1
|
Muneer G, Gebreyesus ST, Chen C, Lee T, Yu F, Lin C, Hsieh M, Nesvizhskii AI, Ho C, Yu S, Tu H, Chen Y. Mapping Nanoscale-To-Single-Cell Phosphoproteomic Landscape by Chip-DIA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2402421. [PMID: 39401432 PMCID: PMC11714195 DOI: 10.1002/advs.202402421] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/19/2024] [Indexed: 01/11/2025]
Abstract
Protein phosphorylation plays a crucial role in regulating disease phenotypes and serves as a key target for drug development. Mapping nanoscale-to-single-cell samples can unravel the heterogeneity of cellular signaling events. However, it remains a formidable analytical challenge due to the low detectability, abundance, and stoichiometry of phosphorylation sites. Here, we present a Chip-DIA strategy, integrating a microfluidic-based phosphoproteomic chip (iPhosChip) with data-independent acquisition mass spectrometry (DIA-MS) for ultrasensitive nanoscale-to-single-cell phosphoproteomic profiling. The iPhosChip operates as an all-in-one station that accommodates both quantifiable cell capture/imaging and the entire phosphoproteomic workflow in a highly streamlined and multiplexed manner. Coupled with a sample size-comparable library-based DIA-MS strategy, Chip-DIA achieved ultra-high sensitivity, detecting 1076±158 to 15869±1898 phosphopeptides from 10±0 to 1013±4 cells, and revealed the first single-cell phosphoproteomic landscape comprising druggable sites and basal phosphorylation-mediated networks in lung cancer. Notably, the sensitivity and coverage enabled the illumination of heterogeneous cytoskeleton remodeling and cytokeratin signatures in patient-derived cells resistant to third-generation EGFR therapy, stratifying mixed-lineage adenocarcinoma-squamous cell carcinoma subtypes, and identifying alternative targeted therapy for late-stage patients. With flexibility in module design and functionalization, Chip-DIA can be adapted to other PTM-omics to explore dysregulated PTM landscapes, thereby guiding therapeutic strategies toward precision oncology.
Collapse
Affiliation(s)
- Gul Muneer
- Institute of ChemistryAcademia SinicaTaipei115201Taiwan
- Institute of Biochemical SciencesNational Taiwan UniversityTaipei106319Taiwan
- Chemical Biology and Molecular Biophysics ProgramTaiwan International Graduate ProgramAcademia SinicaTaipei11529Taiwan
| | | | | | - Tzu‐Tsung Lee
- Institute of ChemistryAcademia SinicaTaipei115201Taiwan
| | - Fengchao Yu
- Department of PathologyUniversity of MichiganAnn ArborMI48109USA
| | - Chih‐An Lin
- Department of Internal MedicineNational Taiwan University HospitalTaipei10051Taiwan
| | - Min‐Shu Hsieh
- Department of PathologyNational Taiwan University Cancer CenterTaipei10617Taiwan
- Department of PathologyNational Taiwan University HospitalTaipei100225Taiwan
- Graduate Institute of PathologyNational Taiwan University College of MedicineTaipei10051Taiwan
| | - Alexey I. Nesvizhskii
- Department of PathologyUniversity of MichiganAnn ArborMI48109USA
- Department of Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMI48109‐2218USA
| | - Chao‐Chi Ho
- Department of Internal MedicineNational Taiwan University HospitalTaipei10051Taiwan
| | - Sung‐Liang Yu
- Department of Clinical Laboratory Science and Medical BiotechnologyCollege of MedicineNational Taiwan UniversityTaipei10048Taiwan
- Department of Laboratory MedicineNational Taiwan University HospitalTaipei10002Taiwan
| | - Hsiung‐Lin Tu
- Institute of ChemistryAcademia SinicaTaipei115201Taiwan
- Chemical Biology and Molecular Biophysics ProgramTaiwan International Graduate ProgramAcademia SinicaTaipei11529Taiwan
- Genome and Systems Biology Degree ProgramAcademia Sinica and National Taiwan UniversityTaipei10617Taiwan
- Nano Science and Technology ProgramTaiwan International Graduate ProgramAcademia SinicaTaipei11529Taiwan
| | - Yu‐Ju Chen
- Institute of ChemistryAcademia SinicaTaipei115201Taiwan
- Chemical Biology and Molecular Biophysics ProgramTaiwan International Graduate ProgramAcademia SinicaTaipei11529Taiwan
- Genome and Systems Biology Degree ProgramAcademia Sinica and National Taiwan UniversityTaipei10617Taiwan
- Department of ChemistryNational Taiwan UniversityTaipei10617Taiwan
| |
Collapse
|
2
|
Li L, Liu N, Zhou T, Qin X, Song X, Wang S, Pang J, Ou Q, Wang Y, Zhang D, Li J, Xu F, Shi S, Yu J, Yuan S. A biomarker exploration in small-cell lung cancer for brain metastases risk and prophylactic cranial irradiation therapy efficacy. Lung Cancer 2024; 196:107959. [PMID: 39340898 DOI: 10.1016/j.lungcan.2024.107959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/20/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Small-cell lung cancer (SCLC) is an aggressive malignancy with a poor prognosis. Limited-stage (LS)-SCLC comprises only one-third of SCLC cases, resulting in limited molecularly targeted therapies and treatment options. Despite advances in thoracic and cranial irradiation leading to improved outcomes, a notable proportion of patients develop brain metastasis (BM), highlighting the importance of identifying high-risk patients for tailored screening and treatment strategies. MATERIALS AND METHODS We analyzed baseline tumor biopsies from 180 LS-SCLC patients who received frontline definitive chemoradiotherapy (dCRT) using a 474-gene pan-cancer panel. The cumulative incidence of BM was calculated with death scored as a competing risk. Independent prognostic factors for BM risk were identified using the Fine-Gray model. RESULTS Alterations in the cell cycle pathway, particularly RB1 mutations, were more common in patients with BM, while FLT4 mutations were more frequent in those without BM (P=0.002 and P=0.021, respectively). Significant risk factors for BM include smoking (subdistribution hazard ratio [SHR]: 1.73; 95 % confidence interval [CI]: 1.11-2.70; P=0.016), RB1 mutations (SHR: 2.19; 95 % CI: 1.27-3.81; P=0.005), and BCL3 amplification (SHR: 2.27; 95 % CI: 1.09-4.71; P=0.028). Conversely, prophylactic cranial irradiation (PCI) (SHR: 0.39; 95 % CI: 0.25-1.60; P<0.001), FLT4 mutations (SHR: 0.26; 95 % CI: 0.07-0.98; P=0.047), and NOTCH pathway alterations (SHR: 0.65; 95 % CI: 0.43-1.00; P=0.049) were associated with a lower incidence of BM in LS-SCLC. Notably, consolidation PCI therapy did not reduce the BM risk in patients with baseline RB1 mutations, with BM occurrence probabilities of 34.7 % at 20 months and 62.6 % at 40 months. CONCLUSION Our study yields valuable insights into the genetic characteristics of LS-SCLC patients with and without BM, aiding the development of personalized treatment strategies. Identifying risk factors associated with the incidence and timing of BM, within the standard regimen of dCRT followed by PCI, may help optimize clinical decision-making for LS-SCLC.
Collapse
Affiliation(s)
- Li Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, PR China
| | - Ning Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, PR China
| | - Tao Zhou
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, PR China
| | - Xueting Qin
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, PR China
| | - Xiaoyu Song
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, PR China
| | - Song Wang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing 210000, Jiangsu, PR China
| | - Jiaohui Pang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing 210000, Jiangsu, PR China
| | - Qiuxiang Ou
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing 210000, Jiangsu, PR China
| | - Yong Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, PR China
| | - Dexian Zhang
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, PR China
| | - Jiaran Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, PR China
| | - Fuhao Xu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, PR China
| | - Shuming Shi
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, PR China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, PR China
| | - Shuanghu Yuan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, PR China; Department Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, PR China; Department of Radiation Oncology, Anhui Provincial Cancer Hospital, Hefei 230031, Anhui, PR China.
| |
Collapse
|
3
|
Orang A, Marri S, McKinnon RA, Petersen J, Michael MZ. Restricting Colorectal Cancer Cell Metabolism with Metformin: An Integrated Transcriptomics Study. Cancers (Basel) 2024; 16:2055. [PMID: 38893174 PMCID: PMC11171104 DOI: 10.3390/cancers16112055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Metformin is a first-line therapy for type 2 diabetes as it disrupts cellular metabolism. Despite the association between metformin and lower cancer incidence, the anti-tumour activity of the drug in colorectal cancer (CRC) is incompletely understood. This study identifies underlying molecular mechanisms by which metformin slows colorectal cancer cell proliferation by investigating metformin-associated microRNA (miRNA) and target gene pairs implicated in signalling pathways. METHODS The present study analysed changes in miRNAs and the coding transcriptome in CRC cells treated with a sublethal dose of metformin, followed by the contextual validation of potential miRNA-target gene pairs. RESULTS Analyses of small RNA and transcriptome sequencing data revealed 104 miRNAs and 1221 mRNAs to be differentially expressed in CRC cells treated with metformin for 72 h. Interaction networks between differentially expressed miRNAs and putative target mRNAs were identified. Differentially expressed genes were mainly implicated in metabolism and signalling processes, such as the PI3K-Akt and MAPK/ERK pathways. Further validation of potential miRNA-target mRNA pairs revealed that metformin induced miR-2110 and miR-132-3p to target PIK3R3 and, consequently, regulate CRC cell proliferation, cell cycle progression and the PI3K-Akt signalling pathway. Metformin also induced miR-222-3p and miR-589-3p, which directly target STMN1 to inhibit CRC cell proliferation and cell cycle progression. CONCLUSIONS This study identified novel changes in the coding transcriptome and small non-coding RNAs associated with metformin treatment of CRC cells. Integration of these datasets highlighted underlying mechanisms by which metformin impedes cell proliferation in CRC. Importantly, it identified the post-transcriptional regulation of specific genes that impact both metabolism and cell proliferation.
Collapse
Affiliation(s)
- Ayla Orang
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (A.O.); (S.M.); (R.A.M.); (J.P.)
| | - Shashikanth Marri
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (A.O.); (S.M.); (R.A.M.); (J.P.)
| | - Ross A. McKinnon
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (A.O.); (S.M.); (R.A.M.); (J.P.)
| | - Janni Petersen
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (A.O.); (S.M.); (R.A.M.); (J.P.)
- Nutrition and Metabolism, South Australia Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Michael Z. Michael
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (A.O.); (S.M.); (R.A.M.); (J.P.)
