1
|
Takata T. Is the Novel Slot Blot a Useful Method for Quantification of Intracellular Advanced Glycation End-Products? Metabolites 2023; 13:metabo13040564. [PMID: 37110222 PMCID: PMC10144988 DOI: 10.3390/metabo13040564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Various types of advanced glycation end-products (AGEs) have been identified and studied. I have reported a novel slot blot analysis to quantify two types of AGEs, glyceraldehyde-derived AGEs, also called toxic AGEs (TAGE), and 1,5-anhydro-D-fructose AGEs. The traditional slot blot method has been used for the detection and quantification of RNA, DNA, and proteins since around 1980 and is one of the more commonly used analog technologies to date. However, the novel slot blot analysis has been used to quantify AGEs from 2017 to 2022. Its characteristics include (i) use of a lysis buffer containing tris-(hydroxymethyl)-aminomethane, urea, thiourea, and 3-[3-(cholamidopropyl)-dimetyl-ammonio]-1-propane sulfonate (a lysis buffer with a composition similar to that used in two-dimensional gel electrophoresis-based proteomics analysis); (ii) probing of AGE-modified bovine serum albumin (e.g., standard AGE aliquots); and (iii) use of polyvinylidene difluoride membranes. In this review, the previously used quantification methods of slot blot, western blot, immunostaining, enzyme-linked immunosorbent assay, gas chromatography-mass spectrometry (MS), matrix-associated laser desorption/ionization-MS, and liquid chromatography-electrospray ionization-MS are described. Lastly, the advantages and disadvantages of the novel slot blot compared to the above methods are discussed.
Collapse
Affiliation(s)
- Takanobu Takata
- Division of Molecular and Genetic Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
| |
Collapse
|
2
|
Lasagni Vitar RM, Bonelli F, Rama P, Ferrari G. Nutritional and Metabolic Imbalance in Keratoconus. Nutrients 2022; 14:nu14040913. [PMID: 35215563 PMCID: PMC8876314 DOI: 10.3390/nu14040913] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/18/2022] [Indexed: 12/31/2022] Open
Abstract
Keratoconus (KC) is a progressive corneal degeneration characterized by structural changes consisting of progressive thinning and steepening of the cornea. These alterations result in biomechanical weakening and, clinically, in vision loss. While the etiology of KC has been the object of study for over a century, no single agent has been found. Recent reviews suggest that KC is a multifactorial disease that is associated with a wide variety of genetic and environmental factors. While KC is typically considered a disease of the cornea, associations with systemic conditions have been well described over the years. In particular, nutritional and metabolic imbalance, such as the redox status, hormones, metabolites, and micronutrients (vitamins and metal ions), can deeply influence KC initiation and progression. In this paper, we comprehensively review the different nutritional (vitamins and minerals) and metabolic (hormones and metabolites) factors that are altered in KC, discussing their possible implication in the pathophysiology of the disease.
Collapse
Affiliation(s)
| | | | | | - Giulio Ferrari
- Correspondence: ; Tel.: +39-02-26436186; Fax: +39-02-26436164
| |
Collapse
|
3
|
Peng L, Jiang J, Chen HN, Zhou L, Huang Z, Qin S, Jin P, Luo M, Li B, Shi J, Xie N, Deng LW, Liou YC, Nice EC, Huang C, Wei Y. Redox-sensitive cyclophilin A elicits chemoresistance through realigning cellular oxidative status in colorectal cancer. Cell Rep 2021; 37:110069. [PMID: 34852234 DOI: 10.1016/j.celrep.2021.110069] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/23/2021] [Accepted: 11/08/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer cells utilize rapidly elevated cellular antioxidant programs to accommodate chemotherapy-induced oxidative stress; however, the underlying mechanism remains largely unexplored. Here we screen redox-sensitive effectors as potential therapeutic targets for colorectal cancer (CRC) treatment and find that cyclophilin A (CypA) is a compelling candidate. Our results show that CypA forms an intramolecular disulfide bond between Cys115 and Cys161 upon oxidative stress and the oxidized cysteines in CypA are recycled to a reduced state by peroxiredoxin-2 (PRDX2). Furthermore, CypA reduces cellular reactive oxygen species levels and increases CRC cell survival under insults of H2O2 and chemotherapeutics through a CypA-PRDX2-mediated antioxidant apparatus. Notably, CypA is upregulated in chemoresistant CRC samples, which predicts poor prognosis. Moreover, targeting CypA by cyclosporine A exhibits promising efficacy against chemoresistant CRC when combined with chemotherapeutics. Collectively, our findings highlight CypA as a component of cellular noncanonical antioxidant defense and as a potential druggable therapeutic target to ameliorate CRC chemoresistance.
Collapse
Affiliation(s)
- Liyuan Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China; West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, P.R. China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China; West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, P.R. China
| | - Hai-Ning Chen
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China; West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, P.R. China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China; West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, P.R. China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China; West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, P.R. China
| | - Ping Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China; West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, P.R. China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China; West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, P.R. China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China; West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, P.R. China
| | - Jiayan Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China; West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, P.R. China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, P.R. China
| | - Lih-Wen Deng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117573, Singapore
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton VIC 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China; West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, P.R. China.
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| |
Collapse
|
4
|
Zhang D, Zhang P, Yang P, He Y, Wang X, Yang Y, Zhu H, Xu N, Liang S. Downregulation of ATP1A1 promotes cancer development in renal cell carcinoma. Clin Proteomics 2017; 14:15. [PMID: 28484360 PMCID: PMC5418755 DOI: 10.1186/s12014-017-9150-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/26/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Aberrant expression of Na+/K+-ATPase α1 subunit (ATP1A1) is widely observed in multiple types of tumors, and its tissue-specific expression relates to cancer development. However, the functions and molecular mechanisms in renal cell carcinoma (RCC) are not fully understood. METHODS We investigated the ATP1A1 expression changes and possible roles in RCC through a quantitative proteomic approach and an integrative biochemical assessment. We detected ATP1A1 in RCC with LC-MS/MS, and further validated its expression with immunohistochemical analyses of 80 pairs of the RCC tumor and non-tumor tissues samples. The association of ATP1A1 expression with RCC pathology was statistically analyzed. Cell proliferation, migration and apoptosis were measured by CCK-8, boyden chamber assay and flow cytometry, respectively. The production of reactive oxygen species (ROS) was labeled with a single staining using a commercial kit, and was further detected with flow cytometry. RESULTS The ATP1A1 shows a significantly decreased expression in human RCC tissues than in the adjacent non-tumor tissues. The RCC patients with ATP1A1-positive expression exhibit longer overall survival time than the ATP1A1-negative patients. The exogenous overexpression of ATP1A1 inhibits RCC cell proliferation and cell migration by increasing the production of ROS. In addition, ATP1A1-mediated Raf/MEK/ERK signaling pathway is suppressed in RCC cells, indicating the possible occurrence of induced cell apoptosis. CONCLUSIONS Our in vitro and in vivo data of ATP1A1 inhibitory roles in RCC progression suggest that ATP1A1 is a potential novel suppressor protein for renal cancer.
Collapse
Affiliation(s)
- Dan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17 Section 3, People’s South Road, Chengdu, 610041 People’s Republic of China
| | - Peng Zhang
- Department of Urinary Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041 People’s Republic of China
| | - Pengbo Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17 Section 3, People’s South Road, Chengdu, 610041 People’s Republic of China
| | - Yu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17 Section 3, People’s South Road, Chengdu, 610041 People’s Republic of China
| | - Xixi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17 Section 3, People’s South Road, Chengdu, 610041 People’s Republic of China
| | - Yanfang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17 Section 3, People’s South Road, Chengdu, 610041 People’s Republic of China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, 100021 People’s Republic of China
| | - Ningzhi Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17 Section 3, People’s South Road, Chengdu, 610041 People’s Republic of China
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, 100021 People’s Republic of China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17 Section 3, People’s South Road, Chengdu, 610041 People’s Republic of China
| |
Collapse
|
5
|
Hünten S, Kaller M, Drepper F, Oeljeklaus S, Bonfert T, Erhard F, Dueck A, Eichner N, Friedel CC, Meister G, Zimmer R, Warscheid B, Hermeking H. p53-Regulated Networks of Protein, mRNA, miRNA, and lncRNA Expression Revealed by Integrated Pulsed Stable Isotope Labeling With Amino Acids in Cell Culture (pSILAC) and Next Generation Sequencing (NGS) Analyses. Mol Cell Proteomics 2015; 14:2609-29. [PMID: 26183718 DOI: 10.1074/mcp.m115.050237] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 12/20/2022] Open
Abstract
We determined the effect of p53 activation on de novo protein synthesis using quantitative proteomics (pulsed stable isotope labeling with amino acids in cell culture/pSILAC) in the colorectal cancer cell line SW480. This was combined with mRNA and noncoding RNA expression analyses by next generation sequencing (RNA-, miR-Seq). Furthermore, genome-wide DNA binding of p53 was analyzed by chromatin-immunoprecipitation (ChIP-Seq). Thereby, we identified differentially regulated proteins (542 up, 569 down), mRNAs (1258 up, 415 down), miRNAs (111 up, 95 down) and lncRNAs (270 up, 123 down). Changes in protein and mRNA expression levels showed a positive correlation (r = 0.50, p < 0.0001). In total, we detected 133 direct p53 target genes that were differentially expressed and displayed p53 occupancy in the vicinity of their promoter. More transcriptionally induced genes displayed occupied p53 binding sites (4.3% mRNAs, 7.2% miRNAs, 6.3% lncRNAs, 5.9% proteins) than repressed genes (2.4% mRNAs, 3.2% miRNAs, 0.8% lncRNAs, 1.9% proteins), suggesting indirect mechanisms of repression. Around 50% of the down-regulated proteins displayed seed-matching sequences of p53-induced miRNAs in the corresponding 3'-UTRs. Moreover, proteins repressed by p53 significantly overlapped with those previously shown to be repressed by miR-34a. We confirmed up-regulation of the novel direct p53 target genes LINC01021, MDFI, ST14 and miR-486 and showed that ectopic LINC01021 expression inhibits proliferation in SW480 cells. Furthermore, KLF12, HMGB1 and CIT mRNAs were confirmed as direct targets of the p53-induced miR-34a, miR-205 and miR-486-5p, respectively. In line with the loss of p53 function during tumor progression, elevated expression of KLF12, HMGB1 and CIT was detected in advanced stages of cancer. In conclusion, the integration of multiple omics methods allowed the comprehensive identification of direct and indirect effectors of p53 that provide new insights and leads into the mechanisms of p53-mediated tumor suppression.
