1
|
Joo H, Olea XD, Zhuang A, Zheng B, Kim H, Ronai ZA. Epigenetic mechanisms in melanoma development and progression. Trends Cancer 2025:S2405-8033(25)00099-8. [PMID: 40328568 DOI: 10.1016/j.trecan.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025]
Abstract
Knowledge of cancer development and progression gained over the last few decades has enabled mapping of genetic and epigenetic changes unique to different phases of tumor evolution. Here we focus on epigenetic changes that drive melanoma development and progression. We highlight the importance of epigenetic mechanisms which encompass crosstalk with melanoma microenvironment that affect metastasis and therapy resistance. This review summarizes recent advances and describes potential strategies to leverage this knowledge to devise new therapies.
Collapse
Affiliation(s)
- Hyunjeong Joo
- Jim and Eleanor Randall Department of Surgery, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ximena Diaz Olea
- Jim and Eleanor Randall Department of Surgery, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Aojia Zhuang
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Bin Zheng
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Hyungsoo Kim
- Jim and Eleanor Randall Department of Surgery, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ze'ev A Ronai
- Jim and Eleanor Randall Department of Surgery, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Translational Research Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
2
|
Agarwal AP, Kumar MS. Effect of epigenetic changes in hypoxia induced factor (HIF) gene across cancer types. Gene 2025; 934:149047. [PMID: 39490706 DOI: 10.1016/j.gene.2024.149047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Cancer hypoxia, a crucial characteristic of malignancy, ranging from practically non-hypoxic to severe, impacts gene expression, metabolism and mechanisms associated with tumor formation serves as a key obstacle in cancer therapy. It triggers a complex network of cell signaling pathways, such as the NF-κB, PI3K, mTOR/AKT,MAPK, HIF and their associated genes regulating the effects of the same. The onset and advancement of cancer are attributed to genetic and epigenetic modifications which are intrinsically related. Off late, it has been observed that in disease progression, the epigenetic modifications lead to gene mutations that in turn alter the epigenome, presenting a major hurdle in fabricating treatment strategies. However, theprogress in science and technology has led to the emergence of various surfacing omics and multi-view clustering algorithms, which offer unparalleled prospects for further subtyping cancers, enhancing the prognosis and treatment results of these subtypes, and comprehending crucial pathophysiological mechanisms across diverse molecular strata. Multi-omics has allowed scientists to gain a more comprehensive understanding of the various ways that cellular malfunction can lead to cancer. So, it becomes of utmost importance to firstly understand the epigenetic changes taking place in tumor hypoxia at gene level. This review sheds light on the role of HIF gene in hypoxic milieu and its relationship with mechanisms of cancer epigenetics. It further glances as to how omics approach can be used to study the oncogenic cellular changes and how bioinformatic tools aid in identification of complex gene networks involved in disease progression. Lastly, it glimpses through the benefits and shortcomings of the existing epi drug therapy and how it can be used in developing novel treatment options.
Collapse
Affiliation(s)
- Aditi P Agarwal
- Somaiya Institute for Research and Consultancy, Somaiya Vidyavihar University, Vidyavihar (East), Mumbai 400077, India
| | - Maushmi S Kumar
- Somaiya Institute for Research and Consultancy, Somaiya Vidyavihar University, Vidyavihar (East), Mumbai 400077, India..
| |
Collapse
|
3
|
Rubatto M, Borriello S, Sciamarrelli N, Pala V, Tonella L, Ribero S, Quaglino P. Exploring the role of epigenetic alterations and non-coding RNAs in melanoma pathogenesis and therapeutic strategies. Melanoma Res 2023; 33:462-474. [PMID: 37788101 DOI: 10.1097/cmr.0000000000000926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Melanoma is a rare but highly lethal type of skin cancer whose incidence is increasing globally. Melanoma is characterized by high resistance to therapy and relapse. Despite significant advances in the treatment of metastatic melanoma, many patients experience progression due to resistance mechanisms. Epigenetic changes, including alterations in chromatin remodeling, DNA methylation, histone modifications, and non-coding RNA rearrangements, contribute to neoplastic transformation, metastasis, and drug resistance in melanoma. This review summarizes current research on epigenetic mechanisms in melanoma and their therapeutic potential. Specifically, we discuss the role of histone acetylation and methylation in gene expression regulation and melanoma pathobiology, as well as the promising results of HDAC inhibitors and DNMT inhibitors in clinical trials. We also examine the dysregulation of non-coding RNA, particularly miRNAs, and their potential as targets for melanoma therapy. Finally, we highlight the challenges of epigenetic therapies, such as the complexity of epigenetic mechanisms combined with immunotherapies and the need for combination therapies to overcome drug resistance. In conclusion, epigenetic changes may be reversible, and the use of combination therapy between traditional therapies and epigenetically targeted drugs could be a viable solution to reverse the increasing number of patients who develop treatment resistance or even prevent it. While several clinical trials are underway, the complexity of these mechanisms presents a significant challenge to the development of effective therapies. Further research is needed to fully understand the role of epigenetic mechanisms in melanoma and to develop more effective and targeted therapies.