- Department of Gastroenterology and Hepatology, Flinders Medical Centre, Bedford Park, SA 5042, Australia
- Flinders Centre for Innovation in Cancer, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| |
Collapse
|
4
|
Liu R, Liang X, Guo H, Li S, Yao W, Dong C, Wu J, Lu Y, Tang J, Zhang H. STNM1 in human cancers: role, function and potential therapy sensitizer. Cell Signal 2023:110775. [PMID: 37331415 DOI: 10.1016/j.cellsig.2023.110775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
STMN1 belongs to the stathmin gene family, it encodes a cytoplasmic phosphorylated protein, stathmin1, which is commonly observed in vertebrate cells. STMN1 is a structural microtubule-associated protein (MAP) that binds to microtubule protein dimers rather than microtubules, with each STMN1 binding two microtubule protein dimers and preventing their aggregation, leading to microtubule instability. STMN1 expression is elevated in a number of malignancies, and inhibition of its expression can interfere with tumor cell division. Its expression can change the division of tumor cells, thereby arresting cell growth in the G2/M phase. Moreover, STMN1 expression affects tumor cell sensitivity to anti-microtubule drug analogs, including vincristine and paclitaxel. The research on MAPs is limited, and new insights on the mechanism of STMN1 in different cancers are emerging. The effective application of STMN1 in cancer prognosis and treatment requires further understanding of this protein. Here, we summarize the general characteristics of STMN1 and outline how STMN1 plays a role in cancer development, targeting multiple signaling networks and acting as a downstream target for multiple microRNAs, circRNAs, and lincRNAs. We also summarize recent findings on the function role of STMN1 in tumor resistance and as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Ruiqi Liu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaodong Liang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Haiwei Guo
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Shuang Li
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weiping Yao
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Chenfang Dong
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajun Wu
- Graduate Department, Bengbu Medical College, Bengbu, Anhui, China; Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yanwei Lu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianming Tang
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Zarin B, Eshraghi A, Zarifi F, Javanmard SH, Laher I, Amin B, Vaseghi G. A review on the role of tau and stathmin in gastric cancer metastasis. Eur J Pharmacol 2021; 908:174312. [PMID: 34245746 DOI: 10.1016/j.ejphar.2021.174312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Gastric cancer is resistant to chemotherapy, especially in the later stages. The prevalence of gastric cancer increases after the age of 40, and its peak is in the 7th decade of life. The proteins tau (tubulin associated unit) and stathmin are overexpressed in gastric cancer and contribute to the progression of the disease by increasing cancer cell proliferation, invasion, and inducing drug resistance. This review summarizes the current knowledge on the expression of tau protein and stathmin in gastric cancer and their roles in drug resistance. Medline and PubMed databases were searched from 1990 till February 2021 for the terms "tau protein", "stathmin", and "gastric cancer." Two reviewers screened all articles and assessed prognostic studies on the role of tau and stathmin proteins in gastric cancer progression. Collectively, studies reported that both proteins are expressed at different concentrations in gastric cancer and could be significant molecular biomarkers for prognosis. Both proteins could be good candidates for targeted therapy of gastric cancer and are associated with resistance to taxanes.
Collapse
Affiliation(s)
- Bahareh Zarin
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azadeh Eshraghi
- Department of Clinical Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Zarifi
- Department of Pharmacology, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Bahareh Amin
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
6
|
Borys F, Joachimiak E, Krawczyk H, Fabczak H. Intrinsic and Extrinsic Factors Affecting Microtubule Dynamics in Normal and Cancer Cells. Molecules 2020; 25:E3705. [PMID: 32823874 PMCID: PMC7464520 DOI: 10.3390/molecules25163705] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/18/2022] Open
Abstract
Microtubules (MTs), highly dynamic structures composed of α- and β-tubulin heterodimers, are involved in cell movement and intracellular traffic and are essential for cell division. Within the cell, MTs are not uniform as they can be composed of different tubulin isotypes that are post-translationally modified and interact with different microtubule-associated proteins (MAPs). These diverse intrinsic factors influence the dynamics of MTs. Extrinsic factors such as microtubule-targeting agents (MTAs) can also affect MT dynamics. MTAs can be divided into two main categories: microtubule-stabilizing agents (MSAs) and microtubule-destabilizing agents (MDAs). Thus, the MT skeleton is an important target for anticancer therapy. This review discusses factors that determine the microtubule dynamics in normal and cancer cells and describes microtubule-MTA interactions, highlighting the importance of tubulin isoform diversity and post-translational modifications in MTA responses and the consequences of such a phenomenon, including drug resistance development.
Collapse
Affiliation(s)
- Filip Borys
- Laboratory of Cytoskeleton and Cilia Biology Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland;
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego Street, 00-664 Warsaw, Poland;
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland;
| | - Hanna Krawczyk
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego Street, 00-664 Warsaw, Poland;
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland;
| |
Collapse
|
7
|
Oncoprotein 18 is necessary for malignant cell proliferation in bladder cancer cells and serves as a G3-specific non-invasive diagnostic marker candidate in urinary RNA. PLoS One 2020; 15:e0229193. [PMID: 32614890 PMCID: PMC7332083 DOI: 10.1371/journal.pone.0229193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/15/2020] [Indexed: 12/28/2022] Open
Abstract
Background Urine-based diagnostics indicated involvement of oncoprotein 18 (OP18) in bladder cancer. In cell culture models we investigated the role of OP18 for malignant cell growth. Methods We analyzed 113 urine samples and investigated two human BCa cell lines as a dual model: RT-4 and ECV-304, which represented differentiated (G1) and poorly differentiated (G3) BCa. We designed specific siRNA for down-regulation of OP18 in both cell lines. Phenotypes were characterized by cell viability, proliferation, and expression of apoptosis-related genes. Besides, sensitivity to cisplatin treatment was evaluated. Results Analysis of urine samples from patients with urothelial BCa revealed a significant correlation of the RNA-ratio OP18:uroplakin 1A with bladder cancer. High urinary ratios were mainly found in moderately to poorly differentiated tumors (grade G2-3) that were muscle invasive (stage T2-3), whereas samples from patients with more differentiated non-invasive BCa (G1) showed low OP18:UPK1A RNA ratios. Down-regulation of OP18 expression in ECV-304 shifted its phenotype towards G1 state. Further, OP18-directed siRNA induced apoptosis and increased chemo-sensitivity to cisplatin. Conclusions This study provides conclusive experimental evidence for the link between OP18-derived RNA as a diagnostic marker for molecular staging of BCa in non-invasive urine-based diagnostics and the patho-mechanistic role of OP18 suggesting this gene as a therapeutic target.
Collapse
|
8
|
Shimizu K, Goto Y, Kawabata-Iwakawa R, Ohtaki Y, Nakazawa S, Yokobori T, Obayashi K, Kawatani N, Yajima T, Kaira K, Mogi A, Hirato J, Nishiyama M, Shirabe K. Stathmin-1 Is a Useful Diagnostic Marker for High-Grade Lung Neuroendocrine Tumors. Ann Thorac Surg 2019; 108:235-243. [PMID: 30910656 DOI: 10.1016/j.athoracsur.2019.02.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/29/2018] [Accepted: 02/19/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Stathmin-1 regulates microtubule dynamics and is associated with malignant phenotypes in non-small cell lung cancer (NSCLC). This study evaluated its diagnostic value for differentiating between NSCLC and high-grade lung neuroendocrine tumor (HGNET). METHODS Stathmin-1 protein expression was assessed by immunohistochemistry in 414 NSCLC (305 adenocarcinoma [AD], 102 squamous cell carcinoma [SCC], 7 large-cell carcinoma), 5 typical carcinoid (low-grade lung neuroendocrine tumor), and 34 HGNET (17 small-cell carcinoma [SCLC] and 17 large-cell neuroendocrine carcinoma [LCNEC]) surgical specimens and 57 NSCLC (29 AD and 28 SCC) and 42 HGNET (17 LCNEC and 25 SCLC) biopsy specimens. We also analyzed stathmin-1 mRNA levels in 81 NSCLCs and 26 HGNETs with the use of reverse transcription-polymerase chain reaction. RESULTS Among NSCLC samples, we saw high stathmin-1 protein expression in only three ADs, one SCC, and one large-cell carcinoma surgical samples, all five of which showed neuroendocrine characteristics in pathologic re-review; and low or intermediate expression in all five typical carcinoid surgical samples and all 57 NSCLC biopsy samples. In contrast, all HGNET surgical (n = 34) and biopsy (n = 42) samples showed high stathmin-1 expression. In reverse transcription-polymerase chain reaction, stathmin-1 expression was significantly higher in HGNET tissues than in NSCLC tissues (p < 0.001). CONCLUSIONS Stathmin-1 expression can help in differentiating NSCLC from HGNET.
Collapse
Affiliation(s)
- Kimihiro Shimizu
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Gunma, Japan.
| | - Yusuke Goto
- Department of Pathology, Gunma University Hospital, Gunma, Japan
| | - Reika Kawabata-Iwakawa
- Department of Molecular Pharmacology and Oncology, Gunma University, Graduate School of Medicine, Gunma, Japan
| | - Yoichi Ohtaki
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Gunma, Japan
| | - Seshiru Nakazawa
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Gunma, Japan
| | - Takehiko Yokobori
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Gunma, Japan; Department of Oncology Clinical Development, Gunma University, Graduate School of Medicine, Gunma, Japan
| | - Kai Obayashi
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Gunma, Japan
| | - Natsuko Kawatani
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Gunma, Japan
| | - Toshiki Yajima
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Gunma, Japan
| | - Kyoichi Kaira
- Department of Oncology Clinical Development, Gunma University, Graduate School of Medicine, Gunma, Japan
| | - Akira Mogi
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Gunma, Japan
| | - Junko Hirato
- Department of Pathology, Gunma University Hospital, Gunma, Japan
| | - Masahiko Nishiyama
- Department of Molecular Pharmacology and Oncology, Gunma University, Graduate School of Medicine, Gunma, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Gunma, Japan
| |
Collapse
|
9
|
Utility of Stathmin-1 as a Novel Marker in Evaluating Anal Intraepithelial Neoplasia (AIN). Appl Immunohistochem Mol Morphol 2019; 27:134-139. [DOI: 10.1097/pai.0000000000000547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Liu H, Li Y, Li Y, Zhou L, Bie L. STMN1 as a candidate gene associated with atypical meningioma progression. Clin Neurol Neurosurg 2017. [DOI: 10.1016/j.clineuro.2017.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
High stathmin expression is a marker for poor clinical outcome in endometrial cancer: An NRG oncology group/gynecologic oncology group study. Gynecol Oncol 2017; 146:247-253. [PMID: 28532857 DOI: 10.1016/j.ygyno.2017.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/09/2017] [Accepted: 05/13/2017] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Gynecologic Oncology Group (GOG) 177 demonstrated that addition of paclitaxel to a backbone of adriamycin/cisplatin improves overall survival (OS) and progression-free survival (PFS) for patients with advanced or recurrent endometrial cancer. Using patient specimens from GOG-177, our objective was to identify potential mechanisms underlying the improved clinical response to taxanes. Stathmin (STMN1) is a recognized poor prognostic marker in endometrial cancer that functions as a microtubule depolymerizing protein, allowing cells to transit rapidly through mitosis. Therefore, we hypothesized that one possible mechanism underlying the beneficial effects of paclitaxel could be to counter the impact of stathmin. METHODS We analyzed the expression of stathmin by immunohistochemistry (IHC) in 69 specimens from patients enrolled on GOG-177. We also determined the correlation between stathmin mRNA expression and clinical outcomes in The Cancer Genome Atlas (TCGA) dataset for endometrial cancer. RESULTS We first established that stathmin expression was significantly associated with shorter PFS and OS for all analyzed cases in both GOG-177 and TCGA. However, subgroup analysis from GOG-177 revealed that high stathmin correlated with poor PFS and OS particularly in patients who received adriamycin/cisplatin only. In contrast, there was no statistically significant association between stathmin expression and OS or PFS in patients treated with paclitaxel/adriamycin/cisplatin. CONCLUSIONS Our findings demonstrate that high stathmin expression is a poor prognostic marker in endometrial cancer. Paclitaxel may help to negate the impact of stathmin overexpression when treating high risk endometrial cancer cases.