Collapse
Affiliation(s)
- Sabine Hünten
- From the ‡Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University Munich, Thalkirchner Straβe 36, 80337 Munich, Germany
| | - Markus Kaller
- From the ‡Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University Munich, Thalkirchner Straβe 36, 80337 Munich, Germany
| | - Friedel Drepper
- ‖Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Silke Oeljeklaus
- ‖Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Bonfert
- ‡‡Institute for Informatics, Ludwig-Maximilians-University Munich, 80337 Munich, Germany
| | - Florian Erhard
- ‡‡Institute for Informatics, Ludwig-Maximilians-University Munich, 80337 Munich, Germany
| | - Anne Dueck
- §§Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Norbert Eichner
- §§Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Caroline C Friedel
- ‡‡Institute for Informatics, Ludwig-Maximilians-University Munich, 80337 Munich, Germany
| | - Gunter Meister
- §§Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Ralf Zimmer
- ‡‡Institute for Informatics, Ludwig-Maximilians-University Munich, 80337 Munich, Germany
| | - Bettina Warscheid
- ‖Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; **Center for Biological Systems Analysis (ZBSA), University of Freiburg, 79104 Freiburg, Germany
| | - Heiko Hermeking
- From the ‡Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University Munich, Thalkirchner Straβe 36, 80337 Munich, Germany; §German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany; ¶German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany;
| |
Collapse
|
6
|
Examination of salivary proteins as biomarkers of pathological conditions. Literature review. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2015. [DOI: 10.12923/j.2084-980x/26.1/a.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Saliva is universally available biofluid, easy to collect. Comprehensive analysis and identification of the proteomic content of human saliva may contribute to the understanding of oral pathophysiology and provide a foundation for the recognition of potential biomarkers of human disease. These features make it an ideal biological material for the early detection of many diseases of different origin, and enable non-invasive diagnostics. The presence of protein markers in saliva was found with usage of capillary electrophoresis and mass spectrometry.
Collapse
|
7
|
Ballikaya S, Lee J, Warnken U, Schnölzer M, Gebert J, Kopitz J. De Novo proteome analysis of genetically modified tumor cells by a metabolic labeling/azide-alkyne cycloaddition approach. Mol Cell Proteomics 2014; 13:3446-56. [PMID: 25225355 DOI: 10.1074/mcp.m113.036665] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Activin receptor type II (ACVR2) is a member of the transforming growth factor type II receptor family and controls cell growth and differentiation, thereby acting as a tumor suppressor. ACVR2 inactivation is known to drive colorectal tumorigenesis. We used an ACVR2-deficient microsatellite unstable colon cancer cell line (HCT116) to set up a novel experimental design for comprehensive analysis of proteomic changes associated with such functional loss of a tumor suppressor. To this end we combined two existing technologies. First, the ACVR2 gene was reconstituted in an ACVR2-deficient colorectal cancer (CRC) cell line by means of recombinase-mediated cassette exchange, resulting in the generation of an inducible expression system that allowed the regulation of ACVR2 gene expression in a doxycycline-dependent manner. Functional expression in the induced cells was explicitly proven. Second, we used the methionine analog azidohomoalanine for metabolic labeling of newly synthesized proteins in our cell line model. Labeled proteins were tagged with biotin via a Click-iT chemistry approach enabling specific extraction of labeled proteins by streptavidin-coated beads. Tryptic on-bead digestion of captured proteins and subsequent ultra-high-performance LC coupled to LTQ Orbitrap XL mass spectrometry identified 513 proteins, with 25 of them differentially expressed between ACVR2-deficient and -proficient cells. Among these, several candidates that had already been linked to colorectal cancer or were known to play a key role in cell growth or apoptosis control were identified, proving the utility of the presented experimental approach. In principle, this strategy can be adapted to analyze any gene of interest and its effect on the cellular de novo proteome.
Collapse
Affiliation(s)
- Seda Ballikaya
- From the ‡Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, INF 224, 69120 Heidelberg, Germany; §Cancer Early Detection, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany
| | - Jennifer Lee
- From the ‡Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, INF 224, 69120 Heidelberg, Germany; §Cancer Early Detection, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany
| | - Uwe Warnken
- ‖Functional Proteome Analysis, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany
| | - Martina Schnölzer
- ‖Functional Proteome Analysis, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany
| | - Johannes Gebert
- From the ‡Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, INF 224, 69120 Heidelberg, Germany; §Cancer Early Detection, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany
| | - Jürgen Kopitz
- From the ‡Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, INF 224, 69120 Heidelberg, Germany; §Cancer Early Detection, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany;
| |
Collapse
|
8
|
Skandarajah AR, Moritz RL, Tjandra JJ, Simpson RJ. Proteomic analysis of colorectal cancer: discovering novel biomarkers. Expert Rev Proteomics 2014; 2:681-92. [PMID: 16209648 DOI: 10.1586/14789450.2.5.681] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Colorectal cancer is one of the most common cancers in the Western world. When detected at an early stage, the majority of cancers can be cured with current treatment modalities. However, most cancers present at an intermediate stage. The discovery of sensitive and specific biomarkers has the potential to improve preclinical diagnosis of primary and recurrent colorectal cancer, and holds the promise of prognostic and therapeutic application. Current biomarkers such as carcinoembryonic antigen lack sensitivity and specificity for general population screening. This review aims to highlight the role of current proteomic technologies in the discovery and validation of potential biomarkers with a view to translation to the clinic.
Collapse
Affiliation(s)
- Anita R Skandarajah
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Grattan Street, Parkville 3050, Victoria, Australia.
| | | | | | | |
Collapse
|
9
|
Lee J. Cyclophilin A as a New Therapeutic Target for Hepatitis C Virus-induced Hepatocellular Carcinoma. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:375-83. [PMID: 24227937 PMCID: PMC3823949 DOI: 10.4196/kjpp.2013.17.5.375] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) related to hepatitis B virus (HBV) and hepatitis C virus (HCV) infections is thought to account for more than 80% of primary liver cancers. Both HBV and HCV can establish chronic liver inflammatory infections, altering hepatocyte and liver physiology with potential liver disease progression and HCC development. Cyclophilin A (CypA) has been identified as an essential host factor for the HCV replication by physically interacting with the HCV non structural protein NS5A that in turn interacts with RNA-dependent RNA polymerase NS5B. CypA, a cytosolic binding protein of the immunosuppressive drug cyclosporine A, is overexpressed in many cancer types and often associated with malignant transformation. Therefore, CypA can be a good target for molecular cancer therapy. Because of antiviral activity, the CypA inhibitors have been tested for the treatment of chronic hepatitis C. Nonimmunosuppressive Cyp inhibitors such as NIM811, SCY-635, and Alisporivir have attracted more interests for appropriating CypA for antiviral chemotherapeutic target on HCV infection. This review describes CypA inhibitors as a potential HCC treatment tool that is contrived by their obstructing chronic HCV infection and summarizes roles of CypA in cancer development.