Collapse
Affiliation(s)
- Marco Rubatto
- Department of Medical Sciences, Dermatologic Clinic, University of Turin Medical School, Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
4
|
Zhu Y, Zhang L, Song X, Zhang Q, Wang T, Xiao H, Yu L. Pharmacological inhibition of EZH2 by ZLD1039 suppresses tumor growth and pulmonary metastasis in melanoma cells in vitro and in vivo. Biochem Pharmacol 2023; 210:115493. [PMID: 36898415 DOI: 10.1016/j.bcp.2023.115493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/31/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
The incidence and mortality rate of malignant melanoma are increasing worldwide. Metastasis reduces the efficacy of current melanoma therapies and leads to poor prognosis for patients. EZH2 is a methyltransferase that promotes the proliferation, metastasis, and drug resistance of tumor cells by regulating transcriptional activity. EZH2 inhibitors could be effective in melanoma therapies. Herein, we aimed to investigate whether the pharmacological inhibition of EZH2 by ZLD1039, a potent and selective S-adenosyl-l-methionine-EZH2 inhibitor, suppresses tumor growth and pulmonary metastasis in melanoma cells. Results showed that ZLD1039 selectively reduced H3K27 methylation in melanoma cells by inhibiting EZH2 methyltransferase activity. Additionally, ZLD1039 exerted excellent antiproliferative effects on melanoma cells in 2D and 3D culture systems. Administration of ZLD1039 (100 mg/kg) by oral gavage caused antitumor effects in the A375 subcutaneous xenograft mouse model. RNA sequencing and GSEA revealed that the ZLD1039-treated tumors exhibited changes in the gene sets enriched from the "Cell Cycle" and "Oxidative Phosphorylation", whereas the "ECM receptor interaction" gene set had a negative enrichment score. Mechanistically, ZLD1039 induced G0/G1 phase arrest by upregulating p16 and p27 and inhibiting the functions of the cyclin D1/CDK6 and cyclin E/CDK2 complexes. Moreover, ZLD1039 induced apoptosis in melanoma cells via the mitochondrial reactive oxygen species apoptotic pathway, consistent with the changes in transcriptional signatures. ZLD1039 also exhibited excellent antimetastatic effects on melanoma cells in vitro and in vivo. Our data highlight that ZLD1039 may be effective against melanoma growth and pulmonary metastasis and thus could serve as a therapeutic agent for melanoma.
Collapse
Affiliation(s)
- Yongxia Zhu
- Department of Clinical Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lidan Zhang
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuejiao Song
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Qiangsheng Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Ting Wang
- Department of Clinical Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Hongtao Xiao
- Department of Clinical Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Anestopoulos I, Kyriakou S, Tragkola V, Paraskevaidis I, Tzika E, Mitsiogianni M, Deligiorgi MV, Petrakis G, Trafalis DT, Botaitis S, Giatromanolaki A, Koukourakis MI, Franco R, Pappa A, Panayiotidis MI. Targeting the epigenome in malignant melanoma: Facts, challenges and therapeutic promises. Pharmacol Ther 2022; 240:108301. [PMID: 36283453 DOI: 10.1016/j.pharmthera.2022.108301] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/03/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022]
Abstract
Malignant melanoma is the most lethal type of skin cancer with high rates of mortality. Although current treatment options provide a short-clinical benefit, acquired-drug resistance highlights the low 5-year survival rate among patients with advanced stage of the disease. In parallel, the involvement of an aberrant epigenetic landscape, (e.g., alterations in DNA methylation patterns, histone modifications marks and expression of non-coding RNAs), in addition to the genetic background, has been also associated with the onset and progression of melanoma. In this review article, we report on current therapeutic options in melanoma treatment with a focus on distinct epigenetic alterations and how their reversal, by specific drug compounds, can restore a normal phenotype. In particular, we concentrate on how single and/or combinatorial therapeutic approaches have utilized epigenetic drug compounds in being effective against malignant melanoma. Finally, the role of deregulated epigenetic mechanisms in promoting drug resistance to targeted therapies and immune checkpoint inhibitors is presented leading to the development of newly synthesized and/or improved drug compounds capable of targeting the epigenome of malignant melanoma.
Collapse
Affiliation(s)
- I Anestopoulos
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - S Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - V Tragkola
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - I Paraskevaidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - E Tzika
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | | | - M V Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - G Petrakis
- Saint George Hospital, Chania, Crete, Greece
| | - D T Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - S Botaitis
- Department of Surgery, Alexandroupolis University Hospital, Democritus University of Thrace School of Medicine, Alexandroupolis, Greece
| | - A Giatromanolaki
- Department of Pathology, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - M I Koukourakis
- Radiotherapy / Oncology, Radiobiology & Radiopathology Unit, Department of Medicine, School of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - R Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE, USA; School of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - A Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - M I Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.
| |
Collapse
|
6
|
Day CA, Hinchcliffe EH, Robinson JP. H3K27me3 in Diffuse Midline Glioma and Epithelial Ovarian Cancer: Opposing Epigenetic Changes Leading to the Same Poor Outcomes. Cells 2022; 11:cells11213376. [PMID: 36359771 PMCID: PMC9655269 DOI: 10.3390/cells11213376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
Abstract
Histone post-translational modifications modulate gene expression through epigenetic gene regulation. The core histone H3 family members, H3.1, H3.2, and H3.3, play a central role in epigenetics. H3 histones can acquire many post-translational modifications, including the trimethylation of H3K27 (H3K27me3), which represses transcription. Triple methylation of H3K27 is performed by the histone methyltransferase Enhancer of Zeste Homologue 2 (EZH2), a component of the Polycomb Repressive Complex 2. Both global increases and decreases in H3K27me3 have been implicated in a wide range of cancer types. Here, we explore how opposing changes in H3K27me3 contribute to cancer by highlighting its role in two vastly different cancer types; (1) a form of glioma known as diffuse midline glioma H3K27-altered and (2) epithelial ovarian cancer. These two cancers vary widely in the age of onset, sex, associated mutations, and cell and organ type. However, both diffuse midline glioma and ovarian cancer have dysregulation of H3K27 methylation, triggering changes to the cancer cell transcriptome. In diffuse midline glioma, the loss of H3K27 methylation is a primary driving factor in tumorigenesis that promotes glial cell stemness and silences tumor suppressor genes. Conversely, hypermethylation of H3K27 occurs in late-stage epithelial ovarian cancer, which promotes tumor vascularization and tumor cell migration. By using each cancer type as a case study, this review emphasizes the importance of H3K27me3 in cancer while demonstrating that the mechanisms of histone H3 modification and subsequent gene expression changes are not a one-size-fits-all across cancer types.
