS/OL GJ-mediated communication in the ACC of individuals with mood disorders. These changes in glial coupling are likely to have significant impact on brain function, and may contribute to the altered OL function previously reported in this brain region.
Collapse
|
29
|
Shahinian JH, Rog-Zielinska EA, Schlimpert M, Mayer B, Tholen S, Kammerer B, Biniossek ML, Beyersdorf F, Schilling O, Siepe M. Impact of left ventricular assist device therapy on the cardiac proteome and metabolome composition in ischemic cardiomyopathy. Artif Organs 2019; 44:257-267. [PMID: 31494943 DOI: 10.1111/aor.13566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/26/2019] [Accepted: 08/28/2019] [Indexed: 12/14/2022]
Abstract
The changes in the myocardial proteome and metabolome associated with left ventricular assist device (LVAD) therapy in patients with ischemic cardiomyopathy (ICM) are poorly characterized. We investigated the impact of mechanical unloading following LVAD therapy on the myocardial proteome and metabolome. Matched samples of 5 patients' myocardial tissue, harvested at the time of LVAD implant ("pre-LVAD") or heart transplant ("post-LVAD"), were studied by quantitative proteomics and metabolomics as well as being probed for T-tubule structure and connexin-43 distribution. Moreover, pre-LVAD proteome profiles of ICM context were bioinformatically compared to pre-LVAD proteome profiles of dilated cardiac myopathy (DCM). More than 2120 proteins were reliably identified and quantified in paired patient samples. LVAD therapy led to proteomic remodeling, including reduced levels of α-1-antichymotrypsin together with an overall decrease of immune response proteins and an increase of proteins involved in membrane biology. Metabolomics highlighted increased glucose and glucose-6-phosphate levels in the left ventricle upon LVAD therapy. Wheat germ agglutinin staining demonstrated improved T-tubule structure. Connexin-43 displayed a trend for more pronounced intercalated disc localization. In comparing pre-LVAD proteome profiles of ICM context with pre-LVAD proteome profiles of dilated cardiac myopathy (DCM), we noticed an overrepresentation in ICM of proteins associated with humoral immune response. Our findings underline an impact of LVAD therapy on left ventricular biology in ICM. The proteomic, metabolomic, and structural alterations described here are typically associated with cardiac recovery. On the molecular level, our findings indicate the possibility of cardiac remodeling under LVAD therapy in ICM.
Collapse
Affiliation(s)
- Jasmin Hasmik Shahinian
- Department of Cardiovascular Surgery, University Heart Center Freiburg • Bad Krozingen, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eva A Rog-Zielinska
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg • Bad Krozingen, Freiburg, Germany
| | - Manuel Schlimpert
- Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Bettina Mayer
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Stefan Tholen
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Bernd Kammerer
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany.,Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University, Freiburg, Germany.,BIOSS Center for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Martin L Biniossek
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Friedhelm Beyersdorf
- Department of Cardiovascular Surgery, University Heart Center Freiburg • Bad Krozingen, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Schilling
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BIOSS Center for Biological Signaling Studies, University of Freiburg, Freiburg, Germany.,Institute of Surgical Pathology, Medical Center, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Siepe
- Department of Cardiovascular Surgery, University Heart Center Freiburg • Bad Krozingen, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
30
|
Three-dimensional ultrastructural imaging and quantitative analysis of the periodontal ligament. Anat Sci Int 2019; 95:1-11. [DOI: 10.1007/s12565-019-00502-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/01/2019] [Indexed: 12/16/2022]
|
31
|
Martins-Marques T, Ribeiro-Rodrigues T, Batista-Almeida D, Aasen T, Kwak BR, Girao H. Biological Functions of Connexin43 Beyond Intercellular Communication. Trends Cell Biol 2019; 29:835-847. [PMID: 31358412 DOI: 10.1016/j.tcb.2019.07.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022]
Abstract
Connexin43 (Cx43) is commonly associated with direct cell-cell communication through gap junctions (GJs). However, recent groundbreaking studies have challenged this dogma, implicating Cx43 in other biological processes, such as transcription, metabolism, autophagy, and ion channel trafficking. How Cx43 participates in these processes remains largely unknown, although its high turnover rate, capacity to bind to myriad proteins, and the discovery of truncated isoforms of Cx43, ascribe to this protein unanticipated roles in chief processes that require fine-tuned regulation. Accordingly, Cx43 can be regarded as a central integrative hub to which diverse cues converge to be processed in a concerted manner. In this review, we examine the noncanonical roles of Cx43 and discuss the implications of these functions in human diseases and future therapeutic strategies.