Collapse
Affiliation(s)
- Jinhwa Lee
- Department of Clinical Lab Science, School of Health Science, Dongseo University, Busan 617-716, Korea
| |
Collapse
|
10
|
Salazar JJ, Gallego-Pinazo R, de Hoz R, Pinazo-Durán MD, Rojas B, Ramírez AI, Serrano M, Ramírez JM. "Super p53" mice display retinal astroglial changes. PLoS One 2013; 8:e65446. [PMID: 23762373 PMCID: PMC3676457 DOI: 10.1371/journal.pone.0065446] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/24/2013] [Indexed: 12/17/2022] Open
Abstract
Tumour-suppressor genes, such as the p53 gene, produce proteins that inhibit cell division under adverse conditions, as in the case of DNA damage, radiation, hypoxia, or oxidative stress (OS). The p53 gene can arrest proliferation and trigger death by apoptosis subsequent to several factors. In astrocytes, p53 promotes cell-cycle arrest and is involved in oxidative stress-mediated astrocyte cell death. Increasingly, astrocytic p53 is proving fundamental in orchestrating neurodegenerative disease pathogenesis. In terms of ocular disease, p53 may play a role in hypoxia due to ischaemia and may be involved in the retinal response to oxidative stress (OS). We studied the influence of the p53 gene in the structural and quantitative characteristics of astrocytes in the retina. Adult mice of the C57BL/6 strain (12 months old) were distributed into two groups: 1) mice with two extra copies of p53 (“super p53”; n = 6) and 2) wild-type p53 age-matched control, as the control group (WT; n = 6). Retinas from each group were immunohistochemically processed to locate the glial fibrillary acidic protein (GFAP). GFAP+ astrocytes were manually counted and the mean area occupied for one astrocyte was quantified. Retinal-astrocyte distribution followed established patterns; however, morphological changes were seen through the retinas in relation to p53 availability. The mean GFAP+ area occupied by one astrocyte in “super p53” eyes was significantly higher (p<0.05; Student’s t-test) than in the WT. In addition, astroglial density was significantly higher in the “super p53” retinas than in the WT ones, both in the whole-retina (p<0,01 Student’s t-test) and in the intermediate and peripheral concentric areas of the retina (p<0.05 Student’s t-test). This fact might improve the resistance of the retinal cells against OS and its downstream signalling pathways.
Collapse
Affiliation(s)
- Juan J. Salazar
- Instituto de Investigaciones Oftalmológicas “Ramón Castroviejo”, Universidad Complutense de Madrid, Madrid, Spain
- Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Roberto Gallego-Pinazo
- Ophthalmology Department of the University and Polytechnic Hospital La Fe, Valencia, Spain
- Ophthalmic Research Unit “Santiago Grisolia” Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Rosa de Hoz
- Instituto de Investigaciones Oftalmológicas “Ramón Castroviejo”, Universidad Complutense de Madrid, Madrid, Spain
- Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Maria D. Pinazo-Durán
- Ophthalmic Research Unit “Santiago Grisolia” Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Blanca Rojas
- Instituto de Investigaciones Oftalmológicas “Ramón Castroviejo”, Universidad Complutense de Madrid, Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana I. Ramírez
- Instituto de Investigaciones Oftalmológicas “Ramón Castroviejo”, Universidad Complutense de Madrid, Madrid, Spain
- Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | | | - José M. Ramírez
- Instituto de Investigaciones Oftalmológicas “Ramón Castroviejo”, Universidad Complutense de Madrid, Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
11
|
Song P, Bao H, Yu Y, Xue Y, Yun D, Zhang Y, He Y, Liu Y, Liu Q, Lu H, Fan H, Luo J, Yang P, Chen X. Comprehensive profiling of metastasis-related proteins in paired hepatocellular carcinoma cells with different metastasis potentials. Proteomics Clin Appl 2012; 3:841-52. [PMID: 21136991 DOI: 10.1002/prca.200780131] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Precise and comprehensive identifications of the proteins associated with metastasis are critical for early diagnosis and therapeutic intervention of hepatocellular carcinoma (HCC). Therefore, we investigated the proteomic differences between a pair of HCC cell lines, originating from the same progenitor, with different metastasis potential using amino acid-coded mass tagging-based LC-MS/MS quantitative proteomic approach. Totally the relative abundance of 336 proteins in these cell lines were quantified, in which 121 proteins were upregulated by >30%, and 64 proteins were downregulated by >23% in the cells with high metastasis potential. Further validation studies by Western blotting in a series of HCC cell types with progressively increasing trend of metastasis showed that peroxiredoxin 4, HSP90β and HSP27 were positively correlated with increasing metastasis while prohibitin was negatively correlated with metastasis potential. These validation results were also consistent with that obtained from comparative analysis of clinic tissues samples. Function annotations of differentially expressed HCC proteome suggested that the emergence and development of high metastasis involved the dysregulation of cell migration, cell cycle and membrane traffics. Together our results revealed a much more comprehensive profile than that from 2-DE-based method and provided more global insights into the mechanisms of HCC metastasis and potential markers for clinical diagnosis.
Collapse
Affiliation(s)
- Peiming Song
- College of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, P. R. China; Institutes of Biomedical Science, Fudan University, Shanghai, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang LS, Xia L, Shen SM, Zheng Y, Yu Y, Chen GQ. Dissecting cell death with proteomic scalpels. Proteomics 2012; 12:597-606. [DOI: 10.1002/pmic.201100353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/22/2011] [Accepted: 09/26/2011] [Indexed: 01/07/2023]
|
13
|
Ucker DS, Jain MR, Pattabiraman G, Palasiewicz K, Birge RB, Li H. Externalized glycolytic enzymes are novel, conserved, and early biomarkers of apoptosis. J Biol Chem 2012; 287:10325-10343. [PMID: 22262862 DOI: 10.1074/jbc.m111.314971] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The intriguing cell biology of apoptotic cell death results in the externalization of numerous autoantigens on the apoptotic cell surface, including protein determinants for specific recognition, linked to immune responses. Apoptotic cells are recognized by phagocytes and trigger an active immunosuppressive response ("innate apoptotic immunity" (IAI)) even in the absence of engulfment. IAI is responsible for the lack of inflammation associated normally with the clearance of apoptotic cells; its failure also has been linked to inflammatory and autoimmune pathology, including systemic lupus erythematosus and rheumatic diseases. Apoptotic recognition determinants underlying IAI have yet to be identified definitively; we argue that these molecules are surface-exposed (during apoptotic cell death), ubiquitously expressed, protease-sensitive, evolutionarily conserved, and resident normally in viable cells (SUPER). Using independent and unbiased quantitative proteomic approaches to characterize apoptotic cell surface proteins and identify candidate SUPER determinants, we made the surprising discovery that components of the glycolytic pathway are enriched on the apoptotic cell surface. Our data demonstrate that glycolytic enzyme externalization is a common and early aspect of cell death in different cell types triggered to die with distinct suicidal stimuli. Exposed glycolytic enzyme molecules meet the criteria for IAI-associated SUPER determinants. In addition, our characterization of the apoptosis-specific externalization of glycolytic enzyme molecules may provide insight into the significance of previously reported cases of plasminogen binding to α-enolase on mammalian cells, as well as mechanisms by which commensal bacteria and pathogens maintain immune privilege.
Collapse
Affiliation(s)
- David S Ucker
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois 60612 and.
| | - Mohit Raja Jain
- Center for Advanced Proteomics Research, UMDNJ-New Jersey Medical School Cancer Center, Newark, New Jersey 07214; Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School Cancer Center, Newark, New Jersey 07214
| | - Goutham Pattabiraman
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois 60612 and
| | - Karol Palasiewicz
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois 60612 and
| | - Raymond B Birge
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School Cancer Center, Newark, New Jersey 07214
| | - Hong Li
- Center for Advanced Proteomics Research, UMDNJ-New Jersey Medical School Cancer Center, Newark, New Jersey 07214; Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School Cancer Center, Newark, New Jersey 07214.
| |
Collapse
|
14
|
Harbourt DE, Fallon JK, Ito S, Baba T, Ritter JK, Glish GL, Smith PC. Quantification of human uridine-diphosphate glucuronosyl transferase 1A isoforms in liver, intestine, and kidney using nanobore liquid chromatography-tandem mass spectrometry. Anal Chem 2011; 84:98-105. [PMID: 22050083 DOI: 10.1021/ac201704a] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Uridine-disphosphate glucuronosyl transferase (UGT) enzymes catalyze the formation of glucuronide conjugates of phase II metabolism. Methods for absolute quantification of UGT1A1 and UGT1A6 were previously established utilizing stable isotope peptide internal standards with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The current method expands upon this by quantifying eight UGT1A isoforms by nanobore high-performance liquid chromatography (HPLC) coupled with a linear ion trap time-of-flight mass spectrometer platform. Recombinant enzyme digests of each of the isoforms were used to determine assay linearity and detection limits. Enzyme expression level in human liver, kidney, and intestinal microsomal protein was determined by extrapolation from spiked stable isotope standards. Intraday and interday variability was <25% for each of the enzyme isoforms. Enzyme expression varied from 3 to 96 pmol/mg protein in liver and intestinal microsomal protein digests. Expression levels of UGT1A7, 1A8, and 1A10 were below detection limits (<1 pmol/mg protein) in human liver microsome (HLMs). In kidney microsomes the expression of UGT1A3 was below detection limits, but levels of UGT1A4, 1A7, 1A9, and 1A10 protein were higher relative to that of liver, suggesting that renal glucuronidation could be a significant factor in renal elimination of glucuronide conjugates. This novel method allows quantification of all nine UGT1A isoforms, many previously not amenable to measurement with traditional methods such as immunologically based assays. Quantitative measurement of proteins involved in drug disposition, such as the UGTs, significantly improves the ability to evaluate and interpret in vitro and in vivo studies in drug development.
Collapse
Affiliation(s)
- David E Harbourt
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Cho YJ, Liang P. S-phase-coupled apoptosis in tumor suppression. Cell Mol Life Sci 2011; 68:1883-96. [PMID: 21437646 PMCID: PMC11114674 DOI: 10.1007/s00018-011-0666-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 01/15/2023]
Abstract
DNA replication is essential for accurate transmission of genomic information from parental to daughter cells. DNA replication is licensed once per cell division cycle. This process is highly regulated by both positive and negative regulators. Over-replication, under-replication, as well as DNA damage in a cell all induce the activation of checkpoint control pathways such as ATM/ATR, CHK kinases, and the tumor suppressor protein p53, which provide "damage controls" via either DNA repairs or apoptosis. This review focuses on accumulating evidence, with the emphasis on recently discovered Killin, that S-phase checkpoint control is crucial for a mammalian cell to make a life and death decision in order to safeguard genome integrity.
