1
|
Brown AD, Stewart CE, Burniston JG. Degradation of ribosomal and chaperone proteins is attenuated during the differentiation of replicatively aged C2C12 myoblasts. J Cachexia Sarcopenia Muscle 2022; 13:2562-2575. [PMID: 35819316 PMCID: PMC9530526 DOI: 10.1002/jcsm.13034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/12/2022] [Accepted: 05/12/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cell assays are important for investigating the mechanisms of ageing, including losses in protein homeostasis and 'proteostasis collapse'. We used novel isotopic labelling and proteomic methods to investigate protein turnover in replicatively aged (>140 population doublings) murine C2C12 myoblasts that exhibit impaired differentiation and serve as a model for age-related declines in muscle homeostasis. METHODS The Absolute Dynamic Profiling Technique for Proteomics (Proteo-ADPT) was used to investigate proteostasis in young (passage 6-10) and replicatively aged (passage 48-50) C2C12 myoblast cultures supplemented with deuterium oxide (D2 O) during early (0-24 h) or late (72-96 h) periods of differentiation. Peptide mass spectrometry was used to quantify the absolute rates of abundance change, synthesis and degradation of individual proteins. RESULTS Young cells exhibited a consistent ~25% rise in protein accretion over the 96-h experimental period. In aged cells, protein accretion increased by 32% (P < 0.05) during early differentiation, but then fell back to baseline levels by 96-h. Proteo-ADPT encompassed 116 proteins and 74 proteins exhibited significantly (P < 0.05, FDR < 5% interaction between age × differentiation stage) different changes in abundance between young and aged cells at early and later periods of differentiation, including proteins associated with translation, glycolysis, cell-cell adhesion, ribosomal biogenesis, and the regulation of cell shape. During early differentiation, heat shock and ribosomal protein abundances increased in aged cells due to suppressed degradation rather than heightened synthesis. For instance, HS90A increased at a rate of 10.62 ± 1.60 ng/well/h in aged which was significantly greater than the rate of accretion (1.86 ± 0.49 ng/well/h) in young cells. HS90A synthesis was similar in young (21.23 ± 3.40 ng/well/h) and aged (23.69 ± 1.13 ng/well/h), but HS90A degradation was significantly (P = 0.05) greater in young (19.37 ± 2.93 ng/well/h) versus aged (13.06 ± 0.76 ng/well/h) cells. During later differentiation the HS90A degradation (8.94 ± 0.38 ng/well/h) and synthesis (7.89 ± 1.28 ng/well/h) declined and were significantly less than the positive net balance between synthesis and degradation (synthesis = 28.14 ± 3.70 ng/well/h vs. degradation = 21.49 ± 3.13 ng/well/h) in young cells. CONCLUSIONS Our results suggest a loss of proteome quality as a precursor to the lack of fusion of aged myoblasts. The quality of key chaperone proteins, including HS90A, HS90B and HSP7C was reduced in aged cells and may account for the disruption to cell signalling required for the later stages of differentiation and fusion.
Collapse
Affiliation(s)
- Alexander D Brown
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Claire E Stewart
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Jatin G Burniston
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
2
|
Stansfield BN, Brown AD, Stewart CE, Burniston JG. Dynamic Profiling of Protein Mole Synthesis Rates during C2C12 Myoblast Differentiation. Proteomics 2020; 21:e2000071. [PMID: 33068326 DOI: 10.1002/pmic.202000071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/17/2020] [Indexed: 11/05/2022]
Abstract
Mole (MSR) and fractional (FSR) synthesis rates of proteins during C2C12 myoblast differentiation are investigated. Myoblast cultures supplemented with D2 O during 0-24 h or 72-96 h of differentiation are analyzed by LC-MS/MS to calculate protein FSR and MSR after samples are spiked with yeast alcohol dehydrogenase (ADH1). Profiling of 153 proteins detected 70 significant (p ≤ 0.05, FDR ≤ 1%) differences in abundance between cell states. Early differentiation is enriched by clusters of ribosomal and heat shock proteins, whereas later differentiation is associated with actin filament binding. The median (first-third quartile) FSR (%/h) during early differentiation 4.1 (2.7-5.3) is approximately twofold greater than later differentiation 1.7 (1.0-2.2), equating to MSR of 0.64 (0.38-1.2) and 0.28 (0.1-0.5) fmol h-1 µg-1 total protein, respectively. MSR corresponds more closely with abundance data and highlights proteins associated with glycolytic processes and intermediate filament protein binding that are not evident among FSR data. Similarly, MSR during early differentiation accounts for 78% of the variation in protein abundance during later differentiation, whereas FSR accounts for 4%. Conclusively, the interpretation of protein synthesis data differs when reported in mole or fractional terms, which has consequences when studying the allocation of cellular resources.
Collapse
Affiliation(s)
- Ben N Stansfield
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Alexander D Brown
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Claire E Stewart
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Jatin G Burniston
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
3
|
Hesketh SJ, Sutherland H, Lisboa PJ, Jarvis JC, Burniston JG. Adaptation of rat fast‐twitch muscle to endurance activity is underpinned by changes to protein degradation as well as protein synthesis. FASEB J 2020; 34:10398-10417. [DOI: 10.1096/fj.202000668rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Stuart J. Hesketh
- Research Institute for Sport & Exercise Sciences Liverpool John Moores University Liverpool UK
| | - Hazel Sutherland
- Research Institute for Sport & Exercise Sciences Liverpool John Moores University Liverpool UK
| | - Paulo J. Lisboa
- Department of Applied Mathematics Liverpool John Moores University Liverpool UK
| | - Jonathan C. Jarvis
- Research Institute for Sport & Exercise Sciences Liverpool John Moores University Liverpool UK
| | - Jatin G. Burniston
- Research Institute for Sport & Exercise Sciences Liverpool John Moores University Liverpool UK
- Liverpool Centre for Cardiovascular Science Liverpool John Moores University Liverpool UK
| |
Collapse
|
4
|
Ha YS, Lee W, Jung JM, Soni N, Pandya DN, An GI, Sarkar S, Lee WK, Yoo J. Visualization and Quantification of Radiochemical Purity by Cerenkov Luminescence Imaging. Anal Chem 2018; 90:8927-8935. [PMID: 29991252 DOI: 10.1021/acs.analchem.8b01098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Determination of radiochemical purity is essential for characterization of all radioactive compounds, including clinical radiopharmaceuticals. Radio-thin layer chromatography (radio-TLC) has been used as the gold standard for measurement of radiochemical purity; however, this method has several limitations in terms of sensitivity, spatial resolution, two-dimensional scanning, and quantification accuracy. Here, we report a new analytical technique for determination of radiochemical purity based on Cerenkov luminescence imaging (CLI), whereby entire TLC plates are visualized by detection of Cerenkov radiation. Sixteen routinely used TLC plates were tested in combination with three different radioisotopes (131I, 124I, and 32P). All TLC plates doped with a fluorescent indicator showed excellent detection sensitivity with scanning times of less than 1 min. The new CLI method was superior to the traditional radio-TLC scanning method in terms of sensitivity, scanning time, spatial resolution, and two-dimensional scanning. The CLI method also showed better quantification features across a wider range of radioactivity values compared with radio-TLC and classical zonal analysis, especially for β--emitters such as 131I and 32P.
Collapse
Affiliation(s)
- Yeong Su Ha
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine , Kyungpook National University , Daegu , North Gyeongsang 41944 , Korea
| | - Woonghee Lee
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine , Kyungpook National University , Daegu , North Gyeongsang 41944 , Korea
| | - Jung-Min Jung
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine , Kyungpook National University , Daegu , North Gyeongsang 41944 , Korea
| | - Nisarg Soni
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine , Kyungpook National University , Daegu , North Gyeongsang 41944 , Korea
| | - Darpan N Pandya
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine , Kyungpook National University , Daegu , North Gyeongsang 41944 , Korea
| | - Gwang Il An
- Molecular Imaging Research Center , Korea Institute of Radiological and Medical Sciences , Seoul 01812 , Korea
| | - Swarbhanu Sarkar
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine , Kyungpook National University , Daegu , North Gyeongsang 41944 , Korea
| | - Won Kee Lee
- Medical Research Collabration Center in Kyungpook National University Hospital and School of Medicine, Kyungpook National University , Daegu , North Gyeongsang 41944 , Korea
| | - Jeongsoo Yoo
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine , Kyungpook National University , Daegu , North Gyeongsang 41944 , Korea
| |
Collapse
|
5
|
Guisasola MC, Alonso B, Bravo B, Vaquero J, Chana F. An overview of cytokines and heat shock response in polytraumatized patients. Cell Stress Chaperones 2018; 23:483-489. [PMID: 29101529 PMCID: PMC6045557 DOI: 10.1007/s12192-017-0859-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/20/2017] [Accepted: 10/20/2017] [Indexed: 12/12/2022] Open
Abstract
Early after injury, local tissue damage induces a local and systemic inflammatory response that activates the immune system and leads to the development of systemic inflammatory response syndrome (SIRS). This post-traumatic response often results in uncontrolled release of inflammatory mediators and over-activation of the immune system, which occasionally results in multiple organ dysfunction syndrome (MODS). In parallel, a state of immunosuppression develops. This counter-regulating suppression of different cellular and humoral immune functions has been termed "compensatory anti-inflammatory response syndrome (CARS)." Both SIRS and CARS occur simultaneously even in the initial phase after injury. Pro- and anti-inflammatory cytokines have been suggested to play a major role in development of SIRS, although the degree of involvement of the different cytokines is quite disparate. While TNF-α and IL-1β are quite irrelevant for predicting organ dysfunction, IL-6 is the parameter that best predicts mortality. The hyperinflammatory state seems to be the cause of post-traumatic immunosuppression and heat shock proteins (HSPs), which have been proposed as one of the endogenous stimuli for the deterioration of the immune system acting as danger-associated molecular patterns (DAMPs). Extracellular HSPA1A released from injured tissues increase up to ten times immediately after trauma and even more in patients with MODS. It has powerful immune properties that could contribute to post-traumatic immunosuppression through several mechanisms that have been previously described, so HSPs could represent trauma-associated immunomodulatory mediators. For this reason, HSPA1A has been suggested to be a helpful early prognostic biomarker of trauma after severe injury: serial quantification of serum HSPA1A and anti-Hsp70 concentrations in the first hours after trauma is proposed to be used as a predictive biomarker of MODS and immunosuppression development in polytraumatized patients.