Collapse
Affiliation(s)
- Tania Martins-Marques
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Portugal
| | - Teresa Ribeiro-Rodrigues
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Portugal
| | - Daniela Batista-Almeida
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Portugal
| | - Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, Barcelona, Spain
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Henrique Girao
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Portugal.
| |
Collapse
|
32
|
Lu Q, Li W, Li Z, Chen Z, Fu W, Jiang Q, Ding S. Effect of autophagy on cardiomyocyte membrane Cx43 acute remodeling in rats with ischemia-reperfusion. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2639-2645. [PMID: 31934092 PMCID: PMC6949570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND To investigate the impact of autophagy on cardiomyocyte membrane connexin 43 (Cx43) expression, distribution, and phosphorylation in myocardial ischemia-reperfusion injury (MI/RI). METHODS Twenty-four male SD rats were randomly divided into a sham operation group, a chloroquine (CQ) + sham operation group, an I/R group, and a CQ + I/R group. The MI/RI model was established by reversible ligation of the left anterior descending coronary artery to induce ischemia for 30 min and reperfusion for 2 h. The left ventricular infarct size was measured by TTC (2,3,5-triphenyltetrazolium chloride) and Evans blue double staining. Cardiac troponin I (cTnI) content was detected by automatic biochemical analyzer. Autophagy related gene Beclin1, Cx43, and p-Cx43 protein expressions were tested by western blot. Cx43 and p-Cx43 distributions in ventricular myocardium were observed by immunofluorescence analysis. RESULTS Compared with the I/R group, the left ventricular infarct size, serum cTnI content, reperfusion arrhythmia severity, and in vivo induced ventricular fibrillation threshold, and Beclin-1 protein expression were significantly reduced in CQ + I/R group (P < 0.05). Compared with the SH group, Beclin-1 protein expression was significantly enhanced, while Cx43 and p-Cx43 levels were obviously downregulated in the I/R group. Beclin-1 protein declined, whereas Cx43 and p-Cx43 levels enhanced in CQ + I/R group compared with the I/R group. CONCLUSION Autophagy may reduce myocardial ischemia-reperfusion injury and malignant arrhythmia by improving the acute remodeling of myocardial cell membrane Cx43.
Collapse
Affiliation(s)
- Qing Lu
- Department of Cardiology, General Hospital of Central Theater Command of PLAWuhan, Hubei, China
| | - Wandong Li
- Southern Medical UniversityGuangzhou, Guangdong, China
| | - Zhigang Li
- Department of Cardiology, General Hospital of Central Theater Command of PLAWuhan, Hubei, China
| | - Zhinan Chen
- Department of Cardiology, General Hospital of Central Theater Command of PLAWuhan, Hubei, China
| | - Wenbo Fu
- Department of Cardiology, General Hospital of Central Theater Command of PLAWuhan, Hubei, China
| | - Qijun Jiang
- Department of Cardiology, General Hospital of Central Theater Command of PLAWuhan, Hubei, China
| | - Shifang Ding
- Department of Cardiology, General Hospital of Central Theater Command of PLAWuhan, Hubei, China
| |
Collapse
|
33
|
Carne NA, Bell S, Brown AP, Määttä A, Flagler MJ, Benham AM. Reductive Stress Selectively Disrupts Collagen Homeostasis and Modifies Growth Factor-independent Signaling Through the MAPK/Akt Pathway in Human Dermal Fibroblasts. Mol Cell Proteomics 2019; 18:1123-1137. [PMID: 30890563 PMCID: PMC6553930 DOI: 10.1074/mcp.ra118.001140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/15/2019] [Indexed: 01/03/2023] Open
Abstract
Redox stress is a well-known contributor to aging and diseases in skin. Reductants such as dithiothreitol (DTT) can trigger a stress response by disrupting disulfide bonds. However, the quantitative response of the cellular proteome to reductants has not been explored, particularly in cells such as fibroblasts that produce extracellular matrix proteins. Here, we have used a robust, unbiased, label-free SWATH-MS proteomic approach to quantitate the response of skin fibroblast cells to DTT in the presence or absence of the growth factor PDGF. Of the 4487 proteins identified, only 42 proteins showed a statistically significant change of 2-fold or more with reductive stress. Our proteomics data show that reductive stress results in the loss of a small subset of reductant-sensitive proteins (including the collagens COL1A1/2 and COL3A1, and the myopathy-associated collagens COL6A1/2/3), and the down-regulation of targets downstream of the MAPK pathway. We show that a reducing environment alters signaling through the PDGF-associated MAPK/Akt pathways, inducing chronic dephosphorylation of ERK1/2 at Thr202/Tyr204 and phosphorylation of Akt at Ser473 in a growth factor-independent manner. Our data highlights collagens as sentinel molecules for redox stress downstream of MAPK/Akt, and identifies intervention points to modulate the redox environment to target skin diseases and conditions associated with erroneous matrix deposition.
