1
|
Yu CW, Nguyen VC, Barroga NAM, Nakamura Y, Li HM. Plastid LPAT1 is an integral inner envelope membrane protein with the acyltransferase domain located in the stroma. PLANT CELL REPORTS 2024; 43:257. [PMID: 39382709 DOI: 10.1007/s00299-024-03347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
KEY MESSAGE The N-terminal transmembrane domain of LPAT1 crosses the inner membrane placing the N terminus in the intermembrane space and the C-terminal enzymatic domain in the stroma. Galactolipids mono- and di-galactosyl diacylglycerol are the major and vital lipids of photosynthetic membranes. They are synthesized by five enzymes hosted at different sub-chloroplast locations. However, localization and topology of the second-acting enzyme, lysophosphatidic acid acyltransferase 1 (LPAT1), which acylates the sn-2 position of glycerol-3-phosphate (G3P) to produce phosphatidic acid (PA), remain unclear. It is not known whether LPAT1 is located at the outer or the inner envelope membrane and whether its enzymatic domain faces the cytosol, the intermembrane space, or the stroma. Even the size of mature LPAT1 in chloroplasts is not known. More information is essential for understanding the pathways of metabolite flow and for future engineering endeavors to modify glycerolipid biosynthesis. We used LPAT1 preproteins translated in vitro for import assays to determine the precise size of the mature protein and found that the LPAT1 transit peptide is at least 85 residues in length, substantially longer than previously predicted. A construct comprising LPAT1 fused to the Venus fluorescent protein and driven by the LPAT1 promoter was used to complement an Arabidopsis lpat1 knockout mutant. To determine the sub-chloroplast location and topology of LPAT1, we performed protease treatment and alkaline extraction using chloroplasts containing in vitro-imported LPAT1 and chloroplasts isolated from LPAT1-Venus-complemented transgenic plants. We show that LPAT1 traverses the inner membrane via an N-terminal transmembrane domain, with its N terminus protruding into the intermembrane space and the C-terminal enzymatic domain residing in the stroma, hence displaying a different membrane topology from its bacterial homolog, PlsC.
Collapse
Affiliation(s)
- Chun-Wei Yu
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Van C Nguyen
- RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
| | - Niña Alyssa M Barroga
- RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
- Institute of Biological Chemistry, Washington State University, Pullman, USA
| | - Yuki Nakamura
- RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Hsou-Min Li
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
2
|
Krynická V, Komenda J. The Role of FtsH Complexes in the Response to Abiotic Stress in Cyanobacteria. PLANT & CELL PHYSIOLOGY 2024; 65:1103-1114. [PMID: 38619128 PMCID: PMC11287208 DOI: 10.1093/pcp/pcae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/24/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
FtsH proteases (FtsHs) belong to intramembrane ATP-dependent metalloproteases which are widely distributed in eubacteria, mitochondria and chloroplasts. The best-studied roles of FtsH in Escherichia coli include quality control of membrane proteins, regulation of response to heat shock, superoxide stress and viral infection, and control of lipopolysaccharide biosynthesis. While heterotrophic bacteria mostly contain a single indispensable FtsH complex, photosynthetic cyanobacteria usually contain three FtsH complexes: two heterocomplexes and one homocomplex. The essential cytoplasmic FtsH1/3 most probably fulfills a role similar to other bacterial FtsHs, whereas the thylakoid FtsH2/3 heterocomplex and FtsH4 homocomplex appear to maintain the photosynthetic apparatus of cyanobacteria and optimize its functionality. Moreover, recent studies suggest the involvement of all FtsH proteases in a complex response to nutrient stresses. In this review, we aim to comprehensively evaluate the functions of the cyanobacterial FtsHs specifically under stress conditions with emphasis on nutrient deficiency and high irradiance. We also point to various unresolved issues concerning FtsH functions, which deserve further attention.
Collapse
Affiliation(s)
- Vendula Krynická
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovický Mlýn, Novohradská 237, Třeboň 37901, The Czech Republic
| | - Josef Komenda
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovický Mlýn, Novohradská 237, Třeboň 37901, The Czech Republic
| |
Collapse
|
3
|
Xu Y, Hong Z, Yu S, Huang R, Li K, Li M, Xie S, Zhu L. Fresh Insights Into SLC25A26: Potential New Therapeutic Target for Cancers: A Review. Oncol Rev 2024; 18:1379323. [PMID: 38745827 PMCID: PMC11091378 DOI: 10.3389/or.2024.1379323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/02/2024] [Indexed: 05/16/2024] Open
Abstract
SLC25A26 is the only known human mitochondrial S-adenosylmethionine carrier encoding gene. Recent studies have shown that SLC25A26 is abnormally expressed in some cancers, such as cervical cancer, low-grade glioma, non-small cell lung cancer, and liver cancer, which suggests SLC25A26 can affect the occurrence and development of some cancers. This article in brief briefly reviewed mitochondrial S-adenosylmethionine carrier in different species and its encoding gene, focused on the association of SLC25A26 aberrant expression and some cancers as well as potential mechanisms, summarized its potential for cancer prognosis, and characteristics of mitochondrial diseases caused by SLC25A26 mutation. Finally, we provide a brief expectation that needs to be further investigated. We speculate that SLC25A26 will be a potential new therapeutic target for some cancers.
Collapse
Affiliation(s)
- Yangheng Xu
- Science and Engineering, National University of Defense Technology, Changsha, China
| | - Zhisheng Hong
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Sheng Yu
- Science and Engineering, National University of Defense Technology, Changsha, China
| | - Ronghan Huang
- Science and Engineering, National University of Defense Technology, Changsha, China
| | - Kunqi Li
- Science and Engineering, National University of Defense Technology, Changsha, China
| | - Ming Li
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, China
| | - Sisi Xie
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, China
| | - Lvyun Zhu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, China
| |
Collapse
|
4
|
Graffam D, Cutlan M, Storm AR, Hulse-Kemp AM, Stoeckman AK. Gossypium hirsutum gene of unknown function Gohir.A02G161000 encodes a potential transmembrane Root UVB Sensitive 4 Protein with a putative protein-protein interaction interface. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.000869. [PMID: 38495582 PMCID: PMC10943365 DOI: 10.17912/micropub.biology.000869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 02/05/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024]
Abstract
A gene of unknown function, Gohir.A02G161000.1, identified in Gossypium hirsutum was studied using computational sequence and structure bioinformatics tools. The associated protein GhRUS4-A0A1U8JPV7 (UniProt A0A1U8JPV7) is predicted to be a plastid-localized, transmembrane root UVB-sensitive 4 (RUS4) protein with a newly identified potential dimerization surface. Evidence from homology and sequence conservation suggest involvement in auxin transport and pollen maturation.
Collapse
Affiliation(s)
| | - Marissa Cutlan
- Chemistry Department, Bethel University, Saint Paul, MN USA
| | - Amanda R Storm
- Department of Biology, Western Carolina University, Cullowhee, NC USA
| | - Amanda M Hulse-Kemp
- Genomics and Bioinformatics Research Unit, The Agricultural Research Service of U.S. Department of Agriculture, Raleigh, NC USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC USA
| | | |
Collapse
|
5
|
Bhattacharya O, Ortiz I, Hendricks N, Walling LL. The tomato chloroplast stromal proteome compendium elucidated by leveraging a plastid protein-localization prediction Atlas. FRONTIERS IN PLANT SCIENCE 2023; 14:1020275. [PMID: 37701797 PMCID: PMC10493611 DOI: 10.3389/fpls.2023.1020275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 06/22/2023] [Indexed: 09/14/2023]
Abstract
Tomato (Solanum lycopersicum) is a model species for studying fruit development, wounding, herbivory, and pathogen attack. Despite tomato's world-wide economic importance and the role of chloroplasts as metabolic hubs and integrators of environmental cues, little is known about the stromal proteome of tomato. Using a high-yielding protocol for chloroplast and stromal protein isolation, MudPIT nano-LC-MS/MS analyses, a robust in-house protein database (the Atlas) for predicting the plastid localization of tomato proteins, and rigorous selection criteria for inclusion/exclusion in the stromal proteome, we identified 1,278 proteins of the tomato stromal proteome. We provide one of the most robust stromal proteomes available to date with empirical evidence for 545 and 92 proteins not previously described for tomato plastids and the Arabidopsis stroma, respectively. The relative abundance of tomato stromal proteins was determined using the exponentially modified protein abundance index (emPAI). Comparison of the abundance of tomato and Arabidopsis stromal proteomes provided evidence for the species-specific nature of stromal protein homeostasis. The manual curation of the tomato stromal proteome classified proteins into ten functional categories resulting in an accessible compendium of tomato chloroplast proteins. After curation, only 91 proteins remained as unknown, uncharacterized or as enzymes with unknown functions. The curation of the tomato stromal proteins also indicated that tomato has a number of paralogous proteins, not present in Arabidopsis, which accumulated to different levels in chloroplasts. As some of these proteins function in key metabolic pathways or in perceiving or transmitting signals critical for plant adaptation to biotic and abiotic stress, these data suggest that tomato may modulate the bidirectional communication between chloroplasts and nuclei in a novel manner. The stromal proteome provides a fertile ground for future mechanistic studies in the field of tomato chloroplast-nuclear signaling and are foundational for our goal of elucidating the dynamics of the stromal proteome controlled by the solanaceous-specific, stromal, and wound-inducible leucine aminopeptidase A of tomato.
Collapse
Affiliation(s)
- Oindrila Bhattacharya
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Irma Ortiz
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Nathan Hendricks
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Linda L. Walling
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
6
|
Wang L, Patena W, Van Baalen KA, Xie Y, Singer ER, Gavrilenko S, Warren-Williams M, Han L, Harrigan HR, Hartz LD, Chen V, Ton VTNP, Kyin S, Shwe HH, Cahn MH, Wilson AT, Onishi M, Hu J, Schnell DJ, McWhite CD, Jonikas MC. A chloroplast protein atlas reveals punctate structures and spatial organization of biosynthetic pathways. Cell 2023; 186:3499-3518.e14. [PMID: 37437571 DOI: 10.1016/j.cell.2023.06.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/06/2023] [Accepted: 06/11/2023] [Indexed: 07/14/2023]
Abstract
Chloroplasts are eukaryotic photosynthetic organelles that drive the global carbon cycle. Despite their importance, our understanding of their protein composition, function, and spatial organization remains limited. Here, we determined the localizations of 1,034 candidate chloroplast proteins using fluorescent protein tagging in the model alga Chlamydomonas reinhardtii. The localizations provide insights into the functions of poorly characterized proteins; identify novel components of nucleoids, plastoglobules, and the pyrenoid; and reveal widespread protein targeting to multiple compartments. We discovered and further characterized cellular organizational features, including eleven chloroplast punctate structures, cytosolic crescent structures, and unexpected spatial distributions of enzymes within the chloroplast. We also used machine learning to predict the localizations of other nuclear-encoded Chlamydomonas proteins. The strains and localization atlas developed here will serve as a resource to accelerate studies of chloroplast architecture and functions.
Collapse
Affiliation(s)
- Lianyong Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Weronika Patena
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Kelly A Van Baalen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yihua Xie
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Emily R Singer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sophia Gavrilenko
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | - Linqu Han
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | - Henry R Harrigan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Linnea D Hartz
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Vivian Chen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Vinh T N P Ton
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Saw Kyin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Henry H Shwe
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Matthew H Cahn
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alexandra T Wilson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Masayuki Onishi
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jianping Hu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | - Danny J Schnell
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Claire D McWhite
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
7
|
Hamzelou S, Belobrajdic D, Juhász A, Brook H, Bose U, Colgrave ML, Broadbent JA. Nutrition, allergenicity and physicochemical qualities of food-grade protein extracts from Nannochloropsis oculata. Food Chem 2023; 424:136459. [PMID: 37247596 DOI: 10.1016/j.foodchem.2023.136459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Microalgae offer an opportunity to act as a sustainable source of dietary protein. This study aimed to evaluate the impact of different protein extraction methods on the nutritional and physicochemical properties of Nannochloropsis oculata. Food-grade protein extracts were obtained by hypotonic osmotic shock using milli-Q water. Food grade (FG) and non-food grade (NFG) extraction buffers were compared along with three cell disruption methods including bead beating, probe sonication and a combination of both methods for protein extraction. Mass spectrometry was used for protein and putative allergen identification in FG extracts. Bead beating led to a slightly higher number of identifiable proteins in FG extracts compared to control condition. Putative allergenic proteins were identified in FG extracts of N. oculata using different in-silico methods. These findings support the need to further evaluate the potential allergenic proteins in microalgae including N. oculata such as immunoglobulin E (IgE) binding tests.
