1
|
Yudkina AV, Zharkov DO. The hidden elephant: Modified abasic sites and their consequences. DNA Repair (Amst) 2025; 148:103823. [PMID: 40056494 DOI: 10.1016/j.dnarep.2025.103823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/06/2025] [Accepted: 02/26/2025] [Indexed: 03/10/2025]
Abstract
Abasic, or apurinic/apyrimidinic sites (AP sites) are among the most abundant DNA lesions, appearing in DNA both through spontaneous base loss and as intermediates of base excision DNA repair. Natural aldehydic AP sites have been known for decades and their interaction with the cellular replication, transcription and repair machinery has been investigated in detail. Oxidized AP sites, produced by free radical attack on intact nucleotides, received much attention recently due to their ability to trap DNA repair enzymes and chromatin structural proteins such as histones. In the past few years, it became clear that the reactive nature of aldehydic and oxidized AP sites produces a variety of modifications, including AP site-protein and AP site-peptide cross-links, adducts with small molecules of metabolic or xenobiotic origin, and AP site-mediated interstrand DNA cross-links. The diverse chemical nature of these common-origin lesions is reflected in the wide range of their biological consequences. In this review, we summarize the data on the mechanisms of modified AP sites generation, their abundance, the ability to block DNA polymerases or cause nucleotide misincorporation, and the pathways of their repair.
Collapse
Affiliation(s)
- Anna V Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave, Novosibirsk 630090, Russia.
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave, Novosibirsk 630090, Russia; Novosibirsk State University, 2 Pirogova St, Novosibirsk 630090, Russia.
| |
Collapse
|
2
|
Yudkina A, Bulgakov N, Kim D, Baranova S, Ishchenko A, Saparbaev M, Koval V, Zharkov D. Abasic site-peptide cross-links are blocking lesions repaired by AP endonucleases. Nucleic Acids Res 2023; 51:6321-6336. [PMID: 37216593 PMCID: PMC10325907 DOI: 10.1093/nar/gkad423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/18/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023] Open
Abstract
Apurinic/apyrimidinic (AP) sites are abundant DNA lesions arising from spontaneous hydrolysis of the N-glycosidic bond and as base excision repair (BER) intermediates. AP sites and their derivatives readily trap DNA-bound proteins, resulting in DNA-protein cross-links. Those are subject to proteolysis but the fate of the resulting AP-peptide cross-links (APPXLs) is unclear. Here, we report two in vitro models of APPXLs synthesized by cross-linking of DNA glycosylases Fpg and OGG1 to DNA followed by trypsinolysis. The reaction with Fpg produces a 10-mer peptide cross-linked through its N-terminus, while OGG1 yields a 23-mer peptide attached through an internal lysine. Both adducts strongly blocked Klenow fragment, phage RB69 polymerase, Saccharolobus solfataricus Dpo4, and African swine fever virus PolX. In the residual lesion bypass, mostly dAMP and dGMP were incorporated by Klenow and RB69 polymerases, while Dpo4 and PolX used primer/template misalignment. Of AP endonucleases involved in BER, Escherichia coli endonuclease IV and its yeast homolog Apn1p efficiently hydrolyzed both adducts. In contrast, E. coli exonuclease III and human APE1 showed little activity on APPXL substrates. Our data suggest that APPXLs produced by proteolysis of AP site-trapped proteins may be removed by the BER pathway, at least in bacterial and yeast cells.
Collapse
Affiliation(s)
- Anna V Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nikita A Bulgakov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Daria V Kim
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Svetlana V Baranova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Alexander A Ishchenko
- Groupe “Mechanisms of DNA Repair and Carcinogenesis”, Equipe Labellisée LIGUE 2016, CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif, France
| | - Murat K Saparbaev
- Groupe “Mechanisms of DNA Repair and Carcinogenesis”, Equipe Labellisée LIGUE 2016, CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif, France
| | - Vladimir V Koval
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Yudkina AV, Barmatov AE, Bulgakov NA, Boldinova EO, Shilkin ES, Makarova AV, Zharkov DO. Bypass of Abasic Site-Peptide Cross-Links by Human Repair and Translesion DNA Polymerases. Int J Mol Sci 2023; 24:10877. [PMID: 37446048 DOI: 10.3390/ijms241310877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
DNA-protein cross-links remain the least-studied type of DNA damage. Recently, their repair was shown to involve proteolysis; however, the fate of the peptide remnant attached to DNA is unclear. Particularly, peptide cross-links could interfere with DNA polymerases. Apurinuic/apyrimidinic (AP) sites, abundant and spontaneously arising DNA lesions, readily form cross-links with proteins. Their degradation products (AP site-peptide cross-links, APPXLs) are non-instructive and should be even more problematic for polymerases. Here, we address the ability of human DNA polymerases involved in DNA repair and translesion synthesis (POLβ, POLλ, POLη, POLκ and PrimPOL) to carry out synthesis on templates containing AP sites cross-linked to the N-terminus of a 10-mer peptide (APPXL-I) or to an internal lysine of a 23-mer peptide (APPXL-Y). Generally, APPXLs strongly blocked processive DNA synthesis. The blocking properties of APPXL-I were comparable with those of an AP site, while APPXL-Y constituted a much stronger obstruction. POLη and POLκ demonstrated the highest bypass ability. DNA polymerases mostly used dNTP-stabilized template misalignment to incorporate nucleotides when encountering an APPXL. We conclude that APPXLs are likely highly cytotoxic and mutagenic intermediates of AP site-protein cross-link repair and must be quickly eliminated before replication.