Collapse
Affiliation(s)
- Naomi A Carne
- From the ‡The Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Steven Bell
- From the ‡The Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Adrian P Brown
- From the ‡The Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Arto Määttä
- From the ‡The Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Michael J Flagler
- §The Procter & Gamble Company, 8700 Mason Montgomery Road, Mason, OH 45040
| | - Adam M Benham
- From the ‡The Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK;
| |
Collapse
|
34
|
Narasimhan M, Kannan S, Chawade A, Bhattacharjee A, Govekar R. Clinical biomarker discovery by SWATH-MS based label-free quantitative proteomics: impact of criteria for identification of differentiators and data normalization method. J Transl Med 2019; 17:184. [PMID: 31151397 PMCID: PMC6545036 DOI: 10.1186/s12967-019-1937-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND SWATH-MS has emerged as the strategy of choice for biomarker discovery due to the proteome coverage achieved in acquisition and provision to re-interrogate the data. However, in quantitative analysis using SWATH, each sample from the comparison group is run individually in mass spectrometer and the resulting inter-run variation may influence relative quantification and identification of biomarkers. Normalization of data to diminish this variation thereby becomes an essential step in SWATH data processing. In most reported studies, data normalization methods used are those provided in instrument-based data analysis software or those used for microarray data. This study, for the first time provides an experimental evidence for selection of normalization method optimal for biomarker identification. METHODS The efficiency of 12 normalization methods to normalize SWATH-MS data was evaluated based on statistical criteria in 'Normalyzer'-a tool which provides comparative evaluation of normalization by different methods. Further, the suitability of normalized data for biomarker discovery was assessed by evaluating the clustering efficiency of differentiators, identified from the normalized data based on p-value, fold change and both, by hierarchical clustering in Genesis software v.1.8.1. RESULTS Conventional statistical criteria identified VSN-G as the optimal method for normalization of SWATH data. However, differentiators identified from VSN-G normalized data failed to segregate test and control groups. We thus assessed data normalized by eleven other methods for their ability to yield differentiators which segregate the study groups. Datasets in our study demonstrated that differentiators identified based on p-value from data normalized with Loess-R stratified the study groups optimally. CONCLUSION This is the first report of experimentally tested strategy for SWATH-MS data processing with an emphasis on identification of clinically relevant biomarkers. Normalization of SWATH-MS data by Loess-R method and identification of differentiators based on p-value were found to be optimal for biomarker discovery in this study. The study also demonstrates the need to base the choice of normalization method on the application of the data.