Collapse
Affiliation(s)
- Sara Hamzelou
- CSIRO Health & Biosecurity, Adelaide, SA 5000, Australia.
| | | | - Angéla Juhász
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Henri Brook
- CSIRO Health & Biosecurity, Adelaide, SA 5000, Australia
| | - Utpal Bose
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia; CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| | - Michelle L Colgrave
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia; CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| | | |
Collapse
|
8
|
Rasmussen T. The Potassium Efflux System Kef: Bacterial Protection against Toxic Electrophilic Compounds. MEMBRANES 2023; 13:465. [PMID: 37233526 PMCID: PMC10224563 DOI: 10.3390/membranes13050465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023]
Abstract
Kef couples the potassium efflux with proton influx in gram-negative bacteria. The resulting acidification of the cytosol efficiently prevents the killing of the bacteria by reactive electrophilic compounds. While other degradation pathways for electrophiles exist, Kef is a short-term response that is crucial for survival. It requires tight regulation since its activation comes with the burden of disturbed homeostasis. Electrophiles, entering the cell, react spontaneously or catalytically with glutathione, which is present at high concentrations in the cytosol. The resulting glutathione conjugates bind to the cytosolic regulatory domain of Kef and trigger activation while the binding of glutathione keeps the system closed. Furthermore, nucleotides can bind to this domain for stabilization or inhibition. The binding of an additional ancillary subunit, called KefF or KefG, to the cytosolic domain is required for full activation. The regulatory domain is termed K+ transport-nucleotide binding (KTN) or regulator of potassium conductance (RCK) domain, and it is also found in potassium uptake systems or channels in other oligomeric arrangements. Bacterial RosB-like transporters and K+ efflux antiporters (KEA) of plants are homologs of Kef but fulfill different functions. In summary, Kef provides an interesting and well-studied example of a highly regulated bacterial transport system.
Collapse
Affiliation(s)
- Tim Rasmussen
- Rudolf Virchow Center and Biocenter, Institute of Biochemistry II, Julius-Maximilians-Universität Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| |
Collapse
|
9
|
Zhang B, Zhang C, Tang R, Zheng X, Zhao F, Fu A, Lan W, Luan S. Two magnesium transporters in the chloroplast inner envelope essential for thylakoid biogenesis in Arabidopsis. THE NEW PHYTOLOGIST 2022; 236:464-478. [PMID: 35776059 DOI: 10.1111/nph.18349] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Magnesium (Mg2+ ) serves as a cofactor for a number of photosynthetic enzymes in the chloroplast, and is the central atom of the Chl molecule. However, little is known about the molecular mechanism of Mg2+ transport across the chloroplast envelope. Here, we report the functional characterization of two transport proteins in Arabidopsis: Magnesium Release 8 (MGR8) and MGR9, of the ACDP/CNNM family, which is evolutionarily conserved across all lineages of living organisms. Both MGR8 and MGR9 genes were expressed ubiquitously, and their encoded proteins were localized in the inner envelope of chloroplasts. Mutations of MGR8 and MGR9 together, but neither of them alone, resulted in albino ovules and chlorotic seedlings. Further analysis revealed severe defects in thylakoid biogenesis and assembly of photosynthetic complexes in the double mutant. Both MGR8 and MGR9 functionally complemented the growth of the Salmonella typhimurium mutant strain MM281, which lacks Mg2+ uptake capacity. The embryonic and early seedling defects of the mgr8/mgr9 double mutant were rescued by the expression of MGR9 under the embryo-specific ABI3 promoter. The partially rescued mutant plants were hypersensitive to Mg2+ deficient conditions and contained less Mg2+ in their chloroplasts than wild-type plants. Taken together, we conclude that MGR8 and MGR9 serve as Mg2+ transporters and are responsible for chloroplast Mg2+ uptake.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Life Sciences, Northwest University, Xi'an, 710069, China
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Chi Zhang
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Renjie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Xiaojiang Zheng
- College of Life Sciences, Northwest University, Xi'an, 710069, China
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Fugeng Zhao
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Aigen Fu
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Wenzhi Lan
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
10
|
Monné M, Marobbio CMT, Agrimi G, Palmieri L, Palmieri F. Mitochondrial transport and metabolism of the major methyl donor and versatile cofactor S-adenosylmethionine, and related diseases: A review †. IUBMB Life 2022; 74:573-591. [PMID: 35730628 DOI: 10.1002/iub.2658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/19/2022] [Indexed: 11/08/2022]
Abstract
S-adenosyl-L-methionine (SAM) is a coenzyme and the most commonly used methyl-group donor for the modification of metabolites, DNA, RNA and proteins. SAM biosynthesis and SAM regeneration from the methylation reaction product S-adenosyl-L-homocysteine (SAH) take place in the cytoplasm. Therefore, the intramitochondrial SAM-dependent methyltransferases require the import of SAM and export of SAH for recycling. Orthologous mitochondrial transporters belonging to the mitochondrial carrier family have been identified to catalyze this antiport transport step: Sam5p in yeast, SLC25A26 (SAMC) in humans, and SAMC1-2 in plants. In mitochondria SAM is used by a vast number of enzymes implicated in the following processes: the regulation of replication, transcription, translation, and enzymatic activities; the maturation and assembly of mitochondrial tRNAs, ribosomes and protein complexes; and the biosynthesis of cofactors, such as ubiquinone, lipoate, and molybdopterin. Mutations in SLC25A26 and mitochondrial SAM-dependent enzymes have been found to cause human diseases, which emphasizes the physiological importance of these proteins.
Collapse
Affiliation(s)
- Magnus Monné
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,Department of Sciences, University of Basilicata, Potenza, Italy
| | - Carlo M T Marobbio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Gennaro Agrimi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| |
Collapse
|
11
|
Wang M, Garneau MG, Poudel AN, Lamm D, Koo AJ, Bates PD, Thelen JJ. Overexpression of pea α-carboxyltransferase in Arabidopsis and camelina increases fatty acid synthesis leading to improved seed oil content. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1035-1046. [PMID: 35220631 DOI: 10.1111/tpj.15721] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
SUMMARYHeteromeric acetyl‐CoA carboxylase (htACCase) catalyzes the committed step of de novo fatty acid biosynthesis in most plant plastids. Plant htACCase is comprised of four subunits: α‐ and β‐carboxyltransferase (α‐ and β‐CT), biotin carboxylase, and biotin carboxyl carrier protein. Based on in vivo absolute quantification of htACCase subunits, α‐CT is 3‐ to 10‐fold less abundant than its partner subunit β‐CT in developing Arabidopsis seeds [Wilson and Thelen, J. Proteome Res., 2018, 17 (5)]. To test the hypothesis that low expression of α‐CT limits htACCase activity and flux through fatty acid synthesis in planta, we overexpressed Pisum sativum α‐CT, either with or without its C‐terminal non‐catalytic domain, in both Arabidopsis thaliana and Camelina sativa. First‐generation Arabidopsis seed of 35S::Ps α‐CT (n = 25) and 35S::Ps α‐CTΔ406‐875 (n = 47) were on average 14% higher in oil content (% dry weight) than wild type co‐cultivated in a growth chamber. First‐generation camelina seed showed an average 8% increase compared to co‐cultivated wild type. Biochemical analyses confirmed the accumulation of Ps α‐CT and Ps α‐CTΔ406‐875 protein and higher htACCase activity in overexpression lines during early seed development. Overexpressed Ps α‐CT co‐migrated with native At β‐CT during anion exchange chromatography, indicating co‐association. By successfully increasing seed oil content upon heterologous overexpression of α‐CT, we demonstrate how absolute quantitation of in vivo protein complex stoichiometry can be used to guide rational metabolic engineering.
Collapse
Affiliation(s)
- Minmin Wang
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - Matthew G Garneau
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, DC, 99164, USA
| | - Arati N Poudel
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
| | - Daniel Lamm
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
| | - Abraham J Koo
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
| | - Philip D Bates
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, DC, 99164, USA
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
| |
Collapse
|
12
|
Bankapur S, Patil N. An Effective Multi-Label Protein Sub-Chloroplast Localization Prediction by Skipped-Grams of Evolutionary Profiles Using Deep Neural Network. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1449-1458. [PMID: 33175683 DOI: 10.1109/tcbb.2020.3037465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chloroplast is one of the most classic organelles in algae and plant cells. Identifying the locations of chloroplast proteins in the chloroplast organelle is an important as well as a challenging task in deciphering their functions. Biological-based experiments to identify the Protein Sub-Chloroplast Localization (PSCL) is time-consuming and cost-intensive. Over the last decade, a few computational methods have been developed to predict PSCL in which earlier works assumed to predict only single-location; whereas, recent works are able to predict multiple-locations of chloroplast organelle. However, the performances of all the state-of-the-art predictors are poor. This article proposes a novel skip-gram technique to extract highly discriminating patterns from evolutionary profiles and a multi-label deep neural network to predict the PSCL. The proposed model is assessed on two publicly available datasets, i.e., Benchmark and Novel. Experimental results demonstrate that the proposed work outperforms significantly when compared to the state-of-the-art multi-label PSCL predictors. A multi-label prediction accuracy (i.e., Overall Actual Accuracy) of the proposed model is enhanced by an absolute minimum margin of 6.7 percent on Benchmark dataset and 7.9 percent on Novel dataset when compared to the best PSCL predictor from the literature. Further, result of statistical t-test concludes that the performance of the proposed work is significantly improved and thus, the proposed work is an effective computational model to solve multi-label PSCL prediction. The proposed prediction model is hosted on web-server and available at https://nitkit-vgst727-nppsa.nitk.ac.in/deeplocpred/.
Collapse
|
13
|
Deciphering the Host-Pathogen Interactome of the Wheat-Common Bunt System: A Step towards Enhanced Resilience in Next Generation Wheat. Int J Mol Sci 2022; 23:ijms23052589. [PMID: 35269732 PMCID: PMC8910311 DOI: 10.3390/ijms23052589] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Common bunt, caused by two fungal species, Tilletia caries and Tilletia laevis, is one of the most potentially destructive diseases of wheat. Despite the availability of synthetic chemicals against the disease, organic agriculture relies greatly on resistant cultivars. Using two computational approaches—interolog and domain-based methods—a total of approximately 58 M and 56 M probable PPIs were predicted in T. aestivum–T. caries and T. aestivum–T. laevis interactomes, respectively. We also identified 648 and 575 effectors in the interactions from T. caries and T. laevis, respectively. The major host hubs belonged to the serine/threonine protein kinase, hsp70, and mitogen-activated protein kinase families, which are actively involved in plant immune signaling during stress conditions. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the host proteins revealed significant GO terms (O-methyltransferase activity, regulation of response to stimulus, and plastid envelope) and pathways (NF-kappa B signaling and the MAPK signaling pathway) related to plant defense against pathogens. Subcellular localization suggested that most of the pathogen proteins target the host in the plastid. Furthermore, a comparison between unique T. caries and T. laevis proteins was carried out. We also identified novel host candidates that are resistant to disease. Additionally, the host proteins that serve as transcription factors were also predicted.
Collapse
|
14
|
Trinh MDL, Masuda S. Chloroplast pH Homeostasis for the Regulation of Photosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:919896. [PMID: 35693183 PMCID: PMC9174948 DOI: 10.3389/fpls.2022.919896] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/04/2022] [Indexed: 05/16/2023]
Abstract
The pH of various chloroplast compartments, such as the thylakoid lumen and stroma, is light-dependent. Light illumination induces electron transfer in the photosynthetic apparatus, coupled with proton translocation across the thylakoid membranes, resulting in acidification and alkalization of the thylakoid lumen and stroma, respectively. Luminal acidification is crucial for inducing regulatory mechanisms that protect photosystems against photodamage caused by the overproduction of reactive oxygen species (ROS). Stromal alkalization activates enzymes involved in the Calvin-Benson-Bassham (CBB) cycle. Moreover, proton translocation across the thylakoid membranes generates a proton gradient (ΔpH) and an electric potential (ΔΨ), both of which comprise the proton motive force (pmf) that drives ATP synthase. Then, the synthesized ATP is consumed in the CBB cycle and other chloroplast metabolic pathways. In the dark, the pH of both the chloroplast stroma and thylakoid lumen becomes neutral. Despite extensive studies of the above-mentioned processes, the molecular mechanisms of how chloroplast pH can be maintained at proper levels during the light phase for efficient activation of photosynthesis and other metabolic pathways and return to neutral levels during the dark phase remain largely unclear, especially in terms of the precise control of stromal pH. The transient increase and decrease in chloroplast pH upon dark-to-light and light-to-dark transitions have been considered as signals for controlling other biological processes in plant cells. Forward and reverse genetic screening approaches recently identified new plastid proteins involved in controlling ΔpH and ΔΨ across the thylakoid membranes and chloroplast proton/ion homeostasis. These proteins have been conserved during the evolution of oxygenic phototrophs and include putative photosynthetic protein complexes, proton transporters, and/or their regulators. Herein, we summarize the recently identified protein players that control chloroplast pH and influence photosynthetic efficiency in plants.