Collapse
Affiliation(s)
- Yong-Jig Cho
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | |
Collapse
|
16
|
Wang L, Chen G. Current advances in the application of proteomics in apoptosis research. SCIENCE CHINA-LIFE SCIENCES 2011; 54:209-19. [DOI: 10.1007/s11427-010-4123-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 05/26/2010] [Indexed: 01/18/2023]
|
17
|
Abstract
Cyclophilins (Cyps) belong to a group of proteins that have peptidyl-prolyl cis–trans isomerase (PPIase) and molecular chaperone activities. Originally, Cyps were identified as the intracellular receptors for the immunosuppressive drug cyclosporin A. Cyps are found in all prokaryotes and eukaryotes, and have been structurally conserved throughout evolution, implying their importance in cellular function. There are seven major Cyp isoforms in humans. CypA is up-regulated in many human cancers, and there is a strong correlation between over-expression of the CYPA gene and malignant transformation in some cancers. Moreover, CypA is directly under the transcriptional control of two critical transcription factors for cancer development: p53 and hypoxia inducible factor-1α. This review discusses the general biological functions of Cyps under a variety of stress conditions, and the importance and diverse roles of over-expression of CYP genes in human cancers, with a particular emphasis on CYPA. These oncogenic properties suggest that CypA is a promising target for cancer therapy.
Collapse
Affiliation(s)
- J Lee
- Department of Biomedical Laboratory Science, Dongseo University, Busan, Republic of Korea
| | - SS Kim
- Department of Biochemistry and Molecular Biology, Medical Science and Engineering Research Centre for Bioreaction to Reactive Oxygen Species (BK-21) and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Streckfus CF, Brown RE, Bull JM. Proteomics, morphoproteomics, saliva and breast cancer: An emerging approach to guide the delivery of individualised thermal therapy, thermochemotherapy and monitor therapy response. Int J Hyperthermia 2010; 26:649-61. [DOI: 10.3109/02656736.2010.506470] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
19
|
Zhou J, Liang S, Fang L, Chen L, Tang M, Xu Y, Fu A, Yang J, Wei Y. Quantitative proteomic analysis of HepG2 cells treated with quercetin suggests IQGAP1 involved in quercetin-induced regulation of cell proliferation and migration. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 13:93-103. [PMID: 19207037 DOI: 10.1089/omi.2008.0075] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Quercetin, a wild distributed bioflavonoid, exhibits antitumor effects on murine models by inducing apoptosis and inhibiting growth of many cancer cell lines, while proteins involved in antitumor effects at proteomic level are still unclear. In our study, we used a quantitative proteomic strategy termed stable isotope labeling by amino acids in cell culture (SILAC)-mass spectrometry (MS) to study the differential proteomic profiling of HepG2 cells treated by quercetin. In all, there were 70 changed proteins among those quantified proteins in HepG2 cells treated by 50 microM quercetin for 48 h, and 14 proteins showed significant upregulation, whereas 56 proteins were downregulated. The functional classification of changed proteins includes signaling protein, protein synthesis, cytoskeleton, metabolism, etc. Of these, Ras GTPase-activating-like protein (IQGAP1) and beta-tubulin were found to be reduced at a large degree. The migration inhibition of HepG2 cells can be induced by quercetin, and the RNA and protein expression level of IQGAP1 and beta-tubulin were respectively decreased obviously in HepG2 cells exposed to quercetin for 48 h in the scratch migration assay. The downregulated expression of IQGAP1 and beta-tubulin by quercetin treatment correlated with cell migration ability, and quercetin probably inhibits HepG2 proliferation and migration through IQGAP1 and beta-tubulin expression changes and their interactions with other proteins.
Collapse
Affiliation(s)
- Jin Zhou
- State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Street 4, Gaopeng Street, Chengdu, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Proteomics of colorectal cancer: Overview of discovery studies and identification of commonly identified cancer-associated proteins and candidate CRC serum markers. J Proteomics 2010; 73:1873-95. [DOI: 10.1016/j.jprot.2010.06.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 06/02/2010] [Accepted: 06/15/2010] [Indexed: 02/09/2023]
|
21
|
Lee J, Kim SS. Current implications of cyclophilins in human cancers. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:97. [PMID: 20637127 PMCID: PMC2912272 DOI: 10.1186/1756-9966-29-97] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 07/19/2010] [Indexed: 12/28/2022]
Affiliation(s)
- Jinhwa Lee
- Department of Biomedical Laboratory Science, Dongseo University, Busan 617-716, Korea
| | | |
Collapse
|
22
|
Du R, Long J, Yao J, Dong Y, Yang X, Tang S, Zuo S, He Y, Chen X. Subcellular Quantitative Proteomics Reveals Multiple Pathway Cross-Talk That Coordinates Specific Signaling and Transcriptional Regulation for the Early Host Response to LPS. J Proteome Res 2010; 9:1805-21. [DOI: 10.1021/pr900962c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ruyun Du
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, China, and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina
| | - Jing Long
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, China, and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina
| | - Jun Yao
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, China, and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina
| | - Yun Dong
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, China, and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina
| | - Xiaoli Yang
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, China, and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina
| | - Siwei Tang
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, China, and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina
| | - Shuai Zuo
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, China, and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina
| | - Yufei He
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, China, and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina
| | - Xian Chen
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, China, and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina
| |
Collapse
|
23
|
Role of cyclophilin a during oncogenesis. Arch Pharm Res 2010; 33:181-7. [PMID: 20195816 DOI: 10.1007/s12272-010-0200-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 01/04/2010] [Indexed: 02/02/2023]
Abstract
Cyclophilins (Cyps) are ubiquitously expressed proteins that are evolutionarily conserved. CypA is the most abundant among the Cyps and is expressed in the cytosol. With its chaperone and PPIase activities, CypA contributes to the maintenance of correct conformation of nascent or denatured proteins and also provides protection against environmental insults. Also, its expression is induced in response to a wide variety of stressors including cancer. Upregulation of CypA in small cell lung cancer, pancreatic cancer, breast cancer, colorectal cancer, squamous cell carcinoma and melanoma has been reported. In some cancers a correlation between CypA overexpression and malignant transformation has been established. While molecular partners of CypA that promote cancer development are yet to be discovered, various mechanisms have been proposed to account for the cytoprotective functions of CypA during cancer development. CypA may promote the survival of cells under the stressful condition of cancer. CypA may well be essential for maintaining the conformation of oncogenic proteins, signalling proteins for cell proliferation, antiapoptotic components, transcription factors, or cell motility regulatory proteins. Antioxidant effects of CypA, which have been suggested by some researchers, may also become critical to reactive oxygen species (ROS) creating an oncogenetic environment. Developing new CypA inhibitors for therapeutics has been surmised from the cytoprotective functions of CypA and its overexpression in many cancer types. Therefore, CypA can be further investigated as a useful tool for early diagnosis, treatment and prevention of human cancers.
Collapse
|
24
|
Hicks K, O'Neil RG, Dubinsky WS, Brown RC. TRPC-mediated actin-myosin contraction is critical for BBB disruption following hypoxic stress. Am J Physiol Cell Physiol 2010; 298:C1583-93. [PMID: 20164382 DOI: 10.1152/ajpcell.00458.2009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hypoxia-induced disruption of the blood-brain barrier (BBB) is the result of many different mechanisms, including alterations to the cytoskeleton. In this study, we identified actin-binding proteins involved in cytoskeletal dynamics with quantitative proteomics and assessed changes in subcellular localization of two proteins involved in actin polymerization [vasodilator-stimulated phosphoprotein (VASP)] and cytoskeleton-plasma membrane cross-linking (moesin). We found significant redistribution of both VASP and moesin to the cytoskeletal and membrane fractions of BBB endothelial cells after 1-h hypoxic stress. We also investigated activation of actin-myosin contraction through assessment of phosphorylated myosin light chain (pMLC) with confocal microscopy. Hypoxia caused a rapid and transient increase in pMLC. Blocking MLC phosphorylation through inhibition of myosin light chain kinase (MLCK) with ML-7 prevented hypoxia-induced BBB disruption and relocalization of the tight junction protein ZO-1. Finally, we implicate the transient receptor potential (TRP)C family of channels in mediating these events since blockade of TRPC channels and the associated calcium influx with SKF-96365 prevents hypoxia-induced permeability changes and the phosphorylation of MLC needed for actin-myosin contraction. These data suggest that hypoxic stress triggers alterations to cytoskeletal structure that contribute to BBB disruption and that calcium influx through TRPC channels contributes to these events.