Collapse
|
12
|
Shimizu K, Ohtaki Y, Altan B, Yokobori T, Nagashima T, Arai M, Mogi A, Kuwano H. Prognostic impact of stathmin 1 expression in patients with lung adenocarcinoma. J Thorac Cardiovasc Surg 2017; 154:1406-1417.e3. [PMID: 28457543 DOI: 10.1016/j.jtcvs.2017.03.125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/18/2017] [Accepted: 03/28/2017] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Stathmin 1 is a major cytosolic phosphoprotein that regulates microtubule dynamics and is associated with malignant phenotypes in various cancers, including non-small cell lung cancer. We aimed to determine differences in overall survival and disease-free proportion in patients with lung adenocarcinoma stratified by stathmin 1 tumor expression. METHODS With the use of immunohistochemistry, stathmin 1 expression was determined in resection specimens from 303 patients with adenocarcinoma. Associations between stathmin 1 protein expression and overall and disease-free proportion were assessed (Kaplan-Meier survival curves compared with log-rank statistics). Cox proportional hazards regression determined the hazard for death stratified by stathmin 1, adjusting for clinicopathologic characteristics. RESULTS During follow-up, 74 (24.4%) recurrences and 73 (24.1%) all-cause deaths were recorded. Expressed in 53.8% of adenocarcinoma cases, overall survival and disease-free proportion were significantly worse in stathmin 1-positive patients (log-rank P < .001 and P < .001, respectively). When adjusted for clinical and pathologic factors, stathmin 1 expression was an independent prognostic variable for both overall survival (hazard ratio, 2.21; 95% confidence interval, 1.28-3.80) and disease-free proportion (hazard ratio, 2.02; 95% confidence interval, 1.13-3.63) and for disease-free proportion even in the subset of patients with stage I (hazard ratio, 2.79; 95% confidence interval, 1.07-7.27). There was no significant difference between the stathmin 1-positive patients with stage IA and patients with stage IB in overall survival (P = .975) and disease-free proportion (P = .490), respectively. CONCLUSIONS Stathmin 1 expression was an independent prognostic factor for adenocarcinoma, even when restricted to patients with early-stage cancer.
Collapse
Affiliation(s)
- Kimihiro Shimizu
- Division of General Thoracic Surgery, Integrative Center of General Surgery, Gunma University Hospital, Gunma, Japan; Department of Thoracic and Visceral Organ Surgery, Gunma University, Graduate School of Medicine, Gunma, Japan.
| | - Yoichi Ohtaki
- Division of General Thoracic Surgery, Integrative Center of General Surgery, Gunma University Hospital, Gunma, Japan; Department of Thoracic and Visceral Organ Surgery, Gunma University, Graduate School of Medicine, Gunma, Japan
| | - Bolag Altan
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Gunma, Japan
| | - Takehiko Yokobori
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Gunma, Japan
| | - Toshiteru Nagashima
- Division of General Thoracic Surgery, Integrative Center of General Surgery, Gunma University Hospital, Gunma, Japan; Department of Thoracic and Visceral Organ Surgery, Gunma University, Graduate School of Medicine, Gunma, Japan
| | - Motohiro Arai
- Department of Human Pathology, Gunma University, Graduate School of Medicine, Gunma, Japan
| | - Akira Mogi
- Division of General Thoracic Surgery, Integrative Center of General Surgery, Gunma University Hospital, Gunma, Japan; Department of General Surgical Science, Gunma University, Graduate School of Medicine, Gunma, Japan
| | - Hiroyuki Kuwano
- Division of General Thoracic Surgery, Integrative Center of General Surgery, Gunma University Hospital, Gunma, Japan; Department of General Surgical Science, Gunma University, Graduate School of Medicine, Gunma, Japan
| |
Collapse
|
13
|
Abstract
INTRODUCTION The enormous biological complexity and high mortality rate of lung cancer highlights the need for new global approaches for the discovery of reliable early diagnostic biomarkers. The study of bronchoalveolar lavage samples by proteomic techniques could identify new lung cancer biomarkers and may provide promising noninvasive diagnostic tools able to enhance the sensitivity of current methods. METHODS First, an observational prospective study was designed to assess protein expression differences in bronchoalveolar lavages from patients with (n = 139) and without (n = 49) lung cancer, using two-dimensional gel electrophoresis and subsequent protein identification by mass spectrometry. Second, validation of candidate biomarkers was performed by bead-based immunoassays with a different patient cohort (204 patients, 48 controls). RESULTS Thirty-two differentially expressed proteins were identified in bronchoalveolar lavages, 10 of which were confirmed by immunoassays. The expression levels of APOA1, CO4A, CRP, GSTP1, and SAMP led to a lung cancer diagnostic panel that reached 95% sensitivity and 81% specificity, and the quantification of STMN1 and GSTP1 proteins allowed the two main lung cancer subtypes to be discriminated with 90% sensitivity and 57% specificity. CONCLUSIONS Bronchoalveolar lavage represents a promising noninvasive source of lung cancer specific protein biomarkers with high diagnostic accuracy. Measurement of APOA1, CO4A, CRP, GSTP1, SAMP, and STMN1 in this fluid may be a useful tool for lung cancer diagnosis, although a further validation in a larger clinical set is required for early stages.
Collapse
|
14
|
Li J, Hu G, Kong F, Wu K, Song K, He J, Sun W. Elevated STMN1 Expression Correlates with Poor Prognosis in Patients with Pancreatic Ductal Adenocarcinoma. Pathol Oncol Res 2015; 21:1013-20. [PMID: 25791566 DOI: 10.1007/s12253-015-9930-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 03/05/2015] [Indexed: 01/09/2023]
Abstract
STMN1 is a cytosolic phosphoprotein that not only participates in cell division, but also plays an important role in other microtubule-dependent processes, such as cell motility. Furthermore, STMN1 acts as a "relay protein" in several intracellular signaling pathways that influence cell growth and differentiation. Thus, STMN1 is likely to support cellular processes essential for tumor progression: survival and migration. Indeed, elevated STMN1 expression has been reported in various types of human malignancies and is correlated with poor prognosis in these human malignancies. However, the clinical and prognostic significance of STMN1 in pancreatic ductal adenocarcinoma (PDAC) remains unknown. Thus, we assessed STMN1 in PDAC in this retrospective study. We first examined STMN1 expression in PDAC tissues from 27 cases and matched adjacent non-cancerous tissues by quantitative polymerase chain reaction (PCR) and western blot analyses. Next, immunohistochemistry was used to evaluate STMN1 expression in 87 archived paraffin-embedded PDAC specimens. STMN1 mRNA and protein expression levels were to a large extent up-regulated in PDAC tissue compared with their adjacent non-cancerous tissues. Moreover, STMN1 expression was closely correlated with histological differentiation, lymphatic metastasis, and TNM stage (P = 0.023, 0.047, and 0.014, respectively). In addition, PDAC patients with higher STMN1 expression died sooner than those with lower STMN1 expression (P < 0.01). Multivariate analysis demonstrated that STMN1 expression was an independent prognostic factor for PDAC patients (P < 0.01). Herein, we provide the first evidence that up-regulated STMN1 may contribute to tumor progression and poor prognosis in PDAC patients and may serve as a novel prognostic marker.
Collapse
Affiliation(s)
- Jian Li
- Department of PET center, Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Overexpression of stathmin is resistant to paclitaxel treatment in patients with non-small cell lung cancer. Tumour Biol 2015; 36:7195-204. [DOI: 10.1007/s13277-015-3361-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/19/2015] [Indexed: 01/09/2023] Open
|
16
|
Overexpression of stathmin 1 is a poor prognostic biomarker in non-small cell lung cancer. J Transl Med 2015; 95:56-64. [PMID: 25384122 DOI: 10.1038/labinvest.2014.124] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/15/2014] [Accepted: 08/12/2014] [Indexed: 01/03/2023] Open
Abstract
Stathmin 1 (STMN1), a major microtubule-depolymerizing protein, is involved in cell cycle progression and cell motility. However, the clinical significance of STMN1 expression in non-small cell lung cancer (NSCLC) has not been determined. The expression pattern of STMN1 mRNA was analyzed by quantitative real-time PCR (qRT-PCR) in 37 cases of NSCLC and in the corresponding non-tumor tissue samples. Furthermore, immunohistochemistry was performed to detect STMN1 protein expression in 113 primary NSCLC tissues. The functional role of STMN1 in lung cancer cell lines was evaluated by small interfering RNA-mediated depletion followed by analyses of cell proliferation and invasion. We found that the STMN1 mRNA and protein levels in NSCLC tissues were significantly higher than those in the corresponding non-tumor tissues (P<0.001). In addition, increased STMN1 expression was correlated with poor tumor differentiation (P<0.001), large tumor size (P=0.022), advanced N stage (P=0.033), and advanced TNM stage (P<0.001). Kaplan-Meier analysis indicates that NSCLC patients with higher STMN1 expression showed significantly worse survival. Moreover, multivariate analysis indicates that higher STMN1 protein expression was an independent prognostic factor of disease-specific survival (HR 2.247, 95%CI 1.320-3.825, P=0.003). Finally, the knockdown of STMN1 in lung cancer cells resulted in a decrease in cellular proliferation and invasion. Our findings suggest that STMN1 may have an important role in NSCLC progression and could serve as a potential prognostic marker for patients with NSCLC.
Collapse
|
17
|
Abstract
INTRODUCTION Small-cell lung cancer (SCLC) is the most aggressive subtype of lung cancer, with no early detection strategy or targeted therapy currently available. We hypothesized that difference gel electrophoresis (DIGE) may identify membrane-associated proteins (MAPs) specific to SCLC, advance our understanding of SCLC biology, and discover new biomarkers of SCLC. METHODS MAP lysates were prepared from three SCLCs, three non-small-cell lung cancers, and three immortalized normal bronchial epithelial cell lines and coanalyzed by DIGE. Subsequent protein identification was performed by mass spectrometry. Proteins were submitted to Ingenuity Pathway Analysis. Candidate biomarkers were validated by Western blotting (WB) and immunohistochemistry (IHC). RESULTS Principal component analysis on the global DIGE data set demonstrated that the four replicates derived from each of the nine cell lines clustered closely, as did samples within the same histological group. One hundred thirty-seven proteins were differentially expressed in SCLC compared with non-small-cell lung cancer and immortalized normal bronchial epithelial cells. These proteins were overrepresented in cellular/tissue morphology networks. Dihydropyrimidinase-related protein 2, guanine nucleotide-binding protein alpha-q, laminin receptor 1, pontin, and stathmin 1 were selected as candidate biomarkers among MAPs overexpressed in SCLC. Overexpression of all candidates but RSSA in SCLC was verified by WB and/or IHC on tissue microarrays. These proteins were significantly associated with SCLC histology and survival in univariables analyses. CONCLUSION DIGE analysis of a membrane-associated subproteome discovered overexpression of dihydropyrimidinase-related protein 2, guanine nucleotide-binding protein alpha-q, RUVB1, and stathmin 1 in SCLC. Results were verified by WB and/or IHC in primary tumors, suggesting that investigating their functional relevance in SCLC progression is warranted. Association with survival requires further validation in larger clinical data sets.