Collapse
Affiliation(s)
- Mai Duy Luu Trinh
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- *Correspondence: Shinji Masuda,
| |
Collapse
|
15
|
Forsythe ES, Williams AM, Sloan DB. Genome-wide signatures of plastid-nuclear coevolution point to repeated perturbations of plastid proteostasis systems across angiosperms. THE PLANT CELL 2021; 33:980-997. [PMID: 33764472 PMCID: PMC8226287 DOI: 10.1093/plcell/koab021] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/16/2021] [Indexed: 05/05/2023]
Abstract
Nuclear and plastid (chloroplast) genomes experience different mutation rates, levels of selection, and transmission modes, yet key cellular functions depend on their coordinated interactions. Functionally related proteins often show correlated changes in rates of sequence evolution across a phylogeny [evolutionary rate covariation (ERC)], offering a means to detect previously unidentified suites of coevolving and cofunctional genes. We performed phylogenomic analyses across angiosperm diversity, scanning the nuclear genome for genes that exhibit ERC with plastid genes. As expected, the strongest hits were highly enriched for genes encoding plastid-targeted proteins, providing evidence that cytonuclear interactions affect rates of molecular evolution at genome-wide scales. Many identified nuclear genes functioned in post-transcriptional regulation and the maintenance of protein homeostasis (proteostasis), including protein translation (in both the plastid and cytosol), import, quality control, and turnover. We also identified nuclear genes that exhibit strong signatures of coevolution with the plastid genome, but their encoded proteins lack organellar-targeting annotations, making them candidates for having previously undescribed roles in plastids. In sum, our genome-wide analyses reveal that plastid-nuclear coevolution extends beyond the intimate molecular interactions within chloroplast enzyme complexes and may be driven by frequent rewiring of the machinery responsible for maintenance of plastid proteostasis in angiosperms.
Collapse
Affiliation(s)
- Evan S Forsythe
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Alissa M Williams
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
16
|
PRAT Proteins Operate in Organellar Protein Import and Export in Arabidopsis thaliana. PLANTS 2021; 10:plants10050958. [PMID: 34064964 PMCID: PMC8151980 DOI: 10.3390/plants10050958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 11/17/2022]
Abstract
Chloroplasts need to import preproteins and amino acids from the cytosol during their light-induced differentiation. Similarly, chloroplasts have to export organic matter including proteins and amino acids during leaf senescence. Members of the PRAT (preprotein and amino acid transporter) family are candidate transporters for both processes. Here, we defined the role of two small PRAT gene families, At4g26670 and At5g55510 (HP20 subfamily) versus At3g49560 and At5g24650 (HP30 subfamily) during greening of etiolated plants and during leaf senescence. Using a combination of reverse genetics, protein biochemistry and physiological tools, evidence was obtained for a role of chloroplast HP20, HP30 and HP30-2 in protein, but not amino acid, import into chloroplasts. HP20, HP30 and HP30-2 form larger complexes involved in the uptake of transit sequence-less cytosolic precursors. In addition, we identified a fraction of HP30-2 in mitochondria where it served a similar function as found for chloroplasts and operated in the uptake of transit sequence-less cytosolic precursor proteins. By contrast, HP22 was found to act in the export of proteins from chloroplasts during leaf senescence, and thus its role is entirely different from that of its orthologue, HP20. HP22 is part of a unique protein complex in the envelope of senescing chloroplasts that comprises at least 11 proteins and contains with HP65b (At5g55220) a protein that is related to the bacterial trigger factor chaperone. An ortholog of HP65b exists in the cyanobacterium Synechocystis and has previously been implicated in protein secretion. Whereas plants depleted of either HP22 or HP65b or even both were increasingly delayed in leaf senescence and retained much longer stromal chloroplast constituents than wild-type plants, HP22 overexpressors showed premature leaf senescence that was associated with accelerated losses of stromal chloroplast proteins. Together, our results identify the PRAT protein family as a unique system for importing and exporting proteins from chloroplasts.
Collapse
|
17
|
Sudhakaran S, Thakral V, Padalkar G, Rajora N, Dhiman P, Raturi G, Sharma Y, Tripathi DK, Deshmukh R, Sharma TR, Sonah H. Significance of solute specificity, expression, and gating mechanism of tonoplast intrinsic protein during development and stress response in plants. PHYSIOLOGIA PLANTARUM 2021; 172:258-274. [PMID: 33723851 DOI: 10.1111/ppl.13386] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Tonoplast intrinsic proteins (TIPs), belonging to the aquaporin family, are transmembrane channels located mostly at the tonoplast of plant cells. The TIPs are known to transport water and many other small solutes such as ammonia, urea, hydrogen peroxide, and glycerol. In the present review, phylogenetic distribution, structure, transport dynamics, gating mechanism, sub-cellular localization, tissue-specific expression, and co-expression of TIPs are discussed to define their versatile role in plants. Based on the phylogenetic distribution, TIPs are classified into five distinct groups with aromatic-arginine (Ar/R) selectivity filters, typical pore-morphology, and tissue-specific gene expression patterns. The tissue-specific expression of TIPs is conserved among diverse plant species, more particularly for TIP3s, which are expressed exclusively in seeds. Studying TIP3 evolution will help to understand seed development and germination. The solute specificity of TIPs plays an imperative role in physiological processes like stomatal movement and vacuolar sequestration as well as in alleviating environmental stress. TIPs also play an important role in growth and developmental processes like radicle protrusion, anther dehiscence, seed germination, cell elongation, and expansion. The gating mechanism of TIPs regulates the solute flow in response to external signals, which helps to maintain the physiological functions of the cell. The information provided in this review is a base to explore TIP's potential in crop improvement programs.
Collapse
Affiliation(s)
- Sreeja Sudhakaran
- Division of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Vandana Thakral
- Division of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Gunashri Padalkar
- Division of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Nitika Rajora
- Division of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Pallavi Dhiman
- Division of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Gaurav Raturi
- Division of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Yogesh Sharma
- Division of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Durgesh K Tripathi
- Amity Institute of Organic Agriculture (AIOA), Amity University Uttar Pradesh, Noida, India
| | - Rupesh Deshmukh
- Division of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, India
| | - Humira Sonah
- Division of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| |
Collapse
|
18
|
tRNA-Dependent Import of a Transit Sequence-Less Aminoacyl-tRNA Synthetase (LeuRS2) into the Mitochondria of Arabidopsis. Int J Mol Sci 2021; 22:ijms22083808. [PMID: 33916944 PMCID: PMC8067559 DOI: 10.3390/ijms22083808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 11/17/2022] Open
Abstract
Aminoacyl-tRNA synthetases (AaRS) charge tRNAs with amino acids for protein translation. In plants, cytoplasmic, mitochondrial, and chloroplast AaRS exist that are all coded for by nuclear genes and must be imported from the cytosol. In addition, only a few of the mitochondrial tRNAs needed for translation are encoded in mitochondrial DNA. Despite considerable progress made over the last few years, still little is known how the bulk of cytosolic AaRS and respective tRNAs are transported into mitochondria. Here, we report the identification of a protein complex that ties AaRS and tRNA import into the mitochondria of Arabidopsis thaliana. Using leucyl-tRNA synthetase 2 (LeuRS2) as a model for a mitochondrial signal peptide (MSP)-less precursor, a ≈30 kDa protein was identified that interacts with LeuRS2 during import. The protein identified is identical with a previously characterized mitochondrial protein designated HP30-2 (encoded by At3g49560) that contains a sterile alpha motif (SAM) similar to that found in RNA binding proteins. HP30-2 is part of a larger protein complex that contains with TIM22, TIM8, TIM9 and TIM10 four previously identified components of the translocase for MSP-less precursors. Lack of HP30-2 perturbed mitochondrial biogenesis and function and caused seedling lethality during greening, suggesting an essential role of HP30-2 in planta.
Collapse
|
19
|
Pipitone R, Eicke S, Pfister B, Glauser G, Falconet D, Uwizeye C, Pralon T, Zeeman SC, Kessler F, Demarsy E. A multifaceted analysis reveals two distinct phases of chloroplast biogenesis during de-etiolation in Arabidopsis. eLife 2021; 10:e62709. [PMID: 33629953 PMCID: PMC7906606 DOI: 10.7554/elife.62709] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/04/2021] [Indexed: 11/18/2022] Open
Abstract
Light triggers chloroplast differentiation whereby the etioplast transforms into a photosynthesizing chloroplast and the thylakoid rapidly emerges. However, the sequence of events during chloroplast differentiation remains poorly understood. Using Serial Block Face Scanning Electron Microscopy (SBF-SEM), we generated a series of chloroplast 3D reconstructions during differentiation, revealing chloroplast number and volume and the extent of envelope and thylakoid membrane surfaces. Furthermore, we used quantitative lipid and whole proteome data to complement the (ultra)structural data, providing a time-resolved, multi-dimensional description of chloroplast differentiation. This showed two distinct phases of chloroplast biogenesis: an initial photosynthesis-enabling 'Structure Establishment Phase' followed by a 'Chloroplast Proliferation Phase' during cell expansion. Moreover, these data detail thylakoid membrane expansion during de-etiolation at the seedling level and the relative contribution and differential regulation of proteins and lipids at each developmental stage. Altogether, we establish a roadmap for chloroplast differentiation, a critical process for plant photoautotrophic growth and survival.
Collapse
Affiliation(s)
- Rosa Pipitone
- Plant Physiology Laboratory, University of NeuchâtelNeuchâtelSwitzerland
| | - Simona Eicke
- Institute of Molecular Plant Biology, Department of Biology, ETH ZurichZurichSwitzerland
| | - Barbara Pfister
- Institute of Molecular Plant Biology, Department of Biology, ETH ZurichZurichSwitzerland
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of NeuchâtelNeuchâtelSwitzerland
| | - Denis Falconet
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCVGrenobleFrance
| | - Clarisse Uwizeye
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCVGrenobleFrance
| | - Thibaut Pralon
- Plant Physiology Laboratory, University of NeuchâtelNeuchâtelSwitzerland
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, Department of Biology, ETH ZurichZurichSwitzerland
| | - Felix Kessler
- Plant Physiology Laboratory, University of NeuchâtelNeuchâtelSwitzerland
| | - Emilie Demarsy
- Plant Physiology Laboratory, University of NeuchâtelNeuchâtelSwitzerland
- Department of Botany and Plant Biology, University of GenevaGenevaSwitzerland
| |
Collapse
|
20
|
Zhang Q, Hua X, Liu H, Yuan Y, Shi Y, Wang Z, Zhang M, Ming R, Zhang J. Evolutionary expansion and functional divergence of sugar transporters in Saccharum (S. spontaneum and S. officinarum). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:884-906. [PMID: 33179305 DOI: 10.1111/tpj.15076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 10/27/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
The sugar transporter (ST) family is considered to be the most important gene family for sugar accumulation, but limited information about the ST family in the important sugar-yielding crop Saccharum is available due to its complex genetic background. Here, 105 ST genes were identified and clustered into eight subfamilies in Saccharum spontaneum. Comparative genomics revealed that tandem duplication events contributed to ST gene expansions of two subfamilies, PLT and STP, in S. spontaneum, indicating an early evolutionary step towards high sugar content in Saccharum. The analyses of expression patterns were based on four large datasets with a total of 226 RNA sequencing samples from S. spontaneum and Saccharum officinarum. The results clearly demonstrated 50 ST genes had different spatiotemporal expression patterns in leaf tissues, 10 STs were specifically expressed in the stem, and 10 STs responded to the diurnal rhythm. Heterologous expression experiments in the defective yeast strain EBY.VW4000 indicated STP13, pGlcT2, VGT3, and TMT4 are the STs with most affinity for glucose/fructose and SUT1_T1 has the highest affinity to sucrose. Furthermore, metabolomics analysis suggested STP7 is a sugar starvation-induced gene and STP13 has a function in retrieving sugar in senescent tissues. PLT11, PLT11_T1, TMT3, and TMT4 contributed to breaking the limitations of the storage sink. SUT1, SUT1_T1, PLT11, TMT4, pGlcT2, and VGT3 responded for different functions in these two Saccharum species. This study demonstrated the evolutionary expansion and functional divergence of the ST gene family and will enable the further investigation of the molecular mechanism of sugar metabolism in Saccharum.