Collapse
Affiliation(s)
- Kali Hicks
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
25
|
Chenau J, Michelland S, de Fraipont F, Josserand V, Coll JL, Favrot MC, Seve M. The cell line secretome, a suitable tool for investigating proteins released in vivo by tumors: application to the study of p53-modulated proteins secreted in lung cancer cells. J Proteome Res 2010; 8:4579-91. [PMID: 19639960 DOI: 10.1021/pr900383g] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Malignant processes such as metastasis, invasion, or angiogenesis are tightly dependent on the composition of the extracellular medium, which is itself affected by the release of proteins by the tumor cells. p53, a major tumor suppressor protein very frequently mutated and/or inactivated in cancer cells, is known to modulate the release of proteins by the tumor cells; however, while p53-modulated intracellular proteins have been extensively studied, little is known concerning their extracellular counterparts. Here, we characterized the p53-dependent secretome of a lung tumor model in vitro (H358 human nonsmall cell lung adenocarcinoma cell line with a homozygous deletion of p53) and demonstrate that the modulation of exported proteins can also be detected in vivo in the plasma of tumor-bearing mice. We used a clone of H358, stably transfected with a tetracycline-inducible wild-type p53-expressing vector. With the use of iTRAQ labeling and LC-MALDI-MS/MS analysis, we identified 909 proteins released in vitro by the cells, among which 91 are p53-modulated. Three proteins (GDF-15, FGF-19, and VEGF) were also investigated in H358/TetOn/p53 xenograft mice. The ELISA dosage on total tumor protein extracts confirmed the influence of p53 on the release of these proteins in vivo. Moreover, the GDF-15 concentration was measured in the plasma and its p53-dependent modulation was confirmed. To our knowledge, this is the first report establishing that the in vitro cell line secretome is reliable and reflects the extracellular release of proteins from tumor cells in vivo and could be used to identify putative tumor markers.
Collapse
Affiliation(s)
- Jérôme Chenau
- Université Joseph Fourier-Grenoble 1, INSERM, Institut Albert Bonniot U823, Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
26
|
A Comparison of the Proteomic Expression in Pooled Saliva Specimens from Individuals Diagnosed with Ductal Carcinoma of the Breast with and without Lymph Node Involvement. JOURNAL OF ONCOLOGY 2009; 2009:737619. [PMID: 20052393 PMCID: PMC2801014 DOI: 10.1155/2009/737619] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 10/01/2009] [Indexed: 11/18/2022]
Abstract
Purpose. The objective was to compare the salivary protein profiles of saliva specimens from individuals diagnosed with invasive ductal carcinoma of the breast (IDC) with and without lymph node involvement. Methods. Three pooled saliva specimens from women were analyzed. One pooled specimen was from healthy women; another was from women diagnosed with Stage IIa IDC and a specimen from women diagnosed with Stage IIb. The pooled samples were trypsinized and the peptide digests labeled with the appropriate iTRAQ reagent. Labeled peptides from each of the digests were combined and analyzed by reverse phase capillary chromatography on an LC-MS/MS mass spectrometer. Results. The results yielded approximately 174 differentially expressed proteins in the saliva specimens. There were 55 proteins that were common to both cancer stages in comparison to each other and healthy controls while there were 20 proteins unique to Stage IIa and 28 proteins that were unique to Stage IIb.
Collapse
|
27
|
Ikonomou G, Samiotaki M, Panayotou G. Proteomic methodologies and their application in colorectal cancer research. Crit Rev Clin Lab Sci 2009; 46:319-42. [PMID: 19958217 DOI: 10.3109/10408360903375277] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Bigler LR, Streckfus CF, Dubinsky WP. Salivary biomarkers for the detection of malignant tumors that are remote from the oral cavity. Clin Lab Med 2009; 29:71-85. [PMID: 19389552 DOI: 10.1016/j.cll.2009.01.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Proteomic analyses by mass spectrometry are propelling the field of medical diagnostics forward at unprecedented rates because of its ability reliably to identify proteins that are at the femtomole level in concentration. These advancements have also benefited biomarker research to the point where saliva is now recognized as an excellent diagnostic medium for the detection of malignant tumors that are remote from the oral cavity. Saliva is easy to collect and may provide diagnostic information about a variety of cancers. In particular, proof-of-principle has been demonstrated for salivary biomarker research. This article reviews the literature, discusses the theories associated with saliva-based tumor diagnostics, and presents the current research focused on the use of saliva as a diagnostic medium for the detection of cancer.
Collapse
Affiliation(s)
- Lenora R Bigler
- Department of Diagnostic Sciences, University of Texas Dental Branch at Houston, 6516 M.D. Anderson Boulevard, Room 4.133f, Houston, TX 77030, USA
| | | | | |
Collapse
|
29
|
Bao H, Song P, Liu Q, Liu Y, Yun D, Saiyin H, Du R, Zhang Y, Fan H, Yang P, Chen X. Quantitative proteomic analysis of a paired human liver healthy versus carcinoma cell lines with the same genetic background to identify potential hepatocellular carcinoma markers. Proteomics Clin Appl 2009; 3:705-19. [DOI: 10.1002/prca.200780128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Du Y, Zhou J, Fan J, Shen Z, Chen X. Streamline proteomic approach for characterizing protein-protein interaction network in a RAD52 protein complex. J Proteome Res 2009; 8:2211-7. [PMID: 19338310 DOI: 10.1021/pr800662x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Large-scale identification of protein-protein interactions (PPIs) in functional complexes represents an efficient route to elucidate the regulatory rules of cellular functions. Whereas many methods have been developed to identify the PPIs associated with particular target/bait protein in complexes, little information is available about the interaction relationships among all components in a complex. Here, we have established a strategy of integrating proteomic identification of complex components with mammalian two-hybrid screening of their binary relationships to achieve information content of both breadth (i.e., identifying all potential interacting partners of the protein of interest) and depth (i.e., detailed mapping of the physical interactions of a subset of the identified and functionally related proteins) in characterizing protein complexes. In the initial phase of quantitative proteomic analysis of this streamline, the proteins that specifically complex with the target/bait protein were pulled down by immunoprecipitation and identified by mass spectrometry (MS)-based "dual-tagging" quantitative proteomic approach. In the second phase of in-depth characterizations of binary relationships, the physical interactions of a subset of functionally closely related complex components are mapped by mammalian two-hybrid assay. The screening for binary relationships of complex components not only serves as a validation of the first phase of proteomic identification, but also further deepens the understanding of the protein complex of interest. With this streamlined approach, we studied the protein complexes that are associated with a DNA recombination protein RAD52. In the initial phase, multiple proteins both known and unknown to interact with RAD52 were identified by the "dual-tagging" proteomic method. In the second phase, a complex protein-protein interaction network, which may play important roles in coordinating the activity of DNA repair with that of cell division, was defined by the mammalian two-hybrid assay.
Collapse
Affiliation(s)
- Yuchun Du
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260, USA
| | | | | | | | | |
Collapse
|
31
|
Codarin E, Renzone G, Poz A, Avellini C, Baccarani U, Lupo F, di Maso V, Crocè SL, Tiribelli C, Arena S, Quadrifoglio F, Scaloni A, Tell G. Differential Proteomic Analysis of Subfractioned Human Hepatocellular Carcinoma Tissues. J Proteome Res 2009; 8:2273-84. [DOI: 10.1021/pr8009275] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Erika Codarin
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Giovanni Renzone
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Alessandra Poz
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Claudio Avellini
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Umberto Baccarani
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Francesco Lupo
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Vittorio di Maso
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Saveria Lory Crocè
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Claudio Tiribelli
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Simona Arena
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Franco Quadrifoglio
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Andrea Scaloni
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Gianluca Tell
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| |
Collapse
|
32
|
Liang S, Yu Y, Yang P, Gu S, Xue Y, Chen X. Analysis of the protein complex associated with 14-3-3 epsilon by a deuterated-leucine labeling quantitative proteomics strategy. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:627-34. [DOI: 10.1016/j.jchromb.2009.01.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 01/06/2009] [Accepted: 01/07/2009] [Indexed: 10/21/2022]
|
33
|
Wu T, Mohan C. Proteomic toolbox for autoimmunity research. Autoimmun Rev 2009; 8:595-8. [PMID: 19393208 DOI: 10.1016/j.autrev.2009.01.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2009] [Accepted: 01/05/2009] [Indexed: 12/17/2022]
Abstract
Autoimmune diseases are genetically complex and poorly understood, and may lead to clinically severe consequences including end-organ damage. Given this scenario, early biomarker discovery is becoming increasingly important for early diagnosis and treatment in these diseases. Among the different approaches tried, the application of proteomic analysis of body fluids has great potential as a non-invasive tool for early diagnosis in many different disease settings. During the past 10 years, proteomics-based approaches have made steady inroads into the study of various autoimmune diseases. In this review, we summarize the highlights of various traditional as well as novel proteomic methods, including 2D-MS/MS, multi-dimensional HPLC-MS/MS, CE-MS/MS, SELDI-TOF-MS/MS, iTRAQ and a variety of targeted antibody-based protein arrays, which have been particularly informative in the field of autoimmunity.
Collapse
Affiliation(s)
- Tianfu Wu
- The Department of Internal Medicine (Rheumatology), University of Texas Southwestern Medical School, Dallas, TX 75390, USA.
| | | |
Collapse
|
34
|
Song PM, Zhang Y, He YF, Bao HM, Luo JH, Liu YK, Yang PY, Chen X. Bioinformatics analysis of metastasis-related proteins in hepatocellular carcinoma. World J Gastroenterol 2008; 14:5816-22. [PMID: 18855979 PMCID: PMC2751890 DOI: 10.3748/wjg.14.5816] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To analyze the metastasis-related proteins in hepatocellular carcinoma (HCC) and discover the biomarker candidates for diagnosis and therapeutic intervention of HCC metastasis with bioinformatics tools.