Collapse
Affiliation(s)
- Mythreyi Narasimhan
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210 India
- BARC Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094 India
| | - Sadhana Kannan
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210 India
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Atanu Bhattacharjee
- Section of Biostatistics, Centre for Cancer Epidemiology, Tata Memorial Centre, Kharghar, Navi Mumbai 410210 India
| | - Rukmini Govekar
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210 India
- BARC Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094 India
| |
Collapse
|
35
|
Pogoda K, Kameritsch P, Mannell H, Pohl U. Connexins in the control of vasomotor function. Acta Physiol (Oxf) 2019; 225:e13108. [PMID: 29858558 DOI: 10.1111/apha.13108] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 12/13/2022]
Abstract
Vascular endothelial cells, as well as smooth muscle cells, show heterogeneity with regard to their receptor expression and reactivity. For the vascular wall to act as a functional unit, the various cells' responses require integration. Such an integration is not only required for a homogeneous response of the vascular wall, but also for the vasomotor behaviour of consecutive segments of the microvascular arteriolar tree. As flow resistances of individual sections are connected in series, sections require synchronization and coordination to allow effective changes of conductivity and blood flow. A prerequisite for the local coordination of individual vascular cells and different sections of an arteriolar tree is intercellular communication. Connexins are involved in a dual manner in this coordination. (i) By forming gap junctions between cells, they allow an intercellular exchange of signalling molecules and electrical currents. In particular, the spread of electrical currents allows for coordination of cell responses over longer distances. (ii) Connexins are able to interact with other proteins to form signalling complexes. In this way, they can modulate and integrate individual cells' responses also in a channel-independent manner. This review outlines mechanisms allowing the vascular connexins to exert their coordinating function and to regulate the vasomotor reactions of blood vessels both locally, and in vascular networks. Wherever possible, we focus on the vasomotor behaviour of small vessels and arterioles which are the main vessels determining vascular resistance, blood pressure and local blood flow.
Collapse
Affiliation(s)
- K. Pogoda
- Walter-Brendel-Centre of Experimental Medicine; University Hospital; LMU Munich; Munich Germany
- Biomedical Center; Cardiovascular Physiology; LMU Munich; Munich Germany
- DZHK (German Center for Cardiovascular Research); Partner Site Munich Heart Alliance; Munich Germany
| | - P. Kameritsch
- Walter-Brendel-Centre of Experimental Medicine; University Hospital; LMU Munich; Munich Germany
- Biomedical Center; Cardiovascular Physiology; LMU Munich; Munich Germany
- DZHK (German Center for Cardiovascular Research); Partner Site Munich Heart Alliance; Munich Germany
| | - H. Mannell
- Walter-Brendel-Centre of Experimental Medicine; University Hospital; LMU Munich; Munich Germany
- Biomedical Center; Cardiovascular Physiology; LMU Munich; Munich Germany
| | - U. Pohl
- Walter-Brendel-Centre of Experimental Medicine; University Hospital; LMU Munich; Munich Germany
- Biomedical Center; Cardiovascular Physiology; LMU Munich; Munich Germany
- DZHK (German Center for Cardiovascular Research); Partner Site Munich Heart Alliance; Munich Germany
- Munich Cluster for Systems Neurology (SyNergy); Munich Germany
| |
Collapse
|
36
|
Basheer WA, Fu Y, Shimura D, Xiao S, Agvanian S, Hernandez DM, Hitzeman TC, Hong T, Shaw RM. Stress response protein GJA1-20k promotes mitochondrial biogenesis, metabolic quiescence, and cardioprotection against ischemia/reperfusion injury. JCI Insight 2018; 3:121900. [PMID: 30333316 DOI: 10.1172/jci.insight.121900] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/11/2018] [Indexed: 01/23/2023] Open
Abstract
Connexin 43 (Cx43), a product of the GJA1 gene, is a gap junction protein facilitating intercellular communication between cardiomyocytes. Cx43 protects the heart from ischemic injury by mechanisms that are not well understood. GJA1 mRNA can undergo alternative translation, generating smaller isoforms in the heart, with GJA1-20k being the most abundant. Here, we report that ischemic and ischemia/reperfusion (I/R) injuries upregulate endogenous GJA1-20k protein in the heart, which targets to cardiac mitochondria and associates with the outer mitochondrial membrane. Exploring the functional consequence of increased GJA1-20k, we found that AAV9-mediated gene transfer of GJA1-20k in mouse hearts increases mitochondrial biogenesis while reducing mitochondrial membrane potential, respiration, and ROS production. By doing so, GJA1-20k promotes a protective mitochondrial phenotype, as seen with ischemic preconditioning (IPC), which also increases endogenous GJA1-20k in heart lysates and mitochondrial fractions. As a result, AAV9-GJA1-20k pretreatment reduces myocardial infarct size in mouse hearts subjected to in vivo ischemic injury or ex vivo I/R injury, similar to an IPC-induced cardioprotective effect. In conclusion, GJA1-20k is an endogenous stress response protein that induces mitochondrial biogenesis and metabolic hibernation, preconditioning the heart against I/R insults. Introduction of exogenous GJA1-20k is a putative therapeutic strategy for patients undergoing anticipated ischemic injury.