Collapse
Affiliation(s)
- Anna V Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Alexander E Barmatov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Nikita A Bulgakov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Elizaveta O Boldinova
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow 123182, Russia
| | - Evgeniy S Shilkin
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow 123182, Russia
| | - Alena V Makarova
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow 123182, Russia
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
4
|
In vitro eradication of abasic site-mediated DNA-peptide/protein cross-links by Escherichia coli long-patch base excision repair. J Biol Chem 2022; 298:102055. [PMID: 35605665 PMCID: PMC9234237 DOI: 10.1016/j.jbc.2022.102055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Apurinic/apyrimidinic (AP or abasic) sites are among the most abundant DNA lesions. Numerous proteins within different organisms ranging from bacteria to human have been demonstrated to react with AP sites to form covalent Schiff base DNA–protein cross-links (DPCs). These DPCs are unstable due to their spontaneous hydrolysis, but the half-lives of these cross-links can be as long as several hours. Such long-lived DPCs are extremely toxic due to their large sizes, which physically block DNA replication. Therefore, these adducts must be promptly eradicated to maintain genome integrity. Herein, we used in vitro reconstitution experiments with chemically synthesized, stable, and site-specific Schiff base AP-peptide/protein cross-link analogs to demonstrate for the first time that this type of DPC can be repaired by Escherichia coli (E. coli) long-patch base excision repair. We demonstrated that the repair process requires a minimum of three enzymes and five consecutive steps, including: (1) 5′-DNA strand incision of the DPC by endonuclease IV; (2 to 4) strand-displacement DNA synthesis, removal of the 5′-deoxyribose phosphate-peptide/protein adduct-containing flap, and gap-filling DNA synthesis by DNA polymerase I; and (5) strand ligation by a ligase. We further demonstrated that endonuclease IV plays a major role in incising an AP-peptide cross-link within E. coli cell extracts. We also report that eradicating model AP-protein (11.2–36.1 kDa) DPCs is less efficient than that of an AP-peptide10mer cross-link, supporting the emerging model that proteolysis is likely required for efficient DPC repair.
Collapse
|
5
|
Housh K, Gates KS. Synthesis of DNA Duplexes Containing Site-Specific Interstrand Cross-Links via Sequential Reductive Amination Reactions Involving Diamine Linkers and Abasic Sites on Complementary Oligodeoxynucleotides. Chem Res Toxicol 2021; 34:2384-2391. [PMID: 34694787 PMCID: PMC8650211 DOI: 10.1021/acs.chemrestox.1c00293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interstrand DNA cross-links are important in biology, medicinal chemistry, and materials science. Accordingly, methods for the targeted installation of interstrand cross-links in DNA duplexes may be useful in diverse fields. Here, a simple procedure is reported for the preparation of DNA duplexes containing site-specific, chemically defined interstrand cross-links. The approach involves sequential reductive amination reactions between diamine linkers and two abasic (apurinic/apyrimidinic, AP) sites on complementary oligodeoxynucleotides. Use of the symmetrical triamine, tris(2-aminoethyl)amine, in this reaction sequence enabled the preparation of a cross-linked DNA duplex bearing a derivatizable aminoethyl group.
Collapse
Affiliation(s)
- Kurt Housh
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Kent S. Gates
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
- University of Missouri, Department of Biochemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| |
Collapse
|
6
|
Ashour ME, Mosammaparast N. Mechanisms of damage tolerance and repair during DNA replication. Nucleic Acids Res 2021; 49:3033-3047. [PMID: 33693881 PMCID: PMC8034635 DOI: 10.1093/nar/gkab101] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/28/2021] [Accepted: 03/02/2021] [Indexed: 01/05/2023] Open
Abstract
Accurate duplication of chromosomal DNA is essential for the transmission of genetic information. The DNA replication fork encounters template lesions, physical barriers, transcriptional machinery, and topological barriers that challenge the faithful completion of the replication process. The flexibility of replisomes coupled with tolerance and repair mechanisms counteract these replication fork obstacles. The cell possesses several universal mechanisms that may be activated in response to various replication fork impediments, but it has also evolved ways to counter specific obstacles. In this review, we will discuss these general and specific strategies to counteract different forms of replication associated damage to maintain genomic stability.