Collapse
Affiliation(s)
- Maria Concepción Guisasola
- Servicio de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario “Gregorio Marañón”, Dr. Esquerdo 46, 28007 Madrid, Spain
| | - Berta Alonso
- Servicio de Cirugía Ortopédica y Traumatología, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario “Gregorio Marañón”, Dr. Esquerdo 46, 28007 Madrid, Spain
| | - Beatriz Bravo
- Instituto de Medicina Molecular Aplicada. Facultad de Medicina, Universidad San Pablo-CEU, Ctra de Boadilla del Monte km. 5,300 Boadilla del Monte, 28668 Madrid, Spain
| | - Javier Vaquero
- Servicio de Cirugía Ortopédica y Traumatología, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario “Gregorio Marañón”, Dr. Esquerdo 46, 28007 Madrid, Spain
- Departamento de Cirugía. Facultad de Medicina, Universidad Complutense, Plaza de Ramón y Cajal, 28040 Madrid, Spain
| | - Francisco Chana
- Servicio de Cirugía Ortopédica y Traumatología, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario “Gregorio Marañón”, Dr. Esquerdo 46, 28007 Madrid, Spain
- Departamento de Cirugía. Facultad de Medicina, Universidad Complutense, Plaza de Ramón y Cajal, 28040 Madrid, Spain
| |
Collapse
|
6
|
Hou F, Liu R, Liu X, Cui L, Yu X, Wen Y, Ding H, Yin C. Arkadia protein expression is reduced in the liver during the progression of hepatic fibrosis. Int J Mol Med 2018; 41:1315-1322. [PMID: 29286088 PMCID: PMC5819942 DOI: 10.3892/ijmm.2017.3340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/30/2017] [Indexed: 11/25/2022] Open
Abstract
Arkadia is able to degrade key signaling molecules in the transforming growth factor (TGF)‑β1 signaling pathway; however, the expression of Arkadia in the liver during development and progression of TGF‑β1/Smad signaling‑regulated hepatic fibrosis remains to be elucidated. The present study aimed to examine Arkadia expression in the livers of two rat models of hepatic fibrosis induced by bile duct ligation and carbon tetrachloride intoxication, and in human liver samples from patients with hepatic fibrosis. Expression was analyzed by quantitative polymerase chain reaction, immunohistochemistry and western blot analysis. The results indicated that Arkadia was predominantly expressed in the cytoplasm of cholangiocytes and hepatocytes. The protein expression levels of Arkadia were significantly decreased in fibrotic livers, whereas the mRNA expression levels of Arkadia were significantly increased in fibrotic livers compared with in nonfibrotic livers. In conclusion, these data indicated that Arkadia may regulate the pathogenesis and progression of hepatic fibrosis.
Collapse
Affiliation(s)
- Fei Hou
- Department of Infection, Beijing Friendship Hospital, Capital Medical University, Beijing 100050
- Department of Intensive Care Unit, Beijing Ditan Hospital, Capital Medical University, Beijing 100015
| | - Ruixia Liu
- Department of Infection, Beijing Friendship Hospital, Capital Medical University, Beijing 100050
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026
| | - Xiaoya Liu
- Department of Infection, Beijing Friendship Hospital, Capital Medical University, Beijing 100050
| | - Lijian Cui
- Department of Infection, Beijing Friendship Hospital, Capital Medical University, Beijing 100050
| | - Xiaozheng Yu
- Department of Infection, Beijing Friendship Hospital, Capital Medical University, Beijing 100050
| | - Yan Wen
- Department of Infection, Beijing Friendship Hospital, Capital Medical University, Beijing 100050
| | - Huiguo Ding
- Gastroenterology and Hepatology Department, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Chenghong Yin
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026
| |
Collapse
|
7
|
Bruchim Y, Horowitz M, Aroch I. Pathophysiology of heatstroke in dogs - revisited. Temperature (Austin) 2017; 4:356-370. [PMID: 29435477 PMCID: PMC5800390 DOI: 10.1080/23328940.2017.1367457] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 01/09/2023] Open
Abstract
Heatstroke results from a failure to dissipate accumulated heat during exposure to hot environments, or during strenuous physical exercise under heat stress. It is characterized by core body temperatures > 41°C, with central nervous system dysfunction. Functional morphology and thermoregulatory effectors differences between dogs and humans may require special heatstroke protective adaptations in dogs, however, the risk factors for developing heatstroke are similar in both. In dogs, these include hot, especially highly humid environments, excessive physical activity, obesity, large (>15 kg) body weight, being of certain breed (e.g., Labrador retrievers and brachycephalic breeds), upper airway obstruction and prolonged seizures. Lack of acclimation to heat and physical fitness decreases the survival of heat stroked dogs. At the systemic level, blood pooling within the large internal organs (e.g., spleen, liver) is a major contributor to the development of shock and consequent intestinal ischemia, hypoxia and endothelial hyperpermeability, commonly occurring in heatstroke patients. Evoked serious complications include rhabdomyolysis, acute kidney injury, acute respiratory distress syndrome and ultimately, sepsis and disseminated intravascular coagulation. The most common clinical signs in dogs include acute collapse, tachypnea, spontaneous bleeding, shock signs and mental abnormalities, including depression, disorientation or delirium, seizures, stupor and coma. In such dogs, presence of peripheral blood nucleated red blood cells uniquely occurs, and is a highly sensitive diagnostic and prognostic biomarker. Despite early, appropriate body cooling, and intensive supportive treatment, with no available specific treatment to ameliorate the severe inflammatory and hemostatic derangements, the mortality rate is around 50%, similar to that of human heatstroke victims. This review discusses the pathophysiology of canine heatstroke from a veterinarian's point of view, integrating new and old studies and knowledge.
Collapse
Affiliation(s)
- Yaron Bruchim
- The Hebrew University Veterinary Teaching Hospital and Koret School of Veterinary Medicine, The Hebrew University of Jerusalem
- Laboratory of Environmental Physiology, Hadassah Medical Center, The Hebrew University of Jerusalem
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Hadassah Medical Center, The Hebrew University of Jerusalem
| | - Itamar Aroch
- The Hebrew University Veterinary Teaching Hospital and Koret School of Veterinary Medicine, The Hebrew University of Jerusalem
| |
Collapse
|
8
|
Fernández-Fernández M, Rodríguez-González P, García Alonso JI. A simplified calculation procedure for mass isotopomer distribution analysis (MIDA) based on multiple linear regression. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:980-987. [PMID: 27388533 DOI: 10.1002/jms.3809] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/16/2016] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
We have developed a novel, rapid and easy calculation procedure for Mass Isotopomer Distribution Analysis based on multiple linear regression which allows the simultaneous calculation of the precursor pool enrichment and the fraction of newly synthesized labelled proteins (fractional synthesis) using linear algebra. To test this approach, we used the peptide RGGGLK as a model tryptic peptide containing three subunits of glycine. We selected glycine labelled in two 13 C atoms (13 C2 -glycine) as labelled amino acid to demonstrate that spectral overlap is not a problem in the proposed methodology. The developed methodology was tested first in vitro by changing the precursor pool enrichment from 10 to 40% of 13 C2 -glycine. Secondly, a simulated in vivo synthesis of proteins was designed by combining the natural abundance RGGGLK peptide and 10 or 20% 13 C2 -glycine at 1 : 1, 1 : 3 and 3 : 1 ratios. Precursor pool enrichments and fractional synthesis values were calculated with satisfactory precision and accuracy using a simple spreadsheet. This novel approach can provide a relatively rapid and easy means to measure protein turnover based on stable isotope tracers. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mario Fernández-Fernández
- Department of Physical and Analytical Chemistry Faculty of Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - Pablo Rodríguez-González
- Department of Physical and Analytical Chemistry Faculty of Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - J Ignacio García Alonso
- Department of Physical and Analytical Chemistry Faculty of Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain.
| |
Collapse
|
9
|
Bruchim Y, Segev G, Kelmer E, Codner C, Marisat A, Horowitz M. Hospitalized dogs recovery from naturally occurring heatstroke; does serum heat shock protein 72 can provide prognostic biomarker? Cell Stress Chaperones 2016; 21:123-130. [PMID: 26441274 PMCID: PMC4679735 DOI: 10.1007/s12192-015-0645-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/17/2015] [Accepted: 09/22/2015] [Indexed: 10/23/2022] Open
Abstract
Heatstroke is a serious illness in dogs characterized by core temperatures above 41°C with central nervous system dysfunction. Experimental heatstroke models have tried to correlate biomarker levels with the severity of the syndrome. Serum heat shock protein (eHSP70) levels were recently evaluated as a biomarker of heat tolerance and acclimation, their role as a marker of heatstroke is inconclusive. Here, we monitored eHSP70 levels in correlation with systemic biomarkers in 30 naturally occurring canine heatstroke cases. Thirty dogs diagnosed with environmental (33%) or exertional (66%) heatstroke admitted to hospital (0-14 h post-injury) were tested for biomarkers of organ damage and coagulation parameters. eHSP70 levels were measured upon admission and 4, 12, and 24 h later (T1, T2, and T3, respectively). No differences were found between exertional and environmental heatstroke cases. The eHSP profile demonstrated an inverted bell shape, with the lowest levels at the 12 h time point. A positive correlation between eHSP70, lactate, and aPPT was also noted at T2 in all the dogs in the study. Twenty-four h after presentation, eHSP70 levels returned to those measured upon admission, this change was only significant in the survivors. The obtained results suggest that eHSP72 level profile may be predictive of survival.
Collapse
|
10
|
Proteomic and Metabolomic Analyses Reveal Contrasting Anti-Inflammatory Effects of an Extract of Mucor Racemosus Secondary Metabolites Compared to Dexamethasone. PLoS One 2015; 10:e0140367. [PMID: 26496078 PMCID: PMC4619718 DOI: 10.1371/journal.pone.0140367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/24/2015] [Indexed: 02/04/2023] Open
Abstract
Classical drug assays are often confined to single molecules and targeting single pathways. However, it is also desirable to investigate the effects of complex mixtures on complex systems such as living cells including the natural multitude of signalling pathways. Evidence based on herbal medicine has motivated us to investigate potential beneficial health effects of Mucor racemosus (M rac) extracts. Secondary metabolites of M rac were collected using a good-manufacturing process (GMP) approved production line and a validated manufacturing process, in order to obtain a stable product termed SyCircue (National Drug Code USA: 10424-102). Toxicological studies confirmed that this product does not contain mycotoxins and is non-genotoxic. Potential effects on inflammatory processes were investigated by treating stimulated cells with M rac extracts and the effects were compared to the standard anti-inflammatory drug dexamethasone on the levels of the proteome and metabolome. Using 2D-PAGE, slight anti-inflammatory effects were observed in primary white blood mononuclear cells, which were more pronounced in primary human umbilical vein endothelial cells (HUVECs). Proteome profiling based on nLC-MS/MS analysis of tryptic digests revealed inhibitory effects of M rac extracts on pro-inflammatory cytoplasmic mediators and secreted cytokines and chemokines in these endothelial cells. This finding was confirmed using targeted proteomics, here treatment of stimulated cells with M rac extracts down-regulated the secretion of IL-6, IL-8, CXCL5 and GROA significantly. Finally, the modulating effects of M rac on HUVECs were also confirmed on the level of the metabolome. Several metabolites displayed significant concentration changes upon treatment of inflammatory activated HUVECs with the M rac extract, including spermine and lysophosphatidylcholine acyl C18:0 and sphingomyelin C26:1, while the bulk of measured metabolites remained unaffected. Interestingly, the effects of M rac treatment on lipids were orthogonal to the effect of dexamethasone underlining differences in the overall mode of action.