METHODS: Metastasis-related proteins were determined by stable isotope labeling and MS analysis and analyzed with bioinformatics resources, including Phobius, Kyoto encyclopedia of genes and genomes (KEGG), online mendelian inheritance in man (OMIM) and human protein reference database (HPRD).
RESULTS: All the metastasis-related proteins were linked to 83 pathways in KEGG, including MAPK and p53 signal pathways. Protein-protein interaction network showed that all the metastasis-related proteins were categorized into 19 function groups, including cell cycle, apoptosis and signal transduction. OMIM analysis linked these proteins to 186 OMIM entries.
CONCLUSION: Metastasis-related proteins provide HCC cells with biological advantages in cell proliferation, migration and angiogenesis, and facilitate metastasis of HCC cells. The bird’s eye view can reveal a global characteristic of metastasis-related proteins and many differentially expressed proteins can be identified as candidates for diagnosis and treatment of HCC.
Collapse
|
35
|
Sedic M, Poznic M, Gehrig P, Scott M, Schlapbach R, Hranjec M, Karminski-Zamola G, Pavelic K, Kraljevic Pavelic S. Differential antiproliferative mechanisms of novel derivative of benzimidazo[1,2-alpha]quinoline in colon cancer cells depending on their p53 status. Mol Cancer Ther 2008; 7:2121-32. [PMID: 18645022 DOI: 10.1158/1535-7163.mct-07-2261] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present article, we describe a mechanistic study of a novel derivative of N-amidino-substituted benzimidazo[1,2-alpha]quinoline in two human colorectal cancer cell lines differing in p53 gene status. We used a proteomic approach based on two-dimensional gel electrophoresis coupled with mass spectrometry to complement the results obtained by common molecular biology methods for analyzing cell proliferation, cell cycle, and apoptosis. Tested quinoline derivative inhibited colon cancer cell growth, whereby p53 gene status seemed to be critical for its differential response patterns. DNA damage and oxidative stress are likely to be the common triggers of molecular events underlying its antiproliferative effects. In HCT 116 (wild-type p53), this compound induced a p53-dependent response resulting in accumulation of the G(1)- and S-phase cells and induction of apoptosis via both caspase-3-dependent and caspase-independent pathways. Quinoline derivative triggered transient, p53-independent G(2)-M arrest in mutant p53 cells (SW620) and succeeding mitotic transition, whereby these cells underwent cell death probably due to aberrant mitosis (mitotic catastrophe). Proteomic approach used in this study proved to be a valuable tool for investigating cancer cell response to newly synthesized compound, as it specifically unraveled some molecular changes that would not have been otherwise detected (e.g., up-regulation of the p53-dependent chemotherapeutic response marker maspin in HCT 116 and impairment in ribosome biogenesis in SW620). Finally, antiproliferative effects of tested quinoline derivative on SW620 cells strongly support its possible role as an antimetastatic agent and encourage further in vivo studies on the chemotherapeutic potential of this compound against colorectal carcinoma.
Collapse
Affiliation(s)
- Mirela Sedic
- Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gillies RJ, Robey I, Gatenby RA. Causes and consequences of increased glucose metabolism of cancers. J Nucl Med 2008; 49 Suppl 2:24S-42S. [PMID: 18523064 DOI: 10.2967/jnumed.107.047258] [Citation(s) in RCA: 453] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In this review we examine the mechanisms (causes) underlying the increased glucose consumption observed in tumors within a teleological context (consequences). In other words, we will ask not only "How do cancers have high glycolysis?" but also, "Why?" We believe that the insights gained from answering the latter question support the conclusion that elevated glucose consumption is a necessary component of carcinogenesis. Specifically we propose that glycolysis is elevated because it produces acid, which provides an evolutionary advantage to cancer cells vis-à-vis normal parenchyma into which they invade.
Collapse
|
37
|
Xue Y, Yun D, Esmon A, Zou P, Zuo S, Yu Y, He F, Yang P, Chen X. Proteomic dissection of agonist-specific TLR-mediated inflammatory responses on macrophages at subcellular resolution. J Proteome Res 2008; 7:3180-93. [PMID: 18572962 DOI: 10.1021/pr800021a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Upon stimulation by distinct bacterial/viral products/agonists, APCs including macrophages tend to express particular TLR molecules to coordinate the signaling that ultimately target at chromatin and mediate the activity of downstream transcriptional factors in regulating characteristic sets of gene expression for innate immune response. To investigate largely unknown regulatory mechanism underlying agonist-specific TLR-mediated innate immune responses, at subcellular resolution, we first analyzed Pam3CSK4-induced proteome changes in living macrophages and identified the differentially expressed proteins in the cytosol and chromatin-associated fractions, respectively, by using AACT/SILAC-based quantitative proteomic approach. In the cytosol fraction, we found that the proteins with notable Pam3CSK4-induced expression changes were primarily involved in post-translational events, energy metabolism, protein transporting, and apoptosis. Among them, a ubiquitous and highly conserved iron-binding protein, Ferritin, was further characterized as a modulator for the expression of a TLR2-specific cytokine IL-10 in murine macrophage cells by using small-interfering RNA (siRNA). Interestingly, we simultaneously identified multiple apoptosis-related proteins showing opposite trend in their regulated expressions, which clearly indicated the existence of systems regulation in differentially modulating the signal for the cross-road balance between protecting cell from apoptosis and the apoptosis of infected cells. For those regulated proteins identified in the nuclear fraction, we integrated bioinformatics to find the interactions of certain chromatin-associated proteins, which suggested their interconnected involvements in proteasome-ubiquitin pathway, DNA replication, and post-translational activity upon Pam3CSK4 stimulation. Certain regulated proteins in our quantitative proteomic data set showed the similar trend of up-regulation in both Pam3CSK4- and LPS-stimulated macrophages (Nature 2007, 447, 972), suggesting their belonging to the recently identified class of pro-inflammatory genes. The regulatory discrepancy between both data sets for other set of genes indicated their agonist-specific nature in innate immune responses.
Collapse
Affiliation(s)
- Yan Xue
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wan G, Zhaorigetu S, Liu Z, Kaini R, Jiang Z, Hu CAA. Apolipoprotein L1, a novel Bcl-2 homology domain 3-only lipid-binding protein, induces autophagic cell death. J Biol Chem 2008; 283:21540-9. [PMID: 18505729 DOI: 10.1074/jbc.m800214200] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Bcl-2 family proteins are important regulators of type I programmed cell death apoptosis; however, their role in autophagic cell death (AuCD) or type II programmed cell death is still largely unknown. Here we report the cloning and characterization of a novel Bcl-2 homology domain 3 (BH3)-only protein, apolipoprotein L1 (apoL1), that, when overexpressed and accumulated intracellularly, induces AuCD in cells as characterized by the increasing formation of autophagic vacuoles and activating the translocation of LC3-II from the cytosol to the autophagic vacuoles. Wortmannin and 3-methyladenine, inhibitors of class III phosphatidylinostol 3-kinase and, subsequently, autophagy, blocked apoL1-induced AuCD. In addition, apoL1 failed to induce AuCD in autophagy-deficient ATG5(-/-) and ATG7(-/-) mouse embryonic fibroblast cells, suggesting that apoL1-induced cell death is indeed autophagy-dependent. Furthermore, a BH3 domain deletion construct of apoL1 failed to induce AuCD, demonstrating that apoL1 is a bona fide BH3-only pro-death protein. Moreover, we showed that apoL1 is inducible by p53 in p53-induced cell death and is a lipid-binding protein with high affinity for phosphatidic acid (PA) and cardiolipin (CL). Previously, it has been shown that PA directly interacted with mammalian target of rapamycin and positively regulated the ability of mammalian target of rapamycin to activate downstream effectors. In addition, CL has been shown to activate mitochondria-mediated apoptosis. Sequestering of PA and CL with apoL1 may alter the homeostasis between survival and death leading to AuCD. To our knowledge, this is the first BH3-only protein with lipid binding activity that, when overproduced intracellularly, induces AuCD.