Collapse
Affiliation(s)
- Charles A. Day
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Mayo Clinic, Rochester, MN 55902, USA
- Correspondence:
| | - Edward H. Hinchcliffe
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - James P. Robinson
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Karami Fath M, Azargoonjahromi A, Soofi A, Almasi F, Hosseinzadeh S, Khalili S, Sheikhi K, Ferdousmakan S, Owrangi S, Fahimi M, Zalpoor H, Nabi Afjadi M, Payandeh Z, Pourzardosht N. Current understanding of epigenetics role in melanoma treatment and resistance. Cancer Cell Int 2022; 22:313. [PMID: 36224606 PMCID: PMC9555085 DOI: 10.1186/s12935-022-02738-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Melanoma is the most aggressive form of skin cancer resulting from genetic mutations in melanocytes. Several factors have been considered to be involved in melanoma progression, including genetic alteration, processes of damaged DNA repair, and changes in mechanisms of cell growth and proliferation. Epigenetics is the other factor with a crucial role in melanoma development. Epigenetic changes have become novel targets for treating patients suffering from melanoma. These changes can alter the expression of microRNAs and their interaction with target genes, which involves cell growth, differentiation, or even death. Given these circumstances, we conducted the present review to discuss the melanoma risk factors and represent the current knowledge about the factors related to its etiopathogenesis. Moreover, various epigenetic pathways, which are involved in melanoma progression, treatment, and chemo-resistance, as well as employed epigenetic factors as a solution to the problems, will be discussed in detail.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Asma Soofi
- Department of Physical Chemistry, School of Chemistry, College of Sciences, University of Tehran, Tehran, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Shahnaz Hosseinzadeh
- Department of Microbiology, Parasitology and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Kamran Sheikhi
- School of Medicine, Kurdistan University of Medical Sciences, Kurdistan, Iran
| | - Saeid Ferdousmakan
- Department of Pharmacy Practice, Nargund College of Pharmacy, Bangalore, 560085 India
| | - Soroor Owrangi
- Student Research Committe, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Navid Pourzardosht
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
8
|
Santourlidis S, Schulz WA, Araúzo-Bravo MJ, Gerovska D, Ott P, Bendhack ML, Hassan M, Erichsen L. Epigenetics in the Diagnosis and Therapy of Malignant Melanoma. Int J Mol Sci 2022; 23:ijms23031531. [PMID: 35163453 PMCID: PMC8835790 DOI: 10.3390/ijms23031531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/15/2022] Open
Abstract
Epigenetic mechanisms are fundamentally important for cancer initiation and development. However, a survey of the literature reveals that, to date, they appear less comprehensively investigated in melanoma than in many other cancers, e.g., prostate, breast, and colon carcinoma. The aim of this review is to provide a short summary of epigenetic aspects of functional relevance for melanoma pathogenesis. In addition, some new perspectives from epigenetic research in other cancers with potential for melanoma diagnosis and therapy are introduced. For example, the PrimeEpiHit hypothesis in urothelial carcinoma, which, similarly to malignant melanoma, can also be triggered by a single exogenous noxa, states that one of the first steps for cancer initiation could be epigenetic changes in key genes of one-carbon metabolism. The application of such insights may contribute to further progress in the diagnosis and therapy of melanoma, a deadly type of cancer.
Collapse
Affiliation(s)
- Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany; (S.S.); (P.O.)
| | - Wolfgang A. Schulz
- Department of Urology, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Marcos J. Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastián, Spain; (M.J.A.-B.); (D.G.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Daniela Gerovska
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastián, Spain; (M.J.A.-B.); (D.G.)
| | - Pauline Ott
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany; (S.S.); (P.O.)
| | - Marcelo L. Bendhack
- Department of Urology, University Hospital, Positivo University, Curitiba 80030-200, Brazil;
| | - Mohamed Hassan
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA;
- Institut National de la Santé et de la Recherché Médicale, University of Strasbourg, 67000 Strasbourg, France
| | - Lars Erichsen
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Duesseldorf, Germany
- Correspondence: ; Tel.: +49-0211-81-16905
| |
Collapse
|
9
|
Farooqi AA, Gulnara K, Mukhanbetzhanovna AA, Datkhayev U, Kussainov AZ, Adylova A. Regulation of RUNX proteins by long non-coding RNAs and circular RNAs in different cancers. Noncoding RNA Res 2021; 6:100-106. [PMID: 34189363 PMCID: PMC8209647 DOI: 10.1016/j.ncrna.2021.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/05/2021] [Accepted: 05/25/2021] [Indexed: 12/27/2022] Open
Abstract
RUNX proteins have been shown to behave as "double-edge sword" in wide variety of cancers. Discovery of non-coding RNAs has played linchpin role in improving our understanding about the post-transcriptional regulation of different cell signaling pathways. Several new mechanistic insights and distinct modes of cross-regulation of RUNX proteins and non-coding RNAs have been highlighted by recent research. In this review we have attempted to provide an intricate interplay between non-coding RNAs and RUNX proteins in different cancers. Better conceptual and mechanistic understanding of layered regulation of RUNX proteins by non-coding RNAs will be helpful in effective translation of the laboratory findings to clinically effective therapeutics.