Collapse
Affiliation(s)
- Qing Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiuting Hua
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hong Liu
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuan Yuan
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Yan Shi
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhengchao Wang
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Muqing Zhang
- Guangxi key lab for sugarcane biology, Guangxi University, Nanning, Guangxi, 530005, China
| | - Ray Ming
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Guangxi key lab for sugarcane biology, Guangxi University, Nanning, Guangxi, 530005, China
| |
Collapse
|
21
|
Lopez-Zaplana A, Nicolas-Espinosa J, Carvajal M, Bárzana G. Genome-wide analysis of the aquaporin genes in melon (Cucumis melo L.). Sci Rep 2020; 10:22240. [PMID: 33335220 PMCID: PMC7747737 DOI: 10.1038/s41598-020-79250-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022] Open
Abstract
Melon (Cucumis melo L.) is a very important crop throughout the world and has great economic importance, in part due to its nutritional properties. It prefers well-drained soil with low acidity and has a strong demand for water during fruit set. Therefore, a correct water balance—involving aquaporins—is necessary to maintain the plants in optimal condition. This manuscript describes the identification and comparative analysis of the complete set of aquaporins in melon. 31 aquaporin genes were identified, classified and analysed according to the evolutionary relationship of melon with related plant species. The individual role of each aquaporin in the transport of water, ions and small molecules was discussed. Finally, qPCR revealed that almost all melon aquaporins in roots and leaves were constitutively expressed. However, the high variations in expression among them point to different roles in water and solute transport, providing important features as that CmPIP1;1 is the predominant isoform and CmTIP1;1 is revealed as the most important osmoregulator in the tonoplast under optimal conditions. The results of this work pointing to the physiological importance of each individual aquaporin of melon opening a field of knowledge that deserves to be investigated.
Collapse
Affiliation(s)
- Alvaro Lopez-Zaplana
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología Y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100, Murcia, Spain
| | - Juan Nicolas-Espinosa
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología Y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100, Murcia, Spain
| | - Micaela Carvajal
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología Y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100, Murcia, Spain
| | - Gloria Bárzana
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología Y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100, Murcia, Spain.
| |
Collapse
|
22
|
Unal D, García-Caparrós P, Kumar V, Dietz KJ. Chloroplast-associated molecular patterns as concept for fine-tuned operational retrograde signalling. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190443. [PMID: 32362264 DOI: 10.1098/rstb.2019.0443] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chloroplasts compose about one-quarter of the mesophyll cell volume and contain about 60% of the cell protein. Photosynthetic carbon assimilation is the dominating metabolism in illuminated leaves. To optimize the resource expenditure in these costly organelles and to control and adjust chloroplast metabolism, an intensive transfer of information between nucleus-cytoplasm and chloroplasts occurs in both directions as anterograde and retrograde signalling. Recent research identified multiple retrograde pathways that use metabolite transfer and include reaction products of lipids and carotenoids with reactive oxygen species (ROS). Other pathways use metabolites of carbon, sulfur and nitrogen metabolism, low molecular weight antioxidants and hormone precursors to carry information between the cell compartments. This review focuses on redox- and ROS-related retrograde signalling pathways. In analogy to the microbe-associated molecular pattern, we propose the term 'chloroplast-associated molecular pattern' which connects chloroplast performance to extrachloroplast processes such as nuclear gene transcription, posttranscriptional processing, including translation, and RNA and protein fate. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Dilek Unal
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany.,Molecular Biology and Genetic, Faculty of Science and Letter, Bilecik Seyh Edebali University, 11230 Bilecik, Turkey
| | - Pedro García-Caparrós
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany.,Department of Agronomy, University of Almeria, Higher Engineering School, Agrifood Campus of International Excellence ceiA3, Carretera de Sacramento s/n, La Cañada de San Urbano 04120, Almeria, Spain
| | - Vijay Kumar
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
| |
Collapse
|
23
|
Comparative mitochondrial proteomics of Leishmania tropica clinical isolates resistant and sensitive to meglumine antimoniate. Parasitol Res 2020; 119:1857-1871. [DOI: 10.1007/s00436-020-06671-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 03/18/2020] [Indexed: 01/20/2023]
|
24
|
Tang RJ, Luan M, Wang C, Lhamo D, Yang Y, Zhao FG, Lan WZ, Fu AG, Luan S. Plant Membrane Transport Research in the Post-genomic Era. PLANT COMMUNICATIONS 2020; 1:100013. [PMID: 33404541 PMCID: PMC7747983 DOI: 10.1016/j.xplc.2019.100013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/14/2019] [Accepted: 12/06/2019] [Indexed: 05/17/2023]
Abstract
Membrane transport processes are indispensable for many aspects of plant physiology including mineral nutrition, solute storage, cell metabolism, cell signaling, osmoregulation, cell growth, and stress responses. Completion of genome sequencing in diverse plant species and the development of multiple genomic tools have marked a new era in understanding plant membrane transport at the mechanistic level. Genes coding for a galaxy of pumps, channels, and carriers that facilitate various membrane transport processes have been identified while multiple approaches are developed to dissect the physiological roles as well as to define the transport capacities of these transport systems. Furthermore, signaling networks dictating the membrane transport processes are established to fully understand the regulatory mechanisms. Here, we review recent research progress in the discovery and characterization of the components in plant membrane transport that take advantage of plant genomic resources and other experimental tools. We also provide our perspectives for future studies in the field.
Collapse
Affiliation(s)
- Ren-Jie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Mingda Luan
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Chao Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Dhondup Lhamo
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Yang Yang
- Nanjing University–Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Fu-Geng Zhao
- Nanjing University–Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wen-Zhi Lan
- Nanjing University–Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Ai-Gen Fu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Corresponding author
| |
Collapse
|
25
|
Moyet L, Salvi D, Bouchnak I, Miras S, Perrot L, Seigneurin-Berny D, Kuntz M, Rolland N. Calmodulin is involved in the dual subcellular location of two chloroplast proteins. J Biol Chem 2019; 294:17543-17554. [PMID: 31578278 PMCID: PMC6873194 DOI: 10.1074/jbc.ra119.010846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Indexed: 12/02/2022] Open
Abstract
Cell compartmentalization is an essential process by which eukaryotic cells separate and control biological processes. Although calmodulins are well-known to regulate catalytic properties of their targets, we show here their involvement in the subcellular location of two plant proteins. Both proteins exhibit a dual location, namely in the cytosol in addition to their association to plastids (where they are known to fulfil their role). One of these proteins, ceQORH, a long-chain fatty acid reductase, was analyzed in more detail, and its calmodulin-binding site was identified by specific mutations. Such a mutated form is predominantly targeted to plastids at the expense of its cytosolic location. The second protein, TIC32, was also shown to be dependent on its calmodulin-binding site for retention in the cytosol. Complementary approaches (bimolecular fluorescence complementation and reverse genetics) demonstrated that the calmodulin isoform CAM5 is specifically involved in the retention of ceQORH in the cytosol. This study identifies a new role for calmodulin and sheds new light on the intriguing CaM-binding properties of hundreds of plastid proteins, despite the fact that no CaM or CaM-like proteins were identified in plastids.
Collapse
Affiliation(s)
- Lucas Moyet
- Laboratoire de Physiologie Cellulaire & Végétale, Université Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Daniel Salvi
- Laboratoire de Physiologie Cellulaire & Végétale, Université Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Imen Bouchnak
- Laboratoire de Physiologie Cellulaire & Végétale, Université Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Stéphane Miras
- Laboratoire de Physiologie Cellulaire & Végétale, Université Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Laura Perrot
- Laboratoire de Physiologie Cellulaire & Végétale, Université Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Daphné Seigneurin-Berny
- Laboratoire de Physiologie Cellulaire & Végétale, Université Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Marcel Kuntz
- Laboratoire de Physiologie Cellulaire & Végétale, Université Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Norbert Rolland
- Laboratoire de Physiologie Cellulaire & Végétale, Université Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| |
Collapse
|
26
|
Lande NV, Barua P, Gayen D, Kumar S, Chakraborty S, Chakraborty N. Proteomic dissection of the chloroplast: Moving beyond photosynthesis. J Proteomics 2019; 212:103542. [PMID: 31704367 DOI: 10.1016/j.jprot.2019.103542] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/15/2019] [Accepted: 10/03/2019] [Indexed: 01/28/2023]
Abstract
Chloroplast, the photosynthetic machinery, converts photoenergy to ATP and NADPH, which powers the production of carbohydrates from atmospheric CO2 and H2O. It also serves as a major production site of multivariate pro-defense molecules, and coordinate with other organelles for cell defense. Chloroplast harbors 30-50% of total cellular proteins, out of which 80% are membrane residents and are difficult to solubilize. While proteome profiling has illuminated vast areas of biological protein space, a great deal of effort must be invested to understand the proteomic landscape of the chloroplast, which plays central role in photosynthesis, energy metabolism and stress-adaptation. Therefore, characterization of chloroplast proteome would not only provide the foundation for future investigation of expression and function of chloroplast proteins, but would open up new avenues for modulation of plant productivity through synchronizing chloroplastic key components. In this review, we summarize the progress that has been made to build new understanding of the chloroplast proteome and implications of chloroplast dynamicsing generate metabolic energy and modulating stress adaptation.
Collapse
Affiliation(s)
- Nilesh Vikram Lande
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pragya Barua
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Dipak Gayen
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sunil Kumar
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
27
|
Miranda C, Xu Q, Oehrle NW, Islam N, Garrett WM, Natarajan SS, Gillman JD, Krishnan HB. Proteomic Comparison of Three Extraction Methods Reveals the Abundance of Protease Inhibitors in the Seeds of Grass Pea, a Unique Orphan Legume. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10296-10305. [PMID: 31464437 DOI: 10.1021/acs.jafc.9b04307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Grass pea is an orphan legume that is grown in many places in the world. It is a high-protein, drought-tolerant legume that is capable of surviving extreme environmental challenges and can be a sole food source during famine. However, grass pea produces the neurotoxin β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP), which can cause a neurological disease. This crop is promising as a food source for both animals and humans if β-ODAP levels and other antinutritional factors such as protease inhibitors are lowered or removed. To understand more about these proteins, a proteomic analysis of grass pea was conducted using three different extraction methods to determine which was more efficient at isolating antinutritional factors. Seed proteins extracted with Tris-buffered saline (TBS), 30% ethanol, and 50% isopropanol were identified by mass spectrometry, resulting in the documentation of the most abundant proteins for each extraction method. Mass spectrometry spectral data and BLAST2GO analysis led to the identification of 1376 proteins from all extraction methods. The molecular function of the extracted proteins revealed distinctly different protein functional profiles. The majority of the TBS-extracted proteins were annotated with nutrient reservoir activity, while the isopropanol extraction yielded the highest percentage of endopeptidase proteinase inhibitors. Our results demonstrate that the 50% isopropanol extraction method was the most efficient at isolating antinutritional factors including protease inhibitors.