Collapse
Affiliation(s)
- Wassim A Basheer
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ying Fu
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Daisuke Shimura
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shaohua Xiao
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sosse Agvanian
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Diana M Hernandez
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tara C Hitzeman
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - TingTing Hong
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Medicine, Cedars-Sinai Medical Center and UCLA, Los Angeles, California
| | - Robin M Shaw
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Medicine, Cedars-Sinai Medical Center and UCLA, Los Angeles, California
| |
Collapse
|
37
|
Abstract
The connexin family of channel-forming proteins is present in every tissue type in the human anatomy. Connexins are best known for forming clustered intercellular channels, structurally known as gap junctions, where they serve to exchange members of the metabolome between adjacent cells. In their single-membrane hemichannel form, connexins can act as conduits for the passage of small molecules in autocrine and paracrine signalling. Here, we review the roles of connexins in health and disease, focusing on the potential of connexins as therapeutic targets in acquired and inherited diseases as well as wound repair, while highlighting the associated clinical challenges.
Collapse
|
38
|
Abstract
Several interventions, such as ischemic preconditioning, remote pre/perconditioning, or postconditioning, are known to decrease lethal myocardial ischemia-reperfusion injury. While several signal transduction pathways become activated by such maneuvers, they all have a common end point, namely, the mitochondria. These organelles represent an essential target of the cardioprotective strategies, and the preservation of mitochondrial function is central for the reduction of ischemia-reperfusion injury. In the present review, we address the role of mitochondria in the different conditioning strategies; in particular, we focus on alterations of mitochondrial function in terms of energy production, formation of reactive oxygen species, opening of the mitochondrial permeability transition pore, and mitochondrial dynamics induced by ischemia-reperfusion.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus-Liebig Universität , Giessen , Germany
| | - Günter Lochnit
- Institute of Biochemistry, Justus-Liebig Universität , Giessen , Germany
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig Universität , Giessen , Germany
| |
Collapse
|
39
|
Sorgen PL, Trease AJ, Spagnol G, Delmar M, Nielsen MS. Protein⁻Protein Interactions with Connexin 43: Regulation and Function. Int J Mol Sci 2018; 19:E1428. [PMID: 29748463 PMCID: PMC5983787 DOI: 10.3390/ijms19051428] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
Connexins are integral membrane building blocks that form gap junctions, enabling direct cytoplasmic exchange of ions and low-molecular-mass metabolites between adjacent cells. In the heart, gap junctions mediate the propagation of cardiac action potentials and the maintenance of a regular beating rhythm. A number of connexin interacting proteins have been described and are known gap junction regulators either through direct effects (e.g., kinases) or the formation of larger multifunctional complexes (e.g., cytoskeleton scaffold proteins). Most connexin partners can be categorized as either proteins promoting coupling by stimulating forward trafficking and channel opening or inhibiting coupling by inducing channel closure, internalization, and degradation. While some interactions have only been implied through co-localization using immunohistochemistry, others have been confirmed by biophysical methods that allow detection of a direct interaction. Our understanding of these interactions is, by far, most well developed for connexin 43 (Cx43) and the scope of this review is to summarize our current knowledge of their functional and regulatory roles. The significance of these interactions is further exemplified by demonstrating their importance at the intercalated disc, a major hub for Cx43 regulation and Cx43 mediated effects.
Collapse
Affiliation(s)
- Paul L Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Andrew J Trease
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Gaelle Spagnol
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Mario Delmar
- Leon H Charney Division of Cardiology, NYU School of Medicine, New York, NY 10016, USA.