Collapse
|
11
|
Environmental Interactions and Epistasis Are Revealed in the Proteomic Responses to Complex Stimuli. PLoS One 2015; 10:e0134099. [PMID: 26247773 PMCID: PMC4527715 DOI: 10.1371/journal.pone.0134099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/26/2015] [Indexed: 02/02/2023] Open
Abstract
Ultimately, the genotype of a cell and its interaction with the environment determine the cell’s biochemical state. While the cell’s response to a single stimulus has been studied extensively, a conceptual framework to model the effect of multiple environmental stimuli applied concurrently is not as well developed. In this study, we developed the concepts of environmental interactions and epistasis to explain the responses of the S. cerevisiae proteome to simultaneous environmental stimuli. We hypothesize that, as an abstraction, environmental stimuli can be treated as analogous to genetic elements. This would allow modeling of the effects of multiple stimuli using the concepts and tools developed for studying gene interactions. Mirroring gene interactions, our results show that environmental interactions play a critical role in determining the state of the proteome. We show that individual and complex environmental stimuli behave similarly to genetic elements in regulating the cellular responses to stimuli, including the phenomena of dominance and suppression. Interestingly, we observed that the effect of a stimulus on a protein is dominant over other stimuli if the response to the stimulus involves the protein. Using publicly available transcriptomic data, we find that environmental interactions and epistasis regulate transcriptomic responses as well.
Collapse
|
12
|
Smith BW, Simpson DG, Miller RJ, Erdman JW, O'Brien WD. Contrast Ultrasound Imaging Does Not Affect Heat Shock Protein 70 Expression in Cholesterol-Fed Rabbit Aorta. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2015; 34:1209-1216. [PMID: 26112623 PMCID: PMC4494680 DOI: 10.7863/ultra.34.7.1209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
OBJECTIVES Diagnostic ultrasound imaging is enhanced by the use of circulating microbubble contrast agents (UCAs), but the interactions between ultrasound, UCAs, and vascular tissue are not fully understood. We hypothesized that ultrasound with a UCA would stress the vascular tissue and increase levels of heat shock protein 70 (Hsp70), a cellular stress protein. METHODS Male New Zealand White rabbits (n = 32) were fed a standard chow diet (n = 4) or a 1% cholesterol, 10% fat, and 0.11% magnesium diet (n = 28). At 21 days, 24 rabbits on the cholesterol diet were either exposed to ultrasound (3.2-MHz f/3 transducer; 2.1 MPa; mechanical index, 1.17; 10 Hz pulse repetition frequency; 1.6 microseconds pulse duration; 2 minutes exposure duration at 4 sites along the aorta) with the UCA Definity (1× concentration, 1 mL/min; Lantheus Medical Imaging, North Billerica, MA) or sham exposed with a saline vehicle injection (n = 12 per group). Four rabbits on the cholesterol diet and 4 on the chow diet served as cage controls and were not exposed to ultrasound or restrained for blood sample collection. Animals were euthanized 24 hours after exposure, and aortas were quickly isolated and frozen in liquid nitrogen. Aorta lysates from the area of ultrasound exposure were analyzed for Hsp70 level by Western blot. Blood plasma was analyzed for cholesterol, Hsp70, and von Willebrand factor, a marker of endothelial function. RESULTS Plasma total cholesterol levels increased to an average of 705 mg/dL. Ultrasound did not affect plasma von Willebrand factor, plasma Hsp70, or aorta Hsp70. Restraint increased Hsp70 (P < .001, analysis of variance). CONCLUSIONS Restraint, but not ultrasound with the UCA or cholesterol feeding, significantly increased Hsp70.
Collapse
Affiliation(s)
- Brendon W Smith
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering (B.W.S., R.J.M., W.D.O.), Division of Nutritional Sciences (B.W.S., J.W.E., W.D.O.), and Departments of Statistics (D.G.S.) and Food Science and Human Nutrition (J.W.E.), University of Illinois at Urbana-Champaign, Urbana, Illinois USA
| | - Douglas G Simpson
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering (B.W.S., R.J.M., W.D.O.), Division of Nutritional Sciences (B.W.S., J.W.E., W.D.O.), and Departments of Statistics (D.G.S.) and Food Science and Human Nutrition (J.W.E.), University of Illinois at Urbana-Champaign, Urbana, Illinois USA
| | - Rita J Miller
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering (B.W.S., R.J.M., W.D.O.), Division of Nutritional Sciences (B.W.S., J.W.E., W.D.O.), and Departments of Statistics (D.G.S.) and Food Science and Human Nutrition (J.W.E.), University of Illinois at Urbana-Champaign, Urbana, Illinois USA
| | - John W Erdman
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering (B.W.S., R.J.M., W.D.O.), Division of Nutritional Sciences (B.W.S., J.W.E., W.D.O.), and Departments of Statistics (D.G.S.) and Food Science and Human Nutrition (J.W.E.), University of Illinois at Urbana-Champaign, Urbana, Illinois USA
| | - William D O'Brien
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering (B.W.S., R.J.M., W.D.O.), Division of Nutritional Sciences (B.W.S., J.W.E., W.D.O.), and Departments of Statistics (D.G.S.) and Food Science and Human Nutrition (J.W.E.), University of Illinois at Urbana-Champaign, Urbana, Illinois USA.
| |
Collapse
|
13
|
He J, Hao S, Zhang H, Guo F, Huang L, Xiao X, He D. Chronological protein synthesis in regenerating rat liver. Electrophoresis 2015; 36:1622-32. [DOI: 10.1002/elps.201500019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/05/2015] [Accepted: 04/02/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Jinjun He
- Key Laboratory of Cell Proliferation and Regulation Biology Ministry of Education; Universities of the Confederated Institute for Proteomics, Beijing Normal University; Beijing P. R. China
| | - Shuai Hao
- Key Laboratory of Cell Proliferation and Regulation Biology Ministry of Education; Universities of the Confederated Institute for Proteomics, Beijing Normal University; Beijing P. R. China
| | - Hao Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology Ministry of Education; Universities of the Confederated Institute for Proteomics, Beijing Normal University; Beijing P. R. China
| | - Fuzheng Guo
- Key Laboratory of Cell Proliferation and Regulation Biology Ministry of Education; Universities of the Confederated Institute for Proteomics, Beijing Normal University; Beijing P. R. China
| | - Lingyun Huang
- Key Laboratory of Cell Proliferation and Regulation Biology Ministry of Education; Universities of the Confederated Institute for Proteomics, Beijing Normal University; Beijing P. R. China
| | - Xueyuan Xiao
- Key Laboratory of Cell Proliferation and Regulation Biology Ministry of Education; Universities of the Confederated Institute for Proteomics, Beijing Normal University; Beijing P. R. China
| | - Dacheng He
- Key Laboratory of Cell Proliferation and Regulation Biology Ministry of Education; Universities of the Confederated Institute for Proteomics, Beijing Normal University; Beijing P. R. China
| |
Collapse
|
14
|
Autonomous inhibition of apoptosis correlates with responsiveness of colon carcinoma cell lines to ciglitazone. PLoS One 2014; 9:e114158. [PMID: 25502518 PMCID: PMC4263530 DOI: 10.1371/journal.pone.0114158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 11/04/2014] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer is a leading cause of mortality worldwide. Resistance to therapy is common and often results in patients succumbing to the disease. The mechanisms of resistance are poorly understood. Cells basically have two possibilities to survive a treatment with potentially apoptosis-inducing substances. They can make use of their existing proteins to counteract the induced reactions or quickly upregulate protective factors to evade the apoptotic signal. To identify protein patterns involved in resistance to apoptosis, we studied two colorectal adenocarcinoma cell lines with different growth responses to low-molar concentrations of the thiazolidinedione Ciglitazone: HT29 cells underwent apoptosis, whereas SW480 cells increased cell number. Fluorescence detection and autoradiography scans of 2D-PAGE gels were performed in both cell lines to assess protein synthesis and turnover, respectively. To verify the data we performed shotgun analysis using the same treatment procedure as in 2D-experiments. Biological functions of the identified proteins were mainly associated with apoptosis regulation, chaperoning, intrinsic inflammation, and DNA repair. The present study suggests that different growth response of two colorectal carcinoma cell lines after treatment with Ciglitazone results from cell-specific protein synthesis and differences in protein regulation.
Collapse
|
15
|
Rossi A, Riccio A, Coccia M, Trotta E, La Frazia S, Santoro MG. The proteasome inhibitor bortezomib is a potent inducer of zinc finger AN1-type domain 2a gene expression: role of heat shock factor 1 (HSF1)-heat shock factor 2 (HSF2) heterocomplexes. J Biol Chem 2014; 289:12705-15. [PMID: 24619424 DOI: 10.1074/jbc.m113.513242] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The zinc finger AN1-type domain 2a gene, also known as arsenite-inducible RNA-associated protein (AIRAP), was recently identified as a novel human canonical heat shock gene strictly controlled by heat shock factor (HSF) 1. Little is known about AIRAP gene regulation in human cells. Here we report that bortezomib, a proteasome inhibitor with anticancer and antiangiogenic properties used in the clinic for treatment of multiple myeloma, is a potent inducer of AIRAP expression in human cells. Using endothelial cells as a model, we unraveled the molecular mechanism regulating AIRAP expression during proteasome inhibition. Bortezomib induces AIRAP expression at the transcriptional level early after treatment, concomitantly with polyubiquitinated protein accumulation and HSF activation. AIRAP protein is detected at high levels for at least 48 h after bortezomib exposure, together with the accumulation of HSF2, a factor implicated in differentiation and development regulation. Different from heat-mediated induction, in bortezomib-treated cells, HSF1 and HSF2 interact directly, forming HSF1-HSF2 heterotrimeric complexes recruited to a specific heat shock element in the AIRAP promoter. Interestingly, whereas HSF1 has been confirmed to be critical for AIRAP gene transcription, HSF2 was found to negatively regulate AIRAP expression after bortezomib treatment, further emphasizing an important modulatory role of this transcription factor under stress conditions. AIRAP function is still not defined. However, the fact that AIRAP is expressed abundantly in primary human cells at bortezomib concentrations comparable with plasma levels in treated patients suggests that AIRAP may participate in the regulatory network controlling proteotoxic stress during bortezomib treatment.