Collapse
Affiliation(s)
- Carrie Miranda
- Plant Genetics Research, USDA-Agricultural Research Service , University of Missouri , Columbia , Missouri 65211 , United States
| | - Quanle Xu
- College of Life Sciences , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Nathan W Oehrle
- Plant Genetics Research, USDA-Agricultural Research Service , University of Missouri , Columbia , Missouri 65211 , United States
| | - Nazrul Islam
- Soybean Genomics and Improvement Laboratory , USDA-ARS , Beltsville , Maryland 20705 , United States
| | - Wesley M Garrett
- Animal Bioscience and Biotechnology Laboratory , USDA-Agricultural Research Service , Beltsville 20705 , United States
| | - Savithiry S Natarajan
- Soybean Genomics and Improvement Laboratory , USDA-ARS , Beltsville , Maryland 20705 , United States
| | - Jason D Gillman
- Plant Genetics Research, USDA-Agricultural Research Service , University of Missouri , Columbia , Missouri 65211 , United States
| | - Hari B Krishnan
- Plant Genetics Research, USDA-Agricultural Research Service , University of Missouri , Columbia , Missouri 65211 , United States
| |
Collapse
|
28
|
Niño-González M, Novo-Uzal E, Richardson DN, Barros PM, Duque P. More Transporters, More Substrates: The Arabidopsis Major Facilitator Superfamily Revisited. MOLECULAR PLANT 2019; 12:1182-1202. [PMID: 31330327 DOI: 10.1016/j.molp.2019.07.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 05/20/2023]
Abstract
The Major Facilitator Superfamily (MFS) is ubiquitous in living organisms and represents the largest group of secondary active membrane transporters. In plants, significant research efforts have focused on the role of specific families within the MFS, particularly those transporting macronutrients (C, N, and P) that constitute the vast majority of the members of this superfamily. Other MFS families remain less explored, although a plethora of additional substrates and physiological functions have been uncovered. Nevertheless, the lack of a systematic approach to analyzing the MFS as a whole has obscured the high diversity and versatility of these transporters. Here, we present a phylogenetic analysis of all annotated MFS domain-containing proteins encoded in the Arabidopsis thaliana genome and propose that this superfamily of transporters consists of 218 members, clustered in 22 families. In reviewing the available information regarding the diversity in biological functions and substrates of Arabidopsis MFS members, we provide arguments for intensified research on these membrane transporters to unveil the breadth of their physiological relevance, disclose the molecular mechanisms underlying their mode of action, and explore their biotechnological potential.
Collapse
Affiliation(s)
| | | | | | - Pedro M Barros
- Genomics of Plant Stress Unit, ITQB NOVA - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Paula Duque
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal.
| |
Collapse
|
29
|
Causal Enzymology and Physiological Aspects May Be Accountable to Membrane Integrity in Response to Salt Stress in Arabidopsis thaliana Lines. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3534943. [PMID: 31396528 PMCID: PMC6668528 DOI: 10.1155/2019/3534943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/19/2019] [Accepted: 07/08/2019] [Indexed: 11/18/2022]
Abstract
Apart from their significance in the protection against stress conditions, the plant cell membranes are essential for proper development of the diverse surface structures formed on aerial plant organs. In addition, we signal that membrane remodeling and integrity are function of some of causal physiological and enzymological aspects such as the MDA, the ion leakage and also the monitoring of some phytozymes involved in lipid and cellulose metabolisms. Those last ones are related to the membrane structure (lipases and cellulases), that were assessed in durum wheat dehydrin transgenic context (YS, K1-K2, DH2, and DH4), proline metabolic mutant (P5CS1-4) per comparison with the wild-type plant (Wt). We report also the docking data reinforcing the fact that the membrane integrity seems to be function of causal enzymological behaviors, through the molecular dynamic investigation resulting from the dehydrin-phytozyme interactions and also from the inhibition effect of the durum wheat LTP4 on the lipase activity.
Collapse
|
30
|
Gallie DR, Chen Z. Chloroplast-localized iron superoxide dismutases FSD2 and FSD3 are functionally distinct in Arabidopsis. PLoS One 2019; 14:e0220078. [PMID: 31329637 PMCID: PMC6645559 DOI: 10.1371/journal.pone.0220078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/07/2019] [Indexed: 12/30/2022] Open
Abstract
Superoxide dismutases (SODs) protect against reactive oxygen species (ROS) by detoxifying superoxide. Three types of SOD are present in plants: FeSOD, CuSOD, and MnSOD. The Arabidopsis thaliana genome contains three FeSOD genes, in which two (FSD2, and FSD3) are targeted to chloroplast thylakoids. Loss of FSD2 or FSD3 expression impairs growth and causes leaf bleaching. FSD2 and FSD3 form heterocomplexes present in chloroplast nucleoids, raising the question of whether FSD2 and FSD3 are functionally interchangeable. In this study, we examined how loss of FSD2 or FSD3 expression affects photosynthetic processes and whether overexpression of one compensates for loss of the other. Whereas loss of the cytosolic FSD1 had little effect, an fsd2 mutant exhibited increased superoxide production, reduced chlorophyll levels, lower PSII efficiency, a lower rate of CO2 assimilation, but elevated non-photochemical quenching (NPQ). In contrast, fsd3 mutants failed to survive beyond the seedling stage and overexpression of FSD2 could not rescue the seedlings. Overexpression of FSD3 in an fsd2 mutant, however, partially reversed the fsd2 mutant phenotype resulting in improved growth characteristics. Overexpression of FSD2 or FSD3, either individually or together, had little effect. These results indicate that, despite functioning as FeSODs, FSD2 and FSD3 are functionally distinct.
Collapse
Affiliation(s)
- Daniel R. Gallie
- Department of Biochemistry, University of California, Riverside, CA, United States of America
- * E-mail:
| | - Zhong Chen
- Department of Biochemistry, University of California, Riverside, CA, United States of America
| |
Collapse
|
31
|
Bouchnak I, Brugière S, Moyet L, Le Gall S, Salvi D, Kuntz M, Tardif M, Rolland N. Unraveling Hidden Components of the Chloroplast Envelope Proteome: Opportunities and Limits of Better MS Sensitivity. Mol Cell Proteomics 2019; 18:1285-1306. [PMID: 30962257 PMCID: PMC6601204 DOI: 10.1074/mcp.ra118.000988] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 04/03/2019] [Indexed: 12/31/2022] Open
Abstract
The chloroplast is a major plant cell organelle that fulfills essential metabolic and biosynthetic functions. Located at the interface between the chloroplast and other cell compartments, the chloroplast envelope system is a strategic barrier controlling the exchange of ions, metabolites and proteins, thus regulating essential metabolic functions (synthesis of hormones precursors, amino acids, pigments, sugars, vitamins, lipids, nucleotides etc.) of the plant cell. However, unraveling the contents of the chloroplast envelope proteome remains a difficult challenge; many proteins constituting this functional double membrane system remain to be identified. Indeed, the envelope contains only 1% of the chloroplast proteins (i.e. 0.4% of the whole cell proteome). In other words, most envelope proteins are so rare at the cell, chloroplast, or even envelope level, that they remained undetectable using targeted MS studies. Cross-contamination of chloroplast subcompartments by each other and by other cell compartments during cell fractionation, impedes accurate localization of many envelope proteins. The aim of the present study was to take advantage of technologically improved MS sensitivity to better define the proteome of the chloroplast envelope (differentiate genuine envelope proteins from contaminants). This MS-based analysis relied on an enrichment factor that was calculated for each protein identified in purified envelope fractions as compared with the value obtained for the same protein in crude cell extracts. Using this approach, a total of 1269 proteins were detected in purified envelope fractions, of which, 462 could be assigned an envelope localization by combining MS-based spectral count analyses with manual annotation using data from the literature and prediction tools. Many of such proteins being previously unknown envelope components, these data constitute a new resource of significant value to the broader plant science community aiming to define principles and molecular mechanisms controlling fundamental aspects of plastid biogenesis and functions.
Collapse
Affiliation(s)
- Imen Bouchnak
- From the ‡University Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Sabine Brugière
- §University Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France
| | - Lucas Moyet
- From the ‡University Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Sophie Le Gall
- From the ‡University Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Daniel Salvi
- From the ‡University Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Marcel Kuntz
- From the ‡University Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Marianne Tardif
- §University Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France
| | - Norbert Rolland
- From the ‡University Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France;.
| |
Collapse
|
32
|
Lavell AA, Benning C. Cellular Organization and Regulation of Plant Glycerolipid Metabolism. PLANT & CELL PHYSIOLOGY 2019; 60:1176-1183. [PMID: 30690552 PMCID: PMC6553661 DOI: 10.1093/pcp/pcz016] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 01/14/2019] [Indexed: 05/07/2023]
Abstract
Great strides have been made in understanding how membranes and lipid droplets are formed and maintained in land plants, yet much more is to be learned given the complexity of plant lipid metabolism. A complicating factor is the multi-organellar presence of biosynthetic enzymes and unique compositional requirements of different membrane systems. This necessitates a rich network of transporters and transport mechanisms that supply fatty acids, membrane lipids and storage lipids to their final cellular destination. Though we know a large number of the biosynthetic enzymes involved in lipid biosynthesis and a few transport proteins, the regulatory mechanisms, in particular, coordinating expression and/or activity of the majority remain yet to be described. Plants undergoing stress alter their membranes' compositions, and lipids such as phosphatidic acid have been implicated in stress signaling. Additionally, lipid metabolism in chloroplasts supplies precursors for jasmonic acid (JA) biosynthesis, and perturbations in lipid homeostasis has consequences on JA signaling. In this review, several aspects of plant lipid metabolism are discussed that are currently under investigation: cellular transport of lipids, regulation of lipid biosynthesis, roles of lipids in stress signaling, and lastly the structural and oligomeric states of lipid enzymes.
Collapse
Affiliation(s)
- A A Lavell
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - C Benning
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Corresponding author: E-mail, ; Fax, 517-353-9168
| |
Collapse
|
33
|
Zou Z, Yang J. Genomics analysis of the light-harvesting chlorophyll a/b-binding (Lhc) superfamily in cassava (Manihot esculenta Crantz). Gene 2019; 702:171-181. [DOI: 10.1016/j.gene.2019.03.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/15/2019] [Accepted: 03/30/2019] [Indexed: 12/11/2022]
|
34
|
Teresinski HJ, Gidda SK, Nguyen TND, Howard NJM, Porter BK, Grimberg N, Smith MD, Andrews DW, Dyer JM, Mullen RT. An RK/ST C-Terminal Motif is Required for Targeting of OEP7.2 and a Subset of Other Arabidopsis Tail-Anchored Proteins to the Plastid Outer Envelope Membrane. PLANT & CELL PHYSIOLOGY 2019; 60:516-537. [PMID: 30521026 DOI: 10.1093/pcp/pcy234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
Tail-anchored (TA) proteins are a unique class of integral membrane proteins that possess a single C-terminal transmembrane domain and target post-translationally to the specific organelles at which they function. While significant advances have been made in recent years in elucidating the mechanisms and molecular targeting signals involved in the proper sorting of TA proteins, particularly to the endoplasmic reticulum and mitochondria, relatively little is known about the targeting of TA proteins to the plastid outer envelope. Here we show that several known or predicted plastid TA outer envelope proteins (OEPs) in Arabidopsis possess a C-terminal RK/ST sequence motif that serves as a conserved element of their plastid targeting signal. Evidence for this conclusion comes primarily from experiments with OEP7.2, which is a member of the Arabidopsis 7 kDa OEP family. We confirmed that OEP7.2 is localized to the plastid outer envelope and possesses a TA topology, and its C-terminal sequence (CTS), which includes the RK/ST motif, is essential for proper targeting to plastids. The CTS of OEP7.2 is functionally interchangeable with the CTSs of other TA OEPs that possess similar RK/ST motifs, but not with those that lack the motif. Further, a bioinformatics search based on a consensus sequence led to the identification of several new OEP TA proteins. Collectively, this study provides new insight into the mechanisms of TA protein sorting in plant cells, defines a new targeting signal element for a subset of TA OEPs and expands the number and repertoire of TA proteins at the plastid outer envelope.