Collapse
Affiliation(s)
- Mohamed Elsaid Ashour
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Nima Mosammaparast
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
7
|
Khodyreva S, Lavrik O. Non-canonical interaction of DNA repair proteins with intact and cleaved AP sites. DNA Repair (Amst) 2020; 90:102847. [DOI: 10.1016/j.dnarep.2020.102847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/06/2020] [Accepted: 03/24/2020] [Indexed: 02/01/2023]
|
8
|
Srivastava M, Su D, Zhang H, Chen Z, Tang M, Nie L, Chen J. HMCES safeguards replication from oxidative stress and ensures error-free repair. EMBO Rep 2020; 21:e49123. [PMID: 32307824 DOI: 10.15252/embr.201949123] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 03/14/2020] [Accepted: 03/19/2020] [Indexed: 02/02/2023] Open
Abstract
Replication across oxidative DNA lesions can give rise to mutations that pose a threat to genome integrity. How such lesions, which escape base excision repair, get removed without error during replication remains unknown. Our PCNA-based screen to uncover changes in replisome composition under different replication stress conditions had revealed a previously unknown PCNA-interacting protein, HMCES/C3orf37. Here, we show that HMCES is a critical component of the replication stress response, mainly upon base misincorporation. We further demonstrate that the absence of HMCES imparts resistance to pemetrexed treatment due to error-prone bypass of oxidative damage. Furthermore, based on genetic screening, we show that homologous recombination repair proteins, such as CtIP, BRCA2, BRCA1, and PALB2, are indispensable for the survival of HMCES KO cells. Hence, HMCES, which is the sole member of the SRAP superfamily in higher eukaryotes known so far, acts as a proofreader on replication forks, facilitates resolution of oxidative base damage, and therefore ensures faithful DNA replication.
Collapse
Affiliation(s)
- Mrinal Srivastava
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dan Su
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Litong Nie
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
9
|
Kitsera N, Rodriguez-Alvarez M, Emmert S, Carell T, Khobta A. Nucleotide excision repair of abasic DNA lesions. Nucleic Acids Res 2019; 47:8537-8547. [PMID: 31226203 PMCID: PMC6895268 DOI: 10.1093/nar/gkz558] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/28/2019] [Accepted: 06/18/2019] [Indexed: 01/05/2023] Open
Abstract
Apurinic/apyrimidinic (AP) sites are a class of highly mutagenic and toxic DNA lesions arising in the genome from a number of exogenous and endogenous sources. Repair of AP lesions takes place predominantly by the base excision pathway (BER). However, among chemically heterogeneous AP lesions formed in DNA, some are resistant to the endonuclease APE1 and thus refractory to BER. Here, we employed two types of reporter constructs accommodating synthetic APE1-resistant AP lesions to investigate the auxiliary repair mechanisms in human cells. By combined analyses of recovery of the transcription rate and suppression of transcriptional mutagenesis at specifically positioned AP lesions, we demonstrate that nucleotide excision repair pathway (NER) efficiently removes BER-resistant AP lesions and significantly enhances the repair of APE1-sensitive ones. Our results further indicate that core NER components XPA and XPF are equally required and that both global genome (GG-NER) and transcription coupled (TC-NER) subpathways contribute to the repair.