Collapse
Affiliation(s)
| | - Kapanova Gulnara
- Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty, 050040, Kazakhstan
| | | | - Ubaidilla Datkhayev
- Asfendiyarov Kazakh National Medical University, KazNMU, Tole Bi St 94, Almaty, 050000, Kazakhstan
| | - Abay Z Kussainov
- Kazakh National Medical University Named After S. D. Asfendiyarov, Kazakhstan
| | - Aima Adylova
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
10
|
Abstract
Histone posttranslational modifications (PTMs) have been shown to be dysregulated in multiple cancers including melanoma, and as they are abundant and easily detectable, they make ideal biomarkers. The aim of this study was to identify histone PTMs that could be potential biomarkers for melanoma diagnosis. Previously, we utilized mass spectrometry to identify histone PTMs that were dysregulated in matched melanoma cell lines and found two modifications, H3 lysine 27 trimethylation (histone H3K27me3) and H4 lysine 20 monomethylation (histone H4K20me), that were differentially expressed in the more aggressive compared to the less aggressive cell line. In this study, we performed immunohistochemistry on tissue microarrays containing 100 patient tissue spots; 18 benign nevi, 62 primary, and 20 metastatic melanoma tissues. We stained for histone H3K27me3 and histone H4K20me to ascertain whether these histone PTMs could be used to distinguish different stages of melanoma. Loss of histone H4K20me was observed in 66% of malignant patient tissues compared to 14% of benign nevi. A majority (79%) of benign nevi had low histone H3K27me3 staining, while 72% of malignant patient tissues showed either a complete loss or had strong histone H3K27me3 staining. When we analyzed the staining for both marks together, we found that we could identify 71% of the benign nevi and 89% of malignant melanomas. Histone H3K27me3 or histone H4K20me display differential expression patterns that can be used to distinguish benign nevi from melanoma; however, when considered together the diagnostic utility of these PTMs increased significantly. The work presented supports the use of combination immunohistochemistry of histone PTMs to increase accuracy and confidence in the diagnosis of melanoma.
Collapse
|
11
|
Ren Z, Ahn JH, Liu H, Tsai YH, Bhanu NV, Koss B, Allison DF, Ma A, Storey AJ, Wang P, Mackintosh SG, Edmondson RD, Groen RWJ, Martens AC, Garcia BA, Tackett AJ, Jin J, Cai L, Zheng D, Wang GG. PHF19 promotes multiple myeloma tumorigenicity through PRC2 activation and broad H3K27me3 domain formation. Blood 2019; 134:1176-1189. [PMID: 31383640 PMCID: PMC6776795 DOI: 10.1182/blood.2019000578] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/24/2019] [Indexed: 12/31/2022] Open
Abstract
Dysregulation of polycomb repressive complex 2 (PRC2) promotes oncogenesis partly through its enzymatic function for inducing trimethylation of histone H3 lysine 27 (H3K27me3). However, it remains to be determined how PRC2 activity is regulated in normal and diseased settings. We here report a PRC2-associated cofactor, PHD finger protein 19 (PHF19; also known as polycomb-like 3), as a crucial mediator of tumorigenicity in multiple myeloma (MM). Overexpression and/or genomic amplification of PHF19 is found associated with malignant progression of MM and plasma cell leukemia, correlating to worse treatment outcomes. Using various MM models, we demonstrated a critical requirement of PHF19 for tumor growth in vitro and in vivo. Mechanistically, PHF19-mediated oncogenic effect relies on its PRC2-interacting and chromatin-binding functions. Chromatin immunoprecipitation followed by sequencing profiling showed a critical role for PHF19 in maintaining the H3K27me3 landscape. PHF19 depletion led to loss of broad H3K27me3 domains, possibly due to impaired H3K27me3 spreading from cytosine guanine dinucleotide islands, which is reminiscent to the reported effect of an "onco"-histone mutation, H3K27 to methionine (H3K27M). RNA-sequencing-based transcriptome profiling in MM lines also demonstrated a requirement of PHF19 for optimal silencing of PRC2 targets, which include cell cycle inhibitors and interferon-JAK-STAT signaling genes critically involved in tumor suppression. Correlation studies using patient sample data sets further support a clinical relevance of the PHF19-regulated pathways. Lastly, we show that MM cells are generally sensitive to PRC2 inhibitors. Collectively, this study demonstrates that PHF19 promotes MM tumorigenesis through enhancing H3K27me3 deposition and PRC2's gene-regulatory functions, lending support for PRC2 blockade as a means for MM therapeutics.
Collapse
Affiliation(s)
- Zhihong Ren
- Lineberger Comprehensive Cancer Center and
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Jeong Hyun Ahn
- Lineberger Comprehensive Cancer Center and
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Hequn Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
| | | | - Natarajan V Bhanu
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Brian Koss
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - David F Allison
- Lineberger Comprehensive Cancer Center and
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Anqi Ma
- Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Ping Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Ricky D Edmondson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Richard W J Groen
- Department of Hematology, Amsterdam UMC, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Anton C Martens
- Department of Hematology, Amsterdam UMC, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
- Arkansas Children's Research Institute and UAMS Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Jian Jin
- Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ling Cai
- Lineberger Comprehensive Cancer Center and
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
- Department of Neuroscience and
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY; and
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center and
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| |
Collapse
|
12
|
Davis LE, Shalin SC, Tackett AJ. Current state of melanoma diagnosis and treatment. Cancer Biol Ther 2019; 20:1366-1379. [PMID: 31366280 PMCID: PMC6804807 DOI: 10.1080/15384047.2019.1640032] [Citation(s) in RCA: 537] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/23/2019] [Accepted: 06/23/2019] [Indexed: 12/13/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer. In the early stages, melanoma can be treated successfully with surgery alone and survival rates are high, but after metastasis survival rates drop significantly. Therefore, early and correct diagnosis is key for ensuring patients have the best possible prognosis. Melanoma misdiagnosis accounts for more pathology and dermatology malpractice claims than any cancer other than breast cancer, as an early misdiagnosis can significantly reduce a patient's chances of survival. As far as treatment for metastatic melanoma goes, there have been several new drugs developed over the last 10 years that have greatly improved the prognosis of patients with metastatic melanoma, however, a majority of patients do not show a lasting response to these treatments. Thus, new biomarkers and drug targets are needed to improve the accuracy of melanoma diagnosis and treatment. This article will discuss the major advancements of melanoma diagnosis and treatment from antiquity to the present day.