| | - Morten S Nielsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
40
|
Anupama N, Sindhu G, Raghu KG. Significance of mitochondria on cardiometabolic syndromes. Fundam Clin Pharmacol 2018; 32:346-356. [DOI: 10.1111/fcp.12359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/12/2018] [Accepted: 02/12/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Nair Anupama
- Agroprocessing and Technology Division; CSIR -National Institute for Interdisciplinary Science and Technology (NIIST); Industrial estate P.O., Pappanamcode Thiruvananthapuram 695019 Kerala India
| | - Ganapathy Sindhu
- Agroprocessing and Technology Division; CSIR -National Institute for Interdisciplinary Science and Technology (NIIST); Industrial estate P.O., Pappanamcode Thiruvananthapuram 695019 Kerala India
| | - Kozhiparambil Gopalan Raghu
- Agroprocessing and Technology Division; CSIR -National Institute for Interdisciplinary Science and Technology (NIIST); Industrial estate P.O., Pappanamcode Thiruvananthapuram 695019 Kerala India
| |
Collapse
|
41
|
|
42
|
Pecoraro M, Pinto A, Popolo A. Inhibition of Connexin 43 translocation on mitochondria accelerates CoCl2-induced apoptotic response in a chemical model of hypoxia. Toxicol In Vitro 2018; 47:120-128. [DOI: 10.1016/j.tiv.2017.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/24/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022]
|
43
|
Elucidation of the dynamic nature of interactome networks: A practical tutorial. J Proteomics 2018; 171:116-126. [DOI: 10.1016/j.jprot.2017.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/23/2017] [Accepted: 04/10/2017] [Indexed: 01/12/2023]
|
44
|
Ribeiro-Rodrigues TM, Martins-Marques T, Morel S, Kwak BR, Girão H. Role of connexin 43 in different forms of intercellular communication - gap junctions, extracellular vesicles and tunnelling nanotubes. J Cell Sci 2017; 130:3619-3630. [PMID: 29025971 DOI: 10.1242/jcs.200667] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Communication is important to ensure the correct and efficient flow of information, which is required to sustain active social networks. A fine-tuned communication between cells is vital to maintain the homeostasis and function of multicellular or unicellular organisms in a community environment. Although there are different levels of complexity, intercellular communication, in prokaryotes to mammalians, can occur through secreted molecules (either soluble or encapsulated in vesicles), tubular structures connecting close cells or intercellular channels that link the cytoplasm of adjacent cells. In mammals, these different types of communication serve different purposes, may involve distinct factors and are mediated by extracellular vesicles, tunnelling nanotubes or gap junctions. Recent studies have shown that connexin 43 (Cx43, also known as GJA1), a transmembrane protein initially described as a gap junction protein, participates in all these forms of communication; this emphasizes the concept of adopting strategies to maximize the potential of available resources by reutilizing the same factor in different scenarios. In this Review, we provide an overview of the most recent advances regarding the role of Cx43 in intercellular communication mediated by extracellular vesicles, tunnelling nanotubes and gap junctions.
Collapse
Affiliation(s)
- Teresa M Ribeiro-Rodrigues
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal.,CNC.IBILI, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Tânia Martins-Marques
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal.,CNC.IBILI, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Sandrine Morel
- Dept. of Pathology and Immunology, and Dept. of Medical Specialties - Cardiology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Brenda R Kwak
- Dept. of Pathology and Immunology, and Dept. of Medical Specialties - Cardiology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Henrique Girão
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal .,CNC.IBILI, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
45
|
Leybaert L, Lampe PD, Dhein S, Kwak BR, Ferdinandy P, Beyer EC, Laird DW, Naus CC, Green CR, Schulz R. Connexins in Cardiovascular and Neurovascular Health and Disease: Pharmacological Implications. Pharmacol Rev 2017; 69:396-478. [PMID: 28931622 PMCID: PMC5612248 DOI: 10.1124/pr.115.012062] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Connexins are ubiquitous channel forming proteins that assemble as plasma membrane hemichannels and as intercellular gap junction channels that directly connect cells. In the heart, gap junction channels electrically connect myocytes and specialized conductive tissues to coordinate the atrial and ventricular contraction/relaxation cycles and pump function. In blood vessels, these channels facilitate long-distance endothelial cell communication, synchronize smooth muscle cell contraction, and support endothelial-smooth muscle cell communication. In the central nervous system they form cellular syncytia and coordinate neural function. Gap junction channels are normally open and hemichannels are normally closed, but pathologic conditions may restrict gap junction communication and promote hemichannel opening, thereby disturbing a delicate cellular communication balance. Until recently, most connexin-targeting agents exhibited little specificity and several off-target effects. Recent work with peptide-based approaches has demonstrated improved specificity and opened avenues for a more rational approach toward independently modulating the function of gap junctions and hemichannels. We here review the role of connexins and their channels in cardiovascular and neurovascular health and disease, focusing on crucial regulatory aspects and identification of potential targets to modify their function. We conclude that peptide-based investigations have raised several new opportunities for interfering with connexins and their channels that may soon allow preservation of gap junction communication, inhibition of hemichannel opening, and mitigation of inflammatory signaling.