Collapse
Affiliation(s)
- Nataliya Kitsera
- Unit "Responses to DNA Lesions", Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Marta Rodriguez-Alvarez
- Unit "Responses to DNA Lesions", Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock 18057, Germany
| | - Thomas Carell
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Andriy Khobta
- Unit "Responses to DNA Lesions", Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| |
Collapse
|
10
|
Yang JL, Chen WY, Mukda S, Yang YR, Sun SF, Chen SD. Oxidative DNA damage is concurrently repaired by base excision repair (BER) and apyrimidinic endonuclease 1 (APE1)-initiated nonhomologous end joining (NHEJ) in cortical neurons. Neuropathol Appl Neurobiol 2019; 46:375-390. [PMID: 31628877 PMCID: PMC7317839 DOI: 10.1111/nan.12584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/13/2019] [Indexed: 12/24/2022]
Abstract
Aims Accumulating studies have suggested that base excision repair (BER) is the major repair pathway of oxidative DNA damage in neurons, and neurons are deficient in other DNA repair pathways, including nucleotide excision repair and homologous recombination repair. However, some studies have demonstrated that neurons could efficiently repair glutamate‐ and menadione‐induced double‐strand breaks (DSBs), suggesting that the DSB repair mechanisms might be implicated in neuronal health. In this study, we hypothesized that BER and nonhomologous end joining (NHEJ) work together to repair oxidative DNA damage in neurons. Methods Immunohistochemistry and confocal microscopy were employed to examine the colocalization of apyrimidinic endonuclease 1 (APE1), histone variant 2AX (γH2AX) and phosphorylated p53‐binding protein (53BP1). APE1 inhibitor and shRNA were respectively applied to suppress APE1 activity and protein expression to determine the correlation of APE1 and DSB formation. The neutral comet assay was used to determine and quantitate the formation of DSB. Results Both γH2AX and 53BP1 were upregulated and colocalized with APE1 in the nuclei of rat cortical neurons subjected to menadione‐induced oxidative insults. Phospho53BP1 foci were efficiently abolished, but γH2AX foci persisted following the suppression of APE1 activity. Comet assays demonstrated that the inhibition of APE1 decreased the DSB formation. Conclusions Our results indicate that APE1 can engage the NHEJ mechanism in the repair of oxidative DNA damage in neurons. These findings provide insights into the mechanisms underlying the efficient repair of oxidative DNA damage in neurons despite the high oxidative burden.
Collapse
Affiliation(s)
- J-L Yang
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - W-Y Chen
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - S Mukda
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Y-R Yang
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - S-F Sun
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - S-D Chen
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
11
|
Admiraal SJ, O'Brien PJ. Reactivity and Cross-Linking of 5'-Terminal Abasic Sites within DNA. Chem Res Toxicol 2017; 30:1317-1326. [PMID: 28485930 DOI: 10.1021/acs.chemrestox.7b00057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nicking of the DNA strand immediately upstream of an internal abasic (AP) site produces 5'-terminal abasic (dRp) DNA. Both the intact and the nicked abasic species are reactive intermediates along the DNA base excision repair (BER) pathway and can be derailed by side reactions. Aberrant accumulation of the 5'-terminal abasic intermediate has been proposed to lead to cell death, so we explored its reactivity and compared it to the reactivity of the better-characterized internal abasic intermediate. We find that the 5'-terminal abasic group cross-links with the exocyclic amine of a nucleotide on the opposing strand to form an interstrand DNA-DNA cross-link (ICL). This cross-linking reaction has the same kinetic constants and follows the same pH dependence as the corresponding cross-linking reaction of intact abasic DNA, despite the changes in charge and flexibility engendered by the nick. However, the ICL that traps nicked abasic DNA has a shorter lifetime at physiological pH than the otherwise analogous ICL of intact abasic DNA due to the reversibility of the cross-linking reaction coupled with faster breakdown of the 5'-terminal abasic species via β-elimination. Unlike internal abasic DNA, 5'-terminal abasic DNA can also react with exocyclic amines of unpaired nucleotides at the 3'-end of the nick, thereby bridging the nick by connecting DNA strands of the same orientation. The discovery and characterization of cross-links between 5'-terminal abasic sites and exocyclic amines of both opposing and adjacent nucleotides add to our knowledge of DNA damage with the potential to disrupt DNA transactions.
Collapse
Affiliation(s)
- Suzanne J Admiraal
- Department of Biological Chemistry, University of Michigan Medical School , 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-5606, United States
| | - Patrick J O'Brien
- Department of Biological Chemistry, University of Michigan Medical School , 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-5606, United States
| |
Collapse
|
12
|
Admiraal SJ, O'Brien PJ. Base excision repair enzymes protect abasic sites in duplex DNA from interstrand cross-links. Biochemistry 2015; 54:1849-57. [PMID: 25679877 DOI: 10.1021/bi501491z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hydrolysis of the N-glycosyl bond between a nucleobase and deoxyribose leaves an abasic site within duplex DNA. The abasic site can react with exocyclic amines of nucleobases on the complementary strand to form interstrand DNA-DNA cross-links (ICLs). We find that several enzymes from the base excision repair (BER) pathway protect an abasic site on one strand of a DNA duplex from cross-linking with an amine on the opposing strand. Human alkyladenine DNA glycosylase (AAG) and Escherichia coli 3-methyladenine DNA glycosylase II (AlkA) accomplish this by binding tightly to the abasic site and sequestering it. AAG protects an abasic site opposite T, the product of its canonical glycosylase reaction, by a factor of ∼10-fold, as estimated from its inhibition of the reaction of an exogenous amine with the damaged DNA. Human apurinic/apyrimidinic site endonuclease 1 and E. coli endonuclease III both decrease the amount of ICL at equilibrium by generating a single-strand DNA nick at the abasic position as it is liberated from the cross-link. The reversibility of the reaction between amines and abasic sites allows BER enzymes to counter the potentially disruptive effects of this type of cross-link on DNA transactions.