Collapse
Affiliation(s)
- Lauren E. Davis
- University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR, USA
| | - Sara C. Shalin
- University of Arkansas for Medical Sciences, Department of Pathology, Little Rock, AR, USA
| | - Alan J. Tackett
- University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR, USA
| |
Collapse
|
13
|
Chiang TC, Koss B, Su LJ, Washam CL, Byrum SD, Storey A, Tackett AJ. Effect of Sulforaphane and 5-Aza-2'-Deoxycytidine on Melanoma Cell Growth. MEDICINES 2019; 6:medicines6030071. [PMID: 31252639 PMCID: PMC6789461 DOI: 10.3390/medicines6030071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/12/2022]
Abstract
Background: UV exposure-induced oxidative stress is implicated as a driving mechanism for melanoma. Increased oxidative stress results in DNA damage and epigenetic dysregulation. Accordingly, we explored whether a low dose of the antioxidant sulforaphane (SFN) in combination with the epigenetic drug 5-aza-2’-deoxycytidine (DAC) could slow melanoma cell growth. SFN is a natural bioactivated product of the cruciferous family, while DAC is a DNA methyltransferase inhibitor. Methods: Melanoma cell growth characteristics, gene transcription profiles, and histone epigenetic modifications were measured after single and combination treatments with SFN and DAC. Results: We detected melanoma cell growth inhibition and specific changes in gene expression profiles upon combinational treatments with SFN and DAC, while no significant alterations in histone epigenetic modifications were observed. Dysregulated gene transcription of a key immunoregulator cytokine—C-C motif ligand 5 (CCL-5)—was validated. Conclusions: These results indicate a potential combinatorial effect of a dietary antioxidant and an FDA-approved epigenetic drug in controlling melanoma cell growth.
Collapse
Affiliation(s)
- Tung-Chin Chiang
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Brian Koss
- Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - L Joseph Su
- Winthrop P. Rockefeller Cancer Institute, Cancer Prevention and Population Sciences Program & Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Charity L Washam
- Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Arkansas Children's Research Institute, Little Rock, AR 72202, USA
| | - Stephanie D Byrum
- Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Arkansas Children's Research Institute, Little Rock, AR 72202, USA
| | - Aaron Storey
- Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alan J Tackett
- Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Arkansas Children's Research Institute, Little Rock, AR 72202, USA.
| |
Collapse
|
14
|
Uddin MB, Roy KR, Hosain SB, Khiste SK, Hill RA, Jois SD, Zhao Y, Tackett AJ, Liu YY. An N 6-methyladenosine at the transited codon 273 of p53 pre-mRNA promotes the expression of R273H mutant protein and drug resistance of cancer cells. Biochem Pharmacol 2018; 160:134-145. [PMID: 30578766 DOI: 10.1016/j.bcp.2018.12.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023]
Abstract
Mutant p53 proteins that promote cancer cell invasive growth, metastasis and drug resistance emerge as therapeutic targets. Previously, we reported that suppression of ceramide glycosylation restored wild-type p53 protein and tumor suppressing function in cancer cells heterozygously carrying p53 R273H, a hot-spot missense mutation; however, the mechanisms underlying the control of mutant protein expression remain elusive. Herein, we report that an N6-methyladenosine (m6A) at the point-mutated codon 273 (G > A) of p53 pre-mRNA determines the mutant protein expression. Methylation of the transited adenosine was catalyzed by methyltransferase like 3 (METTL3), and this m6A-RNA promoted a preferential pre-mRNA splicing; consequently, the produced p53 R273H mutant protein resulted in acquired multidrug resistance in colon cancer cells. Furthermore, glycosphingolipids (particularly globotriaosylceramide) generated from serial ceramide glycosylation were seen to activate cSrc and β-catenin signaling so as to upregulate METTL3 expression, in turn promoting expression of p53 R273H mutant protein, with consequent drug resistance. Conversely, either silencing METTL3 expression by using small interfering RNA (siRNA) or inhibiting RNA methylation with neplanocin A suppressed m6A formation in p53 pre-mRNA, and substantially increased the level of phosphorylated p53 protein (Ser15) and its function in cells heterozygously carrying the R273H mutation, thereby re-sensitizing these cells to anticancer drugs. Concordantly, suppression of ceramide glycosylation repressed METTL3 expression and m6A formation in p53 pre-mRNA, thus sensitizing cells carrying R273H to anticancer drugs. This study uncovers a novel function of pre-mRNA m6A as a determinant of mutant protein expression in cancer cells heterozygously carrying the TP53 R273H mutation. Suppressing both RNA methylation and ceramide glycosylation might constitute an efficacious and specific approach for targeting TP53 missense mutations coding for a G > A transition, thereby improving cancer treatments.
Collapse
Affiliation(s)
- Mohammad B Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Kartik R Roy
- School of Basic Pharmaceutical and Toxicological Sciences, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Salman B Hosain
- School of Basic Pharmaceutical and Toxicological Sciences, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Sachin K Khiste
- School of Basic Pharmaceutical and Toxicological Sciences, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Ronald A Hill
- School of Basic Pharmaceutical and Toxicological Sciences, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Seetharama D Jois
- School of Basic Pharmaceutical and Toxicological Sciences, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Yunfeng Zhao
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Yong-Yu Liu
- School of Basic Pharmaceutical and Toxicological Sciences, University of Louisiana at Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
15
|
Orouji E, Utikal J. Tackling malignant melanoma epigenetically: histone lysine methylation. Clin Epigenetics 2018; 10:145. [PMID: 30466474 PMCID: PMC6249913 DOI: 10.1186/s13148-018-0583-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023] Open
Abstract
Post-translational histone modifications such as acetylation and methylation can affect gene expression. Histone acetylation is commonly associated with activation of gene expression whereas histone methylation is linked to either activation or repression of gene expression. Depending on the site of histone modification, several histone marks can be present throughout the genome. A combination of these histone marks can shape global chromatin architecture, and changes in patterns of marks can affect the transcriptomic landscape. Alterations in several histone marks are associated with different types of cancers, and these alterations are distinct from marks found in original normal tissues. Therefore, it is hypothesized that patterns of histone marks can change during the process of tumorigenesis. This review focuses on histone methylation changes (both removal and addition of methyl groups) in malignant melanoma, a deadly skin cancer, and the implications of specific inhibitors of these modifications as a combinatorial therapeutic approach.