Collapse
Affiliation(s)
- Guanghua Wan
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | | | |
Collapse
|
39
|
Hu CAA, Khalil S, Zhaorigetu S, Liu Z, Tyler M, Wan G, Valle D. Human Delta1-pyrroline-5-carboxylate synthase: function and regulation. Amino Acids 2008; 35:665-72. [PMID: 18401542 DOI: 10.1007/s00726-008-0075-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 03/24/2008] [Indexed: 11/25/2022]
Abstract
Mammalian Delta(1)-pyrroline-5-carboxylate synthase (P5CS) is a bifunctional ATP- and NAD(P)H-dependent mitochondrial enzyme that catalyzes the coupled phosphorylation and reduction-conversion of L: -glutamate to P5C, a pivotal step in the biosynthesis of L: -proline, L: -ornithine and L: -arginine. Previously, we reported cloning and characterization of two P5CS transcript variants generated by exon sliding that encode two protein isoforms differing only by a two amino acid-insert at the N-terminus of the gamma-glutamyl kinase active site. The short form (P5CS.short) is highly expressed in the gut and is inhibited by ornithine. In contrast, the long form (P5CS.long) is expressed ubiquitously and is insensitive to ornithine. Interestingly, we found that all the established human cell lines we have studied expressed P5CS.long but not P5CS.short. In addition, expression of P5CS.long can be modulated by hormones: downregulation by hydrocortisone and dexamethasone and upregulation by estradiol, for example. Using a quantitative proteomic approach, we showed that P5CS.long is upregulated by p53 in p53-induced apoptosis in DLD-1 colorectal cancer cells. Functional genomic analysis confirmed that there are two p53-binding consensus sequences in the promoter region and in the intron 1 of the human P5CS gene. Interestingly, overexpression of P5CS by adenoviruses harboring P5CS.long or P5CS.short in various cell types has no effect on cell growth or survival. It would be of importance to further investigate the role of P5CS as a p53 downstream effector and how P5CS.short expression is regulated by hormones and factors of alternative splicing in cells isolated from model animals.
Collapse
Affiliation(s)
- C-A A Hu
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Streckfus CF, Mayorga-Wark O, Arreola D, Edwards C, Bigler L, Dubinsky WP. Breast cancer related proteins are present in saliva and are modulated secondary to ductal carcinoma in situ of the breast. Cancer Invest 2008; 26:159-67. [PMID: 18259946 DOI: 10.1080/07357900701783883] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The objective of this study was to determine if protein-by-products secondary to cancer related oncogenes appear in the saliva of breast cancer patients. METHODS Three pooled (n = 10 subjects/pool) stimulated whole saliva specimens from women were analyzed. One pooled specimen was from healthy women, another pooled specimen from women diagnosed with a benign breast tumor and the other one pooled specimen was from women diagnosed with ductal carcinoma in situ (DCIS). Differential expression of proteins was measured by isotopically tagging proteins in the tumor groups and comparing them to the healthy control group. Experimentally, saliva from each of the pooled samples was trypsinized and the peptide digests labeled with the appropriate iTRAQ reagent. Labeled peptides from each of the digests were combined and analyzed by reverse phase (C18) capillary chromatography on an Applied Biosystems QStar LC-MS/MS mass spectrometer equipped with an LC-Packings HPLC. RESULTS The results of the salivary analyses in this population of patients yielded approximately 130 proteins in the saliva specimens. Forty-nine proteins were differentially expressed between the healthy control pool and the benign and cancer patient groups. CONCLUSIONS The study suggests that saliva is a fluid suffused with solubilized by-products of oncogenic expression and that these proteins may be modulated secondary to DCIS. Additionally, there may be salivary protein profiles that are unique to both DCIS and fibroadenoma tumors.
Collapse
Affiliation(s)
- Charles F Streckfus
- University of Texas Health Science Center-Dental Branch, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Proteomic studies have generated numerous datasets of potential diagnostic, prognostic, and therapeutic significance in human cancer. Two key technologies underpinning these studies in cancer tissue are two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS). Although surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF)-MS is the mainstay for serum or plasma analysis, other methods including isotope-coded affinity tag technology, reverse-phase protein arrays, and antibody microarrays are emerging as alternative proteomic technologies. Because there is little overlap between studies conducted with these approaches, confirmation of these advanced technologies remains an elusive goal. This problem is further exacerbated by lack of uniform patient inclusion and exclusion criteria, low patient numbers, poor supporting clinical data, absence of standardized sample preparation, and limited analytical reproducibility (in particular of 2D-PAGE). Despite these problems, there is little doubt that the proteomic approach has the potential to identify novel diagnostic biomarkers in cancer. In therapeutic proteomics, the challenge is significant due to the complexity systems under investigation (i.e., cells generate over 10(5) different polypeptides). However, the most significant contribution of therapeutic proteomics research is expected to derive not from single experiments, but from the synthesis and comparison of large datasets obtained under different conditions (e.g., normal, inflammation, cancer) and in different tissues and organs. Thus, standardized processes for storing and retrieving data obtained with different technologies by different research groups will have to be developed. Shifting the emphasis of cancer proteomics from technology development and data generation to careful study design, data organization, formatting, and mining is crucial to answer clinical questions in cancer research.
Collapse
Affiliation(s)
- M A Reymond
- Department of Surgery, University of Magdeburg, Germany
| | | |
Collapse
|
42
|
Liu Y, Xue Y, Ji J, Chen X, Kong J, Yang P, Girault HH, Liu B. Gold Nanoparticle Assembly Microfluidic Reactor for Efficient On-line Proteolysis. Mol Cell Proteomics 2007; 6:1428-36. [PMID: 17519226 DOI: 10.1074/mcp.t600055-mcp200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A microchip reactor coated with a gold nanoparticle network entrapping trypsin was designed for the efficient on-line proteolysis of low level proteins and complex extracts originating from mouse macrophages. The nanostructured surface coating was assembled via a layer-by-layer electrostatic binding of poly(diallyldimethylammonium chloride) and gold nanoparticles. The assembly process was monitored by UV-visible spectroscopy, atomic force microscopy, and quartz crystal microbalance. The controlled adsorption of trypsin was theoretically studied on the basis of the Langmuir isotherm model, and the fitted Gamma(max) and K values were estimated to be 1.2 x 10(-7) mol/m(2) and 4.1 x 10(5) M(-1), respectively. An enzymatic kinetics assay confirmed that trypsin, which was entrapped in the biocompatible gold nanoparticle network with a high loading capacity, preserved its bioactivity. The maximum proteolytic rate of the adsorbed trypsin was 400 mM/(min.microg). Trace amounts of proteins down to femtomole per analysis were digested using the microchip reactor, and the resulting tryptic products were identified by MALDI-TOF MS/MS. The protein mixtures extracted from the mouse macrophages were efficiently identified by on-line digestion and LC-ESI-MS/MS analysis.
Collapse
Affiliation(s)
- Yun Liu
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
As a component of the response to acute stress, p53 has a well established role in protecting against cancer development. However, it is now becoming clear that p53 can have a much broader role and can contribute to the development, life expectancy and overall fitness of an organism. Although the function of p53 as a tumour suppressor ensures that we can't live without it, an integrated view of p53 suggests that not all of its functions are conducive to a long and healthy life.
Collapse
Affiliation(s)
- Karen H Vousden
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK.
| | | |
Collapse
|
44
|
Chen X, Sun L, Yu Y, Xue Y, Yang P. Amino acid-coded tagging approaches in quantitative proteomics. Expert Rev Proteomics 2007; 4:25-37. [PMID: 17288513 DOI: 10.1586/14789450.4.1.25] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To improve the efficiency, accuracy, reproducibility, throughput and proteome coverage of mass spectrometry-based quantitative approaches, both in vitro and in vivo tagging of particular amino acid residues of cellular proteins have been introduced to assist mass spectrometry for global-scale comparative studies of differentially expressed proteins/modifications between different biologically relevant cell states or cells at different pathological states. The basic features of these methods introduce pair-wise isotope signals of each individual peptide containing a particular type of tagged amino acid (amino acid-coded mass tagging) that originated from different cell states. In this review, the applications of major amino acid-coded mass tagging-based quantitative proteomics approaches, including isotope-coded affinity tag, isobaric tags for relative and absolute quantification (iTRAQ) and stable isotope labeling by amino acids in cell culture are summarized in the context of their respective strengths/weakness in identifying those differentially expressed or post-translational modified proteins regulated by particular cellular stress on a genomic scale in a high-throughput manner. Importantly, these gel-free, in-spectra quantitative mechanisms have been further explored to identify/characterize large-scale protein-protein interactions involving various functional pathways. Taken together, the information about quantitative proteome changes, including multiple regulated proteins and their interconnected relationships, will provide an important insight into the molecular mechanisms, where novel targets for diagnosis and therapeutic intervention will be identified.
Collapse
Affiliation(s)
- Xian Chen
- Institutes of Biomedical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 20003, China.
| | | | | | | | | |
Collapse
|
45
|
Abstract
Despite a voluminous literature on potential protein biomarkers and a compelling need for diagnostic tests based on biomarkers to detect cancers at much earlier, more treatable stages, progress has been limited. New methods and new instruments for analysis of differences in gene expression, gene methylation, and proteomics are being employed to try to accelerate the discovery phase. Given the heterogeneity of tumor mechanisms and the limitations of analytical methods, it is likely that a variety of strategies will be needed and will be complementary. That is the basis of this review of proteomic approaches. This article adopts a systems biology view, starting with mRNA transcripts in tumors and cultured tumor cells to detect mRNA overexpression, some of which will be correlated with protein overexpression. Some of those proteins may be secreted or released into proximal biofluids and plasma. Detection of low-abundance tumor proteins in the complex and dynamic mixture that is plasma requires combinations of increasingly powerful technologies. The biological amplification of protein signals through the immune system offers autoantibodies as potential biomarkers. Higher abundance proteins, including acute-phase reactants, may have practical value, especially if the proteins are modified as part of the cancer processes. Low molecular weight proteins, fragments, and peptides may offer complementary biomarkers. Promising biomarker candidates must be confirmed in independent studies. Then they must be submitted to higher-throughput methods practical for large-scale validation studies and, hopefully, for clinical and epidemiological applications. Standardized operating procedures for specimen handling, design and use of various reference standards, care to avoid bias and confounding, and guidelines for reporting findings and contributing datasets should enhance the prospects for predictive proteomic profiling of people at risk for cancers.