Collapse
|
18
|
Akhtar J, Wang Z, Yu C, Zhang ZP. Effectiveness of local injection of lentivirus-delivered stathmin1 and stathmin1 shRNA in human gastric cancer xenograft mouse. J Gastroenterol Hepatol 2014; 29:1685-91. [PMID: 24720379 DOI: 10.1111/jgh.12594] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIM We have reported previously that RNA interference targeting stathmin1 (STMN1) gene in human gastric cancer cells inhibits proliferation in vitro and tumor growth in vivo. Based on these observations, in the present study, the possibility that local injection of lentivirus-delivered stathmin shRNA would induce regression of the established human gastric cancer xenograft in animal model was investigated. METHODS BALB/c nude mice were inoculated subcutaneously into the right armpit with human gastric cancer cells SGC-7901(2 × 10(6) cells in 200 μL phosphate-buffered saline) to develop a xenograft model of human gastric cancer. When tumor reached suitable size, mice were randomly divided into two groups. STMN1 shRNA group (n = 6) were given local injection of lentivirus-delivered STMN1 shRNA, and the non-silencing shRNA group (n = 6) were administered with local injection of lentivirus-delivered non-silencing shRNA. Quantitative reverse transcription-polymerase chain reaction and Western blot were used to verify the knockdown of the gene expression in dissected tumor at mRNA and protein level, respectively. RESULTS Experimental therapy on the nude mice model bearing subcutaneous tumor of SGC-7901 cells showed that local administration of STMN1 shRNA effectively regressed the pre-established tumors. Stathmin shRNA-treated tumors were significantly regressed as compared with that of the tumor injected with non-silencing shRNA (P < 0.05). Tumor weight was significantly decreased in STMN1-treated group as compared with non-silencing shRNA group (P < 0.05). Quantitative reverse transcription-polymerase chain reaction and Western blot showed downregulation of STMN1 gene expression in STMN1 shRNA group as compared with non-silencing shRNA group (P < 0.05). CONCLUSION These findings highlight the potential use of local injection of lentivirus-delivered shRNA for the treatment of early localized human gastric carcinoma.
Collapse
Affiliation(s)
- Javed Akhtar
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | | | | | | |
Collapse
|
19
|
Nair S, Bora-Singhal N, Perumal D, Chellappan S. Nicotine-mediated invasion and migration of non-small cell lung carcinoma cells by modulating STMN3 and GSPT1 genes in an ID1-dependent manner. Mol Cancer 2014; 13:173. [PMID: 25028095 PMCID: PMC4121302 DOI: 10.1186/1476-4598-13-173] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/04/2014] [Indexed: 11/20/2022] Open
Abstract
Background Inhibitor of DNA binding/Differentiation 1 (ID1) is a helix loop helix transcription factor that lacks the basic DNA binding domain. Over-expression of ID1 has been correlated with a variety of human cancers; our earlier studies had shown that reported ID1 is induced by nicotine or EGF stimulation of non-small cell lung cancer (NSCLC) cells and its down regulation abrogates cell proliferation, invasion and migration. Here we made attempts to identify downstream targets of ID1 that mediate these effects. Methods A microarray analysis was done on two different NSCLC cell lines (A549 and H1650) that were transfected with a siRNA to ID1 or a control, non-targeting siRNA. Cells were stimulated with nicotine and genes that were differentially expressed upon nicotine stimulation and ID1 depletion were analyzed to identify potential downstream targets of ID1. The prospective role of the identified genes was validated by RT-PCR. Additional functional assays were conducted to assess the role of these genes in nicotine induced proliferation, invasion and migration. Experiments were also conducted to elucidate the role of ID1, which does not bind to DNA directly, affects the expression of these genes at transcriptional level. Results A microarray analysis showed multiple genes are affected by the depletion of ID1; we focused on two of them: Stathmin-like3 (STMN3), a microtubule destabilizing protein, and GSPT1, a protein involved in translation termination; these proteins were induced by both nicotine and EGF in an ID1 dependent fashion. Overexpression of ID1 in two different cell lines induced STMN3 and GSPT1 at the transcriptional level, while depletion of ID1 reduced their expression. STMN3 and GSPT1 were found to facilitate the proliferation, invasion and migration of NSCLC cells in response to nAChR activation. Attempts made to assess how ID1, which is a transcriptional repressor, induces these genes showed that ID1 down regulates the expression of two transcriptional co-repressors, NRSF and ZBP89, involved in the repression of these genes. Conclusions Collectively, our data suggests that nicotine and EGF induce genes such as STMN3 and GSPT1 to promote the proliferation, invasion and migration of NSCLC, thus enhancing their tumorigenic properties. These studies thus reveal a central role for ID1 and its downstream targets in facilitating lung cancer progression.
Collapse
Affiliation(s)
| | | | | | - Srikumar Chellappan
- Department of Tumor Biology, H, Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA.
| |
Collapse
|
20
|
Chen X, Shen J, Li X, Wang X, Long M, Lin F, Wei J, Yang L, Yang C, Dong K, Zhang H. Rlim, an E3 ubiquitin ligase, influences the stability of Stathmin protein in human osteosarcoma cells. Cell Signal 2014; 26:1532-8. [PMID: 24686088 DOI: 10.1016/j.cellsig.2014.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/14/2014] [Accepted: 03/14/2014] [Indexed: 12/21/2022]
Abstract
Stathmin is an oncoprotein and is expressed at high levels in a wide variety of human malignancies, which plays important roles in maintenance of malignant phenotypes. The regulation of Stathmin gene overexpression has been wildly explored, but the exact mechanism still needs to be elucidated. It is believed that regulation of an oncogene protein abundance through post-translational modifications is essential for maintenance of malignant phenotypes. Here we identified the Rlim, a Ring H2 zinc finger protein with intrinsic ubiquitin ligase activity, as a Stathmin-interacting protein that could increase Stathmin turnover through binding with this targeted protein and then induce its degradation by proteasome in a ubiquitin-dependent manner. Inhibition of endogenous Rlim expression by siRNA could increase the level of Stathmin protein, which further led to cell proliferation and cell cycle changes in human osteosarcoma cell lines. On the other hand, forced overexpression of Rlim could decrease the level of Stathmin protein. These results demonstrate that Rlim is involved in the negative regulation of Stathmin protein level through physical interaction and ubiquitin-mediated proteolysis. Hence, Rlim is a novel regulator of Stathmin protein in a ubiquitin-dependent manner, and represents a new pathway for malignant phenotype turnover by modulating the level of Stathmin protein in human osteosarcomas.
Collapse
Affiliation(s)
- Xi Chen
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianjun Shen
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xingyu Li
- Department of Ophthalmology, Xi'an No. 4 Hospital, Xi'an, China
| | - Xi Wang
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Min Long
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Fang Lin
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Junxia Wei
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Longfei Yang
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Chinglai Yang
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, USA
| | - Ke Dong
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | - Huizhong Zhang
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
21
|
Hsu HP, Li CF, Lee SW, Wu WR, Chen TJ, Chang KY, Liang SS, Tsai CJ, Shiue YL. Overexpression of stathmin 1 confers an independent prognostic indicator in nasopharyngeal carcinoma. Tumour Biol 2014; 35:2619-2629. [PMID: 24218338 DOI: 10.1007/s13277-013-1345-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 10/17/2013] [Indexed: 12/31/2022] Open
Abstract
Data mining on public domain identified that stathmin 1 (STMN1) transcript was significantly higher expressed in nasopharyngeal carcinoma (NPC). Also known as the oncoprotein 18, STMN1 performs an important function in regulating rapid microtubule remodeling of the cytoskeleton in response to the cellular conditions. Immunoexpression of STMN1 was retrospectively assessed in biopsies of 124 consecutive NPC patients without initial distant metastasis and treated with consistent guidelines. The outcome was correlated with clinicopathological features and patient survivals. Results indicated that high STMN1 expressions (50 %) were correlated with advanced age (p = 0.027), higher T stage (p = 0.003), and overall clinical stage (p = 0.006) by the 7th American Joint Committee of Cancer Staging. In multivariate analyses, high STMN1 expression emerged as an independent prognosticator for worse disease-specific survival (p = 0.001), distal metastasis-free survival (p = 0.003), and local recurrence-free survival (p = 0.006). Exogenous expression of E2F transcription factor 1 (E2F1) or/and its dimeric partner, transcription factor Dp-1 (TFDP1), notably induced the STMN1 protein level in a NPC-derived cell line, TW01. Accordingly, high STMN1 protein level is commonly associated with adverse prognosticators and confers tumor aggressiveness in patients with NPC, and its upregulation might be attributed to E2F1 and/or TFDP1 transactivation.
Collapse
Affiliation(s)
- Han-Ping Hsu
- Center of Medical Education, Chi-Mei Medical Center, Tainan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chen YL, Uen YH, Li CF, Horng KC, Chen LR, Wu WR, Tseng HY, Huang HY, Wu LC, Shiue YL. The E2F transcription factor 1 transactives stathmin 1 in hepatocellular carcinoma. Ann Surg Oncol 2013; 20:4041-4054. [PMID: 22911364 DOI: 10.1245/s10434-012-2519-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND Through data mining the Stanford Microarray Database, the stathmin 1 (STMN1) transcript was found to be frequently upregulated in the hepatocellular carcinoma (HCC) with low alpha-fetoprotein level. The molecular mechanism of STMN1 upregulation in HCCs remained unclear. METHODS Quantitative RT-PCR, immunoblotting, immunohistochemistry, and transfection of expression or small hairpin RNA interference plasmids, chromatin immunoprecipitation (ChIP), and quantitative ChIP assays were performed in HCC specimens or 2 distinct HCC-derived cell lines. Dual luciferase assay and site-directed mutagenesis were applied to analyze the activities of STMN1 proximal promoter region. RESULTS STMN1 mRNA and proteins were significantly associated with several clinicopathological features. High STMN1 or E2F1 immunoexpression was predictive of poor overall survival (OS) rate (P < .01). In HCC-derived cell lines, E2F1 was elevated before STMN1 mRNA during the cell cycle. Exogenous expression of E2F1 or both transcription factor DP-1 (TFDP1) and E2F1 genes induced E2F1 and STMN1 mRNA (P < .01). Knockdown of the E2F1 gene suppressed E2F1 and STMN1 mRNA and E2F1 and STMN1 protein levels (P < .05). The promoter activity of STMN1 gene increased with overexpression of both E2F1 and TFDP1 genes (P < .05); however, it decreased when mutations were introduced in the E2F1-binding sites (P < .05). CONCLUSIONS Upregulation of E2F1 and STMN1 proteins associate with worse outcomes in patients with HCC. E2F1 significantly correlates with STMN1 protein level in HCC lesions and in vitro transactivation assays, suggesting that STMN1 gene is transactivated by the E2F1 protein.