Collapse
Affiliation(s)
- Howard J Teresinski
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Satinder K Gidda
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Thuy N D Nguyen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Naomi J Marty Howard
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Brittany K Porter
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Nicholas Grimberg
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Matthew D Smith
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - David W Andrews
- Sunnybrook Research Institute and Departments of Biochemistry and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John M Dyer
- United States Department of Agriculture, Agricultural Research Service, US Arid-Land Agricultural Research Center, Maricopa, USA
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
35
|
Reinbothe S, Bartsch S, Rossig C, Davis MY, Yuan S, Reinbothe C, Gray J. A Protochlorophyllide (Pchlide) a Oxygenase for Plant Viability. FRONTIERS IN PLANT SCIENCE 2019; 10:593. [PMID: 31156665 PMCID: PMC6530659 DOI: 10.3389/fpls.2019.00593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 04/24/2019] [Indexed: 05/19/2023]
Abstract
Higher plants contain a small, 5-member family of Rieske non-heme oxygenases that comprise the inner plastid envelope protein TIC55, phaeophorbide a oxygenasee (PAO), chlorophyllide a oxygenase (CAO), choline monooxygenase, and a 52 kDa protein (PTC52) associated with the precursor NADPH:protochlorophyllide (Pchlide) oxidoreductase A (pPORA) A translocon (PTC). Some of these chloroplast proteins have documented roles in chlorophyll biosynthesis (CAO) and degradation (PAO and TIC55), whereas the function of PTC52 remains unresolved. Biochemical evidence provided here identifies PTC52 as Pchlide a oxygenase of the inner plastid envelope linking Pchlide b synthesis to pPORA import. Protochlorophyllide b is the preferred substrate of PORA and its lack no longer allows pPORA import. The Pchlide b-dependent import pathway of pPORA thus operates in etiolated seedlings and is switched off during greening. Using dexamethasone-induced RNA interference (RNAi) we tested if PTC52 is involved in controlling both, pPORA import and Pchlide homeostasis in planta. As shown here, RNAi plants deprived of PTC52 transcript and PTC52 protein were unable to import pPORA and died as a result of excess Pchlide a accumulation causing singlet oxygen formation during greening. In genetic studies, no homozygous ptc52 knock-out mutants could be obtained presumably as a result of embryo lethality, suggesting a role for PTC52 in the initial greening of plant embryos. Phylogenetic studies identified PTC52-like genes amongst unicellular photosynthetic bacteria and higher plants, suggesting that the biochemical function associated with PTC52 may have an ancient evolutionary origin. PTC52 also harbors conserved motifs with bacterial oxygenases such as the terminal oxygenase component of 3-ketosteroid 9-alpha-hydroxylase (KshA) from Rhodococcus rhodochrous. 3D-modeling of PTC52 structure permitted the prediction of amino acid residues that contribute to the substrate specificity of this enzyme. In vitro-mutagenesis was used to test the predicted PTC52 model and provide insights into the reaction mechanism of this Rieske non-heme oxygenase.
Collapse
Affiliation(s)
- Steffen Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
- *Correspondence: Steffen Reinbothe, John Gray,
| | - Sandra Bartsch
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
| | - Claudia Rossig
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
| | | | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Christiane Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
| | - John Gray
- Department of Biological Sciences, The University of Toledo, Toledo, OH, United States
- *Correspondence: Steffen Reinbothe, John Gray,
| |
Collapse
|
36
|
Frank J, Happeck R, Meier B, Hoang MTT, Stribny J, Hause G, Ding H, Morsomme P, Baginsky S, Peiter E. Chloroplast-localized BICAT proteins shape stromal calcium signals and are required for efficient photosynthesis. THE NEW PHYTOLOGIST 2019; 221:866-880. [PMID: 30169890 DOI: 10.1111/nph.15407] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/17/2018] [Indexed: 05/18/2023]
Abstract
The photosynthetic machinery of plants must be regulated to maximize the efficiency of light reactions and CO2 fixation. Changes in free Ca2+ in the stroma of chloroplasts have been observed at the transition between light and darkness, and also in response to stress stimuli. Such Ca2+ dynamics have been proposed to regulate photosynthetic capacity. However, the molecular mechanisms of Ca2+ fluxes in the chloroplasts have been unknown. By employing a Ca2+ reporter-based approach, we identified two chloroplast-localized Ca2+ transporters in Arabidopsis thaliana, BICAT1 and BICAT2, that determine the amplitude of the darkness-induced Ca2+ signal in the chloroplast stroma. BICAT2 mediated Ca2+ uptake across the chloroplast envelope, and its knockout mutation strongly dampened the dark-induced [Ca2+ ]stroma signal. Conversely, this Ca2+ transient was increased in knockout mutants of BICAT1, which transports Ca2+ into the thylakoid lumen. Knockout mutation of BICAT2 caused severe defects in chloroplast morphology, pigmentation and photosynthetic light reactions, rendering bicat2 mutants barely viable under autotrophic growth conditions, while bicat1 mutants were less affected. These results show that BICAT transporters play a role in chloroplast Ca2+ homeostasis. They are also involved in the regulation of photosynthesis and plant productivity. Further work will be required to reveal whether the effect on photosynthesis is a direct result of their role as Ca2+ transporters.
Collapse
Affiliation(s)
- Julia Frank
- Institute for Biochemistry and Biotechnology, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
| | - Ricardo Happeck
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
| | - Bastian Meier
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
| | - Minh Thi Thanh Hoang
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
| | - Jiri Stribny
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université Catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium
| | - Gerd Hause
- Biocenter, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
| | - Haidong Ding
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Pierre Morsomme
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université Catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium
| | - Sacha Baginsky
- Institute for Biochemistry and Biotechnology, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
| | - Edgar Peiter
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
| |
Collapse
|
37
|
Zhang S, Ai G, Li M, Ye Z, Zhang J. Tomato LrgB regulates heat tolerance and the assimilation and partitioning of carbon. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:309-319. [PMID: 30080617 DOI: 10.1016/j.plantsci.2018.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/28/2018] [Accepted: 06/02/2018] [Indexed: 06/08/2023]
Abstract
The impact of extreme and sustained high temperatures on plant growth has become increasingly prominent. Heat shock cognate 70-kDa proteins play an important role in plant heat tolerance. In this study, we identified and characterized the tomato ortholog of LrgB (SlLrgB), and demonstrate that it interacts with Hsc70.1. Similar to other genes that encode chloroplast-localized proteins, the expression of SlLrgB is upregulated in green tissues and suppressed by heat shock. Functional analyses utilizing transgenic plants indicate that SlLrgB contributes to chlorophyll metabolism. Both the overexpression and the RNA interference-mediated suppression of SlLrgB led to chlorotic leaves, reduced plant height, smaller size and decreases in pigment levels in ripening fruits. However, the starch levels in the SlLrgB-RNAi lines were significantly increased and the heat tolerance of SlLrgB-RNAi was obvious elevated. Downregulating the expression of Hsc70.1 by VIGS in tomato led to retarded growth, chlorotic leaves, and increased expression of SlLrgB. Based on these data, we suggest that SlLrgB regulates chlorophyll metabolism and the assimilation and partitioning of carbon. We also suggest that Hsc70.1 and SlLrgB contribute to heat tolerance and that Hsc70.1 negatively regulates SlLrgB.
Collapse
Affiliation(s)
- Shiwen Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Guo Ai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Miao Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; National Center for Vegetable Improvement (Central China), Wuhan, 430070, China.
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; National Center for Vegetable Improvement (Central China), Wuhan, 430070, China.
| |
Collapse
|
38
|
Eisenhut M, Hoecker N, Schmidt SB, Basgaran RM, Flachbart S, Jahns P, Eser T, Geimer S, Husted S, Weber APM, Leister D, Schneider A. The Plastid Envelope CHLOROPLAST MANGANESE TRANSPORTER1 Is Essential for Manganese Homeostasis in Arabidopsis. MOLECULAR PLANT 2018; 11:955-969. [PMID: 29734002 DOI: 10.1016/j.molp.2018.04.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 05/18/2023]
Abstract
The transition metal manganese (Mn) is indispensable for photoautotrophic growth since photosystem II (PSII) employs an inorganic Mn4CaO5 cluster for water splitting. Here, we show that the Arabidopsis membrane protein CHLOROPLAST MANGANESE TRANSPORTER1 (CMT1) is involved in chloroplast Mn homeostasis. CMT1 is the closest homolog of the previously characterized thylakoid Mn transporter PHOTOSYNTHESIS-AFFECTED MUTANT71 (PAM71). In contrast to PAM71, CMT1 resides at the chloroplast envelope and is ubiquitously expressed. Nonetheless, like PAM71, the expression of CMT1 can also alleviate the Mn-sensitive phenotype of yeast mutant Δpmr1. The cmt1 mutant is severely suppressed in growth, chloroplast ultrastructure, and PSII activity owing to a decrease in the amounts of pigments and thylakoid membrane proteins. The importance of CMT1 for chloroplast Mn homeostasis is demonstrated by the significant reduction in chloroplast Mn concentrations in cmt1-1, which exhibited reduced Mn binding in PSII complexes. Moreover, CMT1 expression is downregulated in Mn-surplus conditions. The pam71 cmt1-1double mutant resembles the cmt1-1 single mutant rather than pam71 in most respects. Taken together, our results suggest that CMT1 mediates Mn2+ uptake into the chloroplast stroma, and that CMT1 and PAM71 function sequentially in Mn delivery to PSII across the chloroplast envelope and the thylakoid membrane.
Collapse
Affiliation(s)
- Marion Eisenhut
- Biochemie der Pflanzen, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Natalie Hoecker
- Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Sidsel Birkelund Schmidt
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre (CPSC), Faculty of Science, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Rubek Merina Basgaran
- Biochemie der Pflanzen, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Samantha Flachbart
- Biochemie der Pflanzen, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Peter Jahns
- Biochemie der Pflanzen, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Tabea Eser
- Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Stefan Geimer
- Zellbiologie/Elektronenmikroskopie NW I/B1, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Søren Husted
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre (CPSC), Faculty of Science, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Andreas P M Weber
- Biochemie der Pflanzen, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Dario Leister
- Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Anja Schneider
- Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany.
| |
Collapse
|
39
|
Zhang B, Zhang C, Liu C, Jing Y, Wang Y, Jin L, Yang L, Fu A, Shi J, Zhao F, Lan W, Luan S. Inner Envelope CHLOROPLAST MANGANESE TRANSPORTER 1 Supports Manganese Homeostasis and Phototrophic Growth in Arabidopsis. MOLECULAR PLANT 2018; 11:943-954. [PMID: 29734003 DOI: 10.1016/j.molp.2018.04.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 05/18/2023]
Abstract
Manganese (Mn) is an essential catalytic metal in the Mn-cluster that oxidizes water to produce oxygen during photosynthesis. However, the transport protein(s) responsible for Mn2+ import into the chloroplast remains unknown. Here, we report the characterization of Arabidopsis CMT1 (Chloroplast Manganese Transporter 1), an evolutionarily conserved protein in the Uncharacterized Protein Family 0016 (UPF0016), that is required for manganese accumulation into the chloroplast. CMT1 is expressed primarily in green tissues, and its encoded product is localized in the inner envelope membrane of the chloroplast. Disruption of CMT1 in the T-DNA insertional mutant cmt1-1 resulted in stunted plant growth, defective thylakoid stacking, and severe reduction of photosystem II complexes and photosynthetic activity. Consistent with reduced oxygen evolution capacity, the mutant chloroplasts contained less manganese than the wild-type ones. In support of its function as a Mn transporter, CMT1 protein supported the growth and enabled Mn2+ accumulation in the yeast cells of Mn2+-uptake deficient mutant (Δsmf1). Taken together, our results indicate that CMT1 functions as an inner envelope Mn transporter responsible for chloroplast Mn2+ uptake.
Collapse
Affiliation(s)
- Bin Zhang
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China; The Key Laboratory of Western Resources Biology and Biological Technology, College of Life Sciences, Northwest University, Xi'an, China
| | - Chi Zhang
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China; The Key Laboratory of Western Resources Biology and Biological Technology, College of Life Sciences, Northwest University, Xi'an, China
| | - Congge Liu
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yanping Jing
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yuan Wang
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Ling Jin
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Lei Yang
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Aigen Fu
- The Key Laboratory of Western Resources Biology and Biological Technology, College of Life Sciences, Northwest University, Xi'an, China
| | - Jisen Shi
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing 210037, China
| | - Fugeng Zhao
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wenzhi Lan
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China.
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
40
|
Hunter CT, Saunders JW, Magallanes-Lundback M, Christensen SA, Willett D, Stinard PS, Li QB, Lee K, DellaPenna D, Koch KE. Maize w3 disrupts homogentisate solanesyl transferase (ZmHst) and reveals a plastoquinone-9 independent path for phytoene desaturation and tocopherol accumulation in kernels. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:799-813. [PMID: 29315977 DOI: 10.1111/tpj.13821] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
Maize white seedling 3 (w3) has been used to study carotenoid deficiency for almost 100 years, although the molecular basis of the mutation has remained unknown. Here we show that the w3 phenotype is caused by disruption of the maize gene for homogentisate solanesyl transferase (HST), which catalyzes the first and committed step in plastoquinone-9 (PQ-9) biosynthesis in the plastid. The resulting PQ-9 deficiency prohibits photosynthetic electron transfer and eliminates PQ-9 as an oxidant in the enzymatic desaturation of phytoene during carotenoid synthesis. As a result, light-grown w3 seedlings are albino, deficient in colored carotenoids and accumulate high levels of phytoene. However, despite the absence of PQ-9 for phytoene desaturation, dark-grown w3 seedlings can produce abscisic acid (ABA) and homozygous w3 kernels accumulate sufficient carotenoids to generate ABA needed for seed maturation. The presence of ABA and low levels of carotenoids in w3 nulls indicates that phytoene desaturase is able to use an alternate oxidant cofactor, albeit less efficiently than PQ-9. The observation that tocopherols and tocotrienols are modestly affected in w3 embryos and unaffected in w3 endosperm indicates that, unlike leaves, grain tissues deficient in PQ-9 are not subject to severe photo-oxidative stress. In addition to identifying the molecular basis for the maize w3 mutant, we: (1) show that low levels of phytoene desaturation can occur in w3 seedlings in the absence of PQ-9; and (2) demonstrate that PQ-9 and carotenoids are not required for vitamin E accumulation.