Collapse
Affiliation(s)
- Antonio Rossi
- From the Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), 00133 Rome, Italy and
| | | | | | | | | | | |
Collapse
|
16
|
Kang Y, Taldone T, Patel HJ, Patel PD, Rodina A, Gozman A, Maharaj R, Clement CC, Patel MR, Brodsky JL, Young JC, Chiosis G. Heat shock protein 70 inhibitors. 1. 2,5'-thiodipyrimidine and 5-(phenylthio)pyrimidine acrylamides as irreversible binders to an allosteric site on heat shock protein 70. J Med Chem 2014; 57:1188-207. [PMID: 24548207 PMCID: PMC3983365 DOI: 10.1021/jm401551n] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Heat shock protein 70 (Hsp70) is
an important emerging cancer target
whose inhibition may affect multiple cancer-associated signaling pathways
and, moreover, result in significant cancer cell apoptosis. Despite
considerable interest from both academia and pharmaceutical companies
in the discovery and development of druglike Hsp70 inhibitors, little
success has been reported so far. Here we describe structure–activity
relationship studies in the first rationally designed Hsp70 inhibitor
class that binds to a novel allosteric pocket located in the N-terminal
domain of the protein. These 2,5′-thiodipyrimidine and 5-(phenylthio)pyrimidine
acrylamides take advantage of an active cysteine embedded in the allosteric
pocket to act as covalent protein modifiers upon binding. The study
identifies derivatives 17a and 20a, which
selectively bind to Hsp70 in cancer cells. Addition of high nanomolar
to low micromolar concentrations of these inhibitors to cancer cells
leads to a reduction in the steady-state levels of Hsp70-sheltered
oncoproteins, an effect associated with inhibition of cancer cell
growth and apoptosis. In summary, the described scaffolds represent
a viable starting point for the development of druglike Hsp70 inhibitors
as novel anticancer therapeutics.
Collapse
Affiliation(s)
- Yanlong Kang
- Program in Molecular Pharmacology and Chemistry and Department of Medicine, Memorial Sloan-Kettering Cancer Center , New York, New York 10021, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Protein turnover is a neglected dimension in postgenomic studies, defining the dynamics of changes in protein expression and forging a link between transcriptome, proteome and metabolome. Recent advances in postgenomic technologies have led to the development of new proteomic techniques to measure protein turnover on a proteome-wide scale. These methods are driven by stable isotope metabolic labeling of cells in culture or in intact animals. This review considers the merits and difficulties of different methods that allow access to proteome dynamics.
Collapse
Affiliation(s)
- Mary K Doherty
- Protein Function Group, Faculty of Veterinary Science, University of Liverpool, Liverpool, L69 7ZJ, UK.
| | | |
Collapse
|
18
|
Miller I, Serchi T, Murk AJ, Gutleb AC. The added value of proteomics for toxicological studies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2014; 17:225-246. [PMID: 24828453 DOI: 10.1080/10937404.2014.904730] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Proteomics has the potential to elucidate complex patterns of toxic action attributed to its unique holistic a posteriori approach. In the case of toxic compounds for which the mechanism of action is not completely understood, a proteomic approach may provide valuable mechanistic insight. This review provides an overview of currently available proteomic techniques, including examples of their application in toxicological in vivo and in vitro studies. Future perspectives for a wider application of state-of-the-art proteomic techniques in the field of toxicology are discussed. The examples concern experiments with dioxins, polychlorinated biphenyls, and polybrominated diphenyl ethers as model compounds, as they exhibit a plethora of sublethal effects, of which some mechanisms were revealed via successful proteomic studies. Generally, this review shows the added value of including proteomics in a modern tool box for toxicological studies.
Collapse
Affiliation(s)
- I Miller
- a Institute for Medical Biochemistry, Department for Biomedical Sciences , University of Veterinary Medicine Vienna , Vienna , Austria
| | | | | | | |
Collapse
|
19
|
Ying Hsu, Linninger AA. Quantitative Integration of Biological, Pharmacokinetic, and Medical Imaging Data for Organ-Wide Dose-Response Predictions. IEEE Trans Biomed Eng 2013; 60:625-32. [DOI: 10.1109/tbme.2013.2244893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Lorenz O, Parzefall W, Kainzbauer E, Wimmer H, Grasl-Kraupp B, Gerner C, Schulte-Hermann R. Proteomics reveals acute pro-inflammatory and protective responses in rat Kupffer cells and hepatocytes after chemical initiation of liver cancer and after LPS and IL-6. Proteomics Clin Appl 2012; 3:947-67. [PMID: 21136998 DOI: 10.1002/prca.200800173] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Inflammation is a key event in the development of liver cancer. We studied early inflammatory responses of Kupffer cells (KCs) and hepatocyte (HC) after cancer initiation. The chemical carcinogen N-nitrosomorpholine (NNM) was used in a rat model. We applied a comprehensive analytical strategy including metabolic labeling, 2-D PAGE, LC-MS/MS-based spot identification and shotgun proteomics and thus determined the rates of synthesis of individual proteins, compared whole tissue with isolated constituent cells and performed in vivo to in vitro comparisons of NNM effects. NNM increased synthesis of overall and 138 individual proteins identified in HC and/or KC, indicating reprogramming of metabolism favoring protection, repair and replacement of cell constituents in HC and KC. Secretome analysis by 2-D PAGE and shotgun proteomics of HC revealed the induction of acute phase proteins, in case of KC of proteases, cytokines and chemokines, indicating inflammatory effects. All responses were induced rapidly, independently of signals from other cells, and closely mimicked the pro-inflammatory and protective effects of inflammation modulators LPS in KC and IL-6 in HC. In conclusion, the carcinogen NNM exerts pro-inflammatory effects in the liver, partially by direct activation of KC. The acute inflammation and its protective component will enhance formation, survival and proliferation of initiated cells and may therefore act synergistically with the genotoxic action of the carcinogen.
Collapse
Affiliation(s)
- Olga Lorenz
- Department of Medicine I, Division: Institute of Cancer Research, Research Unit Toxicology and Prevention, Medical University of Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
21
|
Hoelzl C, Lorenz O, Haudek V, Gundacker N, Knasmüller S, Gerner C. Proteome alterations induced in human white blood cells by consumption of Brussels sprouts: Results of a pilot intervention study. Proteomics Clin Appl 2012; 2:108-17. [PMID: 21136784 DOI: 10.1002/prca.200780100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Epidemiological studies indicate a correlation of cruciferous vegetables consumption with reduced incidence of cancer. This study was designed to investigate molecular mechanisms, which may help to understand the beneficial effects of Brussels sprout consumption. In order to avoid the limitations of in vitro model systems, we performed a dietary intervention study with five participants. We investigated, whether sprout consumption affects the proteome profile of primary white blood cells. In order to achieve maximal sensitivity in detecting specific adaptive proteome alterations, we metabolically labelled freshly isolated cells in the presence of (35) S-methionine/cysteine and performed autoradiographic quantification of protein synthesis. Proteins were separated by 2-DE and spots of interest were cut out, digested and identified by MS. After the intervention, we found a significant up-regulation of the synthesis of manganese superoxide dismutase (1.56-fold) and significant down-regulation of the synthesis of heat shock 70 kDa protein (hsp70; 2.27-fold). Both proteins play a role in malignant transformation of cells. Hsp-70 is involved in the regulation of apoptosis, which leads to elimination of cancer cells, while SOD plays a key role in protection against reactive oxygen species mediated effects. Our findings indicate that the alteration of the synthesis of these proteins may be involved in the anticarcinogenic effects of cruciferous vegetables, which was observed in earlier laboratory studies with animals.
Collapse
Affiliation(s)
- Christine Hoelzl
- Internal Medicine Clinic I, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
22
|
Haudek-Prinz VJ, Klepeisz P, Slany A, Griss J, Meshcheryakova A, Paulitschke V, Mitulovic G, Stöckl J, Gerner C. Proteome signatures of inflammatory activated primary human peripheral blood mononuclear cells. J Proteomics 2012; 76 Spec No.:150-62. [PMID: 22813876 PMCID: PMC3509337 DOI: 10.1016/j.jprot.2012.07.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/29/2012] [Accepted: 07/04/2012] [Indexed: 02/02/2023]
Abstract
Proteome profiling is the method of choice to identify marker proteins whose expression may be characteristic for certain diseases. The formation of such marker proteins results from disease-related pathophysiologic processes. In healthy individuals, peripheral blood mononuclear cells (PBMCs) circulate in a quiescent cell state monitoring potential immune-relevant events, but have the competence to respond quickly and efficiently in an inflammatory manner to any invasion of potential pathogens. Activation of these cells is most plausibly accompanied by characteristic proteome alterations. Therefore we investigated untreated and inflammatory activated primary human PBMCs by proteome profiling using a 'top down' 2D-PAGE approach in addition to a 'bottom up' LC-MS/MS-based shotgun approach. Furthermore, we purified primary human T-cells and monocytes and activated them separately. Comparative analysis allowed us to characterize a robust proteome signature including NAMPT and PAI2 which indicates the activation of PBMCs. The T-cell specific inflammation signature included IRF-4, GBP1 and the previously uncharacterized translation product of GBP5; the corresponding monocyte signature included PDCD5, IL1RN and IL1B. The involvement of inflammatory activated PBMCs in certain diseases as well as the responsiveness of these cells to anti-inflammatory drugs may be evaluated by quantification of these marker proteins. This article is part of a Special Issue entitled: Integrated omics.
Collapse
|
23
|
Yarmoluk SM, Kovalska VB, Volkova KD. Optimized Dyes for Protein and Nucleic Acid Detection. ADVANCED FLUORESCENCE REPORTERS IN CHEMISTRY AND BIOLOGY III 2011. [DOI: 10.1007/978-3-642-18035-4_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Petráčková D, Semberová L, Halada P, Svoboda P, Svobodová J. Stress proteins in the cytoplasmic membrane fraction of Bacillus subtilis. Folia Microbiol (Praha) 2010; 55:427-34. [PMID: 20941576 DOI: 10.1007/s12223-010-0072-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 04/27/2010] [Indexed: 10/19/2022]
Abstract
Stress proteomes of the cytoplasmic membrane fraction of Bacillus subtilis trp (C2)-exposed to acid pH and ethanol were characterized. Although these stress factors impair the cell function in a specific manner, they share the ability to denature proteins. Therefore, specific and general stress proteins in the membranes were investigated. Both ethanol (3 %) and pH 5.0 increase the doubling time from 17 to 25 min. Isolated cytoplasmic membranes were subjected to an optimized 2D PAGE analysis which permitted the separation and analysis of ≈450 distinct protein spots. Two alternative methods of protein detection were compared, i.e. silver staining and (35)S-L-methionine pulse labeling; the stress induced proteins were identified by MALDI-TOF MS. After ethanol stress, five proteins were increased, viz. YdaP, Ctc, YfhM, YjcH and YwaC. Acid stress proteins were AcoB, YkwC, SodA, YjcH and YwaC. Proteins YjcH and YwaC were increased after ethanol as well as acid pH treatment.