Collapse
MESH Headings
- Blotting, Western
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Cycle
- Cell Proliferation
- Chromatin Immunoprecipitation
- E2F1 Transcription Factor/antagonists & inhibitors
- E2F1 Transcription Factor/genetics
- E2F1 Transcription Factor/metabolism
- Female
- Flow Cytometry
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoenzyme Techniques
- Liver/metabolism
- Liver/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Luciferases/metabolism
- Male
- Mutagenesis, Site-Directed
- Mutation/genetics
- Neoplasm Staging
- Prognosis
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
- Retrospective Studies
- Reverse Transcriptase Polymerase Chain Reaction
- Stathmin/genetics
- Stathmin/metabolism
- Transcription Factor DP1/genetics
- Transcription Factor DP1/metabolism
- Transcriptional Activation
- Tumor Cells, Cultured
- alpha-Fetoproteins/genetics
- alpha-Fetoproteins/metabolism
Collapse
Affiliation(s)
- Yi-Ling Chen
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Akhtar J, Wang Z, Zhang ZP, Bi MM. Lentiviral-mediated RNA interference targeting stathmin1 gene in human gastric cancer cells inhibits proliferation in vitro and tumor growth in vivo. J Transl Med 2013; 11:212. [PMID: 24040910 PMCID: PMC3848762 DOI: 10.1186/1479-5876-11-212] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/11/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Gastric cancer is highly aggressive disease. Despite advances in diagnosis and therapy, the prognosis is still poor. Various genetic and molecular alterations are found in gastric cancer that underlies the malignant transformation of gastric mucosa during the multistep process of gastric cancer pathogenesis. The detailed mechanism of the gastric cancer development remains uncertain. In present study we investigated the potential role of stathmin1 gene in gastric cancer tumorigenesis and examined the usefulness of RNA interference (RNAi) targeting stathmin1 as a form of gastric cancer treatment. METHODS A lentiviral vector encoding a short hairpin RNA (shRNA) targeted against stathmin1 was constructed and transfected into the packaging cells HEK 293 T and the viral supernatant was collected to transfect MKN-45 cells. The transwell chemotaxis assay and the CCK-8 assay were used to measure migration and proliferation of tumor cells, respectively. Quantitative real-time PCR and western blotting were used to detect the expression levels of stathmin1. RESULTS Lentivirus mediated RNAi effectively reduced stathmin1 expression in gastric cells. Significant decreases in stathmin1 mRNA and protein expression were detected in gastric cells carrying lentiviral stathmin-shRNA vector and also significantly inhibited the proliferation, migration in gastric cancer cells and tumorigenicity in Xenograft Animal Models. CONCLUSIONS Our findings suggest that stathmin1 overexpression is common in gastric cancer and may play a role in its pathogenesis. Lentivirus mediated RNAi effectively reduced stathmin1 expression in gastric cells. In summary, shRNA targeting of stathmin1 can effectively inhibits human gastric cancer cell growth in vivo and may be a potential therapeutic strategy for gastric cancer.
Collapse
Affiliation(s)
- Javed Akhtar
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, 250021, Shandong, China
| | - Zhou Wang
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, 250021, Shandong, China
| | - Zhi Ping Zhang
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, 250021, Shandong, China
| | - Ming Ming Bi
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, 250021, Shandong, China
| |
Collapse
|
24
|
Guo Q, Su N, Zhang J, Li X, Miao Z, Wang G, Cheng M, Xu H, Cao L, Li F. PAK4 kinase-mediated SCG10 phosphorylation involved in gastric cancer metastasis. Oncogene 2013; 33:3277-87. [PMID: 23893240 DOI: 10.1038/onc.2013.296] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 06/03/2013] [Accepted: 06/03/2013] [Indexed: 12/26/2022]
Abstract
Superior cervical ganglia 10 (SCG10), as a microtubule (MT) destabilizer, maintains MT homeostasis and has a critical role in neuronal development, but its function in tumorigenesis has not been characterized. In the present study, we demonstrated that p21-activated kinase 4 (PAK4)-mediated SCG10 phosphorylation regulates MT homeostasis in metastatic gastric cancer. Our results indicate that SCG10 is a physiological substrate of PAK4, which is phosphorylated on serine 50 (Ser50) in a PAK4-dependent manner. Phosphorylated SCG10 regulated MT dynamics to promote gastric cancer cell migration and invasion in vitro and metastasis in a xenograft mouse models. Inhibiting PAK4, either by LCH-7749944 or RNA interference, resulted in the inhibition of Ser50 phosphorylation and a blockade to cell invasion, suggesting that PAK4-SCG10 signaling occurs in gastric cancer cell invasion. Moreover, we demonstrated a strong positive correlation between PAK4 and phospho-Ser50 SCG10 expression in gastric cancer samples. We also showed that high expression of SCG10 phospho-Ser50 is highly correlated to an aggressive phenotype of clinical gastric cancer. These findings revealed a novel function of SCG10 in promoting invasive potential of gastric cancer cells, suggesting that blocking PAK4-mediated SCG10 phosphorylation might be a potential therapeutic strategy for metastasis of gastric cancer.
Collapse
Affiliation(s)
- Q Guo
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - N Su
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - J Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - X Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Z Miao
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, China
| | - G Wang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - M Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - H Xu
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, China
| | - L Cao
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - F Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
25
|
Nagaraj NS, Singh OV. Integrating genomics and proteomics-oriented biomarkers to comprehend lung cancer. ACTA ACUST UNITED AC 2013; 3:167-80. [PMID: 23485163 DOI: 10.1517/17530050902725125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer deaths worldwide. Recent years have brought tremendous progress in the development of genomic and proteomic platforms to study lung cancer progression and biomarker identification. OBJECTIVE To evaluate and integrate potential innovations of 'omics' (e.g., genomics and proteomics) technologies in dissecting biomarkers for lung cancer. METHODS Omics technologies permit simultaneous monitoring of many hundreds or thousands of macro and small molecules, as well as functional monitoring of multiple pivotal cellular pathways. Discussion follows to explore the principal challenges in the development of cancer biomarkers integrating genomics with proteomics data sets with their functional counterparts in conjunction with clinical data. RESULTS/CONCLUSION Sets of genes and gene interactions affecting different subsets of cancers can be determined using genomics in lung cancer. Proteomic studies have generated numerous functional data sets of potential diagnostic, prognostic and therapeutic significance in lung cancer. It is likely that omics will take a central place in the understanding, diagnosis, monitoring and treatment of lung cancer. Here the potential benefits and pitfalls of these methodologies are reviewed for the faster discovery of therapeutically valuable biomarkers for lung cancer.
Collapse
Affiliation(s)
- Nagathihalli S Nagaraj
- Vanderbilt University School of Medicine, Division of Surgical Oncology, Department of Surgery, 1161 21st Ave S., D2300 MCN, Nashville, TN 37232, USA +1 615 509 1565 , +1 615 322 6174 ,
| | | |
Collapse
|
26
|
Indovina P, Marcelli E, Pentimalli F, Tanganelli P, Tarro G, Giordano A. Mass spectrometry-based proteomics: the road to lung cancer biomarker discovery. MASS SPECTROMETRY REVIEWS 2013; 32:129-142. [PMID: 22829143 DOI: 10.1002/mas.21355] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 04/18/2012] [Accepted: 04/18/2012] [Indexed: 06/01/2023]
Abstract
Lung cancer is the leading cause of cancer death in men and women in Western nations, and is among the deadliest cancers with a 5-year survival rate of 15%. The high mortality caused by lung cancer is attributable to a late-stage diagnosis and the lack of effective treatments. So, it is crucial to identify new biomarkers that could function not only to detect lung cancer at an early stage but also to shed light on the molecular mechanisms that underlie cancer development and serve as the basis for the development of novel therapeutic strategies. Considering that DNA-based biomarkers for lung cancer showed inadequate sensitivity, specificity, and reproducibility, proteomics could represent a better tool for the identification of useful biomarkers and therapeutic targets for this cancer type. Among the proteomics technologies, the most powerful tool is mass spectrometry. In this review, we describe studies that use mass spectrometry-based proteomics technologies to analyze tumor proteins and peptides, which might represent new diagnostic, prognostic, and predictive markers for lung cancer. We focus in particular on those findings that hold promise to impact significantly on the clinical management of this disease.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Biomarkers/blood
- Biomarkers/metabolism
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/chemistry
- Biomarkers, Tumor/metabolism
- Chromatography, High Pressure Liquid
- Glycosylation/drug effects
- Humans
- Lung Neoplasms/blood
- Lung Neoplasms/diagnosis
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Pleural Effusion, Malignant/blood
- Pleural Effusion, Malignant/drug therapy
- Pleural Effusion, Malignant/metabolism
- Prognosis
- Protein Processing, Post-Translational/drug effects
- Proteomics/methods
- Saliva/chemistry
- Saliva/drug effects
- Spectrometry, Mass, Electrospray Ionization
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Tandem Mass Spectrometry
Collapse
Affiliation(s)
- Paola Indovina
- Department of Human Pathology and Oncology, University of Siena, Siena, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Malki K, Campbell J, Davies M, Keers R, Uher R, Ward M, Paya-Cano J, Aitchinson KJ, Binder E, Sluyter F, Kuhn K, Selzer S, Craig I, McGuffin P, Schalkwyk LC. Pharmacoproteomic investigation into antidepressant response in two mouse inbred strains. Proteomics 2013; 12:2355-65. [PMID: 22696452 DOI: 10.1002/pmic.201100306] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study, we present a pharmacoproteomic investigation of response to antidepressants two inbred strains. Our aim was to uncover molecular mechanisms underlying antidepressant action and identify new biomarkers to determine therapeutic response to two antidepressants with proven efficacy in the treatment of depression but divergent mechanisms of action. Mice were treated with the pro-noradrenergic drug nortriptyline, the pro-serotonergic drug escitalopram or saline. Quantitative proteomic analyses were undertaken on hippocampal tissue from a study design that used two inbred mouse strains, two depressogenic protocols and a control condition, (maternal separation, chronic mild stress, control), two antidepressant drugs and two dosing protocols. The proteomic analysis was aimed at the identification of specific drug-response markers. Complementary approaches, 2DE and isobaric tandem mass tagging (TMT), were applied to the selected experimental groups. To investigate the relationship between proteomic profiles, depressogenic protocols and drug response, 2DE and TMT data sets were analysed using multivariate methods. The results highlighted significant strain- and stress-related differences across both 2DE and TMT data sets and identified the three gene products involved in serotonergic (PXBD5, YHWAB, SLC25A4) and one in noradrenergic antidepressant action (PXBD6).
Collapse
Affiliation(s)
- Karim Malki
- King's College London, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Stathmin-1 Expression as a Complement to p16 Helps Identify High-grade Cervical Intraepithelial Neoplasia With Increased Specificity. Am J Surg Pathol 2013; 37:89-97. [DOI: 10.1097/pas.0b013e3182753f5a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Ye JL, Han JQ, Guo XJ, Wang FM. Relationship among expression of β-tubulin Ⅲ, Stathmin and P-gp proteins, response to paclitaxel chemotherapy, and prognosis in ESCC. Shijie Huaren Xiaohua Zazhi 2012; 20:2613-2617. [DOI: 10.11569/wcjd.v20.i27.2613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the relationship among the expression of β-tubulin Ⅲ, Stathmin and P-gp proteins, and response to paclitaxel chemotherapy, and prognosis in esophageal squamous cell carcinoma (ESCC).
METHODS: Seventy-six ESCC patients were enrolled in this study and their tumor samples were collected for analysis. The expression of β-tubulin Ⅲ, Stathmin, and P-gp proteins in these ESCC samples and 40 normal esophageal mucosal samples was detected by immunohistochemistry. The correlation among the expression of these proteins, response to paclitaxel chemotherapy, and prognosis was then analyzed.
RESULTS: The positive rates of β-tubulin Ⅲ, Stathmin, and P-gp in ESCC were significantly higher than those in normal esophageal mucosal tissue (63.2% vs 10.0%, 54% vs 10%, 64.5% vs 20.0%, all P < 0.05). Increased expression of β-tubulin Ⅲ, Stathmin, and P-gp was significantly correlated with poor tumor differentiation, lymph node metastasis, and advanced tumor stage (all P < 0.05). In 64 cases treated by paclitaxel chemotherapy, the response rate was significantly lower in patients who had positive expression of β-tubulin Ⅲ, Stathmin, and P-gp than in those who had negative expression (P = 0.024, 0.024, 0.012).