Collapse
Affiliation(s)
- Suzanne J Admiraal
- Department of Biological Chemistry, University of Michigan Medical School , Ann Arbor, Michigan 48109-5606, United States
| | | |
Collapse
|
13
|
Petrova KV, Millsap AD, Stec DF, Rizzo CJ. Characterization of the deoxyguanosine-lysine cross-link of methylglyoxal. Chem Res Toxicol 2014; 27:1019-29. [PMID: 24801980 PMCID: PMC4060920 DOI: 10.1021/tx500068v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Methylglyoxal is a mutagenic bis-electrophile that is produced endogenously from carbohydrate precursors. Methylglyoxal has been reported to induce DNA-protein cross-links (DPCs) in vitro and in cultured cells. Previous work suggests that these cross-links are formed between guanine and either lysine or cysteine side chains. However, the chemical nature of the methylglyoxal induced DPC have not been determined. We have examined the reaction of methylglyoxal, deoxyguanosine (dGuo), and Nα-acetyllysine (AcLys) and determined the structure of the cross-link to be the N2-ethyl-1-carboxamide with the lysine side chain amino group (1). The cross-link was identified by mass spectrometry and the structure confirmed by comparison to a synthetic sample. Further, the cross-link between methylglyoxal, dGuo, and a peptide (AcAVAGKAGAR) was also characterized. The mechanism of cross-link formation is likely to involve an Amadori rearrangement.
Collapse
Affiliation(s)
- Katya V Petrova
- Departments of Chemistry and Biochemistry, Center in Molecular Toxicology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University , Nashville, Tennessee 37235, United States
| | | | | | | |
Collapse
|
14
|
Abstract
When compared to other conserved housekeeping protein families, such as ribosomal proteins, during the evolution of higher eukaryotes, aminoacyl-tRNA synthetases (aaRSs) show an apparent high propensity to add new sequences, and especially new domains. The stepwise emergence of those new domains is consistent with their involvement in a broad range of biological functions beyond protein synthesis, and correlates with the increasing biological complexity of higher organisms. These new domains have been extensively characterized based on their evolutionary origins and their sequence, structural, and functional features. While some of the domains are uniquely found in aaRSs and may have originated from nucleic acid binding motifs, others are common domain modules mediating protein-protein interactions that play a critical role in the assembly of the multi-synthetase complex (MSC). Interestingly, the MSC has emerged from a miniature complex in yeast to a large stable complex in humans. The human MSC consists of nine aaRSs (LysRS, ArgRS, GlnRS, AspRS, MetRS, IleRS, LeuRS, GluProRS, and bifunctional aaRs) and three scaffold proteins (AIMP1/p43, AIMP2/p38, and AIMP3/p18), and has a molecular weight of 1.5 million Dalton. The MSC has been proposed to have a functional dualism: facilitating protein synthesis and serving as a reservoir of non-canonical functions associated with its synthetase and non-synthetase components. Importantly, domain additions and functional expansions are not limited to the components of the MSC and are found in almost all aaRS proteins. From a structural perspective, multi-functionalities are represented by multiple conformational states. In fact, alternative conformations of aaRSs have been generated by various mechanisms from proteolysis to alternative splicing and posttranslational modifications, as well as by disease-causing mutations. Therefore, the metamorphosis between different conformational states is connected to the activation and regulation of the novel functions of aaRSs in higher eukaryotes.