Collapse
Affiliation(s)
- Gilbert S Omenn
- Department of Internal Medicine, Center for Computational Medicine and Biology, and Proteomics Alliance for Cancer Research, University of Michigan, Ann Arbor, MI 48109-0656, USA.
| |
Collapse
|
46
|
Kraljevic S, Sedic M, Scott M, Gehrig P, Schlapbach R, Pavelic K. Casting light on molecular events underlying anti-cancer drug treatment: What can be seen from the proteomics point of view? Cancer Treat Rev 2006; 32:619-29. [PMID: 17069979 DOI: 10.1016/j.ctrv.2006.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 09/05/2006] [Accepted: 09/07/2006] [Indexed: 02/05/2023]
Abstract
Regardless of continuous advances in technology and expansion of the knowledge in the field of genomic information, cancer still remains one of the leading causes of death in developed countries for many reasons, including non-selectiveness of commonly used anti-cancer drugs that often influence non-specific rather than tumour-specific targets. As cancer cells are characterized by the ability to divide and multiply in an uncontrolled manner whereby a set of specific proteins modulate cell division processes, proteomics seems to be a suitable tool for seeking out molecular mediators of anti-cancer drugs action and resistance, thus improving chemotherapy outcome. This review will focus on the recent knowledge of the molecular mechanisms involved in the anti-cancer drugs response revealed by the proteomics tools. In addition, we will touch upon the effects of "gene drugs" with p53 and p21(waf1/cip1) genes on the protein complement of tumour cells assessed by the two-dimensional gel electrophoresis combined with mass spectrometry. Such studies could substantially contribute to further drug optimization prior to its clinical use and represent an important but still small step in the long way of drug discovery. However, fluctuations in protein expression, distribution, posttranslational modifications, interactions, functions and compartmentalization make it difficult to use exclusively expression proteomics data without putting it in broader biological context. Thus, the challenge today is to shift from the identification of drug response and disease biomarkers to more time-consuming process of revealing the biochemical mechanism that connects a specific protein with a disease or cellular response to a drug.
Collapse
Affiliation(s)
- Sandra Kraljevic
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10002 Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
47
|
Liu Z, Wan G, Heaphy C, Bisoffi M, Griffith JK, Hu CAA. A novel loss-of-function mutation in TP53 in an endometrial cancer cell line and uterine papillary serous carcinoma model. Mol Cell Biochem 2006; 297:179-87. [PMID: 17119852 DOI: 10.1007/s11010-006-9345-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 09/28/2006] [Indexed: 10/23/2022]
Abstract
The etiology of carcinoma of the uterine endometrium (ECa) is poorly understood. However, loss of apoptosis is one of the major factors that allow cancer cells to survive and progress. Hec50co, a poorly differentiated human ECa cell line, is widely used in the investigation of ECa. Previously, Hec50co xenograft tumor model in nude mice developed an advanced phenotype, similar to that of uterine papillary serous carcinoma (UPSC). Importantly, loss-of-function mutation in tumor suppressor TP53 was found in 20-30% of all ECa and >90% of UPSC. Thus, understanding the status of TP53 in Hec50co is essential for using Heco50co as a model for UPSC. To obtain an accurate genotype-phenotype status of TP53 in Hec50co, we performed mutation and functional analysis of TP53 gene of Hec50co by RT-PCR, genomic-PCR, and cloning and expression of mutant and wildtype TP53 alleles. We found a novel 42-bp deletion mutation in the exon6-intron6 splice junction of TP53 (TP53.del42bp) leading to a 113-bp exon6-deleted/skipped transcript was identified in Hec50co. In addition, the other TP53 allele in Hec50co is inactivated through a large deletion. Adenovirus (AD) harboring wildtype full-length TP53 cDNA induces caspase-dependent apoptosis; while the AD-TP53.del42bp allele does not. In addition, messenger RNA of TP53.del42bp allele is stable whereas the protein product of TP53.del42bp allele is made but not stable. Taken together, we demonstrate that Hec50co is a TP53-null cell line possessing one TP53.del42bp allele and the other lost allele and therefore provides an excellent model to dissect the molecular and cellular bases of UPSC and other p53-null cancers.
Collapse
Affiliation(s)
- Zhihe Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, MSC08 4670, Albuquerque, NM 87131-0001, USA
| | | | | | | | | | | |
Collapse
|
48
|
Smith L, Lind MJ, Welham KJ, Cawkwell L. Cancer proteomics and its application to discovery of therapy response markers in human cancer. Cancer 2006; 107:232-41. [PMID: 16752413 DOI: 10.1002/cncr.22000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The administration of chemotherapy either alone or in combination with radiotherapy is an important factor in reducing the mortality and morbidity of cancer patients. Resistance to both chemotherapy and radiotherapy represents a major obstacle to a successful outcome. The identification of novel biomarkers that can be used to predict treatment response would allow therapy to be tailored on an individual patient basis. Although the mechanisms are unclear, it is accepted that development of therapy resistance is a multifactorial phenomenon involving alterations in several cellular pathways. Proteome analysis methods are powerful tools for identifying factors associated with resistance to anticancer therapy because they facilitate the simultaneous analysis of whole proteomes. The current review describes the plethora of existing proteomic approaches and details the studies that have identified biomarkers that may be useful in the prediction of clinical response to anticancer therapy.
Collapse
Affiliation(s)
- Laura Smith
- Postgraduate Medical Institute of the University of Hull, Hull-York Medical School, Hull, UK
| | | | | | | |
Collapse
|
49
|
Lee K, Wang T, Paszczynski AJ, Daoud SS. Expression proteomics to p53 mutation reactivation with PRIMA-1 in breast cancer cells. Biochem Biophys Res Commun 2006; 349:1117-24. [PMID: 16970918 DOI: 10.1016/j.bbrc.2006.08.152] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 08/25/2006] [Indexed: 11/30/2022]
Abstract
PRIMA-1 has emerged as a small molecule that restores the wild type function to mutant p53. To identify molecular targets that are involved in PRIMA-1-induced apoptosis, we used a proteomics approach with two-dimensional gel electrophoresis coupled with liquid chromatography-tandem mass spectrometry for protein identification. By comparing the proteome of the PRIMA-1-treated MDA-231 breast carcinoma cells with that of MCF-7 cells, we have identified seven proteins that upregulated only in MDA-231 cells as a result of PRIMA-1-induced apoptosis. The identified proteins are involved in anaerobic glycolysis and in mitochondrial intrinsic apoptosis. Treatment of MDA-231 cells with PRIMA-1 resulted in the release of mitochondrial cytochrome c as well as the activation of caspase-3, which are essential for the execution of apoptosis. We present evidence to suggest that PRIMA-1-induced apoptosis in breast cancer cells with mutated p53 function involved the expression of proteins required for the activation of mitochondrial intrinsic pathway that is glycolysis-relevant.
Collapse
Affiliation(s)
- Kyunghee Lee
- Department of Pharmaceutical Sciences, Washington State University, 259 Wegner Hall, Pullman, WA 99164-6534, USA
| | | | | | | |
Collapse
|
50
|
Liang X, Hajivandi M, Veach D, Wisniewski D, Clarkson B, Resh MD, Pope RM. Quantification of change in phosphorylation of BCR-ABL kinase and its substrates in response to Imatinib treatment in human chronic myelogenous leukemia cells. Proteomics 2006; 6:4554-64. [PMID: 16858728 DOI: 10.1002/pmic.200600109] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Phosphorylation by the constitutively activated BCR-ABL tyrosine kinase is associated with the pathogenesis of the human chronic myelogenous leukemia (CML). It is difficult to characterize kinase response to stimuli or drug treatment because regulatory phosphorylation events are largely transient changes affecting low abundance proteins. Stable isotope labeling with amino acids in cell culture (SILAC) has emerged as a pivotal technology for quantitative proteomics. By metabolically labeling proteins with light or heavy tyrosine, we are able to quantify the change in phosphorylation of BCR-ABL kinase and its substrates in response to drug treatment in human CML cells. In this study, we observed that BCR-ABL kinase is phosphorylated at tyrosines 393 and 644, and that SH2-domain containing inositol phosphatase (SHIP)-2 and downstream of kinase (Dok)-2 are phosphorylated at tyrosine 1135 and 299, respectively. Based on the relative intensity of isotopic peptide pairs, we demonstrate that the level of phosphorylation of BCR-ABL kinase as well as SHIP-2 and Dok-2 is reduced approximately 90% upon treatment with Imatinib, a specific inhibitor of BCR-ABL kinase. Furthermore, proteins, such as SHIP-1, SH2-containing protein (SHC) and Casitas B-lineage lymphoma proto-oncogene (CBL), are also regulated by Imatinib. These results demonstrate the simplicity and utility of SILAC as a method to quantify dynamic changes in phosphorylation at specific sites in response to stimuli or drug treatment in cell culture.
Collapse
Affiliation(s)
- Xiquan Liang
- Proteomics, R&D Department, Invitrogen Life Science, Carlsbad, CA 92008, USA.
| | | | | | | | | | | | | |
Collapse
|