Collapse
Affiliation(s)
- Charles T Hunter
- USDA-ARS, Center for Medical, Agricultural and Veterinary Entomology, 1700 SW 23rd Dr, Gainesville, FL 32608, USA
| | - Jonathan W Saunders
- University of Florida, Horticultural Sciences, 2550 Hull Rd, Gainesville, FL 32611, USA
| | - Maria Magallanes-Lundback
- Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48824, USA
| | - Shawn A Christensen
- USDA-ARS, Center for Medical, Agricultural and Veterinary Entomology, 1700 SW 23rd Dr, Gainesville, FL 32608, USA
| | - Denis Willett
- USDA-ARS, Center for Medical, Agricultural and Veterinary Entomology, 1700 SW 23rd Dr, Gainesville, FL 32608, USA
| | - Philip S Stinard
- USDA-ARS, Maize Genetics Stock Center, 1102 S. Goodwin Ave, Urbana, IL 61801, USA
| | - Qin-Bao Li
- USDA-ARS, Center for Medical, Agricultural and Veterinary Entomology, 1700 SW 23rd Dr, Gainesville, FL 32608, USA
| | - Kwanghee Lee
- University of Connecticut, Plant Science and Landscape Architecture, 1376 Storrs Rd, Storrs, CT 06269, USA
| | - Dean DellaPenna
- Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48824, USA
| | - Karen E Koch
- University of Florida, Horticultural Sciences, 2550 Hull Rd, Gainesville, FL 32611, USA
| |
Collapse
|
41
|
Shen W, Han J, Yan P, Zheng J, Zhang L, Li X, Tuo D, Zhou P. Soluble expression of biologically active methionine sulfoxide reductase B1 (PaMsrB1) from Carica papaya in Escherichia coli and isolation of its protein targets. Protein Expr Purif 2018; 146:17-22. [PMID: 29373846 DOI: 10.1016/j.pep.2018.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/22/2017] [Accepted: 01/22/2018] [Indexed: 12/29/2022]
Abstract
Plant methionine sulfoxide reductase B1 (MsrB1) protects the photosynthetic apparatus from oxidative damage by scavenging reactive oxygen species to repair Met-oxidized proteins in response to abiotic stresses and biotic attack. Papaya MsrB1 (PaMsrB1) was identified previously to interact with papaya ringspot virus NIa-Pro, and this interaction inhibits the import of PaMsrB1 into the chloroplast. Further functional characterization of PaMsrB1 requires the production of a biologically active purified recombinant protein. In this report, PaMsrB1 as a fusion protein containing an N-terminal maltose-binding protein (MBP) was expressed in Escherichia coli Rosetta (DE3) cells and purified. Production of soluble fusion protein was greater when the cells were cultured at 16 °C than at 37 °C. The Factor Xa protease digested MBP-PaMsrB1 fusion protein and subsequently purified recombinant PaMsrB1 specifically reduced the R-diastereomer of methionine sulfoxide (MetSO) and Dabsyl-MetSO to Met in the presence of dithiothreitol. Eight chloroplast-localized and five non-chloroplast-localized candidate proteins that interact with PaMsrB1 were isolated by affinity chromatography and liquid chromatography coupled to tandem mass spectrometry. The results provide a platform to further understand the anti-oxidative defense mechanism of PaMsrB1.
Collapse
Affiliation(s)
- Wentao Shen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jie Han
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Pu Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jiping Zheng
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Lie Zhang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiaoying Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Decai Tuo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| | - Peng Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| |
Collapse
|
42
|
Moyet L, Salvi D, Tomizioli M, Seigneurin-Berny D, Rolland N. Preparation of Membrane Fractions (Envelope, Thylakoids, Grana, and Stroma Lamellae) from Arabidopsis Chloroplasts for Quantitative Proteomic Investigations and Other Studies. Methods Mol Biol 2018; 1696:117-136. [PMID: 29086400 DOI: 10.1007/978-1-4939-7411-5_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chloroplasts are semiautonomous organelles found in plants and protists. They are surrounded by a double membrane system, or envelope. These envelope membranes contain machineries to import nuclear-encoded proteins, and transporters for ions or metabolites, but are also essential for a range of plastid-specific metabolisms. The inner membrane surrounds a stroma, which is the site of the carbon chemistry of photosynthesis. Chloroplasts also contain an internal membrane system, or thylakoids, where the light phase of photosynthesis occurs. The thylakoid membranes themselves have a bipartite structure, consisting of grana stacks interconnected by stroma lamellae. These thylakoid membranes however form a continuous network that encloses a single lumenal space. Chloroplast-encoded or targeted proteins are thus addressed to various sub-compartments that turn out to be flexible systems and whose main functions can be modulated by alterations in the relative levels of their components. This article describes procedures developed to recover highly purified chloroplast membrane fractions (i.e., envelope, crude thylakoid membranes, as well as the two main thylakoid subdomains, grana and stroma lamellae), starting from Percoll-purified Arabidopsis chloroplasts. Immunological markers are also listed that can be used to assess the purity of these fractions and reveal specific contaminations by other plastid membrane compartments. The methods described here are compatible with chloroplast proteome dynamic studies relying on targeted quantitative proteomic investigations.
Collapse
Affiliation(s)
- Lucas Moyet
- Laboratoire de Physiologie Cellulaire & Végétale, BIG, CNRS, Univ. Grenoble Alpes, CEA, INRA, 17 rue des martyrs, 38054, Grenoble cedex 9, France
| | - Daniel Salvi
- Laboratoire de Physiologie Cellulaire & Végétale, BIG, CNRS, Univ. Grenoble Alpes, CEA, INRA, 17 rue des martyrs, 38054, Grenoble cedex 9, France
| | - Martino Tomizioli
- Laboratoire de Physiologie Cellulaire & Végétale, BIG, CNRS, Univ. Grenoble Alpes, CEA, INRA, 17 rue des martyrs, 38054, Grenoble cedex 9, France
| | - Daphné Seigneurin-Berny
- Laboratoire de Physiologie Cellulaire & Végétale, BIG, CNRS, Univ. Grenoble Alpes, CEA, INRA, 17 rue des martyrs, 38054, Grenoble cedex 9, France
| | - Norbert Rolland
- Laboratoire de Physiologie Cellulaire & Végétale, BIG, CNRS, Univ. Grenoble Alpes, CEA, INRA, 17 rue des martyrs, 38054, Grenoble cedex 9, France.
| |
Collapse
|
43
|
Lei R, Du Z, Kong J, Li G, He Y, Qiu Y, Yan J, Zhu S. Blue Native/SDS-PAGE and iTRAQ-Based Chloroplasts Proteomics Analysis of Nicotiana tabacum Leaves Infected with M Strain of Cucumber Mosaic Virus Reveals Several Proteins Involved in Chlorosis Symptoms. Proteomics 2018; 18. [PMID: 29193783 DOI: 10.1002/pmic.201700359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/16/2017] [Indexed: 01/05/2023]
Abstract
Virus infection in plants involves necrosis, chlorosis, and mosaic. The M strain of cucumber mosaic virus (M-CMV) has six distinct symptoms: vein clearing, mosaic, chlorosis, partial green recovery, complete green recovery, and secondary mosaic. Chlorosis indicates the loss of chlorophyll which is highly abundant in plant leaves and plays essential roles in photosynthesis. Blue native/SDS-PAGE combined with mass spectrum was performed to detect the location of virus, and proteomic analysis of chloroplast isolated from virus-infected plants was performed to quantify the changes of individual proteins in order to gain a global view of the total chloroplast protein dynamics during the virus infection. Among the 438 proteins quantified, 33 showed a more than twofold change in abundance, of which 22 are involved in the light-dependent reactions and five in the Calvin cycle. The dynamic change of these proteins indicates that light-dependent reactions are down-accumulated, and the Calvin cycle was up-accumulated during virus infection. In addition to the proteins involved in photosynthesis, tubulin was up-accumulated in virus-infected plant, which might contribute to the autophagic process during plant infection. In conclusion, this extensive proteomic investigation on intact chloroplasts of virus-infected tobacco leaves provided some important novel information on chlorosis mechanisms induced by virus infection.
Collapse
Affiliation(s)
- Rong Lei
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Zhixin Du
- Guangxi Entry-Exit Inspection and Quarantine Bureau, Nanning, Guangxi, P. R. China
| | - Jun Kong
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Guifen Li
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Yan He
- Animal and Plant and Food Testing Center, Tianjin Entry Exit Inspection and Quarantine Bureau, Tianjin, P. R. China
| | - Yanhong Qiu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Jin Yan
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Shuifang Zhu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| |
Collapse
|
44
|
Attacha S, Solbach D, Bela K, Moseler A, Wagner S, Schwarzländer M, Aller I, Müller SJ, Meyer AJ. Glutathione peroxidase-like enzymes cover five distinct cell compartments and membrane surfaces in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2017; 40:1281-1295. [PMID: 28102911 DOI: 10.1111/pce.12919] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 05/27/2023]
Abstract
Glutathione peroxidase-like enzymes (GPXLs) constitute a family of eight peroxidases in Arabidopsis thaliana. In contrast to the eponymous selenocysteine glutathione peroxidases in mammalian cells that use glutathione as electron donor, GPXLs rely on cysteine instead of selenocysteine for activity and depend on the thioredoxin system for reduction. Although plant GPXLs have been implicated in important agronomic traits such as drought tolerance, photooxidative tolerance and immune responses, there remain major ambiguities regarding their subcellular localization. Because their site of action is a prerequisite for an understanding of their function, we investigated the localization of all eight GPXLs in stable Arabidopsis lines expressing N-terminal and C-terminal fusions with redox-sensitive green fluorescent protein 2 (roGFP2) using confocal microscopy. GPXL1 and GPXL7 were found in plastids, while GPXL2 and GPXL8 are cytosolic nuclear. The N-terminal target peptide of GPXL6 is sufficient to direct roGFP2 into mitochondria. Interestingly, GPXL3, GPXL4 and GPXL5 all appear to be membrane bound. GPXL3 was found exclusively in the secretory pathway where it is anchored by a single N-terminal transmembrane domain. GPXL4 and GPXL5 are anchored to the plasma membrane. Presence of an N-terminal myristoylation motif and genetic disruption of membrane association through targeted mutagenesis point to myristoylation as essential for membrane localization.
Collapse
Affiliation(s)
- Safira Attacha
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - David Solbach
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Krisztina Bela
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Anna Moseler
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Stephan Wagner
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Markus Schwarzländer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Isabel Aller
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Stefanie J Müller
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| |
Collapse
|
45
|
Rossig C, Gray J, Valdes O, Rustgi S, von Wettstein D, Reinbothe C, Reinbothe S. HP30-2, a mitochondrial PRAT protein for import of signal sequence-less precursor proteins in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:535-551. [PMID: 28544763 DOI: 10.1111/jipb.12555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
Chloroplasts and mitochondria contain a family of putative preprotein and amino acid transporters designated PRAT. Here, we analyzed the role of two previously characterized PRAT protein family members, encoded by At3g49560 (HP30) and At5g24650 (HP30-2), in planta using a combination of genetic, cell biological and biochemical approaches. Expression studies and green fluorescent protein tagging identified HP30-2 both in chloroplasts and mitochondria, whereas HP30 was located exclusively in chloroplasts. Biochemical evidence was obtained for an association of mitochondrial HP30-2 with two distinct protein complexes, one containing the inner membrane translocase TIM22 and the other containing an alternative NAD(P)H dehydrogenase subunit (NDC1) implicated in a respiratory complex 1-like electron transport chain. Through its association with TIM22, HP30-2 is involved in the uptake of carrier proteins and other, hydrophobic membrane proteins lacking cleavable NH2 -terminal presequences, whereas HP30-2's interaction with NDC1 may permit controlling mitochondrial biogenesis and activity.