Collapse
Affiliation(s)
- Elias Orouji
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, 1901 East Rd. South Campus Research Building 4, Houston, TX, 77054, USA. .,Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
16
|
Zhang X, Zhang S, Liu X, Wang Y, Chang J, Zhang X, Mackintosh SG, Tackett AJ, He Y, Lv D, Laberge RM, Campisi J, Wang J, Zheng G, Zhou D. Oxidation resistance 1 is a novel senolytic target. Aging Cell 2018; 17:e12780. [PMID: 29766639 PMCID: PMC6052462 DOI: 10.1111/acel.12780] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2018] [Indexed: 01/02/2023] Open
Abstract
The selective depletion of senescent cells (SCs) by small molecules, termed senolytic agents, is a promising therapeutic approach for treating age-related diseases and chemotherapy- and radiotherapy-induced side effects. Piperlongumine (PL) was recently identified as a novel senolytic agent. However, its mechanism of action and molecular targets in SCs was unknown and thus was investigated. Specifically, we used a PL-based chemical probe to pull-down PL-binding proteins from live cells and then mass spectrometry-based proteomic analysis to identify potential molecular targets of PL in SCs. One prominent target was oxidation resistance 1 (OXR1), an important antioxidant protein that regulates the expression of a variety of antioxidant enzymes. We found that OXR1 was upregulated in senescent human WI38 fibroblasts. PL bound to OXR1 directly and induced its degradation through the ubiquitin-proteasome system in an SC-specific manner. The knockdown of OXR1 expression by RNA interference significantly increased the production of reactive oxygen species in SCs in conjunction with the downregulation of antioxidant enzymes such as heme oxygenase 1, glutathione peroxidase 2, and catalase, but these effects were much less significant when OXR1 was knocked down in non-SCs. More importantly, knocking down OXR1 selectively induced apoptosis in SCs and sensitized the cells to oxidative stress caused by hydrogen peroxide. These findings provide new insights into the mechanism by which SCs are highly resistant to oxidative stress and suggest that OXR1 is a novel senolytic target that can be further exploited for the development of new senolytic agents.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Arkansas for Medical Sciences; Little Rock Arkansas
| | - Suping Zhang
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Arkansas for Medical Sciences; Little Rock Arkansas
- Hematology Center of Cyrus Tang Medical Institute; Collaborative Innovation Center of Hematology; Soochow University School of Medicine; Suzhou China
| | - Xingui Liu
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Arkansas for Medical Sciences; Little Rock Arkansas
| | - Yingying Wang
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Arkansas for Medical Sciences; Little Rock Arkansas
| | - Jianhui Chang
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Arkansas for Medical Sciences; Little Rock Arkansas
| | - Xuan Zhang
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Arkansas for Medical Sciences; Little Rock Arkansas
| | - Samuel G. Mackintosh
- Department of Biochemistry and Molecular Biology; College of Medicine; University of Arkansas for Medical Sciences; Little Rock Arkansas
| | - Alan J. Tackett
- Department of Biochemistry and Molecular Biology; College of Medicine; University of Arkansas for Medical Sciences; Little Rock Arkansas
| | - Yonghan He
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Arkansas for Medical Sciences; Little Rock Arkansas
| | - Dongwen Lv
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Arkansas for Medical Sciences; Little Rock Arkansas
| | | | - Judith Campisi
- The Buck Institute for Research on Aging; Novato California
- Lawrence Berkeley National Laboratories; Berkeley California
| | - Jianrong Wang
- Hematology Center of Cyrus Tang Medical Institute; Collaborative Innovation Center of Hematology; Soochow University School of Medicine; Suzhou China
| | - Guangrong Zheng
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Arkansas for Medical Sciences; Little Rock Arkansas
- Department of Medicinal Chemistry; College of Pharmacy; University of Florida; Gainesville Florida
| | - Daohong Zhou
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Arkansas for Medical Sciences; Little Rock Arkansas
- Department of Pharmcodynamics; College of Pharmacy; University of Florida; Gainesville Florida
| |
Collapse
|
17
|
Zangari M, Yoo H, Shin I, Kim B, Edmondson R, Morgan GJ, Suva LJ, Yoon D. Thymic PTH Increases After Thyroparathyroidectomy in C57BL/KaLwRij Mice. Endocrinology 2018; 159:1561-1569. [PMID: 29381784 PMCID: PMC5839736 DOI: 10.1210/en.2017-03083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/08/2018] [Indexed: 11/19/2022]
Abstract
We previously reported a substantial correlation between serum parathyroid hormone (PTH) levels and the myeloma response to proteasome inhibition that suggests a crucial role for the PTH receptor 1 system in the control of myeloma tumor growth. While investigating the role of PTH in the antimyeloma effect, we observed the recovery of serum PTH levels after thyroparathyroidectomy (TPTX). Although the presence of thymus-derived PTH has been reported previously, the existence or role of thymic PTH in the serum remains controversial. Here, TPTX was performed in 8- to 12-week-old C57BL/KaLwRij mice to delineate the potential source(s) for the recovery of serum PTH. Immediately after TPTX, the expected loss of measurable serum PTH was observed. Serum PTH levels recovered 3 to 4 weeks after TPTX. Thirteen endocrine organs from mice with recovered serum PTH were examined. The thymus from control mice expressed measurable and detectable Pth transcripts; however, the Pth transcript level was substantially elevated in tissue from TPTX mice. Western blot analysis of the thymus demonstrated a reproducible and distinct PTH band in thymus tissue that was significantly increased after TPTX. To directly confirm the identity of the distinct PTH band, immunoprecipitated proteins were isolated and subjected to tandem mass spectrometry. After fragmentation and direct peptide sequencing, PTH peptides PTH(1-13) and PTH(54-70), diagnostic for PTH, were identified. These data demonstrate that the murine thymus produces PTH and that after TPTX the thymus becomes the major source of serum PTH, compensating for the loss of the parathyroid glands and returning circulating PTH levels to normal.