Collapse
Affiliation(s)
- D Petráčková
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, 120 00 Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
25
|
Li Q. Advances in protein turnover analysis at the global level and biological insights. MASS SPECTROMETRY REVIEWS 2010; 29:717-736. [PMID: 19757418 DOI: 10.1002/mas.20261] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The concept of a dynamic state of body constituents, a precursor of the modern term of proteome dynamics, was conceived over a century ago. But, not until recently can we examine the dynamics of individual "constituents" for example, proteins at a truly global level. The path of advancement in our understanding of protein turnover at the global level is marked by the introduction of some key technological innovations. These methods include the isotopic tracer technique in the 1930s, the two-dimensional gel electrophoresis technique in the 1970s, the sector mass spectrometer that could analyze isotopomers of peptides in the early 1990s, the 2D gel/MALDI-TOF proteomics technology in the late 1990s, the booming liquid chromatography/mass spectrometry proteomics technology in this decade, and the recently emerging protein-tagging approaches that offer single-cell resolution for protein turnover measurements. The long-standing inquiry raised in the 1950s about the existence of a dynamic state in different organisms at different physiological conditions can now be answered with an individual "constituent" resolution on a truly global scale. Now it appears that protein degradation is not necessarily an end to the protein function. Rather, it can be the start of a new function because protein degradation clears the way for the action of other proteins. Protein turnover participates in a multi-layer complex regulatory network and shares equal importance with gene transcription and protein translation. The advances in technologies for protein turnover analysis and the improved understanding of the biological role of protein turnover will likely help to solve some long-standing biomedical problems such as the tuberculosis disease that at the present day still affects one-third of the world population.
Collapse
Affiliation(s)
- Qingbo Li
- Center for Pharmaceutical Biotechnology, College of Pharmacy Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60607, USA.
| |
Collapse
|
26
|
Dehbi M, Baturcam E, Eldali A, Ahmed M, Kwaasi A, Chishti MA, Bouchama A. Hsp-72, a candidate prognostic indicator of heatstroke. Cell Stress Chaperones 2010; 15:593-603. [PMID: 20174993 PMCID: PMC3006628 DOI: 10.1007/s12192-010-0172-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 01/17/2010] [Accepted: 01/21/2010] [Indexed: 12/28/2022] Open
Abstract
Exposure of rats to environmental heat enhances the expression of heat shock protein-72 (Hsp-72) in most of their organs proportionally to heat stress severity. Pre-induction or over-expression of Hsp-72 prevents organ damage and lethality, suggesting that heat shock proteins (Hsps) may have a pathogenic role in this condition. We investigated the expression profile of Hsps in baboons subjected to environmental heat stress until the core temperature attained 42.5 degrees C (moderate heatstroke) or occurrence of hypotension associated with core temperature > or = 43.5 degrees C (severe heatstroke). Western blot analysis demonstrated a differential induction of Hsp-72 among organs of heat-stressed animals with the highest induction in the liver and the lowest in lung. Hsp-60 and Hsc-70 expression was similar between control and heat-stressed animals. ELISA studies indicated a marked release of Hsp-72 into the circulation of baboons with severe heatstroke with a peak at 24 h post-heatstroke onset and remained sustained up to 72 h. Hsp-72 release was not associated with core temperature or systolic blood pressure, but correlated with markers of liver, myocardium, and skeletal muscle tissue necrosis. Non-survivors displayed significantly higher Hsp-72 levels than survivors. No Hsp-60 was detected in the circulation. These findings add further evidence that increased expression of Hsp-72 may be an important component of the host response to severe heatstroke. They also suggest that extracellular Hsp-72 is a marker of multiple organs tissue damage. Whether extracellular Hsp-72 plays a role in the host immune response to heat stress merits further studies.
Collapse
Affiliation(s)
- Mohammed Dehbi
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia.
| | | | | | | | | | | | | |
Collapse
|
27
|
Zhang X, Xu Z, Zhou L, Chen Y, He M, Cheng L, Hu FB, Tanguay RM, Wu T. Plasma levels of Hsp70 and anti-Hsp70 antibody predict risk of acute coronary syndrome. Cell Stress Chaperones 2010; 15:675-86. [PMID: 20300983 PMCID: PMC3006621 DOI: 10.1007/s12192-010-0180-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Accepted: 02/15/2010] [Indexed: 10/19/2022] Open
Abstract
Although immune reactions against heat shock proteins have been implicated in the pathogenesis of atherosclerosis, conflicting associations between Hsp70, anti-Hsp70 antibody and coronary heart disease (CHD) have been reported. This study assessed whether there is a significant association between extracellular human Hsp70, anti-Hsp70 antibody and acute coronary syndrome (ACS) and stable angina (SA), and examined dynamic changes in Hsp70 and anti-Hsp70 antibody levels induced by acute myocardial infarction (AMI). Plasma Hsp70 and anti-Hsp70 antibody levels in 291 patients with ACS (179 AMI, 112 unstable angina), 126 patients with SA and 417 age and sex-matched healthy subjects, and in 40 patients after admission for AMI, and on day 2, 3, and 7 after the onset of AMI were determined using enzyme-linked immunosorbent assays. Hsp70 levels were significantly higher in ACS and SA and anti-Hsp70 antibody levels were only markedly lower in ACS than controls. After adjustment for traditional CHD risk factors, increasing levels of Hsp70 were significantly associated with an increased risk and severity of ACS (P for trend < 0.001), whereas increasing levels of anti-Hsp70 antibody were associated with a decreased risk of ACS (P for trend = 0.0003). High levels of Hsp70 combined with low levels of anti-Hsp70 antibody had a joint effect on the risk of ACS (OR, 5.14, 95% CI, 3.00-8.79; P < 0.0001). In patients with AMI, Hsp70 levels decreased rapidly from days 1-7 after onset, whereas anti-Hsp70 antibody levels increased in patients with AMI. These findings suggest that higher Hsp70 levels or lower anti-Hsp70 antibody levels are independently associated with a higher risk of ACS. Higher Hsp70 levels and lower anti-Hsp70 antibody levels combine to further increase this risk.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Institute of Occupational Medicine and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, Hubei 430030 China
| | - Zengguang Xu
- Institute of Occupational Medicine and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, Hubei 430030 China
| | - Li Zhou
- Institute of Occupational Medicine and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, Hubei 430030 China
| | - Ying Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 32 Xinhua Rd, Wuhan, Hubei 430030 China
| | - Meian He
- Institute of Occupational Medicine and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, Hubei 430030 China
| | - Longxian Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 32 Xinhua Rd, Wuhan, Hubei 430030 China
| | - Frank B. Hu
- Departments of Nutrition and Epidemiology, Harvard School of Public Health, Boston, MA USA
| | - Robert M. Tanguay
- Laboratory of Cellular and Developmental Genetics, Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine and IBIS, Pavillion C.E. Marchand, Université Laval, Québec, Canada G1V 0A6
| | - Tangchun Wu
- Institute of Occupational Medicine and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, Hubei 430030 China
| |
Collapse
|
28
|
Gerner C, Haudek-Prinz VJ, Lackner A, Losert A, Peter-Vörösmarty B, Lorenz O, Grusch M. Indications for cell stress in response to adenoviral and baculoviral gene transfer observed by proteome profiling of human cancer cells. Electrophoresis 2010; 31:1822-32. [PMID: 20446292 DOI: 10.1002/elps.200900753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gene transfer to cultured cells is an important tool for functional studies in many areas of biomedical research and vector systems derived from adenoviruses and baculoviruses are frequently used for this purpose. In order to characterize how viral gene transfer vectors affect the functional state of transduced cells, we applied 2-D PAGE allowing quantitative determination of protein amounts and synthesis rates of metabolically labeled cells and shotgun proteomics. Using HepG2 human hepatoma cells we show that both vector types can achieve efficient expression of green fluorescent protein, which accounted for about 0.1% of total cellular protein synthesis 72 h after transduction. No evidence in contrast was found for expression of proteins from the viral backbones. With respect to the host cell response, both vectors induced a general increase in protein synthesis of about 50%, which was independent of green fluorescent protein expression. 2-D PAGE autoradiographs identified a 3.6-fold increase of gamma-actin synthesis in adenovirus transduced cells. In addition shotgun proteomics of cytoplasmic and nuclear extract fractions identified a slight induction of several proteins related to inflammatory activation, cell survival and chromatin function by both virus types. These data demonstrate that commonly used gene transfer vectors induce a response reminiscent of stress activation in host cells, which needs to be taken into account when performing functional assays with transduced cells.
Collapse
Affiliation(s)
- Christopher Gerner
- Department of Medicine I, Division: Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
29
|
Arana-Argáez VE, Delgado-Rizo V, Pizano-Martínez OE, Martínez-Garcia EA, Martín-Márquez BT, Muñoz-Gómez A, Petri MH, Armendáriz-Borunda J, Espinosa-Ramírez G, Zúñiga-Tamayo DA, Herrera-Esparza R, Vázquez-Del Mercado M. Inhibitors of MAPK pathway ERK1/2 or p38 prevent the IL-1{beta}-induced up-regulation of SRP72 autoantigen in Jurkat cells. J Biol Chem 2010; 285:32824-32833. [PMID: 20729213 PMCID: PMC2963399 DOI: 10.1074/jbc.m110.121087] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Phosphorylation is the most important post-translational event at a cellular level that is regulated by protein kinases. MAPK is a key player in the important cellular signaling pathway. It has been hypothesized that phosphorylation might have a role in the induction of break tolerance against some autoantigens such as SRP72. The aim of this study was to explore the pathways of phosphorylation and overexpression of the SRP72 polypeptide, using an in vitro model of Jurkat cells stimulated by recombinant human (rh)IL-1β in the presence of MAPK inhibitors. We used Jurkat cells as a substrate stimulated with rhIL-1β in the presence of MAPK inhibitors at different concentrations in a time course in vitro experiment by immunoprecipitation, immunoprecipitation-Western blotting, and real time PCR. Our results showed that rhIL-1β causes up-regulation of protein expression and phosphorylation of SRP72 in Jurkat cells. Inhibitors of the MAPK pathway ERK1/2 or p38α/β down-regulate the expression of SRP72 autoantigen in Jurkat cells stimulated by rhIL-1β. Our results highlight the importance of studying the pathways of activation and overexpression of autoantigens. It will be necessary to perform careful research on various kinases pathways, including MAPK in dermatomyositis and other rheumatic diseases, to help to explain the routes of activation and inhibition of autoantigens. The understanding of this process may help to develop new therapies to prevent and control the loss of tolerance toward own normal proteins.