Collapse
Affiliation(s)
- Min Guo
- Department of Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33410, USA,
| | - Xiang-Lei Yang
- Department of Cancer Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA,
| |
Collapse
|
15
|
Puch CBMD, Barbier E, Sauvaigo S, Gasparutto D, Breton J. Tools and strategies for DNA damage interactome analysis. Mutat Res 2012; 752:72-83. [PMID: 23220222 DOI: 10.1016/j.mrrev.2012.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 11/01/2012] [Accepted: 11/22/2012] [Indexed: 11/26/2022]
Abstract
DNA is the target of multiple endogenous and exogenous agents generating chemical lesions on the double helix. Cellular DNA damage response pathways rely on a myriad of proteins interacting with DNA alterations. The cartography of this interactome currently includes well known actors of chromatin remodelling, DNA repair or proteins hijacked from their natural functions such as transcription factors. In order to go further into the characterisation of these protein networks, proteomics-based methods began to be used in the early 2000s. The strategies are diverse and include mainly (i) damaged DNA molecules used as targets on protein microarrays, (ii) damaged DNA probes used to trap within complex cellular extracts proteins that are then separated and identified by proteomics, (iii) identification of chromatin- bound proteins after a genotoxic stress, or (iv) identification of proteins associated with other proteins already known to be part of DNA damage interactome. All these approaches have already been performed to find new proteins recognizing oxidised bases, abasic sites, strand breaks or crosslinks generated by anticancer drugs such as nitrogen mustards and platinating agents. Identified interactions are generally confirmed using complementary methods such as electromobility shift assays or surface plasmon resonance. These strategies allowed, for example, demonstration of interactions between cisplatin-DNA crosslinks and PARP-1 or the protein complex PTW/PP. The next challenging step will be to understand the biological repercussions of these newly identified interactions which may help to unravel new mechanisms involved in genetic toxicology, discover new cellular responses to anticancer drugs or identify new biomarkers and therapeutic targets.
Collapse
Affiliation(s)
| | - Ewa Barbier
- Laboratoire Lésions des Acides Nucléiques, SCIB, UMR-E3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble, F-38054, France
| | - Sylvie Sauvaigo
- Laboratoire Lésions des Acides Nucléiques, SCIB, UMR-E3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble, F-38054, France
| | - Didier Gasparutto
- Laboratoire Lésions des Acides Nucléiques, SCIB, UMR-E3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble, F-38054, France
| | - Jean Breton
- Laboratoire Lésions des Acides Nucléiques, SCIB, UMR-E3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble, F-38054, France; UFR de Pharmacie, Université Joseph Fourier-Grenoble 1, Domaine de la Merci, La Tronche, F-38706, France.
| |
Collapse
|
16
|
Pestryakov P, Zharkov DO, Grin I, Fomina EE, Kim ER, Hamon L, Eliseeva IA, Petruseva IO, Curmi PA, Ovchinnikov LP, Lavrik OI. Effect of the multifunctional proteins RPA, YB-1, and XPC repair factor on AP site cleavage by DNA glycosylase NEIL1. J Mol Recognit 2012; 25:224-33. [PMID: 22434712 DOI: 10.1002/jmr.2182] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
DNA glycosylases are key enzymes in the first step of base excision DNA repair, recognizing DNA damage and catalyzing the release of damaged nucleobases. Bifunctional DNA glycosylases also possess associated apurinic/apyrimidinic (AP) lyase activity that nick the damaged DNA strand at an abasic (or AP) site, formed either spontaneously or at the first step of repair. NEIL1 is a bifunctional DNA glycosylase capable of processing lesions, including AP sites, not only in double-stranded but also in single-stranded DNA. Here, we show that proteins participating in DNA damage response, YB-1 and RPA, affect AP site cleavage by NEIL1. Stimulation of the AP lyase activity of NEIL1 was observed when an AP site was located in a 60 nt-long double-stranded DNA. Both RPA and YB-1 inhibited AP site cleavage by NEIL1 when the AP site was located in single-stranded DNA. Taking into account a direct interaction of YB-1 with the AP site, located in single-stranded DNA, and the high affinity of both YB-1 and RPA for single-stranded DNA, this behavior is presumably a consequence of a competition with NEIL1 for the DNA substrate. Xeroderma pigmentosum complementation group C protein (XPC), a key protein of another DNA repair pathway, was shown to interact directly with AP sites but had no effect on AP site cleavage by NEIL1.
Collapse
Affiliation(s)
- Pavel Pestryakov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Prospect Lavrentieva 8, Novosibirsk, 630090, Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Khodyreva SN, Lavrik OI. Affinity modification in a proteomic study of DNA repair ensembles. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 37:91-107. [DOI: 10.1134/s1068162011010109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Bounaix Morand du Puch C, Barbier E, Kraut A, Couté Y, Fuchs J, Buhot A, Livache T, Sève M, Favier A, Douki T, Gasparutto D, Sauvaigo S, Breton J. TOX4 and its binding partners recognize DNA adducts generated by platinum anticancer drugs. Arch Biochem Biophys 2010; 507:296-303. [PMID: 21184731 DOI: 10.1016/j.abb.2010.12.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/12/2010] [Accepted: 12/17/2010] [Indexed: 10/18/2022]
Abstract
Platinating agents are commonly prescribed anticancer drugs damaging DNA. Induced lesions are recognized by a wide range of proteins. These are involved in cellular mechanisms such as DNA repair, mediation of cytotoxicity or chromatin remodeling. They therefore constitute crucial actors to understand pharmacology of these drugs. To expand our knowledge about this subproteome, we developed a ligand fishing trap coupled to high throughput proteomic tools. This trap is made of damaged plasmids attached to magnetic beads, and was exposed to cell nuclear extracts. Retained proteins were identified by nanoHPLC coupled to tandem mass spectrometry. This approach allowed us to establish a list of 38 proteins interacting with DNA adducts generated by cisplatin, oxaliplatin and satraplatin. Some of them were already known interactome members like high mobility group protein 1 (HMGB1) or the human upstream binding factor (hUBF), but we also succeeded in identifying unexpected proteins such as TOX HMG box family member 4 (TOX4), phosphatase 1 nuclear targeting subunit (PNUTS), and WD repeat-containing protein 82 (WDR82), members of a recently discovered complex. Interaction between TOX4 and platinated DNA was subsequently validated by surface plasmon resonance imaging (SPRi). These interactions highlight new cellular responses to DNA damage induced by chemotherapeutic agents.