Collapse
Affiliation(s)
- Maurizio Zangari
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
- Correspondence: Maurizio Zangari, MD, or Donghoon Yoon, PhD, Myeloma Institute, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205. E-mail: or
| | - Hanna Yoo
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Ikjae Shin
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Bumjun Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Ricky Edmondson
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Gareth J. Morgan
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Larry J. Suva
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, Texas 77843
| | - Donghoon Yoon
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
- Correspondence: Maurizio Zangari, MD, or Donghoon Yoon, PhD, Myeloma Institute, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205. E-mail: or
| |
Collapse
|
18
|
Moran B, Silva R, Perry AS, Gallagher WM. Epigenetics of malignant melanoma. Semin Cancer Biol 2017; 51:80-88. [PMID: 29074395 DOI: 10.1016/j.semcancer.2017.10.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/12/2017] [Accepted: 10/20/2017] [Indexed: 01/18/2023]
Abstract
Patients with malignant melanoma generally have a good prognosis if the disease presents prior to metastasis. Due to progress with targeted and immunotherapies, the median survival of metastatic melanoma patients is now over 2 years. The disease is characterised by one of the highest somatic mutation rates observed amongst cancer types, with a specific mutational signature based on UV radiation damage evident. Highly prevalent mutations, such as the BRAFV600E, in the MAPK cascade indicate truncal involvement of this pathway in the earliest stage of melanoma. The molecular sub-classification of melanoma based on genetic alterations is now well established. This has paved the way for researchers in epigenetics to investigate specific pathways of known importance, and the involvement of the diverse range of epigenetic mechanisms. Herein, we review the literature to highlight that epigenetic alterations are integrally involved in this malignancy. We focus on the most current evidence around the epigenetic mechanisms: DNA methylation and demethylation including 5-hydroxy-methylcytosine; histone post-translational modifications including variant histones; chromatin remodelling complexes and in particular the polycomb-repressive complex PRC2 and its histone methyltransferase subunit EZH2; and non-coding RNAs. Each mechanism is described generally, studies involving melanoma are assessed and clinical relevance is highlighted where possible.
Collapse
Affiliation(s)
- Bruce Moran
- Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Research, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland; OncoMark Limited, NovaUCD, Belfield Innovation Park, Dublin 4, Ireland
| | - Romina Silva
- Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Research, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland; OncoMark Limited, NovaUCD, Belfield Innovation Park, Dublin 4, Ireland
| | - Antoinette S Perry
- Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Research, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - William M Gallagher
- Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Research, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland; OncoMark Limited, NovaUCD, Belfield Innovation Park, Dublin 4, Ireland.
| |
Collapse
|
19
|
Mahmoud F, Shields B, Makhoul I, Avaritt N, Wong HK, Hutchins LF, Shalin S, Tackett AJ. Immune surveillance in melanoma: From immune attack to melanoma escape and even counterattack. Cancer Biol Ther 2017; 18:451-469. [PMID: 28513269 DOI: 10.1080/15384047.2017.1323596] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pharmacologic inhibition of the cytotoxic T lymphocyte antigen 4 (CTLA4) and the programmed death receptor-1 (PD1) has resulted in unprecedented durable responses in metastatic melanoma. However, resistance to immunotherapy remains a major challenge. Effective immune surveillance against melanoma requires 4 essential steps: activation of the T lymphocytes, homing of the activated T lymphocytes to the melanoma microenvironment, identification and episode of melanoma cells by activated T lymphocytes, and the sensitivity of melanoma cells to apoptosis. At each of these steps, there are multiple factors that may interfere with the immune surveillance machinery, thus allowing melanoma cells to escape immune attack and develop resistance to immunotherapy. We provide a comprehensive review of the complex immune surveillance mechanisms at play in melanoma, and a detailed discussion of how these mechanisms may allow for the development of intrinsic or acquired resistance to immunotherapeutic modalities, and potential avenues for overcoming this resistance.
Collapse
Affiliation(s)
- Fade Mahmoud
- a Department of Internal Medicine, Division of Hematology/Oncology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Bradley Shields
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Issam Makhoul
- a Department of Internal Medicine, Division of Hematology/Oncology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Nathan Avaritt
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Henry K Wong
- c Department of Dermatology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Laura F Hutchins
- a Department of Internal Medicine, Division of Hematology/Oncology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Sara Shalin
- d Departments of Pathology and Dermatology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Alan J Tackett
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| |
Collapse
|
20
|
Shields BD, Mahmoud F, Taylor EM, Byrum SD, Sengupta D, Koss B, Baldini G, Ransom S, Cline K, Mackintosh SG, Edmondson RD, Shalin S, Tackett AJ. Indicators of responsiveness to immune checkpoint inhibitors. Sci Rep 2017; 7:807. [PMID: 28400597 PMCID: PMC5429745 DOI: 10.1038/s41598-017-01000-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/20/2017] [Indexed: 01/25/2023] Open
Abstract
Modulation of the immune system can produce anti-tumor responses in various cancer types, including melanoma. Recently, immune checkpoint inhibitors (ICI), in single agent and combination regimens, have produced durable and long-lasting clinical responses in a subset of metastatic melanoma patients. These monoclonal antibodies, developed against CTLA-4 and PD-1, block immune-inhibitory receptors on activated T-cells, amplifying the immune response. However, even when using anti-CTLA-4 and anti-PD-1 in combination, approximately half of patients exhibit innate resistance and suffer from disease progression. Currently, it is impossible to predict therapeutic response. Here, we report the first proteomic and histone epigenetic analysis of patient metastatic melanoma tumors taken prior to checkpoint blockade, which revealed biological signatures that can stratify patients as responders or non-responders. Furthermore, our findings provide evidence of mesenchymal transition, a known mechanism of immune-escape, in non-responding melanoma tumors. We identified elevated histone H3 lysine (27) trimethylation (H3K27me3), decreased E-cadherin, and other protein features indicating a more mesenchymal phenotype in non-responding tumors. Our results have implications for checkpoint inhibitor therapy as patient specific responsiveness can be predicted through readily assayable proteins and histone epigenetic marks, and pathways activated in non-responders have been identified for therapeutic development to enhance responsiveness.