Collapse
Affiliation(s)
- Claudia Rossig
- Laboratory of Plant Molecular Genetics and Laboratory of Environmental and Systems Biology, Grenoble-Alpes-University, Grenoble, France
| | - John Gray
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - Oscar Valdes
- Laboratory of Plant Molecular Genetics and Laboratory of Environmental and Systems Biology, Grenoble-Alpes-University, Grenoble, France
| | - Sachin Rustgi
- Department of Plant and Environmental Sciences, Pee Dee Research and Education Center, Clemson University, Florence, SC 29506, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman WA 99164-6420, USA
| | - Diter von Wettstein
- Department of Crop and Soil Sciences, Washington State University, Pullman WA 99164-6420, USA
| | - Christiane Reinbothe
- Laboratory of Plant Molecular Genetics and Laboratory of Environmental and Systems Biology, Grenoble-Alpes-University, Grenoble, France
| | - Steffen Reinbothe
- Laboratory of Plant Molecular Genetics and Laboratory of Environmental and Systems Biology, Grenoble-Alpes-University, Grenoble, France
| |
Collapse
|
46
|
Díaz ML, Cuppari S, Soresi D, Carrera A. In Silico Analysis of Fatty Acid Desaturase Genes and Proteins in Grasses. Appl Biochem Biotechnol 2017; 184:484-499. [PMID: 28755245 DOI: 10.1007/s12010-017-2556-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/13/2017] [Indexed: 02/03/2023]
Abstract
Fatty acid desaturases (FADs) catalyze the introduction of a double bond into acyl chains. Two FAD groups have been identified in plants: acyl-acyl carrier proteins (ACPs) and acyl-lipid or membrane-bound FAD. The former catalyze the conversion of 18:0 to 18:1 and to date have only been identified in plants. The latter are found in eukaryotes and bacteria and are responsible for multiple desaturations. In this study, we identified 82 desaturase gene and protein sequences from 10 grass species deposited in GenBank that were analyzed using bioinformatic approaches. Subcellular localization predictions of desaturase family revealed their localization in plasma membranes, chloroplasts, endoplasmic reticula, and mitochondria. The in silico mapping showed multiple chromosomal locations in most species. Furthermore, the presence of the characteristic histidine domains, the predicted motifs, and the finding of transmembrane regions strongly support the protein functionality. The identification of putative regulatory sites in the promotor and the expression profiles revealed the wide range of pathways in which fatty acid desaturases are involved. This study is an updated survey on desaturases of grasses that provides a comprehensive insight into diversity and evolution. This characterization is a necessary first step before considering these genes as candidates for new biotechnological approaches.
Collapse
Affiliation(s)
- Marina Lucía Díaz
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000, Bahía Blanca, Argentina.
- Comisión de Investigaciones Científicas, Buenos Aires, Argentina.
| | - Selva Cuppari
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS)-CONICET, Camino La Carrindanga Km 7, 8000, Bahía Blanca, Argentina
| | - Daniela Soresi
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000, Bahía Blanca, Argentina
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS)-CONICET, Camino La Carrindanga Km 7, 8000, Bahía Blanca, Argentina
| | - Alicia Carrera
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS)-CONICET, Camino La Carrindanga Km 7, 8000, Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur, San Andrés 800, Bahía Blanca, Argentina
| |
Collapse
|
47
|
Zhang XY, Zhang X, Zhang Q, Pan XX, Yan LC, Ma XJ, Zhao WZ, Qi XT, Yin LP. Zea mays Fe deficiency-related 4 (ZmFDR4) functions as an iron transporter in the plastids of monocots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:147-163. [PMID: 28103409 DOI: 10.1111/tpj.13482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 01/02/2017] [Accepted: 01/09/2017] [Indexed: 05/25/2023]
Abstract
Iron (Fe)-homeostasis in the plastids is closely associated with Fe transport proteins that prevent Fe from occurring in its toxic free ionic forms. However, the number of known protein families related to Fe transport in the plastids (about five) and the function of iron in non-green plastids is limited. In the present study, we report the functional characterization of Zea mays Fe deficiency-related 4 (ZmFDR4), which was isolated from a differentially expressed clone of a cDNA library of Fe deficiency-induced maize roots. ZmFDR4 is homologous to the bacterial FliP superfamily, coexisted in both algae and terrestrial plants, and capable of restoring the normal growth of the yeast mutant fet3fet4, which possesses defective Fe uptake systems. ZmFDR4 mRNA is ubiquitous in maize and is inducible by iron deficiency in wheat. Transient expression of the 35S:ZmFDR4-eGFP fusion protein in rice protoplasts indicated that ZmFDR4 maybe localizes to the plastids envelope and thylakoid. In 35S:c-Myc-ZmFDR4 transgenic tobacco, immunohistochemistry and immunoblotting confirmed that ZmFDR4 is targeted to both the chloroplast envelope and thylakoid. Meanwhile, ultrastructure analysis indicates that ZmFDR4 promotes the density of plastids and accumulation of starch grains. Moreover, Bathophenanthroline disulfonate (BPDS) colorimetry and inductively coupled plasma mass spectrometry (ICP-MS) indicate that ZmFDR4 is related to Fe uptake by plastids and increases seed Fe content. Finally, 35S:c-Myc-ZmFDR4 transgenic tobacco show enhanced photosynthetic efficiency. Therefore, the results of the present study demonstrate that ZmFDR4 functions as an iron transporter in monocot plastids and provide insight into the process of Fe uptake by plastids.
Collapse
Affiliation(s)
- Xiu-Yue Zhang
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Haidian District, Beijing, 100048, China
| | - Xi Zhang
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Haidian District, Beijing, 100048, China
| | - Qi Zhang
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Haidian District, Beijing, 100048, China
| | - Xiao-Xi Pan
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Haidian District, Beijing, 100048, China
| | - Luo-Chen Yan
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Haidian District, Beijing, 100048, China
| | - Xiao-Juan Ma
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Haidian District, Beijing, 100048, China
| | - Wei-Zhong Zhao
- Institute of Mathematics and Interdisciplinary Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Haidian District, Beijing, 100048, China
| | - Xiao-Ting Qi
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Haidian District, Beijing, 100048, China
| | - Li-Ping Yin
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Haidian District, Beijing, 100048, China
| |
Collapse
|
48
|
Hoecker N, Leister D, Schneider A. Plants contain small families of UPF0016 proteins including the PHOTOSYNTHESIS AFFECTED MUTANT71 transporter. PLANT SIGNALING & BEHAVIOR 2017; 12:e1278101. [PMID: 28075225 PMCID: PMC5351731 DOI: 10.1080/15592324.2016.1278101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
PHOTOSYNTHESIS AFFECTED MUTANT71 (PAM71) is an integral thylakoid membrane protein that functions in manganese uptake into the lumen. Manganese is needed in the thylakoid lumen to build up the inorganic Mn4CaO5 cluster, the catalytic center for water oxidation, and is hence indispensable for oxygen evolution. A recent study revealed that PAM71 is well conserved in plants and shares homology to GCR1 DEPENDENT TRANSLATION FACTOR1 (GDT1) and TRANSMEMBRANE PROTEIN 165 (TMEM165) in Saccharomyces cerevisiae and Homo sapiens, respectively. In most eukaryotes only single members of this family, designated "Uncharacterized Protein Family 0016" (UPF0016), are present; however, plant genomes contain genes for several UPF0016 proteins. In Arabidopsis thaliana, this protein family comprises 5 members, which mainly differ in their N-terminal regions. PAM71 and its closest homolog PAM71-HL possess chloroplast transit peptides at their N-terminus. Two of the remaining 3 members are derived from a segmental chromosomal duplication event and lack an N-terminal extension. Thus, plants have evolved UPF0016 members residing in various compartments of the cell, whereas in non-plant eukaryotes just a Golgi localization occurs. The identification of PAM71 as a candidate Mn2+ transporter opens the question on the function of the remaining plant members. Here we resume briefly our current knowledge of UPF0016 members in Arabidopsis in comparison to their yeast and human UPF0016 members.
Collapse
Affiliation(s)
- Natalie Hoecker
- Department of Biology I, Plant Sciences, Ludwig-Maximilians Universität München, Martinsried, Germany
| | - Dario Leister
- Department of Biology I, Plant Sciences, Ludwig-Maximilians Universität München, Martinsried, Germany
| | - Anja Schneider
- Department of Biology I, Plant Sciences, Ludwig-Maximilians Universität München, Martinsried, Germany
- CONTACT Anja Schneider
| |
Collapse
|
49
|
Wan S, Mak MW, Kung SY. Transductive Learning for Multi-Label Protein Subchloroplast Localization Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017; 14:212-224. [PMID: 26887009 DOI: 10.1109/tcbb.2016.2527657] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Predicting the localization of chloroplast proteins at the sub-subcellular level is an essential yet challenging step to elucidate their functions. Most of the existing subchloroplast localization predictors are limited to predicting single-location proteins and ignore the multi-location chloroplast proteins. While recent studies have led to some multi-location chloroplast predictors, they usually perform poorly. This paper proposes an ensemble transductive learning method to tackle this multi-label classification problem. Specifically, given a protein in a dataset, its composition-based sequence information and profile-based evolutionary information are respectively extracted. These two kinds of features are respectively compared with those of other proteins in the dataset. The comparisons lead to two similarity vectors which are weighted-combined to constitute an ensemble feature vector. A transductive learning model based on the least squares and nearest neighbor algorithms is proposed to process the ensemble features. We refer to the resulting predictor to as EnTrans-Chlo. Experimental results on a stringent benchmark dataset and a novel dataset demonstrate that EnTrans-Chlo significantly outperforms state-of-the-art predictors and particularly gains more than 4% (absolute) improvement on the overall actual accuracy. For readers' convenience, EnTrans-Chlo is freely available online at http://bioinfo.eie.polyu.edu.hk/EnTransChloServer/.
Collapse
|
50
|
Lee KR, Lee Y, Kim EH, Lee SB, Roh KH, Kim JB, Kang HC, Kim HU. Functional identification of oleate 12-desaturase and ω-3 fatty acid desaturase genes from Perilla frutescens var. frutescens. PLANT CELL REPORTS 2016; 35:2523-2537. [PMID: 27637203 DOI: 10.1007/s00299-016-2053-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/05/2016] [Indexed: 05/26/2023]
Abstract
We described identification, expression, subcellular localization, and functions of genes that encode fatty acid desaturase enzymes in Perilla frutescens var. frutescens. Perilla (Perilla frutescens var. frutescens) seeds contain approximately 40 % of oil, of which α-linolenic acid (18:3) comprise more than 60 % in seed oil and 56 % of total fatty acids (FAs) in leaf, respectively. In perilla, endoplasmic reticulum (ER)-localized and chloroplast-localized ω-3 FA desaturase genes (PfrFAD3 and PfrFAD7, respectively) have already been reported, however, microsomal oleate 12-desaturase gene (PfrFAD2) has not yet. Here, four perilla FA desaturase genes, PfrFAD2-1, PfrFAD2-2, PfrFAD3-2 and PfrFAD7-2, were newly identified and characterized using random amplification of complementary DNA ends and sequence data from RNAseq analysis, respectively. According to the data of transcriptome and gene cloning, perilla expresses two PfrFAD2 and PfrFAD3 genes, respectively, coding for proteins that possess three histidine boxes, transmembrane domains, and an ER retrieval motif at its C-terminal, and two chloroplast-localized ω-3 FA desaturase genes, PfrFAD7-1 and PfrFAD7-2. Arabidopsis protoplasts transformed with perilla genes fused to green fluorescence protein gene demonstrated that PfrFAD2-1 and PfrFAD3-2 were localized in the ER, and PfrFAD7-1 and PfrFAD7-2 were localized in the chloroplasts. PfrFAD2 and perilla ω-3 FA desaturases were functional in budding yeast (Saccharomyces cerevisiae) indicated by the presence of 18:2 and 16:2 in yeast harboring the PfrFAD2 gene. 18:2 supplementation of yeast harboring ω-3 FA desaturase gene led to the production of 18:3. Therefore, perilla expresses two functional FAD2 and FAD3 genes, and two chloroplast-localized ω-3 FA desaturase genes, which support an evidence that P. frutescens cultivar is allotetraploid plant.
Collapse
Affiliation(s)
- Kyeong-Ryeol Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Yongjik Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Eun-Ha Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Seul-Bee Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Kyung Hee Roh
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Jong-Bum Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Han-Chul Kang
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|