CONCLUSION: The expression of β-tubulin Ⅲ, Stathmin, P-gp is increased in ESCC. Increased expression of β-tubulin Ⅲ, Stathmin, and P-gp is associated with high malignancy and poor prognosis.
Collapse
|
30
|
Abstract
In previous studies, we demonstrated that miR-193b expression is reduced in melanoma relative to benign nevi, and also that miR-193b represses cyclin D1 and Mcl-1 expression. We suggested that stathmin 1 (STMN1) might be a target of miR-193b. STMN1 normally regulates microtubule dynamics either by sequestering free tubulin heterodimers or by promoting microtubule catastrophe. Increased expression of STMN1 has been observed in a variety of human malignancies, but its association with melanoma is unknown. We now report that STMN1 is upregulated during the progression of melanoma relative to benign nevi, and that STMN1 is directly regulated by miR-193b. Using an experimental cell culture approach, overexpression of miR-193b using synthetic microRNAs repressed STMN1 expression, whereas inhibition of miR-193b with anti-miR oligos increased STMN1 expression in melanoma cells. The use of a luciferase reporter assay confirmed that miR-193b directly regulates STMN1 by targeting the 3'-untranslated region of STMN1 mRNA. We further demonstrated that STMN1 is overexpressed in malignant melanoma compared with nevi in two independent melanoma cohorts, and that its level is inversely correlated with miR-193b expression. However, STMN1 expression was not significantly associated with patient survival, Breslow depth, mitotic count or patient age. STMN1 knockdown by small-interfering RNA in melanoma cells drastically repressed cell proliferation and migration potential, whereas ectopic expression of STMN1 using lentivirus increased cell proliferation and migration rates. Subsequent gene expression analysis indicated that interconnected cytoskeletal networks are directly affected following STMN1 knockdown. In addition, we identified deregulated genes associated with proliferation and migration, and revealed that p21(Cip1/Waf1) and p27(Kip) could be downstream effectors of STMN1 signaling. Taken together, our study suggests that downregulation of miR-193b may contribute to increased STMN1 expression in melanoma, which consequently promotes migration and proliferation of tumor cells.
Collapse
|
31
|
Lin X, Tang M, Tao Y, Li L, Liu S, Guo L, Li Z, Ma X, Xu J, Cao Y. Epstein-Barr virus-encoded LMP1 triggers regulation of the ERK-mediated Op18/stathmin signaling pathway in association with cell cycle. Cancer Sci 2012; 103:993-9. [PMID: 22417000 DOI: 10.1111/j.1349-7006.2012.02271.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 12/17/2011] [Accepted: 02/26/2012] [Indexed: 11/30/2022] Open
Abstract
The MAPKs are activated by a variety of cellular stimuli to participate in a series of signaling cascades and mediate diverse intracellular responses. One potential target of the MAPKs is Op18/stathmin, a molecule that acts as an integrator of diverse cell signaling pathways and regulates the dynamics of microtubules, which are involved in modulating a variety of cellular processes, including cell cycle progression and cell growth. Our study focused on the regulation of the MAPK-mediated Op18/stathmin signaling pathway, which is triggered by the Epstein-Barr virus-encoded latent membrane protein 1 ( LMP1) oncogene in nasopharyngeal carcinoma cells. The results showed that the activity of MAPK, which was induced by LMP1, varied with cell cycle progression; LMP1 upregulated phosphorylation of ERK during the G(1)/S phase, but negatively regulated phosphorylation of ERK during the G(2)/M phase. We found that the regulation of Op18/stathmin signaling by LMP1 was mainly mediated through ERK. The inhibition of LMP1 expression attenuated the interaction of ERK with Op18/stathmin and promoted microtubule depolymerization. These findings indicate the existence of a new cell cycle-associated signaling pathway in which LMP1 regulates ERK-mediated Op18/stathmin signaling.
Collapse
Affiliation(s)
- Xuechi Lin
- Cancer Research Institute, Changsha, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang R, Wang Z, Yang J, Liu X, Wang L, Guo X, Zeng F, Wu M, Li G. LRRC4 inhibits the proliferation of human glioma cells by modulating the expression of STMN1 and microtubule polymerization. J Cell Biochem 2012; 112:3621-9. [PMID: 21809374 DOI: 10.1002/jcb.23293] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
LRRC4 is a tumor suppressor of glioma, and it is epigenetically inactivated commonly in glioma. Our previous study has shown that induction of LRRC4 expression inhibits the proliferation of glioma cells. However, little is known about the mechanisms underlying the action of LRRC4 in glioma cells. We employed two-dimensional fluorescence differential gel electrophoresis (2-D DIGE) and MALDI -TOF/TOF-MS/MS to identify 11 differentially expressed proteins, including the significantly down-regulated STMN1 expression in the LRRC4-expressing U251 glioma cells. The levels of STMN1 expression appeared to be positively associated with the pathogenic degrees of human glioma. Furthermore, induction of LRRC4 over-expression inhibited the STMN1 expression and U251 cell proliferation in vitro, and the glioma growth in vivo. In addition, induction of LRRC4 or knockdown of STMN1 expression induced cell cycle arrest in U251 cells, which was associated with modulating the p21, cyclin D1, and cyclin B expression, and the ERK phosphorylation, and inhibiting the CDK5 and cdc2 kinase activities, but increasing the microtubulin polymerization in U251 cells. LRRC4, at least partially by down-regulating the STMN1expression, acts as a major glioma suppressor, induces cell cycle arrest and modulates the dynamic process of microtubulin, leading to the inhibition of glioma cell proliferation and growth. Potentially, modulation of LRRC4 or STMN1 expression may be useful for design of new therapies for the intervention of glioma.
Collapse
Affiliation(s)
- Rong Wang
- Cancer Research Institute, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Carney BK, Caruso Silva V, Cassimeris L. The microtubule cytoskeleton is required for a G2 cell cycle delay in cancer cells lacking stathmin and p53. Cytoskeleton (Hoboken) 2012; 69:278-89. [PMID: 22407961 DOI: 10.1002/cm.21024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 02/24/2012] [Accepted: 02/29/2012] [Indexed: 12/25/2022]
Abstract
In several cancer cell lines, depleting the microtubule (MT)-destabilizing protein stathmin/oncoprotein18 leads to a G2 cell cycle delay and apoptosis. These phenotypes are observed only in synergy with low levels of p53, but the pathway(s) activated by stathmin depletion to delay the cell cycle are unknown. We found that stathmin depletion caused greater MT stability in synergy with loss of p53, measured by the levels of acetylated α-tubulin and the rate of centrosomal MT nucleation. Nocodazole or vinblastine-induced MT depolymerization abrogated the stathmin-depletion induced G2 delay, measured by the percentage of cells staining positive for several markers (TPX2, CDK1 with inhibitory phosphorylation), indicating that MTs are required to lengthen G2. Live cell imaging showed that stathmin depletion increased time in G2 without an impact on the duration of mitosis, indicating that the longer interphase duration is not simply a consequence of a previous slowed mitosis. In contrast, stabilization of MTs with paclitaxel (8 nM) slowed mitosis without lengthening the duration of interphase, demonstrating that increased MT stability alone is not sufficient to delay cells in G2.
Collapse
Affiliation(s)
- Bruce K Carney
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | | | | |
Collapse
|
34
|
Giusti L, Iacconi P, Valle YD, Ciregia F, Ventroni T, Donadio E, Giannaccini G, Chiarugi M, Torregrossa L, Proietti A, Basolo F, Lucacchini A. A proteomic profile of washing fluid from the colorectal tract to search for potential biomarkers of colon cancer. MOLECULAR BIOSYSTEMS 2012; 8:1088-99. [DOI: 10.1039/c2mb05394b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
35
|
Ikeda Y, Tanji E, Makino N, Kawata S, Furukawa T. MicroRNAs associated with mitogen-activated protein kinase in human pancreatic cancer. Mol Cancer Res 2011; 10:259-69. [PMID: 22188669 DOI: 10.1158/1541-7786.mcr-11-0035] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aberrant expression of microRNAs (miRNA) is associated with phenotypes of various cancers, including pancreatic cancer. However, the mechanism of the aberrant expression is largely unknown. Activation of the mitogen-activated protein kinase (MAPK) signaling pathway plays a crucial role in gene expression related to the malignant phenotype of pancreatic cancer. Hence, we studied the role of MAPK in the aberrant expression of miRNAs in pancreatic cancer cells. The alterations in expression of 183 miRNAs induced by activation or inactivation of MAPK were assayed in cultured pancreatic cancer cells and HEK293 cells by means of the quantitative real-time PCR method. We found that four miRNAs, namely, miR-7-3, miR-34a, miR-181d, and miR-193b, were preferentially associated with MAPK activity. Among these miRNAs, miR-7-3 was upregulated by active MAPK, whereas the others were downregulated. Promoter assays indicated that the promoter activities of the host genes of miR-7-3 and miR-34a were both downregulated by alteration in MAPK activity. Exogenous overexpression of the MAPK-associated miRNAs had the effect of inhibition of the proliferation of cultured pancreatic cancer cells; miR-193b was found to exhibit the most remarkable inhibition. A search for target genes of miR-193b led to identification of CCND1, NT5E, PLAU, STARD7, STMN1, and YWHAZ as the targets. Translational suppression of these genes by miR-193b was confirmed by reporter assay. These results indicate that activation of MAPK may play a significant role in aberrant expression of miRNAs and their associated phenotypes in pancreatic cancer.
Collapse
Affiliation(s)
- Yushi Ikeda
- International Research and Educational Institute for Integrated Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
36
|
Belletti B, Baldassarre G. Stathmin: a protein with many tasks. New biomarker and potential target in cancer. Expert Opin Ther Targets 2011; 15:1249-66. [PMID: 21978024 DOI: 10.1517/14728222.2011.620951] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Stathmin is a microtubule-destabilizing phosphoprotein, firstly identified as the downstream target of many signal transduction pathways. Several studies then indicated that stathmin is overexpressed in many types of human malignancies, thus deserving the name of Oncoprotein 18 (Op18). At molecular level, stathmin depolymerizes microtubules by either sequestering free tubulin dimers or directly inducing microtubule-catastrophe. A crucial role for stathmin in the control of mitosis has been proposed, since both its overexpression and its downregulation induce failure in the correct completion of cell division. Accordingly, stathmin is an important target of the main regulator of M phase, cyclin-dependent kinase 1. AREAS COVERED Recent evidences support a role for stathmin in the regulation of cell growth and motility, both in vitro and in vivo, and indicate its involvement in advanced, invasive and metastatic cancer more than in primary tumors. EXPERT OPINION Many studies suggest that high stathmin expression levels in cancer negatively influence the response to microtubule-targeting drugs. These notions together with the fact that stathmin is expressed at very low levels in most adult tissues strongly support the use of stathmin as marker of prognosis and as target for novel anti-tumoral and anti-metastatic therapies.