Collapse
Affiliation(s)
- Christophe Bounaix Morand du Puch
- CEA Grenoble, INAC, SCIB (UMR E_3 CEA-Université Joseph Fourier, CNRS FRE3200)-Laboratoire Lésions des Acides Nucléiques, 17 Rue des Martyrs, 38054 Grenoble Cedex 09, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Apurinic/apyrimidinic (AP) site recognition by the 5'-dRP/AP lyase in poly(ADP-ribose) polymerase-1 (PARP-1). Proc Natl Acad Sci U S A 2010; 107:22090-5. [PMID: 21127267 DOI: 10.1073/pnas.1009182107] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The capacity of human poly(ADP-ribose) polymerase-1 (PARP-1) to interact with intact apurinic/apyrimidinic (AP) sites in DNA has been demonstrated. In cell extracts, sodium borohydride reduction of the PARP-1/AP site DNA complex resulted in covalent cross-linking of PARP-1 to DNA; the identity of cross-linked PARP-1 was confirmed by mass spectrometry. Using purified human PARP-1, the specificity of PARP-1 binding to AP site-containing DNA was confirmed in competition binding experiments. PARP-1 was only weakly activated to conduct poly(ADP-ribose) synthesis upon binding to AP site-containing DNA, but was strongly activated for poly(ADP-ribose) synthesis upon strand incision by AP endonuclease 1 (APE1). By virtue of its binding to AP sites, PARP-1 could be poised for its role in base excision repair, pending DNA strand incision by APE1 or the 5'-dRP/AP lyase activity in PARP-1.
Collapse
|
20
|
Frechin M, Kern D, Martin RP, Becker HD, Senger B. Arc1p: Anchoring, routing, coordinating. FEBS Lett 2009; 584:427-33. [DOI: 10.1016/j.febslet.2009.11.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 11/09/2009] [Accepted: 11/09/2009] [Indexed: 10/20/2022]
|
21
|
Timofeyeva NA, Koval VV, Knorre DG, Zharkov DO, Saparbaev MK, Ishchenko AA, Fedorova OS. Conformational dynamics of human AP endonuclease in base excision and nucleotide incision repair pathways. J Biomol Struct Dyn 2009; 26:637-52. [PMID: 19236113 DOI: 10.1080/07391102.2009.10507278] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
APE1 is a multifunctional enzyme that plays a central role in base excision repair (BER) of DNA. APE1 is also involved in the alternative nucleotide incision repair (NIR) pathway. We present an analysis of conformational dynamics and kinetic mechanisms of the full-length APE1 and truncated NDelta61-APE1 lacking the N-terminal 61 amino acids (REF1 domain) in BER and NIR pathways. The action of both enzyme forms were described by identical kinetic schemes, containing four stages corresponding to formation of the initial enzyme-substrate complex and isomerization of this complex; when a damaged substrate was present, these stages were followed by an irreversible catalytic stage resulting in the formation of the enzyme-product complex and the equilibrium stage of product release. For the first time we showed, that upon binding AP-containing DNA, the APE1 structure underwent conformational changes before the chemical cleavage step. Under BER conditions, the REF1 domain of APE1 influenced the stability of both the enzyme-substrate and enzyme-product complexes, as well as the isomerization rate, but did not affect the rates of initial complex formation or catalysis. Under NIR conditions, the REF1 domain affected both the rate of formation and the stability of the initial complex. In comparison with the full-length protein, NDelta61-APE1 did not display a decrease in NIR activity with a dihydrouracil-containing substrate. BER conditions decrease the rate of catalysis and strongly inhibit the rate of isomerization step for the NIR substrates. Under NIR conditions AP-endonuclease activity is still very efficient.