Collapse
Affiliation(s)
- Victor E Arana-Argáez
- From the Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Guadalajara, Jalisco CP 44340
| | - Vidal Delgado-Rizo
- Laboratorio de Inmunología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco CP 44340
| | - Oscar E Pizano-Martínez
- Laboratorio de Inmunología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco CP 44340
| | - Erika A Martínez-Garcia
- From the Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Guadalajara, Jalisco CP 44340
| | - Beatriz T Martín-Márquez
- From the Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Guadalajara, Jalisco CP 44340
| | - Andrea Muñoz-Gómez
- From the Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Guadalajara, Jalisco CP 44340; Pasante de Servicio Social en Medicina, Universidad Autónoma de Guadalajara, Guadalajara, Jalisco CP 45129
| | - Marcelo H Petri
- From the Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Guadalajara, Jalisco CP 44340
| | - Juan Armendáriz-Borunda
- Instituto de Biología Molecular en Medicina, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco CP 44340
| | - Guillermo Espinosa-Ramírez
- From the Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Guadalajara, Jalisco CP 44340
| | - Diego A Zúñiga-Tamayo
- From the Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Guadalajara, Jalisco CP 44340
| | | | - Mónica Vázquez-Del Mercado
- From the Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Guadalajara, Jalisco CP 44340; División de Medicina Interna, Departamento de Reumatología, Hospital Civil "Dr. Juan I. Menchaca," Guadalajara, Jalisco CP 44340, México.
| |
Collapse
|
30
|
Artificial bee colony algorithm-neural networks for S-system models of biochemical networks approximation. Neural Comput Appl 2010. [DOI: 10.1007/s00521-010-0435-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Plasma levels of Hsp70 and anti-Hsp70 antibody predict risk of acute coronary syndrome. Cell Stress Chaperones 2010. [PMID: 20300983 DOI: 10.1007/s12192‐010‐0180‐3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022] Open
Abstract
Although immune reactions against heat shock proteins have been implicated in the pathogenesis of atherosclerosis, conflicting associations between Hsp70, anti-Hsp70 antibody and coronary heart disease (CHD) have been reported. This study assessed whether there is a significant association between extracellular human Hsp70, anti-Hsp70 antibody and acute coronary syndrome (ACS) and stable angina (SA), and examined dynamic changes in Hsp70 and anti-Hsp70 antibody levels induced by acute myocardial infarction (AMI). Plasma Hsp70 and anti-Hsp70 antibody levels in 291 patients with ACS (179 AMI, 112 unstable angina), 126 patients with SA and 417 age and sex-matched healthy subjects, and in 40 patients after admission for AMI, and on day 2, 3, and 7 after the onset of AMI were determined using enzyme-linked immunosorbent assays. Hsp70 levels were significantly higher in ACS and SA and anti-Hsp70 antibody levels were only markedly lower in ACS than controls. After adjustment for traditional CHD risk factors, increasing levels of Hsp70 were significantly associated with an increased risk and severity of ACS (P for trend < 0.001), whereas increasing levels of anti-Hsp70 antibody were associated with a decreased risk of ACS (P for trend = 0.0003). High levels of Hsp70 combined with low levels of anti-Hsp70 antibody had a joint effect on the risk of ACS (OR, 5.14, 95% CI, 3.00-8.79; P < 0.0001). In patients with AMI, Hsp70 levels decreased rapidly from days 1-7 after onset, whereas anti-Hsp70 antibody levels increased in patients with AMI. These findings suggest that higher Hsp70 levels or lower anti-Hsp70 antibody levels are independently associated with a higher risk of ACS. Higher Hsp70 levels and lower anti-Hsp70 antibody levels combine to further increase this risk.
Collapse
|
32
|
Gerner C, Haudek V, Schandl U, Bayer E, Gundacker N, Hutter HP, Mosgoeller W. Increased protein synthesis by cells exposed to a 1,800-MHz radio-frequency mobile phone electromagnetic field, detected by proteome profiling. Int Arch Occup Environ Health 2010; 83:691-702. [PMID: 20145945 PMCID: PMC2902737 DOI: 10.1007/s00420-010-0513-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 01/14/2010] [Indexed: 11/29/2022]
Abstract
Purpose To investigate whether or not low intensity radio frequency electromagnetic field exposure (RF-EME) associated with mobile phone use can affect human cells, we used a sensitive proteome analysis method to study changes in protein synthesis in cultured human cells. Methods Four different cell kinds were exposed to 2 W/kg specific absorption rate in medium containing 35S-methionine/cysteine, and autoradiography of 2D gel spots was used to measure the increased synthesis of individual proteins. Results While short-term RF-EME did not significantly alter the proteome, an 8-h exposure caused a significant increase in protein synthesis in Jurkat T-cells and human fibroblasts, and to a lesser extent in activated primary human mononuclear cells. Quiescent (metabolically inactive) mononuclear cells, did not detectably respond to RF-EME. Since RF exposure induced a temperature increase of less than 0.15°C, we suggest that the observed cellular response is a so called “athermal” effect of RF-EME. Conclusion Our finding of an association between metabolic activity and the observed cellular reaction to low intensity RF-EME may reconcile conflicting results of previous studies. We further postulate that the observed increased protein synthesis reflects an increased rate of protein turnover stemming from protein folding problems caused by the interference of radio-frequency electromagnetic fields with hydrogen bonds. Our observations do not directly imply a health risk. However, vis-a-vis a synopsis of reports on cells stress and DNA breaks, after short and longer exposure, on active and inactive cells, our findings may contribute to the re-evaluation of previous reports. Electronic supplementary material The online version of this article (doi:10.1007/s00420-010-0513-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christopher Gerner
- Department Med.-1, Institute of Cancer Research, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
33
|
He F, Balling R, Zeng AP. Reverse engineering and verification of gene networks: principles, assumptions, and limitations of present methods and future perspectives. J Biotechnol 2009; 144:190-203. [PMID: 19631244 DOI: 10.1016/j.jbiotec.2009.07.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 07/13/2009] [Accepted: 07/16/2009] [Indexed: 12/21/2022]
Abstract
Reverse engineering of gene networks aims at revealing the structure of the gene regulation network in a biological system by reasoning backward directly from experimental data. Many methods have recently been proposed for reverse engineering of gene networks by using gene transcript expression data measured by microarray. Whereas the potentials of the methods have been well demonstrated, the assumptions and limitations behind them are often not clearly stated or not well understood. In this review, we first briefly explain the principles of the major methods, identify the assumptions behind them and pinpoint the limitations and possible pitfalls in applying them to real biological questions. With regard to applications, we then discuss challenges in the experimental verification of gene networks generated from reverse engineering methods. We further propose an optimal experimental design for allocating sampling schedule and possible strategies for reducing the limitations of some of the current reverse engineering methods. Finally, we examine the perspectives for the development of reverse engineering and urge the need to move from revealing network structure to the dynamics of biological systems.
Collapse
Affiliation(s)
- Feng He
- Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | | | | |
Collapse
|
34
|
Haudek VJ, Slany A, Gundacker NC, Wimmer H, Drach J, Gerner C. Proteome Maps of the Main Human Peripheral Blood Constituents. J Proteome Res 2009; 8:3834-43. [DOI: 10.1021/pr801085g] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Verena J. Haudek
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Austria, Section Biomedical Laboratory Science, University of Applied Science, Vienna, Austria, and Department of Medicine I, Department of Clinical Oncology, Medical University of Vienna, Austria
| | - Astrid Slany
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Austria, Section Biomedical Laboratory Science, University of Applied Science, Vienna, Austria, and Department of Medicine I, Department of Clinical Oncology, Medical University of Vienna, Austria
| | - Nina C. Gundacker
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Austria, Section Biomedical Laboratory Science, University of Applied Science, Vienna, Austria, and Department of Medicine I, Department of Clinical Oncology, Medical University of Vienna, Austria
| | - Helge Wimmer
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Austria, Section Biomedical Laboratory Science, University of Applied Science, Vienna, Austria, and Department of Medicine I, Department of Clinical Oncology, Medical University of Vienna, Austria
| | - Johannes Drach
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Austria, Section Biomedical Laboratory Science, University of Applied Science, Vienna, Austria, and Department of Medicine I, Department of Clinical Oncology, Medical University of Vienna, Austria
| | - Christopher Gerner
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Austria, Section Biomedical Laboratory Science, University of Applied Science, Vienna, Austria, and Department of Medicine I, Department of Clinical Oncology, Medical University of Vienna, Austria
| |
Collapse
|
35
|
Wimmer H, Gundacker NC, Griss J, Haudek VJ, Stättner S, Mohr T, Zwickl H, Paulitschke V, Baron DM, Trittner W, Kubicek M, Bayer E, Slany A, Gerner C. Introducing the CPL/MUW proteome database: Interpretation of human liver and liver cancer proteome profiles by referring to isolated primary cells. Electrophoresis 2009; 30:2076-89. [DOI: 10.1002/elps.200900072] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Slany A, Haudek VJ, Gundacker NC, Griss J, Mohr T, Wimmer H, Eisenbauer M, Elbling L, Gerner C. Introducing a new parameter for quality control of proteome profiles: Consideration of commonly expressed proteins. Electrophoresis 2009; 30:1306-28. [DOI: 10.1002/elps.200800440] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Use of conventional and -omics based methods for health claims of dietary antioxidants: a critical overview. Br J Nutr 2009; 99 E Suppl 1:ES3-52. [PMID: 18503734 DOI: 10.1017/s0007114508965752] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article describes the principles and limitations of methods used to investigate reactive oxygen species (ROS) protective properties of dietary constituents and is aimed at providing a better understanding of the requirements for science based health claims of antioxidant (AO) effects of foods. A number of currently used biochemical measurements aimed of determining the total antioxidant capacity and oxidised lipids and proteins are carried out under unphysiological conditions and are prone to artefact formation. Probably the most reliable approaches are measurements of isoprostanes as a parameter of lipid peroxidation and determination of oxidative DNA damage. Also the design of the experimental models has a strong impact on the reliability of AO studies: the common strategy is the identification of AO by in vitro screening with cell lines. This approach is based on the assumption that protection towards ROS is due to scavenging, but recent findings indicate that activation of transcription factors which regulate genes involved in antioxidant defence plays a key role in the mode of action of AO. These processes are not adequately represented in cell lines. Another shortcoming of in vitro experiments is that AO are metabolised in vivo and that most cell lines are lacking enzymes which catalyse these reactions. Compounds with large molecular configurations (chlorophylls, anthocyans and polyphenolics) are potent AO in vitro, but weak or no effects were observed in animal/human studies with realistic doses as they are poorly absorbed. The development of -omics approaches will improve the scientific basis for health claims. The evaluation of results from microarray and proteomics studies shows that it is not possible to establish a general signature of alterations of transcription and protein patterns by AO. However, it was shown that alterations of gene expression and protein levels caused by experimentally induced oxidative stress and ROS related diseases can be normalised by dietary AO.