Collapse
Affiliation(s)
- Barbara Belletti
- National Cancer Institute, Centro di Riferimento Oncologico, Division of Experimental Oncology 2, Via Franco Gallini, 2, 33081 Aviano, Italy
| | | |
Collapse
|
37
|
Azizi AA, Li L, Ströbel T, Chen WQ, Slavc I, Lubec G. Identification of c-myc-dependent proteins in the medulloblastoma cell line D425Med. Amino Acids 2011; 42:2149-63. [DOI: 10.1007/s00726-011-0953-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 05/26/2011] [Indexed: 12/27/2022]
|
38
|
Tanca A, Addis MF, Pagnozzi D, Cossu-Rocca P, Tonelli R, Falchi G, Eccher A, Roggio T, Fanciulli G, Uzzau S. Proteomic analysis of formalin-fixed, paraffin-embedded lung neuroendocrine tumor samples from hospital archives. J Proteomics 2011; 74:359-370. [PMID: 21147281 DOI: 10.1016/j.jprot.2010.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 12/01/2010] [Accepted: 12/03/2010] [Indexed: 10/18/2022]
Abstract
Hospital tissue repositories host an invaluable supply of diseased samples with matched retrospective clinical information. In this work, a recently optimized method for extracting full-length proteins from formalin-fixed, paraffin-embedded (FFPE) tissues was evaluated on lung neuroendocrine tumor (LNET) samples collected from hospital repositories. LNETs comprise a heterogeneous spectrum of diseases, for which subtype-specific diagnostic markers are lacking. Six archival samples diagnosed as typical carcinoid (TC) or small cell lung carcinoma (SCLC) were subjected to a full-length protein extraction followed by a GeLC-MS/MS analysis, enabling the identification of over 300 distinct proteins per tumor subtype. All identified proteins were categorized through DAVID software, revealing a differential distribution of functional classes, such as those involved in RNA processing, response to oxidative stress and ion homeostasis. Moreover, using spectral counting for protein abundance estimation and beta-binomial test as statistical filter, a list of 28 differentially expressed proteins was generated and submitted to pathway analysis by means of Ingenuity Pathway Analysis software. Differential expression of chromogranin-A (more expressed in TCs) and stathmin (more expressed in SCLCs) was consistently confirmed by immunohistochemistry. Therefore, FFPE hospital archival samples can be successfully subjected to proteomic investigations aimed to biomarker discovery following a GeLC-MS/MS label-free approach.
Collapse
|
39
|
Wang F, Wang LX, Li SL, Li K, He W, Liu HT, Fan QX. Downregulation of stathmin is involved in malignant phenotype reversion and cell apoptosis in esophageal squamous cell carcinoma. J Surg Oncol 2011; 103:704-15. [PMID: 21360534 DOI: 10.1002/jso.21870] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Accepted: 01/03/2011] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND OBJECTIVES Stathmin plays a critical role in the regulation of mitosis and mediates the development of malignant tumors. Here, we investigated the potential role of stathmin in cell cycle and apoptosis in esophageal squamous cell carcinoma (ESCC). METHODS A stathmin short hairpin RNA (shRNA) plasmid was employed to downregulate stathmin expression in the ESCC cell line EC9706 cells. Cell proliferation was measured by cell counting, MTT, and colony formation assay. Cell migration was measured by Boyden chamber. Western blot was used to analyze the expressions of stathmin, survivin, and apoptosis-related proteins in transfected cells. Cell cycle and apoptosis were determined by flow cytometry and DNA ladder. Oncogenicity assay in nude mice was utilized to analyze phenotypic changes of transfected cells in vivo. RESULTS After transfection with stathmin shRNA plasmid, stathmin expression markedly decreased in EC9706 cells. Stathmin downregulation significantly inhibited cell proliferation, cell migration in vitro, and tumorigenicity in vivo, meanwhile arrested cell cycle in the G2/M phase and induced cell apoptosis. Further, stathmin downregulation resulted in downregulation of Bcl-2 and survivin proteins, activation of Caspase-3. CONCLUSIONS These findings demonstrate that stathmin may play an essential role in carcinogenesis of ESCC, which will lay a foundation for target therapy of ESCC.
Collapse
Affiliation(s)
- Feng Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | | | | | | | | | | | | |
Collapse
|
40
|
Lu Z, Qin A, Qian K, Chen X, Jin W, Zhu Y, Eltahir Y. Proteomic analysis of the host response in the bursa of Fabricius of chickens infected with Marek's disease virus. Virus Res 2010; 153:250-7. [PMID: 20723570 DOI: 10.1016/j.virusres.2010.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 08/07/2010] [Accepted: 08/09/2010] [Indexed: 10/19/2022]
|
41
|
Zhang C, Zhu C, Chen H, Li L, Guo L, Jiang W, Lu SH. Kif18A is involved in human breast carcinogenesis. Carcinogenesis 2010; 31:1676-1684. [PMID: 20595236 DOI: 10.1093/carcin/bgq134] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Microtubule (MT) kinesin motor proteins orchestrate various cellular processes (e.g. mitosis, motility and organelle transportation) and have been implicated in human carcinogenesis. Kif18A, a plus-end directed MT depolymerase kinesin, regulates MT dynamics, chromosome congression and cell division. In this study, we report that Kif18A is overexpressed in human breast cancers and Kif18A overexpression is associated with tumor grade, metastasis and poor survival. Functional analyses reveal that ectopic overexpression of Kif18A results in cell multinucleation, whereas ablation of Kif18A expression significantly inhibits the proliferative capability of breast cancer cells in vitro and in vivo. Inhibition of Kif18A not only affects the critical mitotic function of Kif18A but also decreases cancer cell migration by stabilizing MTs at leading edges and ultimately induces anoikis of cells with inactivation of the phosphatidylinositol 3-kinase-Akt signaling pathway. Together, our results indicate that Kif18A is involved in human breast carcinogenesis and may serve as a potential therapeutic target for human breast cancer.
Collapse
Affiliation(s)
- Chunpeng Zhang
- State Key Laboratory of Molecular Oncology and Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing 100021, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Hsieh SY, Huang SF, Yu MC, Yeh TS, Chen TC, Lin YJ, Chang CJ, Sung CM, Lee YL, Hsu CY. Stathmin1 overexpression associated with polyploidy, tumor-cell invasion, early recurrence, and poor prognosis in human hepatoma. Mol Carcinog 2010; 49:476-87. [PMID: 20232364 DOI: 10.1002/mc.20627] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Frequent intrahepatic metastasis causes early tumor recurrence and dismaying prognosis of human hepatocellular carcinoma (HCC). We recently identified overexpression of stathmin1 (STMN1) in human HCC. This study was designed to elucidate the clinical and biological significance of overexpression of STMN1 in HCC. Expression of STMN1 was conducted by quantitative reverse transcription-polymerase chain reaction and immunoblotting assays on 58 pairs of HCC and para-tumor liver tissues from patients with HCC along with normal liver tissues as the controls. Association of STMN1 overexpression with tumor recurrence and prognosis was investigated by Kaplan-Meier cumulative survival and Cox Regression analyses. Roles of STMN1 in cell cycle, cell motility, and invasion were determined by in vitro assays. STMN1 overexpression in hepatoma was strongly associated with local invasion (P = 0.031), early recurrence (P = 0.002), and poor prognosis (P = 0.005), and was an independent indicator for tumor recurrence (P = 0.0045). STMN1 overexpression further identified subgroups of HCC patients with higher tumor recurrence and worse prognosis among HCC patients with early tumor stage (T1) or intermediate histological grades (G2 and G3), both of whom represent the majority of HCC patients receiving primary curative hepatectomy. Silencing STMN1 expression via RNA interference suppressed invasion activity, while ectopic expression of STMN1 enhanced cell invasion and caused polyploidy of cells. In conclusion, STMN1 overexpression could predict early tumor recurrence and poor prognosis, particularly at early stage of hepatoma. Overexpression of STMN1 promoted polyploidy formation, tumor-cell invasion, and intrahepatic metastasis, suggesting that STMN1 can be a target for anti-cancer therapy of human hepatoma.
Collapse
Affiliation(s)
- Sen-Yung Hsieh
- Liver Research Unit, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Liu F, Liu F, Sun YL, Zhao XH. Significance of STMN1 expression in esophageal squamous cell carcinoma. Shijie Huaren Xiaohua Zazhi 2010; 18:1306-1312. [DOI: 10.11569/wcjd.v18.i13.1306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of Stathmin 1 (STMN1) protein in esophageal squamous cell carcinoma (ESCC) tissue and cell lines and to evaluate its correlation with the clinicopathologic parameters of ESCC.
METHODS: One-dimensional (1-D) Western blot was performed to determine the expression of STMN1 in 8 ESCC cell lines. Two-dimensional (2-D) Western blot was used to determine modified STMN1 in KYSE180 cells. Western blot and immunohistochemistry (IHC) were employed to determine the expression of STMN1 in ESCC specimens. The chi-square test was used to analyze IHC results.
RESULTS: STMN1 was widely expressed in ESCC cells, including WHCO1, EC0156, KYSE510, KYSE180, KYSE170, KYSE150, KYSE140 and KYSE30 cell lines. Two STMN1 protein spots were detected in KYSE180 cells on 2-D Western blot: one stronger signal and one weaker signal located in more basic area, which suggests that STMN1 protein may be modified in KYSE180 cells. Western blot analysis showed that STMN1 was overexpressed in 69.2% (9/13) of ESCC specimens compared with their normal epithelial counterparts. IHC assay also demonstrated that the positive rate of STMN1 expression was significantly higher in ESCC tissue than in matched adjacent normal tissue (P < 0.05). STMN1 expression is not correlated with age, gender, differentiation, tumor grade and lymph node metastasis.
CONCLUSION: The expression of STMN1 protein is up-regulated in both ESCC tissue and cell lines and may be modified in some ESCC cell lines. STMN1 might exert an oncogenic function in ESCC. Dynamic measurement of STMN1 expression level might aid to evaluate the progression of ESCC.
Collapse
|
44
|
Hao L, Xie P, Li H, Li G, Xiong Q, Wang Q, Qiu T, Liu Y. Transcriptional alteration of cytoskeletal genes induced by microcystins in three organs of rats. Toxicon 2010; 55:1378-86. [PMID: 20184910 DOI: 10.1016/j.toxicon.2010.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 02/07/2010] [Accepted: 02/16/2010] [Indexed: 10/19/2022]
Abstract
This study explored the mechanisms of toxicity of microcystins by measuring the transcription levels of nine cytoskeletal genes (actin, tubulin, vimentin, ezrin, radixin, moesin, MAP1b, tau, stathmin) in the liver, kidney and spleen of male Wistar rats treated with microcystins at a dose of 80 microg MC-LReq kg(-1) bw. Microcystins disrupted the transcriptional homeostasis of cytoskeletal genes in these organs. Changes in the transcription of four genes (beta-actin, ezrin, radixin and tau) in liver, one gene (stathmin) in kidney, and one gene (radixin) in spleen were significantly correlated with the tissue concentration of microcystins. However, the influences on the transcription of most genes we studied were greater in the liver than in the kidney or spleen. The effects of microcystins on the transcription of cytoskeletal genes may explain some of the morphological and pathological changes observed in these organs and provide new information on the hepatotoxicity of these compounds. Additionally, transcriptional changes in tumor-associated cytoskeletal genes (ezrin, moesin and stathmin) that were observed in the present study provide a possible clue to the tumor-promoting potential of microcystins and their influences on the transcription of MAP1b and tau imply possible neurological toxicity of microcystins in vertebrates.