Collapse
Affiliation(s)
- N A Timofeyeva
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk State University, Russia.
| | | | | | | | | | | | | |
Collapse
|
22
|
Ilina ES, Lavrik OI, Khodyreva SN. Identification of Ku80 subunit of Ku antigen as a protein reactive to apurinic/apyrimidinic sites. DOKL BIOCHEM BIOPHYS 2009; 424:31-4. [PMID: 19341103 DOI: 10.1134/s1607672909010098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- E S Ilina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk
| | | | | |
Collapse
|
23
|
Ku antigen interacts with abasic sites. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1777-85. [PMID: 18757043 DOI: 10.1016/j.bbapap.2008.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 07/28/2008] [Accepted: 08/05/2008] [Indexed: 11/21/2022]
Abstract
One of the most abundant lesions in DNA is the abasic (AP) sites arising spontaneously or as an intermediate in base excision repair. Certain proteins participating in the processing of these lesions form a Schiff base with the deoxyribose of the AP site. This intermediate can be stabilized by NaBH(4) treatment. By this method, DNA duplexes with AP sites were used to trap proteins in cell extracts. In HeLa cell extract, along with a prevalent trap product with an apparent molecular mass of 95 kDa, less intensive low-molecular-weight products were observed. The major one was identified as the p80-subunit of Ku antigen (Ku). Ku antigen, a DNA binding component of DNA-dependent protein kinase (DNA-PK), participates in double-stranded break repair and is responsible for the resistance of cells to ionizing radiation. The specificity of Ku interaction with AP sites was proven by more efficient competition of DNA duplexes with an analogue of abasic site than non-AP DNA. Ku80 was cross-linked to AP DNAs with different efficiencies depending on the size and position of strand interruptions opposite to AP sites. Ku antigen as a part of DNA-PK was shown to inhibit AP site cleavage by apurinic/apyrimidinic endonuclease 1.
Collapse
|
24
|
Hégarat N, François JC, Praseuth D. Modern tools for identification of nucleic acid-binding proteins. Biochimie 2008; 90:1265-72. [PMID: 18452716 DOI: 10.1016/j.biochi.2008.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 03/21/2008] [Indexed: 11/25/2022]
Abstract
Numerous biological mechanisms depend on nucleic acid--protein interactions. The first step to the understanding of these mechanisms is to identify interacting molecules. Knowing one partner, the identification of other associated molecular species can be carried out using affinity-based purification procedures. When the nucleic acid-binding protein is known, the nucleic acid can be isolated and identified by sensitive techniques such as polymerase chain reaction followed by DNA sequencing or hybridization on chips. The reverse identification procedure is less straightforward in part because interesting nucleic acid-binding proteins are generally of low abundance and there are no methods to amplify amino acid sequences. In this article, we will review the strategies that have been developed to identify nucleic acid-binding proteins. We will focus on methods permitting the identification of these proteins without a priori knowledge of protein candidates.
Collapse
Affiliation(s)
- Nadia Hégarat
- INSERM, U565 Case Postale 26, 57 rue Cuvier, 75231 Paris Cedex 05, France
| | | | | |
Collapse
|
25
|
Nazarkina ZK, Khodyreva SN, Marsin S, Lavrik OI, Radicella JP. XRCC1 interactions with base excision repair DNA intermediates. DNA Repair (Amst) 2006; 6:254-64. [PMID: 17118717 DOI: 10.1016/j.dnarep.2006.10.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 10/09/2006] [Accepted: 10/12/2006] [Indexed: 01/21/2023]
Abstract
Abasic (AP) sites in DNA arise either spontaneously, or through glycosylase-catalyzed excision of damaged bases. Their removal by the base excision repair (BER) pathway avoids their mutagenic and cytotoxic consequences. XRCC1 coordinates and facilitates single-strand break (SSB) repair and BER in mammalian cells. We report that XRCC1, through its NTD and BRCT1 domains, has affinity for several DNA intermediates in BER. As shown by its capacity to form a covalent complex via Schiff base, XRCC1 binds AP sites. APE1 suppresses binding of XRCC1 to unincised AP sites however, affinity was higher when the DNA carried an AP-lyase- or APE1-incised AP site. The AP site binding capacity of XRCC1 is enhanced by the presence of strand interruptions in the opposite strand. Binding of XRCC1 to BER DNA intermediates could play an important role to warrant the accurate repair of damaged bases, AP sites or SSBs, in particular in the context of clustered DNA damage.
Collapse
Affiliation(s)
- Zhanna K Nazarkina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospect Lavrentieva 8, Novosibirsk 630090, Russia
| | | | | | | | | |
Collapse
|