Collapse
|
38
|
Mbeunkui F, Johann DJ. Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother Pharmacol 2008; 63:571-82. [PMID: 19083000 DOI: 10.1007/s00280-008-0881-9] [Citation(s) in RCA: 349] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 11/20/2008] [Indexed: 12/20/2022]
Abstract
PURPOSE The role of the microenvironment during the initiation and progression of carcinogenesis is now realized to be of critical importance, both for enhanced understanding of fundamental cancer biology, as well as exploiting this source of relatively new knowledge for improved molecular diagnostics and therapeutics. METHODS This review focuses on: (1) the approaches of preparing and analyzing secreted proteins, (2) the contribution of tumor microenvironment elements in cancer, and (3) the potential molecular targets for cancer therapy. RESULTS The microenvironment of a tumor is an integral part of its physiology, structure, and function. It is an essential aspect of the tumor proper, since it supplies a nurturing environment for the malignant process. A fundamental deranged relationship between tumor and stromal cells is essential for tumor cell growth, progression, and development of life threatening metastasis. Improved understanding of this interaction may provide new and valuable clinical targets for cancer management, as well as risk assessment and prevention. Non-malignant cells and secreted proteins from tumor and stromal cells are active participants in cancer progression. CONCLUSIONS Monitoring the change in the tumor microenvironment via molecular and cellular profiles as tumor progresses would be vital for identifying cell or protein targets for cancer prevention and therapy.
Collapse
Affiliation(s)
- Flaubert Mbeunkui
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA.
| | | |
Collapse
|
39
|
Abstract
An important application of the RNA interference (RNAi) pathway is its use as a small RNA-based regulatory system commonly exploited to suppress expression of target genes to test their function in vivo. In several published experiments, RNAi has been used to inactivate components of the RNAi pathway itself, a procedure termed recursive RNAi in this report. The theoretical basis of recursive RNAi is unclear since the procedure could potentially be self-defeating, and in practice the effectiveness of recursive RNAi in published experiments is highly variable. A mathematical model for recursive RNAi was developed and used to investigate the range of conditions under which the procedure should be effective. The model predicts that the effectiveness of recursive RNAi is strongly dependent on the efficacy of RNAi at knocking down target gene expression. This efficacy is known to vary highly between different cell types, and comparison of the model predictions to published experimental data suggests that variation in RNAi efficacy may be the main cause of discrepancies between published recursive RNAi experiments in different organisms. The model suggests potential ways to optimize the effectiveness of recursive RNAi both for screening of RNAi components as well as for improved temporal control of gene expression in switch off-switch on experiments.
Collapse
Affiliation(s)
- Wallace F Marshall
- Department of Biochemistry and Biophysics, Integrative Program in Quantitative Biology, University of California San Francisco, San Francisco, California, United States of America.
| |
Collapse
|
40
|
He F, Buer J, Zeng AP, Balling R. Dynamic cumulative activity of transcription factors as a mechanism of quantitative gene regulation. Genome Biol 2008; 8:R181. [PMID: 17784952 PMCID: PMC2375019 DOI: 10.1186/gb-2007-8-9-r181] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 08/22/2007] [Accepted: 09/04/2007] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The regulation of genes in multicellular organisms is generally achieved through the combinatorial activity of different transcription factors. However, the quantitative mechanisms of how a combination of transcription factors controls the expression of their target genes remain unknown. RESULTS By using the information on the yeast transcription network and high-resolution time-series data, the combinatorial expression profiles of regulators that best correlate with the expression of their target genes are identified. We demonstrate that a number of factors, particularly time-shifts among the different regulators as well as conversion efficiencies of transcription factor mRNAs into functional binding regulators, play a key role in the quantification of target gene expression. By quantifying and integrating these factors, we have found a highly significant correlation between the combinatorial time-series expression profile of regulators and their target gene expression in 67.1% of the 161 known yeast three-regulator motifs and in 32.9% of 544 two-regulator motifs. For network motifs involved in the cell cycle, these percentages are much higher. Furthermore, the results have been verified with a high consistency in a second independent set of time-series data. Additional support comes from the finding that a high percentage of motifs again show a significant correlation in time-series data from stress-response studies. CONCLUSION Our data strongly support the concept that dynamic cumulative regulation is a major principle of quantitative transcriptional control. The proposed concept might also apply to other organisms and could be relevant for a wide range of biotechnological applications in which quantitative gene regulation plays a role.
Collapse
Affiliation(s)
- Feng He
- Biological Systems Analysis Group, HZI- Helmholtz Centre for Infection Research, Inhoffenstrasse, D-38124 Braunschweig, Germany
| | - Jan Buer
- Mucosal Immunity Group, HZI- Helmholtz Centre for Infection Research, Inhoffenstrasse, D-38124 Braunschweig, Germany
- Institute of Medical Microbiology, Hannover Medical School (MHH), D-30625 Hannover, Germany
| | - An-Ping Zeng
- Systems Biology Group, HZI- Helmholtz Centre for Infection Research, Inhoffenstrasse, D-38124 Braunschweig, Germany
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickerstrasse, D-21073 Hamburg, Germany
| | - Rudi Balling
- Biological Systems Analysis Group, HZI- Helmholtz Centre for Infection Research, Inhoffenstrasse, D-38124 Braunschweig, Germany
| |
Collapse
|
41
|
Thornalley PJ. Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems--role in ageing and disease. DRUG METABOLISM AND DRUG INTERACTIONS 2008; 23:125-50. [PMID: 18533367 PMCID: PMC2649415 DOI: 10.1515/dmdi.2008.23.1-2.125] [Citation(s) in RCA: 350] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Glycation of proteins, nucleotides and basic phospholipids by glyoxal and methylglyoxal--physiological substrates of glyoxalase 1--is potentially damaging to the proteome, genome and lipidome. Glyoxalase 1 suppresses glycation by these alpha-oxoaldehyde metabolites and thereby represents part of the enzymatic defence against glycation. Albert Szent-Györgyi pioneered and struggled to understand the physiological function of methylglyoxal and the glyoxalase system. We now appreciate that glyoxalase 1 protects against dicarbonyl modifications of the proteome, genome and lipome. Latest research suggests there are functional modifications of this process--implying a role in cell signalling, ageing and disease.
Collapse
Affiliation(s)
- Paul J Thornalley
- Protein Damage and Systems Biology Research Group, Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, University Hospital, Coventry, UK.
| |
Collapse
|
42
|
Stansfield SH, Allen EE, Dinnis DM, Racher AJ, Birch JR, James DC. Dynamic analysis of GS-NS0 cells producing a recombinant monoclonal antibody during fed-batch culture. Biotechnol Bioeng 2007; 97:410-24. [PMID: 17115445 DOI: 10.1002/bit.21263] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study we have analyzed the dynamic covariation of the mammalian cell proteome with respect to functional phenotype during fed-batch culture of NS0 murine myeloma cells producing a recombinant IgG(4) monoclonal antibody. GS-NS0 cells were cultured in duplicate 10 L bioreactors (36.5 degrees C, 15% DOT, pH 7.0) for 335 h and supplemented with a continuous feed stream after 120 h. Cell-specific growth rate declined continuously after 72 h of culture. Cell-specific recombinant monoclonal antibody production rate (qP) varied sixfold through culture. Whilst qP correlated with relative recombinant heavy chain mRNA abundance up to 216 h, qP subsequently declined, independent of recombinant heavy chain or light chain mRNA abundance. GS-NS0 cultures were sampled at 48 h intervals between 24 and 264 h of culture for proteomic analyses. Total protein abundance and nascent polypeptide synthesis was determined by 2D PAGE of unlabeled proteins visualized by SYPRO Ruby and autoradiography of (35)S-labeled polypeptides, respectively. Covariation of nascent polypeptide synthesis and abundance with biomass-specific cell growth, glucose and glutamate consumption, lactate and Mab production rates were then examined using two partial least squares regression models. Most changes in polypeptide synthesis or abundance for proteins previously identified by mass spectrometry were positively correlated with biomass-specific growth rate. We conclude that the substantial transitions in cell physiology and qP that occur during culture utilize a relatively constant complement of the most abundant host cell machines that vary primarily with respect to induced changes in cell growth rate.
Collapse
|
43
|
Srividhya J, Crampin EJ, McSharry PE, Schnell S. Reconstructing biochemical pathways from time course data. Proteomics 2007; 7:828-38. [PMID: 17370261 DOI: 10.1002/pmic.200600428] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Time series data on biochemical reactions reveal transient behavior, away from chemical equilibrium, and contain information on the dynamic interactions among reacting components. However, this information can be difficult to extract using conventional analysis techniques. We present a new method to infer biochemical pathway mechanisms from time course data using a global nonlinear modeling technique to identify the elementary reaction steps which constitute the pathway. The method involves the generation of a complete dictionary of polynomial basis functions based on the law of mass action. Using these basis functions, there are two approaches to model construction, namely the general to specific and the specific to general approach. We demonstrate that our new methodology reconstructs the chemical reaction steps and connectivity of the glycolytic pathway of Lactococcus lactis from time course experimental data.
Collapse
Affiliation(s)
- Jeyaraman Srividhya
- Indiana University School of Informatics and Biocomplexity Institute, Bloomington, IN 47406, USA
| | | | | | | |
Collapse
|
44
|
Saal LH, Johansson P, Holm K, Gruvberger-Saal SK, She QB, Maurer M, Koujak S, Ferrando AA, Malmström P, Memeo L, Isola J, Bendahl PO, Rosen N, Hibshoosh H, Ringnér M, Borg Å, Parsons R. Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity. Proc Natl Acad Sci U S A 2007; 104:7564-9. [PMID: 17452630 PMCID: PMC1855070 DOI: 10.1073/pnas.0702507104] [Citation(s) in RCA: 406] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Indexed: 11/18/2022] Open
Abstract
Pathway-specific therapy is the future of cancer management. The oncogenic phosphatidylinositol 3-kinase (PI3K) pathway is frequently activated in solid tumors; however, currently, no reliable test for PI3K pathway activation exists for human tumors. Taking advantage of the observation that loss of PTEN, the negative regulator of PI3K, results in robust activation of this pathway, we developed and validated a microarray gene expression signature for immunohistochemistry (IHC)-detectable PTEN loss in breast cancer (BC). The most significant signature gene was PTEN itself, indicating that PTEN mRNA levels are the primary determinant of PTEN protein levels in BC. Some PTEN IHC-positive BCs exhibited the signature of PTEN loss, which was associated to moderately reduced PTEN mRNA levels cooperating with specific types of PIK3CA mutations and/or amplification of HER2. This demonstrates that the signature is more sensitive than PTEN IHC for identifying tumors with pathway activation. In independent data sets of breast, prostate, and bladder carcinoma, prediction of pathway activity by the signature correlated significantly to poor patient outcome. Stathmin, encoded by the signature gene STMN1, was an accurate IHC marker of the signature and had prognostic significance in BC. Stathmin was also pathway-pharmacodynamic in vitro and in vivo. Thus, the signature or its components such as stathmin may be clinically useful tests for stratification of patients for anti-PI3K pathway therapy and monitoring therapeutic efficacy. This study indicates that aberrant PI3K pathway signaling is strongly associated with metastasis and poor survival across carcinoma types, highlighting the enormous potential impact on patient survival that pathway inhibition could achieve.