Collapse
Affiliation(s)
- Bradley D Shields
- Departments of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas, 72205, USA
| | - Fade Mahmoud
- Departments of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas, 72205, USA
| | - Erin M Taylor
- Departments of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas, 72205, USA
| | - Stephanie D Byrum
- Departments of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas, 72205, USA
| | - Deepanwita Sengupta
- Departments of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas, 72205, USA
| | - Brian Koss
- Departments of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas, 72205, USA
| | - Giulia Baldini
- Departments of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas, 72205, USA
| | - Seth Ransom
- Departments of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas, 72205, USA
| | - Kyle Cline
- Departments of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas, 72205, USA
| | - Samuel G Mackintosh
- Departments of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas, 72205, USA
| | - Ricky D Edmondson
- Departments of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas, 72205, USA
| | - Sara Shalin
- Departments of Pathology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas, 72205, USA
| | - Alan J Tackett
- Departments of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas, 72205, USA.
- Departments of Pathology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas, 72205, USA.
| |
Collapse
|
21
|
Shields BD, Tackett AJ, Shalin SC. Proteomics and melanoma: a current perspective. GLOBAL DERMATOLOGY 2016; 3:366-370. [PMID: 30214824 PMCID: PMC6133306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Proteomics is the study of the protein complement of the genome, and this powerful technique complements genomic studies. Proteomic experiments result in the generation of large volumes of data requiring complicated analysis algorithms and subsequent confirmatory studies. Until recently, technological limitations of experimental protocols precluded the use of formalin-fixed tissues for these types of studies. Recent advances have allowed the use of valuable archived patient tissue samples in proteomic research, resulting in an opportunity to perform cutting edge translational research. The field of melanoma research stands to benefit greatly from collaboration between dermatopathologists and proteomic scientists. This article seeks to: 1) describe proteomics for dermatologists and pathologists, including the tools used in proteomic research, and 2) convey a historical account of proteomic studies within the field of melanoma followed by a discussion on how recent advances are informing current studies.
Collapse
Affiliation(s)
- Bradley D Shields
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sara C Shalin
- Departments of Pathology and Dermatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA,Correspondence to: Sara C Shalin, MD, PhD, Departments of Pathology and Dermatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA, Tel: 501-686-8007;
| |
Collapse
|
22
|
Abstract
Although the emergence of proteomics as an independent branch of science is fairly recent, within a short period of time it has contributed substantially in various disciplines. The tool of mass spectrometry has become indispensable in the analysis of complex biological samples. Clinical applications of proteomics include detection of predictive and diagnostic markers, understanding mechanism of action of drugs as well as resistance mechanisms against them and assessment of therapeutic efficacy and toxicity of drugs in patients. Here, we have summarized the major contributions of proteomics towards the study of melanoma, which is a deadly variety of skin cancer with a high mortality rate.
Collapse
Affiliation(s)
- Deepanwita Sengupta
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA; Department of Pathology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA
| |
Collapse
|
23
|
Gilda JE, Lai X, Witzmann FA, Gomes AV. Delineation of Molecular Pathways Involved in Cardiomyopathies Caused by Troponin T Mutations. Mol Cell Proteomics 2016; 15:1962-81. [PMID: 27022107 DOI: 10.1074/mcp.m115.057380] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Indexed: 11/06/2022] Open
Abstract
Familial hypertrophic cardiomyopathy (FHC) is associated with mild to severe cardiac problems and is the leading cause of sudden death in young people and athletes. Although the genetic basis for FHC is well-established, the molecular mechanisms that ultimately lead to cardiac dysfunction are not well understood. To obtain important insights into the molecular mechanism(s) involved in FHC, hearts from two FHC troponin T models (Ile79Asn [I79N] and Arg278Cys [R278C]) were investigated using label-free proteomics and metabolomics. Mutations in troponin T are the third most common cause of FHC, and the I79N mutation is associated with a high risk of sudden cardiac death. Most FHC-causing mutations, including I79N, increase the Ca(2+) sensitivity of the myofilament; however, the R278C mutation does not alter Ca(2+) sensitivity and is associated with a better prognosis than most FHC mutations. Out of more than 1200 identified proteins, 53 and 76 proteins were differentially expressed in I79N and R278C hearts, respectively, when compared with wild-type hearts. Interestingly, more than 400 proteins were differentially expressed when the I79N and R278C hearts were directly compared. The three major pathways affected in I79N hearts relative to R278C and wild-type hearts were the ubiquitin-proteasome system, antioxidant systems, and energy production pathways. Further investigation of the proteasome system using Western blotting and activity assays showed that proteasome dysfunction occurs in I79N hearts. Metabolomic results corroborate the proteomic data and suggest the glycolytic, citric acid, and electron transport chain pathways are important pathways that are altered in I79N hearts relative to R278C or wild-type hearts. Our findings suggest that impaired energy production and protein degradation dysfunction are important mechanisms in FHCs associated with poor prognosis and that cardiac hypertrophy is not likely needed for a switch from fatty acid to glucose metabolism.
Collapse
Affiliation(s)
| | - Xianyin Lai
- ¶Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Frank A Witzmann
- ¶Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Aldrin V Gomes
- From the ‡Department of Neurobiology, Physiology, and Behavior, §Department of Physiology and Membrane Biology, University of California, Davis, California 95616;
| |
Collapse
|