Collapse
Affiliation(s)
- Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Paul D Lampe
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Stefan Dhein
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Brenda R Kwak
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Peter Ferdinandy
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Eric C Beyer
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Dale W Laird
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Christian C Naus
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Colin R Green
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| |
Collapse
|
46
|
Yu HF, Yue ZP, Wang K, Yang ZQ, Zhang HL, Geng S, Guo B. Gja1 acts downstream of Acvr1 to regulate uterine decidualization via Hand2 in mice. J Endocrinol 2017; 233:145-157. [PMID: 28219934 DOI: 10.1530/joe-16-0583] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/20/2017] [Indexed: 11/08/2022]
Abstract
Although Gja1 has been proved to play an important role in uterine decidualization, its regulatory mechanism remains largely unknown. Here, we showed that Gja1 was highly expressed in the decidual cells and promoted the proliferation of uterine stromal cells and expression of Prl8a2 and Prl3c1, which were two well-known differentiation markers for decidualization. Further analysis revealed that Gja1 might act downstream of Acvr1 and cAMP to regulate the differentiation of uterine stromal cells. Administration of cAMP analog 8-Br-cAMP to Acvr1 siRNA-transfected stromal cells resulted in an obvious increase of Gja1 expression, whereas PKA inhibitor H89 impeded the induction of Gja1 elicited by Acvr1 overexpression, indicating that cAMP-PKA signal mediates the regulation of Acvr1 on Gja1 expression. In uterine stromal cells, knockdown of Gja1 blocked the cAMP induction of Hand2 Moreover, siRNA-mediated downregulation of Hand2 impaired the stimulatory effects of Gja1 overexpression on the expression of Prl8a2 and Prl3c1, whereas constitutive expression of Hand2 reversed the inhibitory effects of Gja1 siRNA on stromal differentiation. Meanwhile, Gja1 might play a vital role in the crosstalk between Acvr1 and Hand2 Collectively, Gja1 may act downstream of cAMP-PKA signal to mediate the effects of Acvr1 on the differentiation of uterine stromal cells through targeting Hand2.
Collapse
Affiliation(s)
- Hai-Fan Yu
- College of Veterinary MedicineJilin University, Changchun, People's Republic of China
| | - Zhan-Peng Yue
- College of Veterinary MedicineJilin University, Changchun, People's Republic of China
| | - Kai Wang
- College of Veterinary MedicineJilin University, Changchun, People's Republic of China
| | - Zhan-Qing Yang
- College of Veterinary MedicineJilin University, Changchun, People's Republic of China
| | - Hong-Liang Zhang
- College of Veterinary MedicineJilin University, Changchun, People's Republic of China
| | - Shuang Geng
- College of Veterinary MedicineJilin University, Changchun, People's Republic of China
| | - Bin Guo
- College of Veterinary MedicineJilin University, Changchun, People's Republic of China
| |
Collapse
|
47
|
Anjo SI, Santa C, Manadas B. SWATH-MS as a tool for biomarker discovery: From basic research to clinical applications. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600278] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/05/2017] [Accepted: 01/23/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Sandra Isabel Anjo
- CNC - Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
- Faculty of Sciences and Technology; University of Coimbra; Coimbra Portugal
| | - Cátia Santa
- CNC - Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
- Institute for Interdisciplinary Research (III); University of Coimbra; Coimbra Portugal
| | - Bruno Manadas
- CNC - Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
| |
Collapse
|
48
|
Varela-Eirin M, Varela-Vazquez A, Rodríguez-Candela Mateos M, Vila-Sanjurjo A, Fonseca E, Mascareñas JL, Eugenio Vázquez M, Mayan MD. Recruitment of RNA molecules by connexin RNA-binding motifs: Implication in RNA and DNA transport through microvesicles and exosomes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:728-736. [PMID: 28167212 DOI: 10.1016/j.bbamcr.2017.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/26/2017] [Accepted: 02/02/2017] [Indexed: 12/16/2022]
Abstract
Connexins (Cxs) are integral membrane proteins that form high-conductance plasma membrane channels, allowing communication from cell to cell (via gap junctions) and from cells to the extracellular environment (via hemichannels). Initially described for their role in joining excitable cells (nerve and muscle), gap junctions (GJs) are found between virtually all cells in solid tissues and are essential for functional coordination by enabling the direct transfer of small signalling molecules, metabolites, ions, and electrical signals from cell to cell. Several studies have revealed diverse channel-independent functions of Cxs, which include the control of cell growth and tumourigenicity. Connexin43 (Cx43) is the most widespread Cx in the human body. The myriad roles of Cx43 and its implication in the development of disorders such as cancer, inflammation, osteoarthritis and Alzheimer's disease have given rise to many novel questions. Several RNA- and DNA-binding motifs were predicted in the Cx43 and Cx26 sequences using different computational methods. This review provides insights into new, ground-breaking functions of Cxs, highlighting important areas for future work such as transfer of genetic information through extracellular vesicles. We discuss the implication of potential RNA- and DNA-binding domains in the Cx43 and Cx26 sequences in the cellular communication and control of signalling pathways.