Collapse
Affiliation(s)
- Lao H. Saal
- Institute for Cancer Genetics
- Departments of Oncology and
| | | | | | | | - Qing-Bai She
- Program in Molecular Pharmacology and Chemistry and Department of Medicine, Memorial Sloan–Kettering Cancer Center, New York, NY 10021; and
| | | | | | | | | | | | - Jorma Isola
- Institute of Medical Technology, University of Tampere, FIN-37520 Tampere, Finland
| | | | - Neal Rosen
- Program in Molecular Pharmacology and Chemistry and Department of Medicine, Memorial Sloan–Kettering Cancer Center, New York, NY 10021; and
| | - Hanina Hibshoosh
- Departments of Pathology
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | | | - Åke Borg
- Departments of Oncology and
- the Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, SE-22185 Lund, Sweden
| | - Ramon Parsons
- Institute for Cancer Genetics
- Departments of Pathology
- Medicine, and
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
45
|
Marino S, Voit EO. An automated procedure for the extraction of metabolic network information from time series data. J Bioinform Comput Biol 2006; 4:665-91. [PMID: 16960969 DOI: 10.1142/s0219720006002259] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 10/21/2005] [Accepted: 12/05/2005] [Indexed: 01/11/2023]
Abstract
Novel high-throughput measurement techniques in vivo are beginning to produce dense high-quality time series which can be used to investigate the structure and regulation of biochemical networks. We propose an automated information extraction procedure which takes advantage of the unique S-system structure and supports model building from time traces, curve fitting, model selection, and structure identification based on parameter estimation. The procedure comprises of three modules: model Generation, parameter estimation or model Fitting, and model Selection (GFS algorithm). The GFS algorithm has been implemented in MATLAB and returns a list of candidate S-systems which adequately explain the data and guides the search to the most plausible model for the time series under study. By combining two strategies (namely decoupling and limiting connectivity) with methods of data smoothing, the proposed algorithm is scalable up to realistic situations of moderate size. We illustrate the proposed methodology with a didactic example.
Collapse
Affiliation(s)
- Simeone Marino
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
46
|
Diakos C, Krapf G, Gerner C, Inthal A, Lemberger C, Ban J, Dohnal AM, Panzer-Grümayer ER. RNAi-mediated silencing of TEL/AML1 reveals a heat-shock protein- and survivin-dependent mechanism for survival. Blood 2006; 109:2607-10. [PMID: 17095626 PMCID: PMC4194423 DOI: 10.1182/blood-2006-04-019612] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The TEL/AML1 fusion gene results from the most frequent t(12;21)(p13;q22) translocation in childhood acute lymphoblastic leukemia (ALL). Its contribution to transformation is largely unknown, in particular with respect to survival and apoptosis. We therefore silenced TEL/AML1 expression in leukemic REH cells by RNA inhibition, which eventually led to programmed cell death. Microarray and 2D gel electrophoresis data demonstrated a differential regulation of heat-shock proteins (HSPs), among them HSP90, as well as of its client, survivin. Consistent with these findings, ectopic expression of TEL/AML1 in Ba/F3 cells increased protein levels of HSP90 and survivin and conferred resistance to apoptotic stimuli. Our data suggest that TEL/AML1 not only contributes to leukemogenesis by affecting an antiapoptotic network but also seems to be indispensable for maintaining the malignant phenotype. The functional relationship between TEL/AML1, HSP90, and survivin provides the rational for targeted therapy, be it the fusion gene or the latter 2 proteins.
Collapse
Affiliation(s)
| | - Gerd Krapf
- Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Christopher Gerner
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Andrea Inthal
- Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | | | - Jozef Ban
- Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | | | | |
Collapse
|
47
|
Gonzalez OR, Küper C, Jung K, Naval PC, Mendoza E. Parameter estimation using Simulated Annealing for S-system models of biochemical networks. ACTA ACUST UNITED AC 2006; 23:480-6. [PMID: 17038344 DOI: 10.1093/bioinformatics/btl522] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
MOTIVATION High-throughput technologies now allow the acquisition of biological data, such as comprehensive biochemical time-courses at unprecedented rates. These temporal profiles carry topological and kinetic information regarding the biochemical network from which they were drawn. Retrieving this information will require systematic application of both experimental and computational methods. RESULTS S-systems are non-linear mathematical approximative models based on the power-law formalism. They provide a general framework for the simulation of integrated biological systems exhibiting complex dynamics, such as genetic circuits, signal transduction and metabolic networks. We describe how the heuristic optimization technique simulated annealing (SA) can be effectively used for estimating the parameters of S-systems from time-course biochemical data. We demonstrate our methods using three artificial networks designed to simulate different network topologies and behavior. We then end with an application to a real biochemical network by creating a working model for the cadBA system in Escherichia coli. AVAILABILITY The source code written in C++ is available at http://www.engg.upd.edu.ph/~naval/bioinformcode.html. All the necessary programs including the required compiler are described in a document archived with the source code. SUPPLEMENTARY INFORMATION Supplementary material is available at Bioinformatics online.
Collapse
Affiliation(s)
- Orland R Gonzalez
- Department of Computer Science University of the Philippines-Diliman, Munich, Germany.
| | | | | | | | | |
Collapse
|
48
|
Gundacker N, Bayer E, Traxler E, Zwickl H, Kubicek M, Stöckl J, Gerner C. Knowledge-based proteome profiling: Considering identified proteins to evaluate separation efficiency by 2-D PAGE. Electrophoresis 2006; 27:2712-21. [PMID: 16817157 DOI: 10.1002/elps.200500964] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Proteome profiling techniques rely on the separation of proteins or peptides and their subsequent quantification. The reliability of this technique is still limited because a proteome profiling result does not necessarily represent the true protein composition of the analysed sample, thus seriously hampering proper data interpretation. Many experimentally observed proteome alterations are biologically not significant. It was the aim of this study to use the knowledge of the biological context of proteins in order to establish optimised proteome profiling protocols. While 2-D spot patterns of total cell protein fractions were found to poorly represent the true protein composition, purified subcellular protein fractions were found to better represent the protein composition of the analysed sample. The application of a standardised protocol to different kinds of cells revealed several striking observations. Firstly, the protein composition of cultured cells of various origins is very similar. Secondly, proteome alterations observed with the described protocols do make sense from a biologic point of view and may thus be considered as truly representative for the analysed samples. Thirdly, primary white blood cells isolated from different donors were found to show minor, but reproducible and significant individual differences. We designate the consideration of known properties of identified proteins in proteome profiles as a knowledge-based approach. The present data suggest that this approach may tremendously help to improve the applied techniques and assess the results. We demonstrate that the fulfilment of well-defined criteria of proteome profiles eventually results in reliable and biologically relevant data.
Collapse
Affiliation(s)
- Nina Gundacker
- Department Institute of Cancer Research, Internal Medicine Clinic I, Medical University of Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
49
|
Snapp EL, Sharma A, Lippincott-Schwartz J, Hegde RS. Monitoring chaperone engagement of substrates in the endoplasmic reticulum of live cells. Proc Natl Acad Sci U S A 2006; 103:6536-41. [PMID: 16617114 PMCID: PMC1458919 DOI: 10.1073/pnas.0510657103] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The folding environment in the endoplasmic reticulum (ER) depends on multiple abundant chaperones that function together to accommodate a range of substrates. The ways in which substrate engagement shapes either specific chaperone dynamics or general ER attributes in vivo remain unknown. In this study, we have evaluated how changes in substrate flux through the ER influence the diffusion of both the lectin chaperone calreticulin and an inert reporter of ER crowdedness. During acute changes in substrate load, the inert probe revealed no changes in ER organization, despite significant changes in calreticulin dynamics. By contrast, inhibition of the lectin chaperone system caused rapid changes in the ER environment that could be reversed over time by easing new substrate burden. Our findings provide insight into the normal organization and dynamics of an ER chaperone and characterize the capacity of the ER to maintain homeostasis during acute changes in chaperone activity and availability.
Collapse
Affiliation(s)
- Erik L Snapp
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, 18 Library Drive, Building 18, Room 101, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
50
|
Zhou S, Mann CJ, Dunn MJ, Preedy VR, Emery PW. Measurement of specific radioactivity in proteins separated by two-dimensional gel electrophoresis. Electrophoresis 2006; 27:1147-53. [PMID: 16470777 DOI: 10.1002/elps.200500684] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We report a method to quantify the specific radioactivity of proteins that have been separated by 2-DE. Gels are stained with SyproRuby, and protein spots are excised. The SyproRuby dye is extracted from each spot using DMSO, and the fluorescence is quantified automatically using a plate reader. The extracted gel piece is then dissolved in hydrogen peroxide and radioactivity is quantified by liquid scintillation counting. Gentle agitation with DMSO for 24 h was found to extract all the SyproRuby dye from gel fragments. The fluorescence of the extract was linearly related to the amount of BSA loaded onto a series of 1-D gels. When rat muscle samples were run on 2-DE gels, the fluorescence extracted from 54 protein spots showed a good correlation (r = 0.79, p < 0.001) with the corresponding spot intensity measured by conventional scanning and image analysis. DMSO extraction was found not to affect the amount of radioactive protein left in the gel. When a series of BSA solutions of known specific radioactivity were run on 2-DE gels, the specific radioactivity measured by the new method showed a good correlation (r = 0.98, p < 0.01, n = 5) with the specific radioactivity measured directly before loading. Reproducibility of the method was measured in a series of 2-DE gels containing proteins from the livers of rats and mice that had been injected with [35S]methionine. Variability tended to increase when the amount of radioactivity in the protein spot was low, but for samples containing at least 10 dpm above background the CV was around 30%, which is comparable to that obtained when measuring protein expression by conventional image analysis of SyproRuby-stained 2-DE gels. Similar results were obtained whether spots were excised manually or using a spot excision robot. This method offers a high-throughput, cost-effective and reliable method of quantifying the specific radioactivity of proteins from metabolic labelling experiments carried out in vivo, so long as sufficient quantities of radioactive tracer are used.
Collapse
Affiliation(s)
- Shaobo Zhou
- Nutritional Sciences Research Division, King's College London, London, UK
| | | | | | | | | |
Collapse
|