Collapse
Affiliation(s)
- Le Hao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, The Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Jeon TY, Han ME, Lee YW, Lee YS, Kim GH, Song GA, Hur GY, Kim JY, Kim HJ, Yoon S, Baek SY, Kim BS, Kim JB, Oh SO. Overexpression of stathmin1 in the diffuse type of gastric cancer and its roles in proliferation and migration of gastric cancer cells. Br J Cancer 2010; 102:710-718. [PMID: 20087351 PMCID: PMC2837578 DOI: 10.1038/sj.bjc.6605537] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/09/2009] [Accepted: 12/24/2009] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Stathmin1 is a microtubule-regulating protein that has an important role in the assembly and disassembly of the mitotic spindle. The roles of stathmin1 in carcinogenesis of various cancers, including prostate and breast cancer, have been explored. However, its expression and roles in gastric cancer have not yet been described. METHODS Stathmin1 expression in paraffin-embedded tissue sections from 226 patients was analysed by immunohistochemistry. Roles of stathmin1 were studied using a specific small interfering RNA (siRNA). RESULTS The expression of stathmin1 was positively correlated with lymph node metastasis, TNM stages and vascular invasion, and negatively with recurrence-free survival, in the diffuse type of gastric cancer. The median recurrence-free survival in patients with a negative and positive expression of stathmin1 was 17.0 and 7.0 months, respectively (P=0.009). When the expression of stathmin1 was knocked down using siRNA, the proliferation, migration and invasion of poorly differentiated gastric cancer cells in vitro were significantly inhibited. Moreover, stathmin1 siRNA transfection significantly slowed the growth of xenografts in nude mice. CONCLUSION These results suggest that stathmin1 can be a good prognostic factor for recurrence-free survival rate and is a therapeutic target in diffuse-type gastric cancer.
Collapse
Affiliation(s)
- T-Y Jeon
- Department of Surgery, Pusan National University, Beomeo-Ri, Mulgeum-Eup, Yangsan, 626–870, South Korea
| | - M-E Han
- Department of Anatomy, Pusan National University, Beomeo-Ri, Mulgeum-Eup, Yangsan, 626–870, South Korea
- Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Beomeo-Ri, Mulgeum-Eup, Yangsan, 626–870, South Korea
| | - Y-W Lee
- Department of Internal Medicine, Pusan National University, Beomeo-Ri, Mulgeum-Eup, Yangsan, 626–870, South Korea
| | - Y-S Lee
- Department of Anatomy, Pusan National University, Beomeo-Ri, Mulgeum-Eup, Yangsan, 626–870, South Korea
| | - G-H Kim
- Department of Internal Medicine, Pusan National University, Beomeo-Ri, Mulgeum-Eup, Yangsan, 626–870, South Korea
| | - G-A Song
- Department of Internal Medicine, Pusan National University, Beomeo-Ri, Mulgeum-Eup, Yangsan, 626–870, South Korea
| | - G-Y Hur
- Department of Forensic Medicine, Pusan National University, Beomeo-Ri, Mulgeum-Eup, Yangsan, 626–870, South Korea
| | - J-Y Kim
- Department of Pathology, School of Medicine, Pusan National University, Beomeo-Ri, Mulgeum-Eup, Yangsan, 626–870, South Korea
| | - H-J Kim
- Department of Anatomy, Pusan National University, Beomeo-Ri, Mulgeum-Eup, Yangsan, 626–870, South Korea
| | - S Yoon
- Department of Anatomy, Pusan National University, Beomeo-Ri, Mulgeum-Eup, Yangsan, 626–870, South Korea
| | - S-Y Baek
- Department of Anatomy, Pusan National University, Beomeo-Ri, Mulgeum-Eup, Yangsan, 626–870, South Korea
| | - B-S Kim
- Department of Anatomy, Pusan National University, Beomeo-Ri, Mulgeum-Eup, Yangsan, 626–870, South Korea
| | - J-B Kim
- Department of Anatomy, Pusan National University, Beomeo-Ri, Mulgeum-Eup, Yangsan, 626–870, South Korea
| | - S-O Oh
- Department of Anatomy, Pusan National University, Beomeo-Ri, Mulgeum-Eup, Yangsan, 626–870, South Korea
- Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Beomeo-Ri, Mulgeum-Eup, Yangsan, 626–870, South Korea
| |
Collapse
|
46
|
Dieguez-Acuña F, Kodama S, Okubo Y, Paz AC, Gygi SP, Faustman DL. Proteomics identifies multipotent and low oncogenic risk stem cells of the spleen. Int J Biochem Cell Biol 2009; 42:1651-60. [PMID: 20005973 DOI: 10.1016/j.biocel.2009.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 12/01/2009] [Indexed: 01/31/2023]
Abstract
The adult spleen harbors a population of naturally occurring multipotent stem cells of non-lymphoid lineage (CD45-). In animal models, these splenic stem cells can directly or indirectly contribute to regeneration of bone, inner ear, cranial nerves, islets, hearts and salivary glands. Here we characterize the CD45- stem cell proteome to determine its potential broader multipotency versus its protection from malignant transformation. Using state-of-the-art proteomics and in vivo testing, we performed functional analyses of unique proteins of CD45- (non-lymphoid) splenic stem cells, as compared with CD45+ (lymphoid) cells. CD45- stem cell-specific proteins were identical to those in iPS, including OCT3/4, SOX2, KLF4, c-MYC and NANOG. They also expressed Hox11, Gli3, Wnt2, and Adam12, the benchmark transcription factors of embryonic stem cells. These transcription factors were functional because their mRNA was upregulated in the spleen in association with ongoing damage to the pancreas and salivary glands, organs to which they normally contribute stem cells. We also show low likelihood of malignant transformation. Our proteomic and functional analyses reveals that naturally occurring CD45- stem cells of the spleen are the first-ever candidates for naturally occurring population of embryonic and iPS cells with low oncogenic risk. Given their presence in normal humans and mice, splenic stem cells are poised for translational research.
Collapse
|
47
|
Expression of Stathmin in Localized Upper Urinary Tract Urothelial Carcinoma: Correlations With Prognosis. Urology 2009; 74:1264-9. [DOI: 10.1016/j.urology.2009.04.088] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 04/12/2009] [Accepted: 04/22/2009] [Indexed: 01/28/2023]
|
48
|
Chung MK, Kim HJ, Lee YS, Han ME, Yoon S, Baek SY, Kim BS, Kim JB, Oh SO. Hedgehog signaling regulates proliferation of prostate cancer cells via stathmin1. Clin Exp Med 2009; 10:51-7. [PMID: 19779961 DOI: 10.1007/s10238-009-0068-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 08/31/2009] [Indexed: 12/17/2022]
Abstract
Hedgehog (Hh) signaling is an essential pathway in embryonic development of prostate. Hh also plays roles in the proliferation of progenitor cells and cancer cells of adult prostate. However, how Hh signaling contributes to carcinogenesis of prostate is poorly understood. Stathmin1 is a microtubule-regulating protein that plays an important role in the assembly and disassembly of the mitotic spindle. Stathmin1 is expressed in normal developing mouse prostate and in prostate cancer. The expression pattern of stathmin1 is similar to that of Shh in prostate development and cancer, suggesting a connection between these two proteins. In this study, we examined the relationship between stathmin1 and Hh signaling. Here, we show that stathmin1 expression is regulated by Hh signaling in prostate cancer cells. Cyclopamine, a specific inhibitor of Hh signaling, reduced the expression of stathmin1 in prostate cancer cells. However, the Shh peptide induced stathmin1 expression. Overexpression of Gli1 further confirmed the relationship. Co-expression of stathmin1 and Patched 1, a receptor for Hh signaling was observed in prostate cancer tissues. Cyclopamine and stathmin1 siRNA both decreased proliferation of prostate cancer cells but did not produce an additive effect, suggesting a common pathway. These results suggest that Hh signaling regulates proliferation of prostate cancer cells by controlling stathmin1 expression.
Collapse
Affiliation(s)
- Moon-Kee Chung
- Department of Urology, Pusan National University, Mulgeum-Eup, Beomeo-Ri, Yangsan, 626-870, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Su D, Smith SM, Preti M, Schwartz P, Rutherford TJ, Menato G, Danese S, Ma S, Yu H, Katsaros D. Stathmin and tubulin expression and survival of ovarian cancer patients receiving platinum treatment with and without paclitaxel. Cancer 2009; 115:2453-63. [PMID: 19322891 DOI: 10.1002/cncr.24282] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Paclitaxel interacts with microtubules to exert therapeutic effects. Molecules that affect microtubule activity, such as betaIII-tubulin and stathmin, may interfere with the treatment. In this study, the authors analyzed betaIII-tubulin and stathmin expression in ovarian tumors and examined their associations with treatment response and patient survival. METHODS The study included 178 patients with epithelial ovarian cancer who underwent cytoreductive surgery followed by platinum-based chemotherapy; of these patients, 75 also received paclitaxel. Fresh tumor samples that were collected at surgery were analyzed for messenger RNA expression of betaIII-tubulin and stathmin using real-time polymerase chain reaction analysis. Associations of these molecules with treatment response, disease progression, and overall survival were evaluated. RESULTS High stathmin expression was associated with worse disease progression-free and overall survival compared with low stathmin expression. This association was independent of patient age, disease stage, tumor grade, histology, and residual tumor size and was observed in patients who received platinum plus paclitaxel, but not in patients who received platinum without paclitaxel, suggesting that stathmin expression in tumor tissue may interfere with paclitaxel treatment. Similar effects were not observed for betaIII-tubulin, although high betaIII-tubulin expression was associated with disease progression among patients who received platinum without paclitaxel. No associations were observed between treatment response and tubulin or stathmin expression. Expression levels of betaIII-tubulin and stathmin were correlated significantly. CONCLUSIONS High stathmin expression predicted an unfavorable prognosis in patients with ovarian cancer who received paclitaxel and platinum chemotherapy. This finding supports the possibility that stathmin may interfere with paclitaxel treatment, leading to a poor prognosis for patients with ovarian cancer.
Collapse
Affiliation(s)
- Dan Su
- Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Upregulated INHBA expression may promote cell proliferation and is associated with poor survival in lung adenocarcinoma. Neoplasia 2009; 11:388-96. [PMID: 19308293 DOI: 10.1593/neo.81582] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Revised: 01/24/2009] [Accepted: 01/26/2009] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION The expression, mechanisms of regulation, and functional impact of INHBA (activin A) in lung adenocarcinoma (AD) have not been fully elucidated. METHODS INHBA expression was examined in 96 lung samples (86 ADs, 10 normal lung) using oligonucleotide microarrays and 187 lung samples (164 ADs, 6 bronchioalveolar carcinomas, and 17 normal lung) using immunohistochemistry. The proliferation of AD cell lines H460 and SKLU1 was examined with WST-1 assays after treatment with recombinant activin A, follistatin, and INHBA-targeting small-interfering RNA. Cells were also treated with 5-aza-2' deoxycytidine and trichostatin A to investigate the role of epigenetic regulation in INHBA expression. RESULTS Primary ADs expressed 3.1 times more INHBA mRNA than normal lung. In stage I AD patients, high levels of primary tumor INHBA transcripts were associated with worse prognosis. Immunohistochemistry confirmed higher inhibin betaA protein expression in ADs (78.7%) and bronchioalveolar carcinomas (66.7%) compared with normal lung (11.8%). H460 and SKLU1 demonstrated increased proliferation when treated with exogenous activin A and reduced proliferation when treated with follistatin or INHBA-targeting small-interfering RNA. INHBA mRNA expression in H460 cells was upregulated after treatment with trichostatin A and 5-aza-2' deoxycytidine. CONCLUSIONS INHBA is overexpressed in AD relative to controls. Inhibin betaA may promote cell proliferation, and its overexpression is associated with worse survival in stage I AD patients. In addition, overexpression of INHBA may be affected by promoter methylation and histone acetylation in a subset of lung ADs.
Collapse
|