Collapse
Affiliation(s)
- Marta Varela-Eirin
- CellCOM research group, Instituto de Investigación Biomédica de A Coruña (INIBIC), CH-Universitario A Coruña (XXIAC), Servizo Galego de Saúde (SERGAS), University of A Coruña, Xubias de Arriba, 84 15006 A Coruña, Spain
| | - Adrian Varela-Vazquez
- CellCOM research group, Instituto de Investigación Biomédica de A Coruña (INIBIC), CH-Universitario A Coruña (XXIAC), Servizo Galego de Saúde (SERGAS), University of A Coruña, Xubias de Arriba, 84 15006 A Coruña, Spain
| | - Marina Rodríguez-Candela Mateos
- CellCOM research group, Instituto de Investigación Biomédica de A Coruña (INIBIC), CH-Universitario A Coruña (XXIAC), Servizo Galego de Saúde (SERGAS), University of A Coruña, Xubias de Arriba, 84 15006 A Coruña, Spain
| | - Anton Vila-Sanjurjo
- Grupo GIBE, Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade de A Coruña (UDC), Campus Zapateira, s/n 15.071, A Coruña, Spain
| | - Eduardo Fonseca
- CellCOM research group, Instituto de Investigación Biomédica de A Coruña (INIBIC), CH-Universitario A Coruña (XXIAC), Servizo Galego de Saúde (SERGAS), University of A Coruña, Xubias de Arriba, 84 15006 A Coruña, Spain
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain; Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain; Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - M Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain; Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain; Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Maria D Mayan
- CellCOM research group, Instituto de Investigación Biomédica de A Coruña (INIBIC), CH-Universitario A Coruña (XXIAC), Servizo Galego de Saúde (SERGAS), University of A Coruña, Xubias de Arriba, 84 15006 A Coruña, Spain.
| |
Collapse
|
49
|
Greening DW, Xu R, Gopal SK, Rai A, Simpson RJ. Proteomic insights into extracellular vesicle biology - defining exosomes and shed microvesicles. Expert Rev Proteomics 2016; 14:69-95. [PMID: 27838931 DOI: 10.1080/14789450.2017.1260450] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Extracellular vesicles (EVs) are critical mediators of intercellular communication, capable of regulating the transcriptional landscape of target cells through horizontal transmission of biological information, such as proteins, lipids, and RNA species. This capability highlights their potential as novel targets for disease intervention. Areas covered: This review focuses on the emerging importance of discovery proteomics (high-throughput, unbiased quantitative protein identification) and targeted proteomics (hypothesis-driven quantitative protein subset analysis) mass spectrometry (MS)-based strategies in EV biology, especially exosomes and shed microvesicles. Expert commentary: Recent advances in MS hardware, workflows, and informatics provide comprehensive, quantitative protein profiling of EVs and EV-treated target cells. This information is seminal to understanding the role of EV subtypes in cellular crosstalk, especially when integrated with other 'omics disciplines, such as RNA analysis (e.g., mRNA, ncRNA). Moreover, high-throughput MS-based proteomics promises to provide new avenues in identifying novel markers for detection, monitoring, and therapeutic intervention of disease.
Collapse
Affiliation(s)
- David W Greening
- a Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| | - Rong Xu
- a Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| | - Shashi K Gopal
- a Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| | - Alin Rai
- a Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| | - Richard J Simpson
- a Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| |
Collapse
|